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Preface

Introduction
This note is provided as an accompaniment to the second edition of Actuarial Mathematics for
Life Contingent Risks (AMLCR), by Dickson, Hardy and Waters (2013, Cambridge University
Press).

AMLCR includes almost all of the material required to meet the learning objectives developed
by the SOA for the Long Term Actuarial Mathematics exam which will be offered from Fall
2018. In this note we aim to provide additional material required to meet some of the newer
learning objectives. This note is designed to be read in conjunction with AMLCR, and we
reference section and equation numbers from that text. We expect that this material will be
integrated with the text formally in a third edition.

The SUSM and SSSM used in this note refer to the standard ultimate and select models defined
and used in AMLCR.

Acknowledgements
I would like to thank David Dickson and Howard Waters, my AMLCR co-authors, for innumer-
able hours of lively discussion about actuarial mathematics.

Professor Johnny Siu-Hang Li is a leading expert on mortality modelling, and he generously
provided some background materials for Section 4 of the note.
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respect to details of US practice and terminology. Jessica Ou Dang has provided invaluable and
careful research and editorial assistance.

None of these brilliant and careful people bears any responsibility for any errors or omissions in
this work.

Edits and Corrections
Some typos and minor edits have been incorporated in this version.

1. In Section 2.1, we have corrected a typo in equations (8) and (9), replacing ‘n− k
12 ’ in the

subscripts with ‘n− k+1
12 The numerical calculations are correct.

2. In Example 2.6 the table values for A
(12)03

x have been changed, with consequent changes
in the solutions.

3. In Example 3.1 we have added a sentence clarifying that the CI diagnosis lump sum is
not paid if the life is diagnosed and dies within a single month. We have also made small

corrections to the A
(12)
x functions and consequently to the solutions.

4. In Example 4.7 we have corrected the specification of K
(2)
2017 = 0.01 in the first line. The

calculations are correct.
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1 Long term coverages in health insurance

1.1 Disability income insurance (DII)

Disability income insurance, also known as income protection insurance, is designed to replace
income for individuals who cannot work, or cannot work to full capacity due to sickness or
disability. Typically, level premiums are payable at regular intervals through the term of the
policy, but are suspended during periods of disability. Benefits are paid at regular intervals
during periods of disability. The benefits are usually related to the policyholder’s salary, but
to encourage the policyholder to return to work as soon as possible, the payments are generally
capped at 50-70% of the salary that is being replaced. The policy could continue until the
insured person reaches retirement age.

Common features or options of disability income insurance include the following.

• The waiting period or elimination period is the time between the beginning of a
period of disability and the beginning of the benefit payments. Policyholders select a
waiting period from a list offered by the insurer, with typical periods being 30, 60, 180 or
365 days.

• The payment of benefits based on total disability requires the policyholder to be unable
to work at their usual job, and to be not working at a different job. Medical evidence of
the disability is also required at intervals.

• If the policyholder can do some work, but not at the full earning capacity established
before the period of sickness, they may be eligible for a lower benefit based on partial
disability.

• The amount of disability benefits payable may be reduced if the policyholder receives
disability related income from other sources, for example from workers compensation or
from a government benefit program.

• The benefit payment term is selected by the policyholder from a list of options. Typical
terms are two years, five years, or up to age 65. Once the disability benefit comes into
payment, it will continue to the earlier of the recovery of the policyholder to full health, or
the end of the selected benefit term, or the death of the policyholder. If the policyholder
moves from full disability to partial disability, then the benefit payments may be decreased,
but the total term of benefit payment (covering the full and partial benefit periods) could
be fixed.

For shorter benefit terms, the policy covers each separate period of sickness, so even if the
full benefit term of, say, two years has expired, if the policyholder later becomes disabled
again, provided sufficient time has elapsed between periods of sickness, the benefits would
be payable again for another period of two years.
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• Where two periods of disability occur with only a short interval between them, they may
be treated as a single period of sickness for determining the benefit payment term. The
off period determines the required interval for two periods of disability to be considered
separately rather than together. It is set by the insurer.

For example, suppose a policyholder purchases DII with a two year benefit term, monthly
benefit payments, and a two-month elimination period. The insurer sets the off period at
six months. The policyholder becomes sick on 1 January 2017, and remains sick until 30
June 2017. She returns to work but suffers a recurrence of the sickness on 1 September
2017.

The first benefit payment would be made at the end of the elimination period, on 1 March
2017, and would continue through to 30 June. Since the recurrence occurs within the
6-month off period, the second period of sickness would be treated as a continuation of
the first. That means that the policyholder would not have to wait another two months
to receive the next payment, and it also means that on 1 September, four months of the
24-month benefit term would have expired, and the benefits would continue for another
20 months, or until earlier recovery.

• ‘Own job’ or ‘any job’: the definition of total disability may be based on the policy-
holder’s inability to perform their own job, or on their ability to perform any job that is
reasonable given the policyholder’s qualifications and experience. Clearly the latter is a
more comprehensive definition, and a policy that pays benefits only if the policyholder is
unable to perform any job should be considerably cheaper than one that pays out when
the policyholder is unable to do her/his own job.

• DII insurance may be purchased as a group insurance by an employer, to offset the costs
of paying long term disability benefits to the employees. Group insurance rates (assuming
employees cannot opt out) may be lower than the equivalent rates for individuals, because
the group policies carry less risk from adverse selection. There are also economies of scale,
and less risk of non-payment of premiums from group policies.

• Long term disability benefits may be increased in line with inflation.

• Policies often include additional benefits such as ‘return to work assistance’ which
offsets costs associated with returning to work after a period of disability; for example, the
policyholder may need some re-training, or it may be appropriate for the policyholder to
phase their return to work by working part-time initially. It is in the insurer’s interests to
ensure the return to work is as smooth and as successful as possible for the policyholder.
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1.2 Long Term Care Insurance (LTC)

1.2.1 LTC in the USA and Canada

In a typical LTC contract, premiums are paid regularly while the policyholder is well. When
the policyholder requires care, based on the benefit triggers defined in the policy, there is a
waiting period, similar to the elimination period for DII; 90 days is typical. After this, the
policy will pay benefits as long as the need for care continues, or until the end of the selected
benefit payment period.

Common features or options associated with LTC insurance in the USA and Canada include the
following.

• The trigger for the payment of benefits is usually described in terms of the Activities of
Daily Living, or ADLs. There are six ADLs in common use;

– Bathing

– Dressing

– Eating (does not include cooking).

– Toileting (ability to use the toilet and manage personal hygiene).

– Continence (ability to control bladder and bowel functions)

– Transferring (getting in and out of a bed or chair).

If the policyholder requires assistance to perform two or more of the ADLs, based on
certification by a medical practitioner, then the LTC benefit is triggered, and the waiting
period, if any, commences.

• There is often an alternative trigger based on severe cognitive impairment of the policy-
holder.

• Although the most common policy design uses two ADLs for the benefit trigger, some
policies use three.

• At issue, the policyholder may select a definite term benefit period (typical options are
between 2 years and 5 years), or may select an indefinite period, under which benefit
payments continue as long as the trigger conditions apply.

• The benefit payments may be based on a reimbursement approach, under which the ben-
efits are paid directly to the caregiving organisation, and cover the cost of providing
appropriate care, up to a daily or monthly limit.

• Alternatively, the benefit may be based on a fixed annuity payable during the benefit
period. The policyholder may have the flexibility to apply the benefit to whatever form
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of care is most suitable, but there is no guarantee that the annuity would be sufficient for
the level of care required.

• The insurer may offer the option to have the payments, or payment limits, increase with
inflation.

• The reimbursement type of benefit may cover different forms of care, including in-home
care, delivered by visiting or live-in support workers, or residential care costs, under which
the policyholder would move to a suitable residential long term care facility.

• Similarly to DII, an off-period, typically 6 months, is used to determine whether two
successive periods of care are treated separately or as a single continuous period.

• Hybrid LTC and life insurance plans are becoming popular. There are different ways to
combine the benefits. Under the ‘return of premium’ approach, if the benefits paid under
the LTC insurance are less than the total of the premiums paid, the balance may be
returned as part of the death benefit under the life insurance policy. Alternatively, the
‘accelerated benefit’ approach uses the sum insured under the life insurance policy to pay
LTC benefits. If the policyholder dies before the full sum insured has been paid in LTC
benefits, the balance is paid as a death benefit. The policyholder may add an extension
of benefits option to the hybrid insurance, which would provide for the LTC benefits to
continue for a pre-determined period after the original sum insured is exhausted. Typically,
extension periods offered are in the range of two to five years.

• In the USA some LTC policies are tax-qualifying, which means that policyholders may
deduct a portion of the premiums paid from taxable income when filing their tax returns.
These policies have a trigger based on inability to perform two ADLs, or based on severe
cognitive impairment, provided the disability is expected to last for at least a 90-day
period.

• Premiums are designed to be level throughout the policy term, but insurers may retain
the right to increase premiums for all policyholders if the experience is sufficiently adverse.
Generally, insurers must obtain approval from the regulating body for such rate increases.
In this circumstance, policyholders may be given the option to maintain the same premi-
ums for a lower benefit level. Another feature that may be invoked by regulation is the
Conditional Benefit Upon Lapse, under which policyholders who lapse their policies may
use the net of all premiums paid less any paid claims as a single premium to purchase a
new, paid-up LTC policy.

1.2.2 LTC in other countries

In this section we briefly describe how LTC insurance differs in some countries around the world.
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LTC in France
LTC insurance is popular in France; in 2010 the market penetration (meaning the proportion
of eligible adults with coverage) was higher than any other country. France provides a social
security type benefit for LTC costs that is income-tested (those with high retirement income
receive less benefit that those with lower income), and that is designed to cover a significant
proportion of the cost of basic nursing or residential care. LTC insurance allows policyholders
to supplement the government benefit.

Policies in France are much simpler and much cheaper than in the USA. Premiums in 2010
averaged around $450 per year, compared with over $2,200 in the USA1. Benefits are paid as a
fixed or inflation indexed annuity. Policies are often purchased through group plans facilitated by
employers, reducing the expenses. The policyholder may choose a policy based on ‘mild or severe
dependency’ or one based on ‘severe dependency’ only. The severe dependency policy is more
popular than the mild dependency type. Severe dependency is defined as bed or chair bound,
requiring assistance several times a day or cognitive impairment requiring constant monitoring.
Mild dependency refers to cases where the individual needs help with eating, bathing and/or
some mobility, but is not bed or chair bound. Premiums in France are lower than the US partly
because the average benefit (around $25 per day in 2010) is considerably less than the average
payout from a US policy, where typical daily maximum reimbursement limits range from $100
to $200. Other relevant factors include the simpler contract terms, and the fact that individuals
in France tend to purchase their policies at younger ages than in the USA.

LTC in Germany
In Germany basic LTC costs are covered under the government provided social health insurance.
Individuals can top up the government benefit with private LTC insurance, or can opt out of
the state benefit (and thereby opt out of the tax supporting the benefit) and use LTC insurance
instead. The benefits are fixed annuities.

LTC in Japan
LTC insurance is provided in Japan on a stand-alone basis or as a rider on a whole life insurance
policy. The benefit is payable as a lump sum or annuity, triggered when the policyholder
reaches a specified level of dependency. There may be additional benefits payable when the level
of dependency steps up.

LTC in the United Kingdom
In the UK regular premium LTC policies are no longer offered, as they never reached the
necessary level of popularity for the business to be sustained.

In their place is a different kind of pre-funding, called an immediate needs annuity. This
is a single premium immediate annuity that is purchased as the individual is about to move
permanently into long term care, possibly funded from the proceeds of the sale of a property.
The benefit is paid as a regular fixed annuity, but is paid directly to the care home, saving the
policyholder from having to pay income tax on the proceeds. Because the lives are assumed to

1www.ncbi.nlm.nih.gov/pmc/articles/PMC4462881/.
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be somewhat impaired, and the insurer’s exposure to adverse selection with respect to longevity
is reduced, the benefit amount per unit of single premium may be somewhat greater than a
regular single premium life annuity.

1.3 Critical Illness (CII) Insurance

Critical illness insurance pays a lump sum benefit on diagnosis of one of a list of specified diseases
and conditions. Different policies and insurers may cover slightly different illnesses, but virtually
all include heart attack, stroke, major organ failure, and most forms of cancer. Policies may be
whole life or for a definite term. Unlike DII or LTC insurance, once the claim arises, the benefit
is paid and the policy expires. A second critical illness diagnosis would not be covered. Some
policies offer a partial return of premium if the policy expires or lapses without a CI diagnosis.

Level premiums are typically paid monthly throughout the term, though they may cease at, say,
75 for a long term policy.

Critical illness cover may be added to a life insurance policy as an accelerated benefit rider.
In this case, the critical illness diagnosis triggers the payment of some or all of the death benefit
under the life insurance, with some discounting adjustment applied in some cases. Where the
full benefit is accelerated, the policy expires on the CI diagnosis. If only part of the benefit is
accelerated, then the remainder is paid out when the policyholder dies.

1.4 Chronic illness insurance

Chronic illness insurance pays a benefit on diagnosis of a chronic illness, defined as one from
which the policyholder will not recover, although the illness does not necessarily need to be
terminal. The illness must be sufficiently severe that the policyholder is no longer able to
perform two or more of the ADLs listed in the LTC insurance section. The benefit under a
chronic illness policy is paid as a lump sum or as an annuity.

Chronic illness insurance is typically added to a standard life insurance policy as an accelerated
benefit rider, similarly to the critical illness case.

1.5 Hospital indemnity insurance (HII)

Hospital indemnity insurance pays the policyholder a lump sum each time the policyholder is
admitted for hospital treatment. There may also be a daily stipend payable during a hospital
stay. Other benefits may include payments for emergency room or outpatient visits that do not
result in overnight admission.

The purpose of hospital indemnity insurance differs from standard health insurance, which
provides reimbursement of health costs. Hospital indemnity insurance benefits are available for
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the policyholder to use however she wants – for example, to pay for child care or travel costs for
visiting family. In the USA it can be used to offset uninsured costs associated with the hospital
visit, for example, if the policyholder’s health insurance cover requires the policyholder to pay
some of the costs of the required treatment2.

Premiums for HII increase each year, so the policies are essentially short term in nature. How-
ever, the insurers may guarantee renewal up to age 65, which means that the policyholder is not
subject to annual medical assessment at each renewal date, and also that the premiums should
be the same for a policyholder who has already made several claims under the policy as for a
policyholder who has not.

1.6 Continuing Care Retirement Communities (CCRCs)

Continuing care retirement communities (CCRCs) are residential facilities for seniors, with dif-
ferent levels of medical and personal support designed to adapt to the residents as they age.
Many CCRCs offer funding packages where the costs of future care are covered by a combination
of an entry fee, and a monthly charge.

There are generally three or four categories of residence:

1. Independent Living Units (ILU) represent the first stage of residence in a CCRC. These
are apartments with fairly minimal external care provided (for example, housekeeping,
emergency call buttons, transport to shopping).

2. Assisted living units (ALU) allow more individual support for residents who need help with
at least one, and commonly several of the activities of daily living. Most of the support at
this level is non-medical – help with bathing, dressing, preparation of meals, etc.

3. The skilled nursing facility (SNF) is for residents who need ongoing medical care. The
SNF often looks more like a hospital facility.

4. Memory care units (MCU) offer a separate, more secure facility for residents with severe
dementia or other cognitive impairment.

The industry has developed different forms of funding for CCRCs. Not every CCRC will offer
all funding options, and some will offer variants that are not described here, but these are the
major forms in current use.

• Residents can choose to pay a large upfront fee, and monthly payments which are level, or
which are only increasing with cost of living adjustments. The resident is guaranteed that
all residential, personal assistance and health care needs will be covered without further
cost. This is called a full life care, or life care, or Type A contract.

2Policies generally have deductibles or co-pay requirements, which mean that the full cost of health treatment
is not covered by insurance.
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• Under a modified life care, or Type B contract residents pay lower monthly fees, and
possibly a lower entry fee, but will have to pay additional costs for some services if they
need them. For example, a resident may be charged a higher monthly fee as he moves into
the ALU, with further increases on entry to the SNF or the MCU. Typically, the increases
would be less than the full market cost of the additional care, meaning that the costs are
partially pre-funded through the entry fee and regular monthly payments.

