STAT 416

Quiz 3

Fall 2021
October 21, 2021

1. (10 points) You are given that the random variable X has the following pdf:

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{3 x^{2}}{1000}, & 0 \leq x \leq 10 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Calculate $\operatorname{Var}[X]$.

Solution:

$\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}$
$E[X]=\int_{0}^{10} x \cdot f_{X}(x) \cdot d x=\int_{0}^{10} x \cdot \frac{3 x^{2}}{1000} \cdot d x=\left[\frac{3 x^{4}}{4000}\right]_{0}^{10}=7.5$
$E\left[X^{2}\right]=\int_{0}^{10} x^{2} \cdot f_{X}(x) \cdot d x=\int_{0}^{10} x^{2} \cdot \frac{3 x^{2}}{1000} \cdot d x=\left[\frac{3 x^{5}}{5000}\right]_{0}^{10}=60$
$\operatorname{Var}[X]=60-(7.5)^{2}=3.75=\frac{15}{4}$
2. A bowl has four tiles numbered $1,2,3$, and 4 . You randomly draw a tile from the bowl and note the number. You REPLACE the tile and draw again.

Let the random variable N be the sum of the two tiles.
a. (10 points) Calculate $E[N]$.

Solution:

		Draw of First Tile			
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Draw	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5
of	$\mathbf{2}$	3	4	5	6
Second	$\mathbf{3}$	4	5	6	7
Tile	$\mathbf{4}$	5	6	7	8

The values in red are the totals of the two tiles.

$$
\begin{aligned}
& p(2)=\frac{1}{16} ; p(3)=\frac{2}{16} ; p(4)=\frac{3}{16} ; p(5)=\frac{4}{16} ; p(6)=\frac{3}{16} ; p(7)=\frac{2}{16} ; p(8)=\frac{1}{16} \\
& E[N]=(2)\left(\frac{1}{16}\right)+(3)\left(\frac{2}{16}\right)+(4)\left(\frac{3}{16}\right)+(5)\left(\frac{4}{16}\right)+(6)\left(\frac{3}{16}\right)+(7)\left(\frac{2}{16}\right)+(8)\left(\frac{1}{16}\right)=5
\end{aligned}
$$

b. (10 points) Calculate $\operatorname{Var}[N]$.

Solution:

$$
\begin{aligned}
E\left[X^{2}\right]=(2)^{2}\left(\frac{1}{16}\right)+(3)^{2}\left(\frac{2}{16}\right)+(4)^{2} & \left(\frac{3}{16}\right)+(5)^{2}\left(\frac{4}{16}\right) \\
& +(6)^{2}\left(\frac{3}{16}\right)+(7)^{2}\left(\frac{2}{16}\right)+(8)^{2}\left(\frac{1}{16}\right)=27.5
\end{aligned}
$$

$\operatorname{Var}[N]=27.5-(5)^{2}=2.5$

This problem was solved many different ways. The above is just one of the solutions.

