STAT 416

Quiz 2

Fall 2021
October 7, 2021

1. For the random variable X, you are given the probability density function:

$$
f_{X}(x)= \begin{cases}c x^{2}, & 0 \leq x \leq 5 \\ 0, & \text { elsewhere }\end{cases}
$$

Calculate the $E[X]$.
Solution:
First find c.

$$
\begin{aligned}
& \int_{0}^{5} f_{X}(x) \cdot d x=1==>\int_{0}^{5} c x^{2} \cdot d x=1 \Longrightarrow\left[\frac{c x^{3}}{3}\right]_{0}^{5}=\frac{125 c}{3}=1 \Rightarrow c=\frac{3}{125} \\
& E[X]=\int_{0}^{5} x \cdot f_{X}(x) \cdot d x=\int_{0}^{5} x \cdot \frac{3}{125} x^{2} \cdot d x=\frac{3}{125} \int_{0}^{5} x^{3} \cdot d x=\left(\frac{3}{125}\right)\left[\frac{x^{4}}{4}\right]_{0}^{5} \\
& =\left(\frac{3}{125}\right)\left[\frac{5^{4}}{4}\right]=\frac{15}{4}=3.75
\end{aligned}
$$

2. A bowl has 11 balls in it. Nine of the balls are purple and two are red. You draw a ball from the bowl and note the color. You then replace the ball in the bowl and draw again.

Let N be the random variable representing number of the draw upon which you get the first purple ball.

Calculate the $E[N]$.
Solution:

$$
\begin{aligned}
& E[N]=\sum_{n=1}^{\infty} n \cdot p(n)=(1)\left(\frac{9}{11}\right)+(2)\left(\frac{2}{11}\right)\left(\frac{9}{11}\right)+(2)\left(\frac{2}{11}\right)^{2}\left(\frac{9}{11}\right)+\ldots \\
& =\frac{c}{(1-r)^{2}}=\frac{\left(\frac{9}{11}\right)}{\left(1-\left(\frac{2}{11}\right)\right)^{2}}=\frac{11}{9}
\end{aligned}
$$

3. I would like to receive credit for this question because I wrote my name on the cover.
True or False