• Fee-for-service, or Type C contracts, involve little or no pre-funding of health care.
Residents pay for the health care they receive at the current market rates. Fee-for-service
contracts have the lowest entry fee and monthly payments, as these only cover the accom-
modation costs.

• Prospective residents entering under a Type A or Type B contract must be sufficiently
well to live independently when they enter the CCRC, and a medical exam is generally
required. Entrants who are already sufficiently disabled to need more care are only eligible
for Type C contracts.

• Under a Type A or B contract the CCRC may offer a partial refund of the entry fee on
the resident’s death or when the resident moves out. This may involve some options, for
example, the resident can choose a higher entry fee with a partial refund, or a lower entry
fee with no refund.

• There are some CCRCs that offer (partial) ownership of the ILU, in place of some or all
of the entry fee. When the resident moves out of independent living permanently, or dies,
the unit is sold, with the proceeds shared between the resident (or her estate) and the
CCRC.

• It is common for couples to purchase CCRC membership jointly, and different payment
schedules may be applied to couples as to single residents entering the CCRC.

The average age at entry to a CCRC in the USA is around 80, with Type A entrants generally
being younger than Type B, who are younger than Type C, on average.

The Type A and (to a lesser extent) Type B contracts transfer the risk of increasing health care
costs from the resident to the CCRC, and therefore are a form of insurance.
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2 Multiple state models for long term health and disability in-
surance

All the long term health related insurances described in Section 1 can be modelled using the
multiple state modelling framework described in AMLCR Chapter 8. In fact, several already
appear in AMLCR. The disability income insurance described above is one of the examples used
throughout Chapter 8; Exercises 8.7 and 8.11 in AMLCR are examples of multiple state models
applied to critical illness insurance, and the permanent disability model described in AMLCR
Chapter 8, is essentially the same model as we would use for the chronic illness insurance.

In this section we will consider more explicitly how we can use multiple state models for the
individual long term health coverages described in Section 1. We assume that the reader has
already mastered the material in AMLCR Chapter 8. What follows are additional Chapter
8 examples, using the long term health coverages for context. We also describe some different
ways to value cash flows, to allow for complications such as waiting periods and discrete payment
models.

2.1 Disability Income Insurance

DII is covered fairly extensively in AMLCR, specifically in Sections 8.2.4 and 8.7.1. The DII
model is illustrated in Figure 8.4 in AMLCR, and we repeat it here for convenience.

0 1

2

Healthy Sick

Dead

-

�

�
�

��	

@
@
@@R

Figure 1: The disability income insurance model.

Under this model, an n-year DII policy written on a healthy life age x, with premiums of P per
year payable continuously while healthy, and a benefit of B per year payable continuously while
disabled, has equation of value at issue

P

∫ n

0
tp

00
x e−δtdt = B

∫ n

0
tp

01
x e−δtdt (1)

that is, P ā00x:n = Bā01x:n (2)
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and this easily generalises to the discrete, monthly payment case,

P

12

(
1 + 1

12
p00x v

1
12 + 2

12
p00x v

2
12 + · · ·+ n− 1

12
p00x vn−

1
12

)
=
B

12

(
1
12
p01x v

1
12 + 2

12
p01x v

2
12 + · · ·+ np

01
x vn

)
(3)

that is, P ä(12)00

x:n = Ba(12)01

x:n (4)

This formulation does not include an allowance for the waiting time between the onset of dis-
ability and the payment of benefits. We can adapt our results to exclude the waiting period from
the benefit payment period, but we can no longer use the neat annuity formulation in equations
(1) and (3) for the benefit valuation, as we need to allow for the length of time of disability. It is
simplest to do this in the continuous payment case, and we will start by considering a different
derivation of the annuity value ā01x:n .

In equation (1), we evaluate ā01x:n by integrating over all the possible payment dates between
time 0 and time n. We can find the same annuity value by integrating over all the possible dates
of transition from State 0 (Healthy) to State 1 (Sick), and then valuing the benefit that starts
at that transition and ends on the next transition out of State 1, or on the earlier expiry of the
contract.

It is helpful first to define the EPV of a continuous sojourn annuity. We define āiix:n to be
the EPV of a continuous payment of 1 per year paid to a life currently age x and in state i,
where the payment continues as long as the life remains in state i, or until the expiry of the n
year term if earlier. The annuity ceases if the life leaves state i, even if she subsequently returns
to it. That is

āiix:n =

∫ n

0
tp
ii
x e
−δtdt (5)

So, for the annuity valued by integrating over transition times we consider each infinitesimal
interval (t, t+ dt), and take the product of the three components:

• The probability that the life transitions from healthy to sick in the interval from t to
t+ dt: tp

00
x µ01x+tdt

• The value at t of an annuity of 1 per year paid for the continuous period of sickness starting
at time t and ending at the earlier of the end of the sickness period and the expiry of the
remaining n− t years of the contract: ā11

x+t:n−t .

• A discount factor to bring values back from the start of the benefit payment period, at
time t, to present values: e−δt
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So we have

ā01x:n =

∫ n

0
tp

00
x µ01x+t ā

11
x+t:n−t e

−δtdt (6)

Now, the reason for doing this is it enables us to adjust the annuity value to allow for an
elimination or waiting period. Suppose we are valuing a disability benefit with a waiting period
of w years – that is, once the life becomes sick, she must wait for w years before receiving any
benefit from that period of sickness. We can allow for this by subtracting the first w years of
annuity from each period of sickness in equation (6).

That is, the EPV of a benefit of 1 paid continuously while sick to a life currently age x and
healthy, with a waiting period or w years, and a policy term of n > w years is∫ n−w

0
tp

00
x µ01x+t

(
ā11
x+t:n−t − ā

11
x+t:w

)
e−δ tdt (7)

Note that the term in parentheses in equation (7) is the expected present value of the w-year
deferred, continuous sojourn sickness annuity starting at time t. Also, note the upper limit of
integration; we do not need to consider any sickness periods that start within w years of the end
of the term of the contract, because the policy will expire before the waiting period ends.

This approach can be adapted for discrete time payments. For example, if the benefit payments
are monthly, and assuming all other terms are as in equation (7), then we sum over each month
of possible transition from healthy to sick, recalling that the final benefit payment date is time
n, as the benefit is paid at the end of each month, giving the EPV of the benefit payment of 1
per year, payable monthly, as

12(n−w− 1
12

)∑
k=0

k
12
p00x 1

12
p01
x+ k

12

(
ä(12)11

x+ k+1
12

:n− k+1
12

− ä(12)11

x+ k+1
12

:w

)
v

k+1
12 (8)

We can also use equation (7) to construct the value of a DII policy with a maximum payment
term for each period of disability of, say, m years after the waiting period. We replace the term
of the first continuous sojourn annuity in the equation with an m+w-year term annuity, unless
the transition happens within m+ w years of the end of the contract, giving a valuation of∫ n−(m+w)

0
tp

00
x µ01x+t

(
ā11
x+t:m+w

− ā11x+t:w
)
e−δ tdt

+

∫ n−w

n−(m+w)
tp

00
x µ01x+t

(
ā11
x+t:n−t − ā

11
x+t:w

)
e−δ tdt

The sums and integrals in this section can easily be evaluated numerically, using the techniques
described in AMLCR.
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Example 2.1
In AMLCR Examples 8.5 and 8.6, probabilities and premiums are calculated for a 10-year DII
policy with a death benefit of 50 000 payable immediately on death, and a disability income
benefit of 20 000 payable monthly in arrear whilst disabled, issued to a healthy life aged 60.
Consider the same policy, and assume monthly premiums and disability benefits. Calculate the
revised premium assuming a waiting period of (a) 1 month (b) 3 months (c) 6 months and (d)
1 year.

Solution 2.1
From AMLCR we have that the death benefit has expected present value 8115.5.

We also have:

ä(12)00

60:10
= 6.5980 a(12)01

60:10
= 0.66877

Using Excel, we can calculate the annuity value taking the waiting period into consideration
by summing the terms in equation (8). It is simplest to use the following slightly different
formulation, to avoid changing the limits of the sum for different waiting periods.

12(n− 1
12

)∑
k=0

k
12
p00x 1

12
p01
x+ k

12

(
ä(12)11

x+ k+1
12

:n− k+1
12

− ä(12)11

x+ k+1
12

:min(w,n− k+1
12

)

)
v

k+1
12 (9)

The table below gives values for the EPV at issue of a disability benefit of 1 per year, payable
monthly, for a 10-year policy issued to (60), with parameters given in AMLCR Examples 8.4
and 8.5, and also the associated premiums.

Waiting Period EPV of benefit of Premium P
1 per year

0 months 0.6688 3257.20
1 month 0.6539 3212.22
3 months 0.6252 3125.22
6 months 0.5839 2999.83

1 year 0.5070 2766.76

2.2 Long Term Care

The form of the multiple state model used for insurance valuation should always be adapted
to the cash flows of the policy. For LTC insurance, we will use different models depending on
whether the benefit reimburses the cost of care, or pays a predetermined annuity, possibly with
inflation protection.
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Figure 2: Example of an LTC insurance model.

For a reimbursement policy, the severity of the disability will impact the level of benefit, so there
is value in using different states to model different levels of disability. For example, we could
use the model illustrated in Figure 2, where the number of ADLs which a policyholder is able to
manage acts as a marker for the expected amount of reimbursement, and we separately model
the cognitive impairment state. The figure is more complicated than those in AMLCR Chapter
8, and could be more complicated still, for example, if we allow for recovery from cognitive
impairment, or allow for simultaneous loss of more than one ADL. However, the principles from
AMLCR Chapter 8 apply to this figure, and all the required probabilities and actuarial functions
can be evaluated numerically.

Example 2.2
Write down the Kolmogorov forward equations for all the probabilities for a life age x, cur-
rently in State 2, for the model in Figure 2, and give boundary conditions. Assume the usual
assumptions for Markov multiple state models apply.

Solution 2.2

d

dt
tp

20
x = tp

21
x µ10x+t − tp

20
x

(
µ01x+t + µ03x+t + µ04x+t

)
d

dt
tp

21
x = tp

20
x µ01x+t + tp

22
x µ21x+t − tp

21
x

(
µ10x+t + µ12x+t + µ13x+t + µ14x+t

)
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d

dt
tp

22
x = tp

21
x µ12x+t − tp

22
x

(
µ21x+t + µ23x+t + µ24x+t

)
d

dt
tp

23
x = tp

20
x µ03x+t + tp

21
x µ13x+t + tp

22
x µ23x+t − tp

23
x µ34x+t

d

dt
tp

24
x = tp

20
x µ04x+t + tp

21
x µ14x+t + tp

22
x µ24x+t + tp

23
x µ34x+t

For boundary conditions, we have 0p
22
x = 1 and 0p

2j
x = 0 for j 6= 2.

As a check, verify that the sum of all the terms in all the differential equations with the same
starting state is 0.

Example 2.3
Write down Thiele’s equation for ā03x+t.

Solution 2.3
Thiele’s equation applies to policy values, but we can apply it here because we can view ā03x+t
as the policy value for a single premium annuity contract with benefit of 1 per year payable
continuously in State 3, given that the life is in State 0 currently.

The general form of Thiele’s equation for multiple state models is given in AMLCR Equation
(8.23), which we repeat here for convenience. Recall that tV

(i) is the policy value for a generic
fully continuous insurance, conditional on being in State i at time t.

For i = 0, 1, . . . , n and 0 < t < n,

d

dt
tV

(i) = δt tV
(i) −B(i)

t −
n∑

j=0, j 6=i
µijx+t

(
S
(ij)
t + tV

(j) − tV
(i)
)
. (10)

where δt is the force of interest function, B
(i)
t is the benefit payable continuously while the life

is in State i (premiums payable continuously are treated as negative benefits), and S
(ij)
t is the

lump sum paid immediately on transition from State i to State j.

In the case considered in this example, we have i = 0, S
(ij)
t = 0 and B

(0)
t = 0, as there are no

transition benefits, and no annuity in State 0. Plugging this into Thiele’s equation we have

d

dt
tV

(0) = δ tV
(0) − µ01x+t

(
tV

(1) − tV
(0)
)
− µ03x+t

(
tV

(3) − tV
(0)
)
− µ04x+t

(
−tV (0)

)
Now tV

(0) = ā03x+t, and similarly tV
(1) = ā13x+t, and tV

(3) = ā33x+t. The policy expires when the
life moves into State 4, so we have tV

(4) = 0. We do not include State 2, since it is impossible
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to move into State 2 from State 0. Then

d

dt
ā03x+t = δ ā03x+t − µ01x+t

(
ā13x+t − ā03x+t

)
− µ03x+t

(
ā33x+t − ā03x+t

)
− µ04x+t

(
−ā03x+t

)
= ā03x+t

(
δ + µ01x+t + µ03x+t + µ04x+t

)
− µ01 ā13x+t − µ03 ā33x+t

Using simultaneous Thiele equations for the different state dependent annuities, we can solve
numerically to determine values for all relevant āijx+t.

Example 2.4
Consider an LTC policy issued to (x). Premiums of P per year are payable continuously while in
State 0; benefits payable continuously in States 1, 2 and 3 are assumed to increase geometrically
at rate g, convertible continuously, with starting values at inception of B(j) in state j = 1, 2, 3.

Write down, and simplify as far as possible the premium equation of value for the policy.

Solution 2.4

P ā00x =

∫ ∞
0

B(1)egt tp
01
x e−δ tdt+

∫ ∞
0

B(2)egt tp
02
x e−δ tdt+

∫ ∞
0

B(3)egt tp
03
x e−δ tdt

⇒ P ā00x = B(1) ā01x |δ∗ +B(2) ā02x |δ∗ +B(3) ā03x |δ∗

where the annuities on the right hand side are evaluated at a force of interest δ∗ = δ − g.

2.3 Critical Illness Insurance

We illustrate some possible models for CII insurance in Figure 3. If the CII is a stand alone
policy, with a benefit on CII diagnosis, but with no death benefit, then we could use the model
illustrated in Figure 3a. We can use the same model if the CII accelerates the death benefit
in full. In both cases the policy expires on the earlier of the CII diagnosis or death, If there
is an additional death benefit that is payable in the same amount, whether or not there is a
CII diagnosis preceding, then we could use the model illustrated in Figure 3b, because in this
case the policy expires on the policyholder’s death, but it doesn’t make a difference to the death
benefit whether the life dies from State 0 or from State 1. Finally, if the CII partially accelerates
the death benefit, then we could use the model in Figure 3c, which separates the case where
death occurs without a preceding CII diagnosis, and the case where death occurs after a CII
diagnosis.

As Figure 3c is the most general form of the model, it could be used for any of the different CII
forms described. The simpler models (a) and (b) in Figure 3 can’t be used for the accelerated
benefit case.
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Figure 3: CII Models
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Example 2.5

(a) Using Model 3 in Figure 3, write down the equations of value for the premiums for the
following CII policies, in terms of the actuarial functions Āijx:n and āijx:n . Assume in
each case that the policy is issued to a healthy life aged 50, that premiums are payable
continuously while in State 0, and that all contracts are fully continuous, expiring on the
policyholder’s 70th birthday.

(i) A stand alone CII policy with benefit $20,000 paid immediately on CII diagnosis.

(ii) A combined CII and life insurance policy that pays $20,000 on CII diagnosis and
$10,000 on death.

(iii) An accelerated death benefit CII policy that pays $20,000 immediately on the earlier
of CII diagnosis and death.

(iv) A partly accelerated death benefit policy, which pays $20,000 on CII diagnosis, and
pays $30,000 if the policyholder dies without a CII claim, or $10,000 if the policyholder
dies after a CII claim.

(b) Use the functions given in the tables below to calculate the annual rate of premium for
each of the policies described in (a). The effective rate of interest is 5% per year.

