MATH 373
 Quiz 4
 Spring 2019
 April 4, 2019

1. Teddy owns a bond that pays annual coupons of 500 . The book value of the bond right after the $10^{\text {th }}$ coupon is $14,844.42$. The book value on the bond right after the $11^{\text {th }}$ coupon is $14,820.92$. Calculate the yield rate on this bond.

Solution:

The easy way:
$B_{k-1}(1+j)-F r=B_{k}==>14,844.42(1+j)-500=14,820.92$
$14,844.42(1+j)=15,320.92 \Longrightarrow j=\frac{15,320.92}{14,844.42}-1=0.0321$

Or:

$$
\begin{aligned}
& \operatorname{Fr}=500=\operatorname{Pr}_{11}+\text { Int }_{11} \\
& B_{10}-\operatorname{Pr}_{11}=B_{11}==>\operatorname{Pr}_{11}=14,844.42-14,820.92=23.50 \\
& \text { Int }_{11}=500-23.50=476.50 \\
& B_{10} \cdot j=\text { Int }_{11}=\Rightarrow(14,844.42)(j)=476.50 \Longrightarrow j=\frac{476.50}{14,844.42}=0.0321
\end{aligned}
$$

2. The Vinyard Corporation issues a 10 year callable bond. The bond matures for its par value of 10,000 . The bond has coupons payable semi-annually at a rate of 7.5% compounded semiannually.

The bond is callable at the end of 6 years with a call value of 10,250 .
The bond is callable at the end of 8 years with a call value of 10,125 .
The bond is purchased to yield 6.8% compounded semi-annually.
Determine the price of the The Vinyard's bond.

Solution:

n	$1 / Y$	PMT	FV	CPT PV
$(6)(2)=12$	$6.8 / 2=3.4$	$(10,000)(0.075 / 2)=375$	10,250	$10,507.59$
$(8)(2)=16$	3.4	375	10,125	$10,499.70$
$(10)(2)=20$	3.4	375	10,000	$10,501.97$

Answer is lowest price of 10,499.70
3. Mary buys a 20 year bond with semi-annual coupons at a rate of 6% compounded semiannually. The bond has a par value of F and matures for $F+100$. The price of the bond is 1029.78 using a yield rate of 5.8% compounded semi-annually.

Determine the amount of the premium or the discount in the sale of this bond. Be sure to state whether it is a premium or discount.

Solution:

$$
\begin{aligned}
& P=F r a_{40}+C v^{40} \\
& 1029.78=F(0.03)\left(\frac{1-(1.029)^{-40}}{0.029}\right)+(F+100)(1.029)^{-40} \\
& 1029.78=(0.704790867) F+(0.318702162) F+31.87 \\
& F=\frac{1029.78-31.87}{1.023493029}=975.00 \\
& C=975.00+100.00=1075.00
\end{aligned}
$$

Since $C>P==>$ Discount $=1075.00-1029.78=45.22$

