Math 373
 Quiz 1
 Spring 2019
 January 24, 2019

1. Michelle invests 10,000 for 10 years. During the first 3 years, Michelle earns a simple interest rate of 10%. During the next 5 years, Michelle earns a compound interest rate of 8%. During the last two years, Michelle earns a rate of interest equivalent to an annual effective discount rate of 6%.

Determine the amount that Michelle will have at the end of 10 years.

Solution:

For the first three years, simple interest of 10%

$$
a(t)=1+s t=1+0.1 t \Rightarrow a(3)=1+0.1(3)
$$

For the next five years, compound interest of 8%

$$
a(t)=(1+i)^{t}=(1.08)^{t} \Rightarrow \Rightarrow a(5)=(1.08)^{5}
$$

For the last two years, compound discount of 6%

$$
\begin{aligned}
& a(t)=(1-d)^{-t}=(1-0.06)^{-t} \Longrightarrow a(2)=(0.94)^{-2} \\
& \text { Answer }=(10,000)(1+0.1(3))(1.08)^{5}(0.94)^{-2}=21,617.55
\end{aligned}
$$

2. You are given that $v(t)=\frac{1}{\alpha+\beta t^{2}}$.

Under this discount function, 500 at time 10 has a present value of 250 .

Determine $a(20)$.

Solution:

$$
\begin{aligned}
& v(t)=\frac{1}{a(t)}==>a(t)=\alpha+\beta t^{2} \\
& a(0)=1 \Rightarrow=>\alpha+\beta(0)^{2}=1 \Longrightarrow \Rightarrow \alpha=1 \\
& 250 a(10)=500 \Rightarrow \Rightarrow a(10)=2=\Rightarrow 1+\beta(10)^{2}=2 \Rightarrow \beta(100)=1 \Longrightarrow \beta=0.01 \\
& a(t)=1+0.01 t^{2} \Longrightarrow \Rightarrow a(20)=1+0.01(20)^{2}=5
\end{aligned}
$$

3. Let i_{10} be the effective interest rate in the $10^{\text {th }}$ year for simple interest at a simple interest rate of 7%.

Let d_{10} be the effective discount rate in the $10^{\text {th }}$ year under compound interest at an annual effective interest rate of 4%.

Calculate $i_{10}-d_{10}$. (Provide your answer to five decimal places.)
Solution:
$i_{10}=\frac{a(10)-a(9)}{a(9)}=\frac{1+0.07(10)-[1+0.07(9)]}{1+0.07(9)}=\frac{0.07}{1.63}=0.042944785$
or under simple interest
$i_{n}=\frac{s}{1+(n-1) s}=>i_{10}=\frac{0.07}{1+(10-1)(0.07)}=\frac{0.07}{1.63}=0.042944785$
$d_{10}=\frac{a(10)-a(9)}{a(10)}=\frac{(1.04)^{10}-\left[(1.04)^{9}\right]}{(1.04)^{10}}=0.038461538$
or under compound interest d is constant so $d_{10}=d$
$d=\frac{i}{1+i}=\frac{0.04}{1.04}=0.038461538$
$i_{10}-d_{10}=0.042944785-0.038461538=0.00448$