(c) Use the functions in the tables below to calculate the policy value at t = 10 for each of
the policies described in (a), assuming (i) the life is in State 0 at time 10 or (ii) the life is
in State 1 at time 10.

x ā00x Ā01
x Ā02

x Ā03
x Ā13

x

50 13.31267 0.22409 0.12667 0.14176 0.34988
60 10.17289 0.34249 0.16140 0.22937 0.47904
70 6.56904 0.49594 0.18317 0.36019 0.62237

t 20−tp
00
50+t 20−tp

01
50+t 20−tp

02
50+t 20−tp

03
50+t 20−tp

11
50+t

0 0.68222 0.15034 0.13788 0.02956 0.66485
10 0.75055 0.13135 0.09943 0.01867 0.75283

Solution 2.5

(a)

(i) P ā00
50:20

= 20 000Ā01
50:20

(ii) P ā00
50:20

= 20 000Ā01
50:20

+ 10000
(
Ā02

50:20
+ Ā03

50:20

)
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(iii) P ā00
50:20

= 20 000
(
Ā01

50:20
+ Ā02

50:20

)
(iv) P ā00

50:20
= 20 000 Ā01

50:20
+ 30 000 Ā02

50:20
+ 10 000 Ā03

50:20

(b) We need to calculate the 20 year actuarial functions.

ā00
50:20

= ā0050 − 20p
00
50 v

20 ā0070 = 11.6236

Ā01
50:20

= Ā01
50 − 20p

00
50 v

20 Ā01
70 = 0.09657

Ā02
50:20

= Ā02
50 − 20p

00
50 v

20 Ā02
70 = 0.07957

Ā03
50:20

= Ā03
50 − 20p

00
50 v

20 Ā03
70 − 20p

01
50 v

20 Ā13
70 = 0.01388

Note that in the last case, we need to subtract the value of the benefit on transition to
State 3 paid after age 70, where the life is in State 0 at age 70, as well as the value of the
benefit paid on transition to State 3 after age 70 where the life is in State 1 at age 70.

Using the equations and functions above, we have premiums for each case as follows. Since
we will need the premiums for part (c), we use the superscripts to connect the premiums
to the different contracts.

(i) P (i) = 166.16

(ii) P (ii) = 246.56

(iii) P (iii) = 303.07

(iv) P (iv) = 383.47

(c) We will need the following actuarial functions:

ā00
60:10

= ā0060 − 10p
00
60 v

10 ā0070 = 7.14606

Ā01
60:10

= Ā01
60 − 10p

00
60 v

10 Ā01
70 = 0.11397

Ā02
60:10

= Ā02
60 − 10p

00
60 v

10 Ā02
70 = 0.07700

Ā03
60:10

= Ā03
60 − 10p

00
60 v

10 Ā03
70 − 10p

01
60 v

10 Ā13
70 = 0.01322

Ā13
60:10

= Ā13
60 − 10p

11
60 v

10 Ā13
70 = 0.19140
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The policy values are

(i) 10V
(0) = 20 000Ā01

60:10
− P (i) ā00

60:10
= 1092.01

10V
(1) = 0 (or undefined, as the policy has expired)

(ii) 10V
(0) = 20 000Ā01

60:10
+ 10 000

(
Ā02

60:10
+ Ā03

60:10

)
− P (ii) ā00

60:10
= 1419.67

10V
(1) = 10 000Ā13

60:10
= 1914.00

(iii) 10V
(0) = 20 000

(
Ā01

60:10
+ Ā02

60:10

)
− P (iii) ā00

60:10
= 1653.64

10V
(1) = 0 (or undefined, as the policy has expired)

(iv) 10V
(0) = 20 000Ā01

60:10
+ 30 000 Ā02

60:10
+ 10 000Ā03

60:10
− P (iv) ā00

60:10
= 1981.30

10V
(1) = 10 000Ā13

60:10
= 1914.00

2.4 Continuing Care Retirement Communities (CCRC)

The model for a CCRC (without a memory care facility) would look something like the examples
in Figure 4. In Fig 4a, the model allows for a simple forward transition from the Independent
Living Unit (ILU) through the Assisted Living Unit (ALU) to the Skilled Nursing Facility
(SNF). In Fig. 4b the model allows explicitly for short term stays in the skilled nursing facility
(STNF) while in ILU. This would cover periods of temporary ill-health of residents who will
recover sufficiently to return to independent living. Of course, the model could be made more
complex by allowing periods of temporary disability from the ALU state, or by allowing for
direct transitions from STNF to ALU or to SNF.

Another possible complication is a joint life version of the model, which would allow for each
partner of a couple to move separately through the stages.

Some widely used CCRC contract types are described in Section 1.6. For the full lifecare (Type
A) and modified lifecare (Type B) contracts, the price is expressed as a combination of entry fee
and monthly fees that for Type A increase with inflation, but do not change when the resident
moves between different residence categories. Type B monthly fees increase with inflation and
also increase as residents move through the different categories, but the increases are less than
the actual difference in cost, so there is some prefunding of the costs of the more expensive ALU
and SNF facilities. Type C contracts are pay as you go, and so do not involve pre-funding, and
therefore do not need actuarial modelling for costing purposes.
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(a) The simplified CCRC model; ILU is Independent Living Unit; ALU is Assisted Living Unit; SNF is
Specialized Nursing Facility.
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(b) The extended CCRC model, adding a Short Term Nursing Facility (STNF) state.

Figure 4: CCRC Models
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The allocation of costs between the entry fee and the monthly charge is mainly determined by
market forces. Often, residents fund the entry fee by selling their home, and so the CCRC
may set the entry fee to be close to the average home price in the area, and then allocate the
remaining costs to the monthly fee.

Example 2.6
A CCRC wishes to charge an entry fee of 200,000 under a full lifecare (Type A) contract, for
lives entering the independent living unit. Subsequently, residents will pay a level monthly fee
regardless of the level of care provided. Fees are payable at the start of each month.

The actual monthly costs incurred by the CCRC, including medical care, provision of services,
maintenance of buildings and all other expenses and loadings, are as follows:

Independent Living Unit: 3 500
Assisted Living Unit 6 000
Specialized Nursing Facility: 12 000

(a) The actuarial functions given in Table 1 have been calculated using the model in Figure
4a, and an interest rate of 5%. Use these functions to calculate the level monthly fee for
entrants age 65, 70, 80 and 90, assuming a 200 000 entry fee, which is not refunded.

(b) Calculate the revised monthly fees from (a), assuming 70% of the entry fee is refunded at
the end of the month of death.

(c) The CCRC wants to charge a level monthly fee for all residents using the full life care
contract, regardless of age at entry. Assume that all residents enter at one of the four ages
in (a), and the proportions of entrants at each age are

Entry age Proportion of entrants

65 5%
70 30%
80 55%
90 10%

Calculate a suitable monthly fee which is not age-dependent, assuming (i) no refund of
entry fee and (ii) 70% refund of entry fee on death.

(d) What are the advantages and disadvantages of offering the refund, compared with the no
refund contract?
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x ä(12)00
x ä(12)01

x ä(12)02
x A(12)03

x

65 11.6416 0.75373 0.24118 0.38472
66 11.3412 0.75157 0.25330 0.39885
67 11.0323 0.74994 0.26614 0.41335
68 10.7149 0.74877 0.27974 0.42820
69 10.3892 0.74790 0.29415 0.44340
70 10.0554 0.74720 0.30944 0.45894
71 9.7139 0.74648 0.32566 0.47482
72 9.3650 0.74554 0.34285 0.49101
73 9.0092 0.74415 0.36108 0.50752
74 8.6471 0.74204 0.38040 0.52431
75 8.2792 0.73897 0.40085 0.54138
76 7.9064 0.73463 0.42248 0.55869
77 7.5295 0.72875 0.44531 0.57621
78 7.1495 0.72105 0.46937 0.59392
79 6.7675 0.71127 0.49465 0.61177
80 6.3846 0.69917 0.52113 0.62971
81 6.0023 0.68455 0.54875 0.64769
82 5.6218 0.66729 0.57745 0.66566
83 5.2449 0.64731 0.60710 0.68354
84 4.8730 0.62461 0.63755 0.70127
85 4.5078 0.59929 0.66861 0.71877
86 4.1511 0.57151 0.70002 0.73597
87 3.8044 0.54153 0.73150 0.75277
88 3.4696 0.50968 0.76274 0.76911
89 3.1481 0.47637 0.79335 0.78489
90 2.8414 0.44205 0.82295 0.80005

Table 1: CCRC actuarial functions at 5% per year interest
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Solution 2.6

(a) The expected present value at entry of the future costs, for an entrant age x, is

EPVx = 12
(

3500ä(12)00
x + 6000ä(12)01

x + 12000ä(12)03
x

)
which gives EPV of future costs at entry for the different ages of

Entry age 65 577,944
Entry age 70 520,686
Entry age 80 393,535
Entry age 90 269,671

To find the annual fee rate, we subtract the entry fee, and divide by the value of an annuity
of 1 per year, payable monthly, while the life is in State 0 or State 1 or State 2. To get
the monthly fee, we divide this by 12, giving the fee equation:

Feex =
EPVx − 200 000

12
(
ä(12)00
x + ä(12)01

x + ä(12)03
x

)
The resulting monthly fees are
Entry age 65: 2492.4
Entry age 70: 2404.9
Entry age 80: 2120.7
Entry age 90: 1413.9

(b) We need to add an extra term to the EPV in (a) to allow for the value of the refund. The
revised EPV for entry age x is

EPVr
x = 12

(
3500ä(12)00

x + 6000ä(12)01
x + 12000ä(12)03

x

)
+ 0.7(200 000)A(12)03

x

To get the revised monthly fee, we proceed as in (a); subtract the entry fee, and divide by
the annuity sum, to give:

Entry age 65: 2847.6
Entry age 70: 2886.8
Entry age 80: 3086.8
Entry age 90: 3686.9

(c) We can take a weighted average of the fees to get a single fee for all ages, that is, without
refund,

Fee = 0.05(2492.4) + 0.30(2404.9) + 0.55(2120.7) + 0.10(1413.9) = 2153.9
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and with refund

Fee = 0.05(2847.6) + 0.30(2886.8) + 0.55(3086.8) + 0.10(3686.9) = 3074.8

(d) Adding the refund feature would be popular with residents who are concerned about losing
much of their capital if the resident dies soon after entering the facility. It ensures a bequest
is available for the resident’s family.

The refund also has an advantage when charging a non-entry age-dependent fee, because
the range of fees across entry ages with the refund feature is smaller than without, so that
the CCRC would be less exposed to the risk that the entry age distribution changes.

For example, suppose the CCRC fixes the monthly fees at 2153.9, with no refund, or 3074.8
with refund, as calculated above, but the entry age distribution shifts to

Entry age Proportion of entrants
65 5%
70 35%
80 55%
90 5%

Then without the refund, the fee should be 2203.4, giving a deficit of 49.5 per person per
month. With the refund, the fee should be 3034.8, giving a smaller surplus of 40.0 per
person per month.

A disadvantage of introducing the refund is that the monthly fees are higher, which
might discourage potential residents who are more constrained by their ability to meet
the monthly payments than they are concerned about their bequest. Those who have
spare income could replace some or all bequest using separate life insurance.
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3 Recursions for policy values with multiple states

3.1 Review of policy value recursions for traditional life insurance

In this section we will give examples of policy value recursions for discrete cash flows in a multiple
state model context. We assume the reader has already covered Chapters 7 and 8 of AMLCR.

We start by recalling the policy value recursion for a traditional, 2-state model, from Chapter
7 of AMLCR. Consider a whole life policy issued to (x), with sum insured S paid at the end of
the year of death, and with premium P paid annually. Ignoring expenses, we have policy values
at integer durations t = 0, 1, .... related recursively as follows:

(tV + P ) (1 + i) = qx+t S + px+t (t+1V )

This is a simplified version of Equation (7.6) in AMLCR.

The intuitive explanation of the recursion is that the left hand side represents the available funds
at the end of the year, if the policy value at the start of the year is held as a reserve, and if
interest is earned at the assumed rate i per year.

The right hand side represents the expected costs at the end of the year; if the policyholder
dies, with probability qx+t, then the funds must support the payment of the sum insured, S;
if the policyholder survives, then the new policy value (or reserve) must be carried forward to
the next year. The policy value is determined such that the expected income and outgo in each
year are balanced, which gives us the equation of left hand side (funds available) and right hand
side (funds required). AMLCR gives a much more rigorous proof, of course, of the recursion,
but the intuition is useful in generalising the result to the multiple state case.

First, we generalise to the case where payments are made at intervals of h years – for example,
h = 1/12 for monthly policies. In this case, we have a recursion from t to t+ h. The premium
of P per year is paid in level instalments of hP , giving the following recursion for the whole life
example, with premiums paid at the start of each h-year period, and benefits paid at the end of
each h year period, for t = 0, h, 2h, ....

(tV + hP ) (1 + i)h = hqx+t S + hpx+t (t+hV ) (11)

One way to derive Thiele’s equation for d
dt tV for continuous policies is to use equation (11),

divide by h, and take the limit as h→ 0.

3.2 Recursion for DII with discrete time and benefits

In this section, we will use the disability income insurance model, Figure 1, to illustrate the
policy value recursion in a multiple state model setting. We will construct the recursion using
the principle of equating expected income and outgo each period, as we did in the previous
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section, noting that the policy value at the start of each period represents the funds available
from the previous period, and is treated as income, while the policy value at the end of each
period represents the cost of continuing the policy, and is treated as outgo.

Suppose an insurer issues a DII to (x), with level premiums of hP payable every h years, at the
start of each interval t to t+ h, provided the policyholder is in State 0 at the payment date. A
benefit of hB is paid at the end of every h years provided the policyholder is in state 1 at the
payment date. We assume here that there is no waiting or off period3.

From equation (4) we see the premium equation in this case is

hP
(

1 + hp
00
x vh + 2hp

00
x v2h + · · ·+ n−hp

00
x vn−h

)
= hB

(
hp

01
x vh + 2hp

01
x v2h + · · ·+ np

01
x vn

)
that is, P ä

( 1
h
)00

x:n = Ba
( 1
h
)01

x:n

For cashflow dates, t = 0, h, 2h, ..., n − h, let tV
(0) denote the policy value given that the

policyholder is in State 0, and tV
(1) denote the policy value if the policyholder is in State 1. The

policy value at cash flow dates, considered as a prospective value of future outgo minus income,
includes the premium paid at t, but does not include the benefit paid at t, if any. So

tV
(0) = Ba

( 1
h
)01

x+t:n−t − P ä
( 1
h
)00

x+t:n−t (12)

tV
(1) = Ba

( 1
h
)11

x+t:n−t − P ä
( 1
h
)10

x+t:n−t (13)

Now we will construct the recursions, one for each of tV
(0) and tV

(1), from first principles. For
simplicity, we assume net premium policy values (no expenses in premium or policy value), but
it is straightforward to incorporate expenses in a gross premium approach.

Suppose the policyholder is in State 0 at t. In this case, she pays her premium of hP at t. This
is added to the policy value brought forward, and accumulated to t + h, giving the left hand
side of the equation(

tV
(0) + hP

)
(1 + i)h

If the policyholder is in State 1 at t, then there is no premium, and the left hand side of the
recursion is(

tV
(1)
)

(1 + i)h

At t+ h, if the policyholder is in State 0 the insurer will need a policy value of t+hV
(0) to carry

forward to the next time period; if she is in State 1, the insurer will need to pay the benefit,

3Waiting and off periods can be incorporated in a recursion, but it makes the formulas messy, and harder to
interpret. For clarity, we will consider only the simpler case.
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hB, and will also need a policy value of t+hV
(1) to carry forward. If the policyholder has

moved to State 3, there is no payment, and no policy value required. Applying the appropriate
probabilities to the two relevant cases for the end of period states, we have the recursions(

tV
(0) + hP

)
(1 + i)h = hp

00
x+t (t+hV

(0)) + hp
01
x+t

(
hB + t+hV

(1)
)

(14)(
tV

(1)
)

(1 + i)h = hp
10
x+t (t+hV

(0)) + hp
11
x+t

(
hB + t+hV

(1)
)

(15)

Deriving the DII policy value recursions

We can prove the recursion equations (14) and (15) more formally, starting from equations (12)
and (13).

