STAT 416
 Quiz 5
 Fall 2021
 November 23, 2021

1. The random variable $X \sim \operatorname{Gamma}(2, \beta)$ and has mean of 6 .

Calculate $E\left[X^{2}\right]$.

Solution:

$E[X]=\frac{\alpha}{\beta}=\frac{2}{\beta}=6 \Rightarrow \beta=\frac{1}{3}$
$\operatorname{Var}[X]=\frac{\alpha}{\beta^{2}}=E\left[X^{2}\right]-(E[X])^{2} \Rightarrow \Rightarrow \frac{2}{(1 / 3)^{2}}=E\left[X^{2}\right]-(6)^{2}=\Rightarrow 18=E\left[X^{2}\right]-36$
$E\left[X^{2}\right]=18+36=54$

Also
$E\left[X^{2}\right]=\frac{(\alpha+1)}{\beta^{2}}=\frac{3}{(1 / 3)^{2}}=54$
2. The average length of time between airplane arrivals at the airport is modeled as an exponential distribution. The inter-arrival times for airplanes is 3 minutes.

Calculate the probability that the next plane will arrive between five and ten minutes from now.
Solution:
$\theta=\frac{1}{3}$

$$
\operatorname{Pr}[5<N<10]=S(5)-S(10)=e^{-5 \theta}-e^{-10 \theta}=e^{-5 / 3}-e^{-10 / 3}=0.1532
$$

3. The random variable $X \sim \operatorname{Normal}(7,64)$.

Calculate the $\operatorname{Pr}[-1<X<9]$.

Solution:

$$
\begin{aligned}
& \operatorname{Pr}[-1<X<9]=\operatorname{Pr}\left[\frac{-1-7}{\sqrt{64}}<\frac{X-\mu}{\sigma}<\frac{9-7}{\sqrt{64}}\right]=\operatorname{Pr}[-1<Z<0.25] \\
& =\Phi(0.25)-\Phi(-1)=\Phi(0.25)-\{1-\Phi(1)\}=0.5987-\{1-0.8413\}=0.440
\end{aligned}
$$