First, we note that for the DII model, for any k > h

kp
00
x = hp

00
x k−hp

00
x+h + hp

01
x k−hp

10
x+h (16)

Next, we decompose the state dependent annuity functions as follows

ä
( 1
h
)00

x:n = h
(

1 + vh hp
00
x + v2h 2hp

00
x + ...+ vn−h n−hp

00
x

)
(17)

= h+ vh hp
00
x h

(
1 + vh hp

00
x+h + v2h 2hp

00
x+h + ...+ vn−2h n−2hp

00
x+h

)
(18)

+ vh hp
01
x h

(
vh hp

10
x+h + v2h 2hp

10
x+h + ...+ vn−2h n−2hp

10
x+h

)
(19)

= h+ vh hp
00
x ä

( 1
h
)00

x+h:n−h
+ vh hp

01
x ä

( 1
h
)10

x+h:n−h
(20)

a
( 1
h
)01

x:n = h
(
vh hp

01
x + v2h 2hp

01
x + ...+ vn np

01
x

)
(21)

= hvh hp
01
x + vh hp

01
x h

(
vh hp

11
x+h + v2h 2hp

11
x+h + ...+ vn−h n−hp

11
x+h

)
(22)

+ vh hp
00
x h

(
vh hp

01
x+h + v2h 2hp

01
x+h + ...+ vn−h n−hp

01
x+h

)
(23)

= hvh hp
01
x + vh hp

01
x a

( 1
h
)11

x+h:n−h
+ vh hp

00
x a

( 1
h
)01

x+h:n−h
(24)

Similarly

ä
( 1
h
)10

x:n = hvh hp
10
x + vh hp

10
x ä

( 1
h
)00

x+h:n−h
+ vh hp

11
x ä

( 1
h
)10

x+h:n−h
(25)

a
( 1
h
)11

x:n = hvh hp
11
x + vh hp

11
x a

( 1
h
)11

x+h:n−h
+ vh hp

10
x a

( 1
h
)01

x+h:n−h
(26)
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So we have

tV
(0) = Ba

( 1
h
)01

x+t:n−t − P ä
( 1
h
)00

x+t:n−t

= B

(
hvh hp

01
x+t + vh hp

01
x+t a

( 1
h
)11

x+t+h:n−t−h
+ vh hp

00
x+t a

( 1
h
)01

x+t+h:n−t−h

)

− P
(
h+ vh hp

00
x+tä

( 1
h
)00

x+t+h:n−t−h
+ vh hp

01
x+tä

( 1
h
)10

x+t+h:n−t−h

)
Multiply both sides by (1 + i)h, and collect together terms on the left hand side in hp

01
x+t and

hp
00
x+t, to give(
tV

(0) + hP
)

(1 + i)h = hp
01
x+t

(
hB +Ba

( 1
h
)11

x+t+h:n−t−h
− P ä(

1
h
)10

x+t+h:n−t−h

)

+ hp
00
x+t

(
Ba

( 1
h
)01

x+t+h:n−t−h
− P ä(

1
h
)00

x+t+h:n−t−h

)
= hp

01
x+t

(
hB + t+hV

(1)
)

+ hp
00
x+t

(
t+hV

(0)
)

as required.

The recursion in equation (15) can be derived similarly.

Deriving Thiele’s equations from the h-yearly recursion

For very small h, we might use the continuous time Thiele’s equation, which for tV
(0) in this

example is

d

dt
tV

(0) = δ tV
(0) + P − µ01x+t

(
tV

(1) − tV
(0)
)
− µ02x+t

(
−tV (0)

)
We can derive Thiele’s equation for this policy using equations (14) and (15) by letting h→ 0,
as follows:(

tV
(0) + hP

)
(1 + i)h = hp

01
x+t

(
hB + t+hV

(1)
)

+ hp
00
x+t

(
t+hV

(0)
)

⇒
(
tV

(0) + hP
)
eδh − hp

01
x+t

(
hB + t+hV

(1)
)

= t+hV
(0)(1− hp

01
x+t − hp

02
x+t)

subtract tV
(0) from both sides, and rearrange

t+hV
(0) − tV

(0) = tV
(0)(eδh − 1) + hPeδh − hp

01
x+thB − hp

01
x+t (t+hV

(1))

+ (hp
01
x+t + hp

02
x+t)(t+hV

(0))
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Divide by h

t+hV
(0) − tV

(0)

h
= tV

(0) e
δh − 1

h
+ Peδh − hp

01
x+tB −

hp
01
x+t

h
t+hV

(1) +
hp

01
x+t + hp

02
x+t

h
tV

(0)

Now we take limits as h→ 0, recalling that

lim
h→0

eδh − 1

h
= δ; lim

h→0
eδh = 1; lim

h→0
hp

01
x+t = 0; lim

h→0

hp
01
x+t + hp

02
x+t

h
= µ01x+t + µ02x+t

So that

d

dt
tV

(0) = δ tV
(0) + P − µ01x+t (tV

(1)) + µ01x+t (tV
(0)) + µ02x+t (tV

(0))

= δ tV
(0) + P − µ01x+

(
tV

(1) − tV
(0)
)
− µ02x+

(
−tV (0)

)
as required.

3.3 General recursion for h-yearly cash flows

In this section we generalise the recursion in Section 3.2 for a general multiple state dependent
insurance policy.

Note that in the recursions in Section 3.2, the cashflows depend only on the state at the payment
date. Discrete recursions for multiple state dependent cashflows will not work if the payments at
the end of the time period depend on intermediate transitions. For example, consider a model
with a death benefit, payable at the end of the month of death, where the amount of benefit
depends on whether the life became sick and then died, or died directly from the healthy state.
In this model the cash flow at t+ h depends on the intermediate states between the states at t
and t + h, not solely on the starting and end states. The discrete recursion approach will not
give accurate answers, as intermediate states are not accommodated. The inaccuracy will tend
to zero as h→ 0, as the probability of intermediate transfers will also tend to zero.

For our general recursion, we will assume that payments depend at most on the state at the
start and end of the period between cashflows4. We also assume, as in the previous section, that
cash flows are h-yearly.

For the general recursion, we will use the following notation; these are consistent with those
used in the general Thiele equation (8.23) in AMLCR.

• P (j)
t denotes the annual rate of premium paid at the start of the interval t to t + h,

conditional on the policyholder being in State j at that time.

4A stronger assumption, that is consistent with the recursions, but is stronger than we require, is that at most
one transition may occur between cashflow dates.
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Figure 5: Life and Chronic Illness Insurance Model

• B(j)
t+h denotes the annual rate of benefit paid at the end of the interval t to t+h, conditional

on the policyholder being in State j at that time.

• S(jk)
t+h denotes a lump sum benefit paid at the end of the interval t to t+ h, conditional on

the policyholder being in state j at the start of the interval and State k at the end.

• There are m+ 1 states, labelled State 0 to State m.

Then the general net premium policy value recursion for a policy issued to (x), with h-yearly
cash flows, and where the policy is in state j at time t, is(

tV
(j) + hP

(j)
t

)
(1 + i)h =

m∑
k=0

hp
jk
x+t

(
hB

(k)
t+h + S

(jk)
t+h + t+hV

(k)
)

(27)

Example 3.1
A whole life insurance policy with a chronic illness rider is sold to a healthy life age 50. If the
policyholder contracts a chronic illness, the policy pays a lump sum of 10,000 at the end of the
month of diagnosis (if they are still alive), plus an additional 1000 at the end of each subsequent
month while the life survives. A benefit of 40 000 is paid at the end of the month of death if
the life dies after a chronic illness diagnosis. The policy pays 50,000 at the end of the month of
death if the life dies without suffering a chronic illness.

Premiums are payable monthly while the life is healthy.

The company uses the model in Figure 5 to evaluate premiums and policy values, with an
interest rate of 5% per year effective.

You are given the following actuarial functions, at 5% per year interest.
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x ä
(12)00
x a

(12)01
x a

(12)11
x

50 16.08747 0.45320 13.22971
70 11.01946 0.60398 6.14524

x A
(12)01
x A

(12)02
x A

(12)03
x A

(12)13
x

50 0.109701 0.106972 0.087644 0.351773
70 0.246405 0.218444 0.215597 0.696724

(a) Calculate the monthly premium for the policy.

(b) Calculate the net premium policy values at t = 20 for the policy.

(c) You are given the following probabilities for a policyholder aged 70:

1
12
p0070 = 0.998866 1

12
p0170 = 0.000552 1

12
p0270 = 0.000582 1

12
p0370 = 0.0

1
12
p1170 = 0.995489 1

12
p1370 = 0.004511

Use the recursion equation to calculate the policy values at t = 20 1
12 .

Solution 3.1

(a) Let P denote the monthly premium. Then the premium equation is

12P ä(12)00

50 = 12000a(12)01

50 + 10000A(12)01

50 + 40000A(12)03

50 + 50000A(12)02

50

⇒ 12P = 956.63⇒ P = 79.72 per month

(b)

20V
(0) = 12000a(12)01

70 + 10000A(12)01

70 + 40000A(12)03

70 + 50000A(12)02

70 − 12P ä(12)00

70

= 18716.35

20V
(1) = 12000 a(12)11

70 + 40000A(12)13

70

= 101611.8
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(c) The recursions in this case are as follows, where h = 1
12 .(

20V
(0) + P

)
(1 + i)h = hp

00
70

(
20+hV

(0)
)

+ hp
01
70

(
1000 + 10000 + 20+hV

(1)
)

+ hp
02
70 (50000)(

20V
(1)
)

(1 + i)h = hp
11
70

(
1000 + 20+hV

(1)
)

+ hp
13
70 (40000)

We can solve the recursion for tV
(1) first:

20 1
12
V (1) =

(101611.8)(1.05)
1
12 − 0.004511(40000)− 0.995489(1000)

0.995489
= 101306.9

We use this in the recursion for tV
(0):

20 1
12
V (0) =

(18716.35 + 79.73)(1.05)
1
12 − 0.000552(11000 + 101306.9)− 0.000582(50000)

0.998866

= 18802.95

3.4 Approximating continuous payments in discrete recursions

For cases where the within-period transitions impact the cash flows the continuous approach,
using Thiele’s formula, will always work, and the values determined using Thiele can be adjusted
to allow for discrete payments. As we have demonstrated above, Thiele’s equation is the same
as the recursion with infinitesimal h. However, if the time step h is sufficiently small, then the
assumption that only one transition can occur in each time period will not significantly impact
results, and the discrete recursion is used in practice.

Where the cash flows are a mixture of continuous and discrete, we may still use the discrete
recursion approach, but adjust for the continuous payments. Usually, annuity benefits are dis-
crete, but lump sum transition benefits, which are represented by S(jk) in the general recursion,
may be paid immediately on transition. Assuming payment at the end of the period of transition
will marginally under-value the benefit (for small h). A practical adjustment is to apply the
claims acceleration approach, described in AMLCR Section 4.5.2. We approximate the contin-
uous payment by assuming that the benefits are paid in the middle of the interval in which the
transition occurs, rather than at the end. The general recursion formula is then slightly adjusted
as

(
tV

(j) + hP
(j)
t

)
(1 + i)h =

m∑
k=0

hp
jk
x+t

(
hB

(k)
t+h + S

(jk)
t+h (1 + i)h/2 + t+hV

(k)
)

(28)
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4 Mortality improvement modelling

4.1 Introduction

In this section we will present some models and methods for integrating mortality improvement
into actuarial analysis for life contingent risks.

We will expand on the short descriptive coverage in Section 3.11 of AMLCR, and will consider
how mortality trends can be incorporated in actuarial valuations of annuity benefits in pensions
or insurance.

First, it might be valuable to demonstrate what we mean by mortality or longevity improvement.
In Figure 6 we show raw (that is, with no smoothing) mortality rates for US Males aged 30-44
from 1960-2015, and for US females aged 50-69 for the same period5.

In each figure the higher lines are for the oldest ages, and the lower lines for the youngest ages.

The data in Figure 6 are rates derived from taking the number of deaths registered at each age,
divided by an approximate count of the number of people at that age in the population, which
we call the Exposed to Risk. Overall, we see that for each age, mortality rates are generally
declining over time, although there are exceptions.

We also note that the rates are not very smooth. There appears to be some random variation
around the general trends.

When modelling mortality we generally smooth the raw data to reduce the impact of sampling
variability. It is also common in longevity modelling to use heatmaps of mortality improvement
to illustrate the two dimensional data, rather than the age curves of mortality rates in Figure 6.

In Figure 7 we show a plot of smoothed mortality improvement factors for US data, for 1951-
2007. The mortality improvement factor is the percentage reduction in the mortality rate for
each age over each successive calendar year. That is, if the smoothed mortality rate for age x
in year y is q̃(x, y) then the smoothed improvement factor at age x and year y is

ϕ(x, y) = 1− q̃(x, y)

q̃(x, y − 1)

The heatmaps illustrate the following three effects.

Year effects
Calendar year effects are identified in the heatmaps with vertical patterns. For example,
consider the years 1958-1970 in Figure 7a. The vertical column of light blue for those

5Data from the National Center for Health Statistics. Vital Statistics of the United States, Volume II: Mortality,
Part A. Washington, D.C.: Government Printing Office. Data obtained through the Human Mortality Database,
www.mortality.org.
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Figure 6: US mortality experience 1960-2015 (from HMD).
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Figure 7: US smoothed mortality improvement heatmap
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years indicates that longevity improvement was paused or reversed for all ages in those
years, though the impact was different for different age groups (the same phenomenon
is apparent in the raw data in Figure 6a). The next vertical section of the graph shows
longevity picking up again, with improvement more marked for younger lives than for
older.

In Figure 7a we also see a very clear and severe deterioration in mortality between 1984 and
1991 affecting younger males. This area illustrates the impact of the HIV/AIDS epidemic
on younger male mortality in the US. In the following period, from around 1993-2000,
mortality in the same age range showed very strong improvement, as medical and social
management of HIV/AIDS produced an extraordinary turnaround in mortality from the
disease.

Age effects
Age effects in the heatmaps are evident from horizontal patterns; in Figure 7 there is little
evidence of pure age effects that are protracted across the whole period. The most obvious
impact of age in the heatmaps is in the way that different age groups are impacted differ-
ently by the calendar year effects. For example, the mortality improvement experienced
by US females in the 1970’s was more significant for people below 45 years old than for
older lives.

In both the heat maps, we see less intense patterns of improvement or decline at older
ages. It is common to assume that we will not see any significant mortality improvement
at the very oldest ages, say, beyond age 95. The idea is that, although more people are
living to older ages, there is not much evidence that the oldest attainable age is increasing.
This phenomenon is referred to as the rectangularization of mortality, from the fact that
the trend in longevity is generating more rectangular-looking survival curves, (i.e. curves
of tp0 for values of t from age 0 to, say, age 120 years) without significantly shifting the
right tail of the survival curve.

Cohort Effects
Cohort effects refer to patterns of mortality that are consistent for lives born in the same
year. Cohort effects can be seen in the individual age rates in Figure 6 as spikes or troughs
that move up diagonally across the curves, as the lives who are, say, age 40 in 1951, if they
survive, become the lives who are age 41 in 1952, and so on. Cohort effects are more clearly
seen in the heatmaps as diagonal patterns from lower left to upper right. In Figure 7a
there is a diagonal band of higher improvement applying to lives born around 1935-1942,
and a similar band in 7b, but for lives born a few years later, in the period from around
1940-1945.

Cohort mortality effects are not observed in all populations, and there is still substantial
uncertainty as to why they occur.

If mortality rates are generally declining over time, it may not be suitable to assume the same
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rate of mortality in actuarial calculations regardless of how far ahead we are looking. There is a
general trend across the globe of decreasing underlying mortality, as medical science advances,
and from improving the other social determinants of longevity such as nutrition and access to
health care.

Allowing for mortality improvement means that we model mortality as a function of both age
and time, so we replace the age based mortality rate qx with a rate based on the attained age
x and on the calendar year that the age is attained, t. We let q(x, t) denote the mortality rate
applying to lives who attain age x in year t, and p(x, t) = 1− q(x, t). We may measure t relative
to some base year, or it may be used to indicate the full calendar year.

There are two approaches to modelling how mortality changes over time. The first is a de-
terministic approach, where we model q(x, t) as a fixed, known function, using a deterministic
Mortality Improvement Scale function. The second is a stochastic approach, where we treat
future values of q(x, t) as a series of random variables.

4.2 Mortality Improvement Scales

The deterministic approach to mortality improvement models at the highest level uses a two
step process:

Step 1 Choose a base year and construct tables of mortality rates for lives attaining each integer
age in the base year. This gives the values q(x, 0).

Step 2 Construct a scale function that can be applied to the base mortality rates to generate
appropriate rates for future years.

4.2.1 Single factor mortality improvement models

The simplest scale functions depend only on age. If we denote the improvement factor for age
x as ϕx, then for t = 1, 2, ...,

q(x, t) = q(x, 0)(1− ϕx)t

For example, the Scale AA factors were published in 1994 by the Society of Actuaries. They
proposed the age based improvement factors illustrated in Figure 8.

Example 4.1
In Table 2 we show base mortality rates for males in the year 2000, and we show the Scale AA
mortality improvement factors, denoted ϕx, for the same age range.

Calculate (a) the 10-year survival probability and (b) the 10-year term life annuity due, with
i = 5%, for a life age 60, with and without the mortality improvement scale.
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Figure 8: Scale AA mortality improvement factors

Age x q(x, 0) ϕx
60 0.008196 0.016
61 0.009001 0.015
62 0.009915 0.015
63 0.010951 0.014
64 0.012117 0.014
65 0.013419 0.014
66 0.014868 0.013
67 0.016460 0.013
68 0.018200 0.014
69 0.020105 0.014
70 0.022206 0.015

Table 2: RP2000 Male healthy annuitant mortality rates, with Scale AA improvement factors.
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Solution 4.1
(a) Without mortality improvement we have

10p60 =
9∏
t=0

(1− q(60 + t, 0)) = 0.87441

With mortality improvement we have

10p60 =
9∏
t=0

(1− q(60 + t, t))

=

9∏
t=0

(
1− q(60 + t, 0)(1− ϕ60+t)

t
)

= 0.88277

(b) Without mortality improvement we have

ä60:10 = 1 +
9∑
t=1

vt
t−1∏
k=0

(1− q(60 + k, 0)) = 7.7606

With mortality improvement we have

ä60:10 = 1 +
9∑
t=1

vt
t−1∏
k=0

(1− q(60 + k, k))

= 1 +

9∑
t=1

vt
t−1∏
k=0

(1− q(60 + k, 0)(1− ϕ60+k)
k)

= 7.7744

Notice that the impact on the annuity in this case is small, both because the term is short and
because the mortality is fairly light even without the improvement factors.

Using mortality rates that allow for improvement leads to an increase in the value of annuities, as
lives are expected to live longer and therefore collect more annuity. We use the term longevity
risk for the risk that we underestimate the cost of life contingent benefits through unanticipated
changes in the mortality rates experienced by annuitants or policyholders. In recent years, this
risk has been associated with higher longevity than expected, which leads to underestimation of
the cost of annuity type payments. For life insurance policies, longer life reduces the costs, as it
allows for more premium collection, and a longer period to the payment of the sum insured, and
so life insurance portfolios are not exposed to significant longevity risk, although, this would
change if trends started to show increasing mortality rates over time.
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The one factor mortality improvement scales have proven too simplistic. The AA scale predicted
that mortality at age 70 would improve by 1.5% per year indefinitely, but the heat map shows
improvement rates of around 2.75% in the mid 2000’s. On the other hand, the heat map shows
that the higher values of the improvement factors might not persist for later cohorts.

A more robust approach to deterministic mortality improvement scales uses improvement factors
that are a function of both age and calendar year. This approach is used in the MP2014 tables
of the Society of Actuaries as well as in the CPM scales of the Canadian Institute of Actuaries.
The method used for both of these was first proposed by the Continuous Mortality Investigation
Bureau (CMIB), which is a standing committee of the Institute and Faculty of Actuaries in the
UK.

The improvement scales are determined in three steps

• Determine short term improvement factors, using regression or other smoothing tech-
niques applied to recent experience.

• Determine long term improvement factors, and the time at which the long term rates
will be reached. After this time, the rates are assumed to be constant. This step is usually
based on subjective judgment.

• Determine intermediate improvement factors using smooth functions that will con-
nect the short and long term factors.

For the MP2014 tables, the Society of Actuaries used the following three steps to generate past
and future improvement factors, ϕ(x, t), where x is the age (integer values from 15 to 95) and t
is the calendar year from 1950 forwards.

• Improvement factors for calendar years 1950-2007 are determined by taking the raw mor-
tality experience from the US Social Security Administration (SSA) database. A two
dimensional smoothing method is applied to the logarithm of the raw mortality rates,
generating smooth log-rates denoted s(x, t). The two dimensional smoothing ensures that
s(x, t) is smooth across ages x and across calendar years y. The smoothed historical rates
up to 2007 are then

q̃(x, t) = es(x,t)

and the historical improvement factors for 1950 -2007 are

ϕ(x, t) = 1− q̃(x, t)

q̃(x, t− 1)
= 1− es(x,t)−s(x,t−1)

• Long term improvement factors were set at 1% at all ages up to age 65, decreasing linearly
to 0% at age 115, for both males and females. These rates are assumed to apply from
2027.
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• Intermediate factors covering calendar years 2008-2026 are determined using a blend of
age-based cubic splines and cohort-based cubic splines.

A spline is a smooth function that can be used to interpolate between two other functions. In
our context, we have the historical improvement factors up to 2007, and we have the assumed
long term improvement factors applying from 2027, which are assumed to be constant. A cubic
spline is a cubic function of time (in years) measured from 2007 which matches the improvement
function values at 2007 and 2027, and also matches the gradient of the improvement function at
2007 and at 2027. These four constraints will give us four simultaneous equations for the four
parameters of the cubic function. The two end points joined by the spline are called knots.

The age-based cubic spline uses the same age for the knots at 2007 and 2027. For a given age
x it is a function of time t measured in years from 2007, joining the functions ϕ(x, 2007 + t),
for t = 0,−1,−2, ... and ϕ(x, 2007 + t), for t = 20, 21, 22, .... We denote the function Ca(x, t) so
that

Ca(x, t) = at3 + bt2 + ct+ d

C ′a(x, t) = 3at2 + 2bt+ c

And we have four equations for the four parameters:

(1) Ca(x, 0) = d = ϕ(x, 2007)
(Set the starting value of the spline)

(2) C ′a(x, 0) = c = ϕ(x, 2007)− ϕ(x, 2006)
(Set the starting derivative of the spline equal to the 2007 gradient)

(3) Ca(x, 20) = 8000a+ 400b+ 20c+ d = ϕ(x, 2027)
(Set the end value of the spline)

(4) C ′a(x, 20) = 1200a+ 40b+ c = 0
(Set the end value of the spline equal to the 2027 gradient)

And we can solve the four equations to determine the coefficients a, b, c, d of the polynomial.

The cohort-based spline is similar, but it smooths the improvement factors for a cohort age x in
2007, which means it interpolates between the functions ϕ(x + t, 2007 + t), for t = 0,−1,−2...
and ϕ(x+ t, 2007 + t) for t = 20, 21, 22, .... We denote the cohort-based spline for a life age x at
2007 + t as Cc(x, t), where

Cc(x, t) = a∗t3 + b∗t2 + c∗t+ d∗

C ′c(x, t) = 3a∗t2 + 2b∗t+ c∗
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and the four equations are

(1) Cc(x− t, 0) = d∗ = ϕ(x− t, 2007)

(2) C ′c(x− t, 0) = c∗ = ϕ(x− t, 2007)− ϕ(x− t− 1, 2006)

(3) Cc(x− t+ 20, 20) = 8000a∗ + 400b∗ + 20c∗ + d∗ = ϕ(x− t+ 20, 2027)

(4) C ′c(x− t+ 20, 20) = 1200a∗ + 40b∗ + c∗ = ϕ(x− t+ 21, 2028)− ϕ(x− t+ 20, 2027)

The improvement factor for age x in year t is then taken as the average of the two splines

ϕ(x, 2007 + t) = 0.5Ca(x, t) + 0.5Cc(x, t) t = 1, 2, ..., 19

Example 4.2
Calculate the MP2014 1-year improvement factor for a female life age 40 in 2020, given the
following values for short and long term improvement factors:

ϕ(40, 2006) = 0.0162; ϕ(40, 2007) = 0.0192; ϕ(40, 2027) = 0.01; ϕ(40, 2028) = 0.01

ϕ(26, 2006) = −0.0088; ϕ(27, 2007) = −0.0088; ϕ(47, 2027) = 0.01; ϕ(48, 2028) = 0.01

Solution 4.2
The age-based improvement spline applicable to a life age 40 in 2020 is the cubic joining
ϕ(40, 2007) and ϕ(40, 2027). The value for 2020 is Ca(40, 13). Solving for the parameters of
the Ca(40, t) spline, we have

ϕ(40, 2007) = Ca(40, 0) = d =⇒ d = 0.0192

ϕ(40, 2007)− ϕ(40, 2006) = C ′a(40, 0) = c =⇒ c = 0.003

ϕ(40, 2027) = 8000a+ 400b+ 20c+ d = 0.01
ϕ(40, 2028)− ϕ(40, 2027) = 1200a+ 40b+ c = 0

}
=⇒ a = 9.8 ∗ 10−6

b = −3.69 ∗ 10−4

So we have

Ca(40, 13) = a× 133 + b× 132 + c× 13 + d = 0.01737

The cohort-based spline applicable to a life age 40 in 2020 is the cubic joining ϕ(27, 2007) and
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ϕ(x, 2010 + t),
x q(x, 2010) t = 1 2 3 4 5 6 7 8 9 10

50 0.002768 0.0206 0.0227 0.0238 0.0243 0.0241 0.0233 0.0221 0.0205 0.0188 0.0170
51 0.002905 0.0180 0.0205 0.0221 0.0229 0.0230 0.0226 0.0216 0.0203 0.0188 0.0171
52 0.003057 0.0156 0.0181 0.0201 0.0213 0.0218 0.0217 0.0210 0.0200 0.0186 0.0171
53 0.003225 0.0124 0.0148 0.0168 0.0184 0.0193 0.0195 0.0192 0.0185 0.0175 0.0162
54 0.003412 0.0093 0.0115 0.0134 0.0150 0.0164 0.0170 0.0171 0.0167 0.0160 0.0151
55 0.003622 0.0066 0.0085 0.0104 0.0120 0.0134 0.0145 0.0150 0.0150 0.0146 0.0140
56 0.003858 0.0045 0.0061 0.0078 0.0094 0.0109 0.0121 0.0130 0.0134 0.0134 0.0131
57 0.004128 0.0033 0.0045 0.0060 0.0075 0.0090 0.0103 0.0113 0.0121 0.0125 0.0124
58 0.004436 0.0031 0.0037 0.0049 0.0063 0.0078 0.0091 0.0102 0.0111 0.0117 0.0120
59 0.004789 0.0039 0.0039 0.0046 0.0057 0.0071 0.0084 0.0096 0.0105 0.0112 0.0117
60 0.005191 0.0055 0.0049 0.0050 0.0058 0.0069 0.0082 0.0094 0.0103 0.0110 0.0115

Table 3: Mortality rates and improvement factors, ϕ(x, 2010 + t) for Example 4.3

ϕ(47, 2027). Solving for the parameters of the Cc(27 + t, t) spline we have

ϕ(27, 2007) = Cc(27, 0) = d∗ =⇒ d∗ = −0.0088

ϕ(27, 2007)− ϕ(26, 2006) = C ′c(27, 0) = c∗ =⇒ c∗ = 0.0

ϕ(47, 2027) = 8000a∗ + 400b∗ + 20c∗ + d∗ = 0.01
ϕ(48, 2028)− ϕ(47, 2027) = 1200a∗ + 40b∗ + c∗ = 0

}
=⇒ a∗ = −4.7 ∗ 10−6

b∗ = 1.41 ∗ 10−4

So we have

Cc(40, 13) = a∗ × 133 + b∗ × 132 + c∗ × 13 + d∗ = 0.00470

Hence, the improvement factor for age 40 in 2020 is

ϕ(40, 2020) = 0.5Ca(40, 13) + 0.5Cc(40, 13) = 0.011035

Example 4.3
In Table 3 you are given the mortality rates for lives age 50-60 in 2010, together with improve-
ment factors for 2011 to 2020.

Calculate 10p50 and ä50:10 for a life age 50 in 2010 assuming (i) no mortality improvement and
(ii) mortality improvement using the two-way factors in Table 3. Use i = 5%.

Solution 4.3
With no mortality improvement we have

10p50 =

9∏
t=0

(1− q(50 + t, 2010)) = 0.96438
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The annuity value is

9∑
t=0

p((50 + t, 2010) vt = 8.0026

With mortality improvement we have the following age-year mortality rates

q(50, 2010) = 0.002768

q(51, 2011) = q(51, 2010)(1− ϕ(51, 2011)) = 0.002905(1− 0.018) = 0.002853

q(52, 2012) = q(52, 2010)(1− ϕ(52, 2011))(1− ϕ(52, 2012)) = 0.002955

...

q(59, 2019) = q(59, 0)(1− ϕ(59, 2011))(1− ϕ(59, 2012))...(1− ϕ(59, 2019)) = 0.004487

We can construct a life table excerpt from the mortality rates applicable to the life age 50 in
2010, using an arbitrary radix of 100,000:

50 + t l(50+t,2010+t) 50 + t l(50+t,2010+t)

50 100 000.0 56 98 179.0
51 99 723.2 57 97 819.1
52 99 438.7 58 97 435.8
53 99 144.9 59 97 027.3
54 98 839.0 60 96 592.0
55 98 518.2

Using this table we have 10p50 = 0.96592, and ä50:10 = 8.0059

4.3 Stochastic mortality models

The deterministic approach to modelling mortality improvement assumes that rates are deter-
mined, known and smooth. This may be reasonable for calculating expected present values, or
median present values, but it does not allow us to analyse or measure the risk from random
variation in the underlying mortality rates. When we look at the curves in Figure 6 we see
that the rates are quite variable from year to year. To analyse the potential impact of random
variation in the year to year mortality experience we may use stochastic processes to model
future mortality experience.
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In AMLCR Chapter 8 we define a stochastic process as a collection of random variables indexed
by a time variable. A stochastic mortality model is a stochastic process for the rate of mortality
experienced by lives at different ages for different future dates. We generally use discrete time
stochastic processes, so that we generate stochastic mortality rates suitable for each age in each
future calendar year.

In the following sections we will describe some current stochastic mortality models that have
been suggested for analysing long term annuity and insurance risks.

4.4 The Lee Carter Model

The Lee Carter model is probably the most famous stochastic mortality model of the past 30
years. It was first presented in Lee and Carter in 1992, and has been widely analysed and
extended since then.

The Lee Carter model works with central death rates, so we first define what these are.

Given a mortality model, defined (say) by the force of mortality function µx, the central death
rate is mx where

mx =
qx∫ 1

0 rpx dr
=

∫ 1
0 rpx µx+r dr∫ 1

0 rpx dr
(29)

so that mx is a weighted average of the force of mortality experienced by lives between age x
and x+ 1. If the force of mortality is reasonably flat over each year of age, then mx will be close
to µx, and

qx ≈ 1− e−mx

In the Lee Carter model, the central death rate varies for age x and for calendar year t, so we
write it as m(x, t). For each integer age x the natural log of the central death rate is assumed
to follow a discrete time stochastic process as follows:

logm(x, t) = αx + βxKt + εx,t (30)

where

• αx and βx are parameters depending only on the attained age x.

• Past values of Kt are parameters found by fitting data to the model. Future values of Kt

are modelled as a time series that is fitted to the estimated historical values. The Kt series
is not age dependent.

The fitted values for Kt often appear to be fairly linear, and the usual forecasting model is
a random walk with drift, which we also assume in this note. This means that we assume

Kt+1 = Kt + c+ σk Zt (31)
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where c is a constant drift term, σk is the standard deviation of the annual change in Kt,
and the Zt are assumed to be i.i.d. random variables, with standard N(0, 1) distribution.

• εx,t is a random error term which is assumed to be sufficiently small to be negligible, and is
often ignored in the definition and analysis of the Lee Carter model. In this note we follow
this custom, which means we assume all of the uncertainty in the model is generated by
the stochastic process Kt.

In this note we let lm(x, t) = log(m(x, t)) so that

m(x, t) = elm(x,t) (32)

Then, with the assumptions listed above, we can write the Lee Carter model as

lm(x, t) = αx + βxKt (33)

= αx + βx (Kt−1 + c+ σk Zt) (34)

The key to the model is the separation of age effects and year effects. The time series for Kt

introduces random year effects, and the factor βx allows for the year effects to have a different
impact on different ages.

The model has an identifiability problem in the form presented. We could, for example, multiply
all the βx by 2 and divide all the Kt by 2 and end up with the same values. To solve this we
add two constraints which depend on the data used to fit the model parameters.

Suppose the data covers ages x0 to xw, and calendar years t0 to tn, then the constraints are

xw∑
x=x0

βx = 1.0

tn∑
t=t0

Kt = 0.0 (35)

Applying these constraints we can see how the αx parameters can be interpreted, as, for a given
age x

tn∑
t=t0

lm(x, t) = (tn − t0)αx + βx

tn∑
t=t0

Kt =⇒ αx =

∑tn
t=t0

lm(x, t)

tn − t0

so that the αx parameters represent the average of the log-central death rates for age x over the
period of the data.

The estimation process for the model is quite complex, and is beyond the scope of this note.

In Figure 9 we show typical plots for the fitted parameters for the Lee Carter model for a data
set of retirement age lives 6.

6This figure was generously provided by Professor Johnny S-H Li.
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Figure 9: Example of fitted parameters for the Lee Carter model

For this data set we see a decreasing mortality trend from the negative slope of the Kt, and also
that younger ages in the group experienced more benefit from the decreasing mortality trend
than older ages, evident from the negative slope for βx.

Although the Lee Carter model has been widely applied since its first publication, there are
some problems, particularly for actuarial applications. The most important is that the fit to
data tends not to be very good. This is partly because it does not allow for any cohort effect,
yet we often see cohort effects in the actuarial and population data. Also, the model assumes
(implictly) perfect correlation between mortality improvements at different ages, as we show
in Example 4.4, but the mortality data shows that improvements may be far from perfectly
correlated.

Example 4.4
Let R(x, t) = lm(x, t) − lm(x, t−1). Show that R(x, t) and R(y, t) are perfectly correlated for
y 6= x.

Solution 4.4
The correlation is

ρ =
E[R(x, t)R(y, t)]− E[R(x, t)]E[R(y, t)]

SD[R(x, t)]SD[R(y, t)]
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where R(x, t) = (αx + βxKt)− (αx + βxKt−1) = βx (Kt −Kt−1)

and Kt −Kt−1 = c+ σk Zt ⇒ E[Kt −Kt−1] = c

and SD[Kt −Kt−1] = σk

so E[R(x, t)] = βx c; SD[R(x, t)] = βx σk

E[R(x, t)R(y, t)] = E[βxβy (Kt −Kt−1)
2] = βxβy

(
c2 + σ2k

)
=⇒ ρ =

βxβy(c
2 + σ2k)− βxβyc2

(βxσk) (βyσk)
= 1

Example 4.5
You are given the following parameters for the Lee Carter model.

α70 = −2.684 β70 = 0.04 K2017 = −10.0 c = −0.4 σk = 0.7

(a) (i) Calculate the mean and standard deviation of m(70, 2018) .

(ii) Calculate the median and the 5% quantile of m(70, 2018)

(b) (i) Calculate p(70, 2018) assuming that the central death rate takes the mean value from
(a), and assuming constant force of mortality between integer ages. Explain why this is
not the mean value of p(70, 2018).

(ii) Calculate the 50% and 95% quantiles of p(70, 2018) assuming constant force of mor-
tality between integer ages.

(c) (i) Calculate p(70, 2018) assuming that the central death rate takes the mean value from
(a), and assuming UDD between integer ages.

(ii) Calculate the 50% and 95% quantiles of p(70, 2018) assuming UDD.

Solution 4.5

(a)

lm(70, 2018) = α70 + β70K2018

= α70 + β70 (K2017 + c+ σk Zt)

= −2.684 + 0.040(−10.0− 0.4 + 0.7Zt) = −3.100 + 0.028Zt (36)

=⇒ lm(70, 2018) ∼ N(−3.1, 0.0282) because Zt ∼ N(0, 1) (37)
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Now, for any normally distributed random variable X ∼ N(µ, σ2), the function Y = eX

has a lognormal distribution. We write Y ∼ logN(µ, σ). The mean and variance of a
lognormal random variable with parameters µ and σ are

E[Y ] = eµ+σ
2/2 V[Y ] = (E[Y ])2

(
eσ

2 − 1
)

(38)

So m(70, 2018) = elm(70,2018) ∼ logN(−3.1, 0.028)

=⇒ E[m(70, 2018)] = e−3.1+0.0282/2 = 0.04507

and V[m(70, 2018)] = (0.04507)2(e0.028
2 − 1) = 0.00132

For the quantiles, because lm is an increasing function of Zt, we can find the q-quantile of
lm by replacing Zt in equation (36) with its q-quantile. Then, because m is an increasing
function of lm, we can find the q-quantile of m by replacing lm with its q-quantile in
equation (32).

Let Qq(X) denote the q quantile of the random variable X. Then the median corresponds
to q = 50%,

Q50%(Zt) = 0 =⇒ Q50%(lm(70, 2018)) = −3.1

=⇒ Q50%(m(70, 2018)) = e−3.1 = 0.04505

and Q5%(Zt) = −1.645

=⇒ Q5%(lm(70, 2018)) = −3.1 + (0.028)(−1.645) = −3.146

=⇒ Q5%(m(70, 2018)) = e−3.146 = 0.04302

(b) With the constant force assumption, the central death rate is equal to the constant force,
so a central death rate of m70 = e−3.1+0.0282/2 (from the expected value in (a)) corresponds
to a survival probability of p70 = e−m70 = 0.9559336.

This is not the expected value of p(70, 2018); for this we need

E[p(70, 2018)] = E
[
e−m(70,2018)

]
= E

[
e−(e

−3.1+0.028Zt )
]

= 0.9559338

The survival probability is a decreasing function of the central death rate, so the q-quantile
for p(70, 2018) corresponds to the (1− q)-quantile for m(70, 2018):

Q50%(p(70, 2018)) = e−Q50%(m(70,2018)) = 0.95595

Q95%(p(70, 2018)) = e−Q5%(m(70,2018)) = 0.95789
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(c) Under UDD we have rqx = r(1qx) for 0 ≤ r ≤ 1. Then

mx =
qx∫ 1

0 rpx dr
=

qx∫ 1
0 (1− r(qx))dr

=
qx

1− qx/2

=⇒ qx =
mx

1 +mx/2
=⇒ px =

1−mx/2

1 +mx/2

So assuming mx = 0.04507 we have px = 0.95592

For (c)(ii), following the same process as in (b), we have

Q50%(p(70, 2018)) =
1−Q50%(m(70, 2018))/2

1 +Q50%(m(70, 2018))/2
= 0.95594

Q95%(p(70, 2018)) =
1−Q5%(m(70, 2018))/2

1 +Q5%(m(70, 2018))/2
= 0.95789

Example 4.6

Define the central death rate improvement factor as the random variable

ϕm(x, t) = 1− m(x, t)

m(x, t− 1)

(a) Show that the distribution of ϕm(x, t) does not depend on t.

(b) Calculate the mean, standard deviation, median and the 95% quantile of ϕm(70, t), using
the parameters given in Example 4.5 above.

Solution 4.6

(a)

log
m(x, t)

m(x, t− 1)
= lm(x, t)− lm(x, t− 1) = βx(Kt −Kt−1)

= βx(c+ σk Zt) from eqn (31)

=⇒ log(1− ϕm(x, t)) ∼ N
(
βx c, (βx σk)

2
)

=⇒ (1− ϕm(x, t)) ∼ logN (βx c, (βx σk))
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which demonstrates that the distribution of ϕm(x, t) does not depend on t.

(b)

(1− ϕm(70, t)) ∼ logN (−0.016, 0.028)

E [ϕm(70, t)] = 1− e−0.016+0.0282/2 = 0.015486

V [ϕm(70, t)] = V [1− ϕm(70, t)] =
(
e−0.016+0.0282/2

)2 (
e0.028

2 − 1
)

= 0.027572

Q50%(ϕm(70, t)) = 1− e−0.016 = 0.01587

Q95%(ϕm(70, t)) = 1−Q5%(ϕm(70, t)) = 1− e−0.016−1.645(0.028) = 0.06017

The quantiles calculated in the examples above can be used to give some measure of longevity
risk, but it should be noted that there is significant uncertainty in the parameters that is not
captured in these calculations. We have also ignored the error term εx,t from equation (30), and
there is additional uncertainty arising from model risk, given that the model fit to data is often
not that compelling.

4.5 The Cairns-Blake-Dowd Models

The Cairns-Blake-Dowd (CBD) family of models has become very popular for actuarial appli-
cations. The original model fits a two factor time series to the logit of the mortality rate; the
model has been extended to four or more terms.

In this section we describe the original model, and briefly discuss a popular extension of the
model.

The model works with the logit function of mortality rates. The logit function is defined as
logit(x) = log(x/(1− x)). In this section we let

lq(x, t) = log
q(x, t)

1− q(x, t)

4.5.1 The original CBD model

The original CBD model is defined as

lq(x, t) = K
(1)
t +K

(2)
t (x− x̄) (39)

where

• x̄ is the average age in the data set.
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• K(1)
t and K

(2)
t are correlated time series. Usually, each is assumed to follow a random walk

with drift, so that

K
(1)
t = K

(1)
t−1 + c(1) + σk1Z

(1)
t

K
(2)
t = K

(2)
t−1 + c(2) + σk2Z

(2)
t

• Z(1)
t and Z

(2)
t are standard N(0, 1) random variables, which are correlated with each other

in each given year, but are independent from year to year. That means that

E[Z
(1)
t ] = E[Z

(2)
t ] = 0 V[Z

(1)
t ] = V[Z

(2)
t ] = 1 E[Z

(1)
t Z

(2)
t ] = ρ − 1 ≤ ρ ≤ 1

E[Z
(i)
t Z(j)

u ] = 0 for t 6= u, i = 1, 2, j = 1, 2

Example 4.7

Suppose K
(1)
2017 = −3.2, K

(2)
2017 = 0.01, c(1) = −0.02, c(2) = 0.0006, x̄ = 70

σk1 = 0.03, σk2 = 0.005, ρ = 0.2

(a) Calculate the mean and variance of the lq(65, 2018).

(b) Calculate the median and 95% quantile of p(65, 2018).

Solution 4.7
(a)

lq(65, 2018) = K
(1)
2018 +K

(2)
2018(65− 70)

K
(1)
2018 = −3.2− 0.02 + 0.03Z

(1)
2018

K
(2)
2018 = 0.01 + 0.0006 + 0.005Z

(2)
2018

=⇒ lq(65, 2018) = −3.273 +
(

0.03Z
(1)
2018 − 0.025Z

(2)
2018

)
On the right hand side we have a linear function of correlated Gaussian random variables, which
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means that lq(65, 2018) is also normally distributed, with mean −3.273 and variance

V[lq(65, 2018)] = 0.032 + 0.0252 − 2(0.03)(0.025)(0.2) = 0.001225 = 0.0352

=⇒ lq(65, 2018) ∼ N(−3.273, 0.0352)

=⇒ q(65, 2018)

1− q(65, 2018)
∼ logN(−3.273, 0.035)

=⇒ E

[
q(65, 2018)

1− q(65, 2018)

]
= e−3.273+0.0352/2 = 0.0379

and V

[
q(65, 2018)

1− q(65, 2018)

]
=
(
e−3.273+0.0352/2

)2 (
e0.035

2 − 1
)

= 0.001332

(b) lq(x, t) is an increasing function of q(x, t), and is therefore a decreasing function of p(x, t)

Q50%(lq(65, 2018)) = −3.273

=⇒ Q50%

(
q(65, 2018)

1− q(65, 2018)

)
= e−3.273 = 0.03789

=⇒ Q50%(q(65, 2018)) =
0.03789

1 + 0.03789
= 0.03651

=⇒ Q50%(p(65, 2018)) = 0.96349

Q5%(lq(65, 2018)) = −3.273− 1.645(0.035) = −3.33057

=⇒ Q5%

(
q(65, 2018)

1− q(65, 2018)

)
= e−3.33057 = 0.03577

=⇒ Q5%(q(65, 2018)) =
0.03577

1 + 0.03577
= 0.03454

=⇒ Q95%(p(65, 2018)) = 0.96546

4.5.2 The CBD M7 Model

The CBD model has some advantages over the Lee Carter model, with fewer parameters, and
less parameter uncertainty in practice, but the fit to population mortality data of the original
model is not significantly better than Lee Carter, and in some cases is worse.
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By adding one or two terms to the CBD model the fit can be significantly improved, while the
advantages of the model are mostly retained. A popular extension is the CBD M7 model7 which
is defined as

lq(x, t) = K
(1)
t +K

(2)
t (x− x̄) +K

(3)
t

(
(x− x̄)2 − s2x

)
+Gt−x

There are two terms that are not in the original model.

• The first is an extra year-effect time series, K
(3)
t , which has a quadratic impact across the

age groups. The sx term is just the standard deviation of the age range used. So, if the
age range used to fit the model runs from age 50 to age 90, then

x̄ =
1

41

90∑
x=50

x = 70 and s2x =
1

41

90∑
x=50

(x− 70)2 = 140

• The second additional term is Gt−x which introduces a cohort effect time series. For a
life age, say, 65 in 2018, the lq function would use G1953, where 1953 is the birth year of
the cohort, and that same G1953 term would appear in the subsequent lq functions for the
group (that is lq(66, 2019), lq(67, 2020), · · · ). For Gt where t lies beyond the range of the
data, we fit a time series, but it is more cyclical than the Kt, typically, and would be fitted
to an ARIMA type model.

4.6 Actuarial applications of stochastic mortality models

In the examples in Section 4.3 we calculated some measures of risk or variability relating to
one-period ahead mortality. The impact of stochastic mortality on the cash flows of a portfolio
of annuities projected much farther into the future is not so analytically tractable, especially for
more complex models such as CBD M7.

Commonly, actuaries use Monte Carlo simulation to assess the potential impact of longevity
risk. Monte Carlo simulation is described in Chapter 11 of AMLCR. The method can be used
to generate a large number of random8 paths for p(x, t) into the future. We can use these paths
to estimate distributions of cash flows and present values.

For example, suppose an insurer uses Monte Carlo simulation to generate 10,000 different paths
for p(x, 2017 + k), for x = 60, ..., 110, and for k = 1, ..., 50, where we assume 110 is the ultimate
age attainable. That means, for each path we are simulating survival probabilities for all ages, for
each of the 50 years, which is a total of 2550 values for each path. We repeat this 10,000 times,

7The M7 comes from the numbering in Cairns et al (2009), where it was the seventh of eight models analysed.
8Technically, the paths are not random, but are sufficiently indistinguishable from a true random process that

they can be treated as random.
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using random number generators that create independent paths from the underlying process
that are equally likely, and that can be treated as a random sample from the distribution.

For example, let pj(x, 2017 + k) denote the simulated value for p(x, 2017 + k) from the jth
simulated path.

Given a single path of survival probabilities starting at age 60, for example, that is, given
pj(60, 2017), pj(61, 2018), etc, we can calculate the actuarial value of an annuity issued to (60)
in 2017, conditional on that path. Let ä(60, 2017)j denote the expected present value given the
jth path, then

äj(60, 2017) =

50∑
k=0

pj(60 + k, 2017 + k)vk

Repeating this for all of the 10,000 paths for the survival probabilities gives us a sample of
10,000 values for the present value of an annuity-due issued to age 60, taking longevity risk into
consideration. From this sample, we can calculate moments such as the mean and variance, and
we can assess the exposure to longevity risk by considering the impact if the annuity value takes
an adverse value, such as the 95% quantile of the distribution.

Since longevity changes tend to impact the whole portfolio, not just a single age range, the insurer
would not look separately at values for each age group, but would generate valuations for the
whole portfolio of annuities at different ages, valued along each separate path for p(x, 2017 + k)
for all ages x. The results could be used to assess the adequacy of reserves and of pricing, taking
longevity risk into consideration. The ability of the insurer to survive extreme scenarios could be
investigated by considering, for example, the worst case quantiles of the simulated distribution
of the portfolio value.

4.7 Notes on stochastic mortality models

1. Different populations can display very different combinations of age, year and cohort ef-
fects. In some populations cohort effects are not at all strong, while in others they are
crucial to model fit. We also need to consider sub-populations. We often use data from
national census or social security records to fit stochastic mortality models, as a large
amount of data is needed, due to the large number of parameters to be fitted, and because
at much older ages we have less reliable parameter estimates as we may have very few lives
in the database.

There is a problem though if the population statistics are then used to model improvement
factors for insured lives and annuitants. Typically, people who buy annuities and insurance
are healthier and wealthier than the population as a whole, and they tend to be the first to
benefit from the medical and social advances that improve longevity. The whole-population
models may underestimate the longevity risk from current annuitants, if population and
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annuitant longevity continues to improve. On the other hand, we may overestimate the risk
if the annuitant population mortality trends slow down before the population as a whole.
For example, suppose we use the annuitant mortality from 2015 as our base mortality
table, and then use estimated population mortality improvement factors to project the
annuitant mortality rates out to the future. Suppose further that population longevity
improvement is likely to be generated by improved population access to new drugs such as
statins. If the annuitant population already benefited from early access to the drugs, based
on their relatively privileged social position, then applying the population improvement
factors to the base annuitant mortality will double count the impact of statins, and will
overestimate the longevity of the group.

2. Stochastic mortality improvement models can be used to determine deterministic improve-
ment scales. Typically, we would use the median or mean improvement factors from the
stochastic model to generate scales to apply to current tables.

3. In the descriptions of the Lee Carter and CBD models we assumed the year effects time
series followed random walk with drift. However, other time series models can be used.

The modelling process for the Kt series starts with estimating the values for all the years
in the data, since we don’t directly observe these values. Then the estimated values are
analysed using standard time series methods. For the Lee Carter and original CBD models,
applied to population data from the US or the UK, the estimated values appear to follow
a reasonably straight line, but for more complex models such as the CBD M7, and for
some other populations, a better fit might be obtained using an autoregressive or ARIMA
type model.

4. We have not given much indication of whether or why one stochastic mortality model is
better than another. We can do statistical analysis of goodness of fit, but the model and
parameter uncertainty is typically very large, and it is not unusual for all the models to
fail standard tests of fit. We need to find ways of choosing the least bad of the models,
but selecting a model is never an automatic process. Some models do well on relative fit,
but demonstrate extreme parameter uncertainty – for example, generating very different
values when we use slightly different historic periods to estimate the parameters.

Ultimately, there is still a very large amount of parameter and model uncertainty in
stochastic longevity models. Nevertheless, they are becoming essential tools for actu-
arial risk management of annuity portfolios and pension plans, because they are so much
better than no model at all. At least we can generate some indication of the range of
possible outcomes for an annuity portfolio’s cashflows. Still, it is essential for actuaries
using these models to understand the significant limitations of the models.

5. Given the sometimes conflicting information from the statistical metrics for model selec-
tion, we might want to assess the reasonableness of the models intuitively. The CBD
models generate smooth survival rates across ages within each year, because of the (x− x̄)
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and ((x− x̄)2 − s2x) terms. The Lee Carter model may generate rather less smoothness
across the ages depending on the parameters.

4.8 References and further reading
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5 Structured Settlements

5.1 Introduction and background

When a person is injured because of a negligent or criminal act committed by another person,
or by an institution, legal processes will determine a suitable amount of compensation paid to
the injured party (IP) by the person or institution who caused the injury (responsible person,
RP)9.

The compensation may be paid as a lump sum, but in some jurisdictions it is more common
for the payment to be paid as an annuity, or as a combination of a lump sum and an annuity.
The annuity may be a term annuity, a whole life annuity, or an annuity that ceases when the IP
recovers from their injuries. There may be additional future lump sum benefits payable under
the settlement to cover predictable future costs. The annuity payments may increase from time
to time to offset the effects of inflation.

A structured settlement is the payment schedule agreed between the IP and the RP, usually
through their lawyers, or through an insurer where the RP’s liability is covered by an insurance
policy. The annuity part may be funded with a single premium immediate annuity purchased
from an insurer or from a firm that specialises in structured settlements.

Structured settlements are often used for payments under Workers Compensation insurance.
Workers compensation (also known as Workers Comp, or Employer’s Liability) is a type of
insurance purchased by employers to fund the costs of compensating employees who are in-
jured at work. In many jurisdictions, employers are required to purchase workers compensation
insurance. In some areas the insurance is provided through a government agency.

Structured settlements are also commonly used in medical malpractice cases, and for other
personal injury claims, such as from motor vehicle accidents.

The reason for using an annuity format rather than a lump sum is that the annuity better
replicates the losses of the IP, in the form of lost wages, and/or ongoing expenses associated with
medical care or additional needs arising from the injury. Rehabilitation costs, and any expenses
associated with re-training for the workplace would also be covered through the settlement.

If the injury is very serious, such as paralysis, loss of limbs, or permanent brain damage, the
settlement will be a whole life annuity. Less severe injuries may be compensated with a term
life annuity, extending to the point where the individual is expected to be recovered.

The injuries involved in structured settlement compensation cases are often complex, and assess-
ing appropriate mortality and morbidity rates is challenging. A serious injury would increase
the IP’s mortality, which would make the annuity cheaper compared with the equivalent amount
payable to a life subject to standard table mortality. However, there is not much data on the

9If the issue is settled through a court case, the IP might be referred to as the plaintiff, and the RP as the
defendant, but often cases are solved outside of the formal court system.
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relationship between different types of injury and mortality, so the adjustments to standard an-
nuitant mortality tables may be quite arbitrary. It is common for underwriters to apply a simple
age rating, but it is likely that a better adjustment would be an addition to the force of mor-
tality, which models an exponentially increasing mortality impact10. Impaired lives mortality is
covered in Chapter 6 of AMLCR, in Section 6.9.

Example 5.1
Darren, who is 45 years old, has been awarded 1 000 000 in damages for injuries from a car crash.
The court decides the benefit should be paid as a structured settlement with the following terms:

• An immediate payment of 100 000

• A lump sum of 50 000 on reaching age 65, or payable immediately on earlier death.

• An annuity payable annually in advance from age 45. The first payment under the annuity
is X; and subsequent payments increase at 2% each year. At age 65 the annuity reduces
by 20% (so the amount paid at age 65 is 0.8X(1.02)20).

Calculate X, assuming interest at 4% per year and that mortality follows the SUSM with an
addition of 1% to the force of mortality.

Solution 5.1
Let the ∗ superscript denote mortality functions allowing for the extra mortality, where no ∗
denotes functions from the unadjusted SUSM mortality. Then the annuity value is

X

(
1 + (1.02)v4% 1p

∗
45 + (1.02)2 v24% 2p

∗
45 + ...+ (1.02)19 v194% 19p

∗
45

+ 0.8
(
(1.02)20 v204% 20p

∗
45 + (1.02)21v214% 21p

∗
45 + ...

))
Now tp

∗
45 = e−0.01t tp45

=⇒ (1.02)t vt4% tp
∗
45 = (1.02)t vt4% e

−0.01t
tp45 = vtj tp45,

where (1 + j) = (1.04)e0.01/(1.02) =⇒ j = 2.9855%

So the annuity value is

X
(
ä45:20 + 0.8 20E45 ä65

)
at j = 2.9855%

10See Singer and Schmidt(2000) for further discussion and analysis.
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Using an Excel calculator for the SUSM we find that at 2.9855%

ä45:20 = 15.15268 20E45 = 0.53026 ä65 = 16.46437

=⇒ Annuity Value = 22.13704X

For the endowment benefit, let δ = log(1.04), and δ∗ = δ + 0.01, then the value of the 50 000
benefit is

50 000Ā∗
45:20

= 50 000

(
1− δā∗

45:20

)

= 50 000

(
1− δ4% ā45:20 i∗

)
= 24 711.38

Note that the endowment insurance benefit cannot be valued by simply changing the interest
rate in Ā45:20 ; this only works for benefits which are dependent on survival, not for benefits
which are dependent on death.

The equation of value for the structured settlement is

1 000 000 = 100 000 + 24 711 +X(22.13704) =⇒ X = 39 540

5.2 Notes on structured settlements

1. Replacement of income will normally be at less than 100% of pre-injury earnings. There
are two reasons cited.

• In some countries (including the US and the UK) income from a structured settlement
annuity is not taxed. Hence, less annuity is required to support the IP’s pre-injury
lifestyle.

• The insurer wants to ensure that the IP has a strong incentive to return to work.

• The amount of compensation may be reduced if the IP is determined to be partially
at fault in the incident.

2. The annuity will typically include some allowance for inflation. This may be a fixed annual
increase, such as 2% per year as in the example above, or the annuity may be fully indexed
to inflation.

3. In cases of potentially severe injury, there is often a period of uncertainty as to the extent
of damage and long term prognosis for the IP. For example, it may take a year of treatment
and rehabilitation to determine the level of permanent damage from a spinal cord injury. In
these cases there may be an interim arrangement of benefit until the time of maximum
medical improvement (MMI), at which point the final structured settlement will be
determined.
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4. Structured settlements evolved from a system where the entire compensation was in a lump
sum form. Paying compensation as a lump sum requires the IP to manage a potentially
very large amount of money. There is a strong temptation to overspend; research indicates
that 80%-90% of recipients spend their entire lump sum compensation within 5 years11.
Even a fairly prudent individual who invests the award in stocks and bonds could lose 30%
of their funds in a stock market crash. An annuity relieves the IP from investment risk and
from dissipation risk (the risk of spending the funds too early). The move from lump sum
to annuities in structured settlements has led to two different approaches to determining
the payments.

The top-down approach starts with determination of an appropriate lump sum
compensation, and then converts that to an annuity.

The bottom-up approach starts with a suitable income stream, and then converts
that to a capital value.

Because the purpose of the settlement is to restore the IP to her former financial position,
as far as possible, the bottom-up method seems most appropriate.

5. In some areas of the US the IP may transfer her annuity to a specialist firm in exchange for
a lump sum, under a ‘structured settlement buy-out’. After concerns that the buy-out firms
were making excessive profits on these transactions, the market has become more regulated,
with buy-outs in many areas prohibited or at least requiring court approval. Structured
settlement buy-outs are not permitted in Canada, where the structured settlement provider
must ensure that the payments are going directly to the IP.

6. The structured settlement determined through a court case is generally final and non-
reviewable. This means that if the IP makes an unexpectedly strong recovery, the insurer
cannot reduce or stop the payments under the settlement. It also means that if the
settlement is insufficient, for example because of inflation or because the IP’s condition
worsens, the IP may not apply for an increase in the payments. However, reviewable
settlements are common in workers comp where the employee may not have the right to
sue for a fixed structured settlement, and where the insurer believes that the reviewable
approach will be more cost effective.

5.3 Reviewable settlements under workers comp

Workers compensation awards are not always in the form of fixed, structured settlements.

If the injury is less severe then the compensation may take the form of a disability annuity, ceas-
ing when the IP recovers sufficiently to return to work. If that level of recovery does not occur,
then the annuity may just cease at some point, or it may continue indefinitely, depending on the

11See, for example, Charles et al, (2000).
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Figure 10: Model for workers compensation benefits.

agreement and on the legal requirements governing the award. For example, some jurisdictions
set maximum payments for workers compensation awards to protect employers.

The payments would be similar to the disability income annuity described in Figure 1. We
propose a slightly different form in Fig 10.

An individual in State 0 has had an injury, but it is not yet known whether the disability will be
permanent or temporary. If the individual recovers, they move to state 1. This may be associated
with a lump sum back-to-work benefit. If the injury proves to cause permanent impairment to
income, then the individual moves to State 2, and receives annuity for their lifetime, or for the
maximum term under the agreement, if shorter. When the individual is in State 2, the insurer
may agree to a structured settlement.
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Example 5.2
A life aged 50 (the IP) has recently suffered a workplace injury which is covered by a workers
compensation insurance policy. The insurer uses the model illustrated in Figure 10 to value the
benefits. You are given the following information.

• The IP is currently in State 0.

• µ13x+t follows the SUSM, i.e.

µ13x+t = A+Bcx+t where A = 2.2 ∗ 10−4; B = 2.7 ∗ 10−6; c = 1.124

µ01x+t = 0.5 µ02x+t = 1.2 µ03x+t = µ23x+t = µ13x+t + 0.05

• i = 0.04

• The insurer calculates the following probabilities and annuity values (at 4%).

x ā00x ā01x ā02x ā11x ā22x 1p
00
x 1p

01
x 1p

02
x

50 0.5585 5.2706 7.0657 18.8441 10.4785 0.17356 0.23785 0.55308
51 0.5585 5.2006 7.0268 18.6011 10.4238 0.17354 0.23782 0.55301

(a) The insurer considers a reviewable annuity of 150 000 per year, payable continuously,
which would cease when the IP dies or recovers. Alternatively, the insurer may pay a
non-reviewable whole life annuity of 100 000 per year, payable continuously.

Calculate the value of the two annuity options.

(b) (i) Assume the settlement uses the reviewable annuity option. Calculate the expected
value at time 0 of the total policy value at time 1.

(ii) Assume the settlement uses the non-reviewable annuity option. Calculate the ex-
pected value at time 0 of the total policy value at time 1.

Solution 5.2

(a) The value of the non-reviewable annuity is

100 000
(
ā0050 + ā0150 + ā0250

)
= 100 000 (0.5585 + 5.2706 + 7.0657) = 1 289 480

The value of the reviewable annuity is

150 000
(
ā0050 + ā0250

)
= 150 000(0.5585 + 7.0657) = 1 143 630
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(b) (i) First, determine the state dependent policy values:

1V
(0) = 150 000

(
ā0051 + ā0251

)
= 1 137 790

1V
(1) = 0

1V
(2) = 150 000

(
ā2251
)

= 1 563 570

Then the EPV of the time 1 policy value at time 0 is

v

(
1p

00
50 1V

(0) + 1p
02
50 1V

(2)

)
= 1 021 400

(ii) The policy values are now

1V
(0) = 100 000

(
ā0051 + ā0151 + ā0251

)
= 1 278 580

1V
(1) = 100 000

(
ā1151
)

= 1 860 110

1V
(2) = 100 000

(
ā2251
)

= 1 042 380

Hence, the EPV of the time 1 policy value at time 0 is

v

(
1p

00
50 1V

(0) + 1p
01
50 1V

(1) + 1p
02
50 1V

(2)

)
= 1 193 140
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6 Retiree Health Benefits

6.1 Introduction

Retiree health benefits are provided by some employers through supplementary health insurance
cover. The supplementary insurance reimburses a portion of the costs of health care which are
not covered by the relevant government funded system. For example, seniors in the USA are
eligible for socialized health cover through the Medicare program, but there are significant
deductible and co-pay requirements. This means, for example, that individuals may have to pay
out-of-pocket for each doctors visit and hospital stay. Supplementary health insurance may also
provide cover for care that is not included in the Medicare program, such as dental treatment.

In this section we discuss some methods for valuing and funding the future costs to the employer
of retirees’ health insurance premiums. This section will reference principles and terminology
from Chapter 10 of AMLCR.

Retiree health benefits are typically offered only to those who retire from the firm, so that those
who leave before they are eligible to retire would not receive retirement health benefits, even if
they leave a deferred pension benefit in the pension plan. In addition to reaching a retirement
eligible age, there are typically minimum service requirements, such as at least 10 years of service
with the firm.

Retiree health benefits may be pre-funded, similarly to defined benefit pensions, or may be
funded on a pay-as-you-go basis, meaning that the annual premiums are met by the firm from
year to year earnings. However, even when pay-as-you-go is used, there may be accounting
regulations requiring benefits to be valued and declared in the financial statements. Unlike
accrued pension benefits, post-retirement health benefits do not represent a legal obligation for
the employer. The benefits could be withdrawn at any point with no ongoing liability for the
employer. This means that there is no need to hold separate funds to meet the future liability.

6.2 Valuing retiree health benefits

In this section we will consider the valuation and funding of a simplified retiree health care
benefit plan. We assume that the health care benefits are provided through a health insurance
company. The employer pays premiums to the insurer to secure the post-retirement health
benefits. So the cost of the benefits to the sponsoring employer is the cost of the premiums that
it pays to the health insurance company.

Premiums for health insurance increase with age, as costs are clearly age-dependent. They also
increase with time, as health care costs tend to increase faster than normal price inflation.

LetB(x, t) denote the annual premium payable for health insurance under an employer sponsored
plan, for a life who is age x at time t.
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For a life retiring at age xr in t years, the value at retirement of the supplementary health
insurance is

B(xr, t) + v pxrB(xr + 1, t+ 1) + v2 2pxrB(xr + 2, t+ 2) + +v3 3pxrB(xr + 3, t+ 3) + ...

= B(xr, t)

(
1 + v pxr

B(xr + 1, t+ 1)

B(xr, t)
+ v2 2pxr

B(xr + 2, t+ 2)

B(xr, t)
+ v3 3pxr

B(xr + 3, t+ 3)

B(xr, t)
+ ...

)

Let äB(xr, t) =

(
1 + v pxr

B(xr + 1, t+ 1)

B(xr, t)
+ v2 2pxr

B(xr + 2, t+ 2)

B(xr, t)
+ ...

)

then the value of the benefit at retirement is:

B(xr, t)äB(xr, t)

We call äB(xr, t) the benefit premium annuity at t for a life then aged xr.

Now, suppose that the annual rate of inflation for the healthcare premiums is 100j%, and that
in any year the premiums increase exponentially with age, so that B(x+ 1, t)/B(x, t) = c, say.
Then

B(xr + k, t+ k) = ck(1 + j)kB(xr, t)

=⇒ äB(xr, t) = 1 + v pxrc (1 + j) + v22pxrc
2(1 + j)2 + ...

=⇒ äB(xr, t) = äxr| i∗ where (1 + i∗) =
1 + i

c (1 + j)

For example, if c = 1.02 and j = 5%, then the value of the benefit premium annuity for a life
age 65 at an interest rate of 6%, and assuming SUSM mortality is

äB(65, t) = 26.6403

The adjusted interest rate i∗ = −1.027% is negative because the premiums are increasing faster
than the interest rate which discounts them.

Now consider a life age x, who may retire at any age up to 65 with full eligibility for the
healthcare insurance. We assume first that all lives retire at exact ages. We use the service
table functions defined in Chapter 10 in AMLCR.

Then the actuarial value of the total retiree health benefit at age x is AV THB where

AV THB =
65−x∑
t=0

rx+t
lx

vtB(x+ t, t) äB(x+ t, t)
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If we assume the same structure for the premium as above, we can replace B(x + t, t) with
B(x, 0)ct(1 + j)t, giving

AV THB = B(x, 0)

65−x∑
t=0

rx+t
lx

vti∗ äx+t| i∗

where i∗, as above, is (1 + i)/(c(1 + j))− 1.

We may refine this to allow for lives retiring between integer ages. We follow the examples in
AMLCR Chapter 10, and assume that such exits occur half-way through the year of age. So,
for example, if the exits at all ages up to age 64 are assumed to be half-way through the year,
and the age 65 exits are exact age retirements, we have

AV THB = B(x, 0)

(
64−x∑
t=0

rx+t
lx

v
t+ 1

2
i∗ äx+t+ 1

2
| i∗ +

r65
lx
v65−xi∗ ä65| i∗

)

Usually the valuation will include one or two exact age exit terms, and the rest will be mid-year
exits. This is demonstrated in the following example.

Example 6.1
You are given the following information:

• The annual benefit premium for retiree healthcare cover, for a life age 60 at the valuation
date is B(60, 0) = 5000.

• c = 1.02, j = 5%, i = 6%.

• Retirements follow the Service Table from AMLCR (Appendix D). This table allows age
retirement from age 60 to 65. It also separates exact age retirements at age 60 from
mid-year retirements between age 60 and 61.

• Mortality after age retirement follows the SUSM.

(a) Calculate the AV THB for a life age 60 at the valuation date.

(b) Calculate the AV THB for a life age 50 at the valuation date.
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Solution 6.1

(a) The service table identifies age retirement decrements at exact ages 60 and 65; all other
retirements are assumed to occur half-way through the year of age. All lives are assumed
to retire by age 65.

Let r60e and r65 denote the exact age retirement decrements at age 60 and 65, while r60+ ,
r61 ..., r64, represent the mid-year retirement decrements.

Then the AVTHB is

AV THB = B(60, 0)
r60e

l60
ä60| i∗ +B(60.5, 0.5) v0.5i

r60+

l60
ä60.5| i∗ +B(61.5, 1.5) v1.5i

r61
l60

ä61.5| i∗

+ · · · +B(65, 5) v5i
r65
l60

ä65| i∗

Substituting for B(60 + t, t), using B(60 + t, t) = B(60, 0)(1 + j)t ct, we have

AV THB =
B(60, 0)

l60

(
r60e ä60| i∗ + (1 + j)0.5 c0.5 v0.5i r60+ ä60.5| i∗ + (1 + j)1.5 c1.5 v1.5i r61 ä61.5| i∗

+ · · · + (1 + j)5 c5 v5i r65 ä65| i∗

)

=
B(60, 0)

l60

(
r60e ä60| i∗ + v0.5i∗ r60+ ä60.5| i∗ + v1.5i∗ r61ä61.5| i∗ + · · ·+ v5i∗r65ä65| i∗

)

(Change the discount rate from i to i∗)

We have: i∗ = (1 + i)/(c(1 + j))− 1 = −1.027%, (as above), and we can calculate the
required annuity values using an SUSM excel calculator:

x+ t äx+t| i∗

60.0 32.5209
60.5 31.9097
61.5 30.7024
62.5 29.5156
63.5 28.3496
64.5 27.2047
65.0 26.6403
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So

AV THB =
5000

93085

(
27926 (32.5209) + v0.5i∗ 6188 (31.9097) + · · ·+ v5i∗ 38488 (26.6403)

)

=
5000

93085
(2 760 503) = 148 279

(b) At age 50 we need

AV THB =B(60, 10) v10i
r60e

l50
ä60| i∗ +B(60.5, 10.5) v10.5i

r60+

l50
ä60.5| i∗ +B(61.5, 11.5) v11.5i

r61
l50

ä61.5| i∗

+ · · · +B(65, 5) v15i
r65
l60

ä65| i∗

=
B(60, 10)

l50
v10i

(
r60e ä60| i∗ + v0.5i∗ r60+ ä60.5| i∗ + v1.5i∗ r61 ä61.5| i∗ + · · · + v5i∗ r65 ä65| i∗

)

=
B(60, 0)(1 + j)10

l50
v10i

(
r60e ä60| i∗ + v0.5i∗ r60+ ä60.5| i∗ + v1.5i∗ r61ä61.5| i∗ + · · ·+ v5i∗r65ä65| i∗

)
(Allowing for 10 years premium inflation)

=
B(60, 0)

l50
v10i†

(
r60e ä60| i∗ + v0.5i∗ r60+ ä60.5| i∗ + v1.5i∗ r61ä61.5| i∗ + · · ·+ v5i∗r65ä65| i∗

)

where i† =
1 + i

1 + j
− 1 = 0.952%

=
5000

117145
v100.952% (2 760 503)

= 107 169

Notice that the net rate of interest in the first 10 years is different to the subsequent period,
because of the netting off of the premium inflation rate from age 50 to 60, then the premium
inflation rate and the increase in premiums from aging after age 60.

We see from this example, that it is relatively straightforward to derive the AVTHB from first
principles, and this is usually preferable to applying memorized valuation formulas, which may
need adapting, as in the case, depending on the information given, and on the specific details of
each case.
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6.3 Funding retiree health benefits

Although employers may not be required to pre-fund retiree health benefits, they may choose to
do so. Even if they choose the pay-as-you-go route, it may be necessary to determine the value
of the benefits and a (nominal) normal contribution for accounting purposes.

In AMLCR Chapter 10 we discussed two methods of funding a final salary pension, the tra-
ditional unit credit and the projected unit credit. Both of these methods are accruals based
methods, meaning that we assume the actuarial liability at each valuation date is based on
the pension earned from past service; we do not include future service benefits in the liability
valuation, as these are assumed to be funded from future contributions.

The notion of accrual for retiree health benefits is less natural than for a final salary pension, as
the pension benefit is a linear function of the number of years of service. This is not true for the
health insurance benefits described in this section. In the simplest retiree health benefit plan,
two employees retiring on the same day, at the same age will both be entitled to the same benefit
even if one has 20 years of service and the other has 40 years. The benefit is also independent
of salary, so paying contributions as % of payroll is less natural than for salary related benefits.

We can adapt the accruals principle to retiree health benefits by assuming that the benefits
accrue linearly over each employee’s period of employment. It would be prudent to assume that
the employee retires at the earliest possible date for this purpose. Alternatively, we may assume
a linear accrual to retirement for each possible retirement date.

Once we define the accrued benefit and the accrued liability (which is the actuarial value of the
accrued benefit), then the normal cost is found using the same principles as in AMLCR Chapter
10. That is, if tV

h represents the actuarial liability at time t for retiree health insurance for an
employee, and Cht represents the normal contribution for the year, payable at t, for the same
employee, then

tV
h + Cht = EPV of benefits for mid-year exits + v 1p

(τ)
x t+1V

h, (40)

that is

Cht = v 1p
(τ)
x t+1V

h + EPV of benefits for mid-year exits− tV
h.

By EPV of benefits for mid-year exits we mean the EPV at the start of the year of benefits that
would be payable given that the life exits during the year, multiplied by the probability of exit
during the year. In other words, the normal cost is the expected present value of one additional
year of benefit accrual, except in respect of exits in the valuation year, for which the normal
cost is the expected present value of 1

2
-year of additional accrual.
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Example 6.2

(a) Suppose the retiree health benefits in Example 6.1 are funded using a pro-rata accruals
method, assuming retirement at age 60 for the accruals period.

(i) Calculate the accrued liability and normal contribution for an employee age 50 with
15 years service.

(ii) Calculate the accrued liability and normal contribution for an employee age 60 with
25 years service.

(b) Repeat (a), but assume linear accrual to each retirement age, so that for an employee who
entered service at age 40, benefits on retirement at age 60 would be accrued over 20 years,
benefits on retirement at age 60.5 would be accrued over 20.5 years, and so on.

Solution 6.2

(a)(i) We assume the benefits are accrued over 25 years, from entry until age 60. So the actuarial
liability is

0V =AV THB
15

25
= 64301

Since there are no mid year exits from age retirement between ages 50 and 51, the normal
cost is

NC =
0V

15
=
AV THB

25
= 4286.76

The normal cost is exactly sufficient to pay for one more year of accrual, and under this
approach, each year’s accrual costs (APV THB/25), up to age 60.

(a)(ii) Under this approach, by age 60 the benefit is fully funded, so the actuarial liability is
AV THB = 148 279, and the normal cost is 0. There is no additional accrual to fund from
the normal cost.

(b)(i) We cannot use the AVTHB calculation here, because each term in the valuation is assumed
to accrue at a different rate, depending on the retirement age.

Instead we consider each possible retirement date separately. For an employee age 50 with
15 years past service, the benefit payable on retirement at age 60 is assumed to accrue over
25 years; the benefit payable if the employee retires at age 60.5 is assumed to accrue over
25.5 years, and so on to the age 65 retirement benefit, which accrues over the 30 years of
total service. So, for each possible retirement age xr, say, the accrued benefit at age 50 is
( 15
xr−35) years of the total cost given exit at age xr.
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In symbols we have

0V =
B(60, 0)v10

i†

l50

(
r60e ä60| i∗

(
15

25

)
+ v0.5i∗ r60+ ä60.5| i∗

(
15

25.5

)

+ v1.5i∗ r61ä61.5| i∗

(
15

26.5

)
+ · · ·+ v5i∗r65ä65| i∗

(
15

30

))

=
(15)B(60, 0)v10

i†

l50

(
r60e ä60| i∗

25
+
v0.5i∗ r60+ ä60.5| i∗

25.5
+
v1.5i∗ r61 ä61.5| i∗

26.5

+ · · · +
v5i∗ r65 ä65| i∗

30

)
= 58677.46

The normal cost is the expected present value of one additional year of accrual, as there
are no mid-year retirements between age 50 and 51. Hence the normal cost is

NC = 58677.46/15 = 3911.83

(b)(ii) The actuarial liability is very similar to the age 50 case:

0V =
B(60, 0)

l60

(
r60e ä60| i∗

(
25

25

)
+ v0.5i∗ r60+ ä60.5| i∗

(
25

25.5

)

+ v1.5i∗ r61ä61.5| i∗

(
25

26.5

)
+ · · ·+ v5i∗r65ä65| i∗

(
25

30

))

=
(25)B(60, 0)

l60

(
r60e ä60| i∗

25
+
v0.5i∗ r60+ ä60.5| i∗

25.5
+
v1.5i∗ r61ä61.5| i∗

26.5

+ · · ·+
v5i∗r65ä65| i∗

30

)
= 135310.0

For the normal contribution, consider each of the terms in the actuarial liability calculation:

• The age 60 term is fully funded at the valuation; no additional contribution is re-
quired.

• The age 60.5 term is 25/25.5 =98.04% funded in the actuarial liability, and by the end
of the year must be fully funded, so the normal contribution must fund the additional
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(1/2)-year of accrual, at a cost of

(0.5)B(60, 0) v0.5i∗ r60+ ä60.5|i∗

l60 (25.5)
= 209.04

• The age 61.5 term is 25/26.5 = 94.3% funded in the actuarial liability and must be
26/26.5 funded by the end of the year. So the normal cost for age 61.5 retirements is
the cost of an additional 1-year of accrual

B(60, 0) v1.5i∗ r61 ä61.5|i∗

l60 (26.5)
= 352.23

• Similarly, for retirement ages, xr = 62.5, 63.5, 64.5, and 65 the NC must fund an
extra 1-year of accrual as follows:

Age 62.5:
B(60, 0) v2.5i∗ r62 ä62.5|i∗

l60 (27.5)
= 296.86

Age 63.5:
B(60, 0) v3.5i∗ r63 ä63.5|i∗

l60 (28.5)
= 250.12

Age 64.5:
B(60, 0) v4.5i∗ r64 ä64.5|i∗

l60 (29.5)
= 210.73

Age 65:
B(60, 0) v5i∗ r65 ä65|i∗

l60 (30)
= 1933.09

Combining these costs of accrual, we have

NC = 3252.07

We can generalise the valuation where we allow different accrual periods for the different retire-
ment dates. Let xe denote the entry age for an employee, and let x ≥ xe denote the valuation
age, so that x− xe is the past service at the valuation date, and xr − xe is the total service for
an employee who retires at age xe. We will separate the exact age retirements, represented by
decrement rye and the mid-year decrements, represented by ry. We let xw denote the maximum
retirement age. The actuarial liability is

0V =
B(x, 0) (x− xe)

lx

(
xw∑
y=x

rye v
y−x
i∗ äy|i∗

y − xe︸ ︷︷ ︸ +

xw∑
y=x

ry v
x−y+ 1

2
i∗ äy+ 1

2
|i∗

y + 1
2 − xe︸ ︷︷ ︸

)

exact age exits mid year exits
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For the NC we have three terms; the first allows for the 1/2 year accrual for exits in the valuation
year. The second sums all the exact age exit terms, and the third sums all the mid-year exit
terms:

NC =
B(x, 0)

lx

(
0.5 rx v

0.5 äx+ 1
2
|i∗

x+ 1
2 − xe

+
xw∑

y=x+1

rye v
y−x
i∗ äy|i∗

y − xe
+

xw∑
y=x+1

ry v
y−x+ 1

2
i∗ äy+ 1

2
|i∗

y + 1
2 − xe

)

and if rx = 0, the NC is simply 0V/(x− xe).

6.4 References and further reading

Fundamentals of Retiree Group Benefits Second Edition Dale H. Yamamoto ACTEX Publica-
tions, Inc. Winsted, CT ActexMadRiver.com
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