STAT 472

Test 1
Fall 2020
September 29, 2020

1. You are given that mortality follows the following mortality table:

Age x	q_{x}
100	0.20
101	0.30
102	0.50
103	0.75
104	1.00

You are also given that $d=0.08$ which means that $v=0.92$. Further, you are given that deaths are uniformly distributed between integral ages for ages 100 and 101 and between ages 101 and 102. For ages over 102, mortality follows a constant force of mortality between integral ages.
a. (6 points) Calculate ${ }_{0.8} p_{101.6}$.
b. Let Z be the present value random variable for a whole life insurance policy to (100) with a death benefit of 10,000 paid at the end of the year of death.
i. (4 points) Write an expression of Z.
ii. (8 points) The expected present value which is $10,000 A_{100}$ is 8000 to the nearest 100. Calculate $10,000 A_{100}$ to the nearest 1 .
iii. (8 points) Calculate $\operatorname{Var}[Z]$.
2. (8 points) You are given the following select and ultimate mortality table:

$[x]$	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}	$x+2$
75	0.10	0.20	0.4	77
76	0.15	0.30	0.6	78
77	0.20	0.40	0.8	79
78	0.25	0.55	0.9	80
79	0.30	0.70	1.00	81

You are also given that $d=0.1$.
Calculate $100,000 A_{[771: 4]}$ which is a four year endowment insurance to a newly underwritten life age 77 with a death benefit of 100,000 paid at the end of the year of death.
3. You are given that $S_{x}(t)=\left(1-0.001 t^{3}\right)$ for $0 \leq t \leq 10$.
a. (6 points) Calculate μ_{x+5}.
b. (6 points) Calculate p_{x+6}.
c. (8 points) Calculate the $\operatorname{Var}\left[T_{x}\right]$.
4. (8 points) Let Z be the present value for a whole life insurance to (50) with a death benefit of 1 paid at the end of the year of death.

You are given:

1. $A_{50}=0.3$
2. $i=0.05$
3. $q_{50}=0.0018$ and $q_{51}=0.0020$ and $q_{52}=0.0022$

Determine $1000 A_{52}$
5. (8 points) Megan (25) buys a 20 year term policy with a death benefit of $1,000,000$ payable at the end of the year of death.

You are given that mortality follows the Standard Ultimate Life Table with an interest rate of 5%.

Calculate the expected present value which is $1,000,000 A_{25: 20 \mid}^{1}$.
6. The probability that a new iPhone must be replaced over the next three years based on existing data is given in the table below. However, software improvements will result in an extended lifetime with a reduced "death" rate. The iPhone's mortality rates and improvement factors are given below:

x	$q(x, 0)$	$\varphi(x, 1)$	$\varphi(x, 2)$	$\varphi(x, 3)$
0	0.2	0.25	0.20	0.10
1	0.4	0.20	0.12	0.06
2	0.6	0.10	0.05	0.04

a. (8 points) Calculate probability that an iPhone placed into service today is still functioning at the end of three years if all software updates have been applied.

Let L_{3} be the random variable representing the number of iPhones still in service at the end of 3 years assuming that 20,000 new iPhones are sold today and all software updates are applied.
b. (6 points)Using the probability from Part (a), calculate $\operatorname{Var}\left[L_{3}\right]$. If you are not able to calculate the probability in Part (a), assume that it is 0.25 . If you get an answer for Part (a), please use that answer.
7. (8 points) You are given that ${ }_{t \mid 1} q_{x}=0.04$ for $t=0,1,2, \ldots, 24$

Calculate ${ }_{12} q_{x+5}$.
8. (8 points) You are given that mortality follows Gompertz Law with:

$$
B=0.00001 \text { and } c=1.11
$$

You are also given that $i=0.06$.

Calculate $1000_{10} E_{70}$.

STAT 472

Test 1
Fall 2020
September 29, 2020

1. You are given that mortality follows the following mortality table:

Age x	q_{x}
100	0.20
101	0.30
102	0.50
103	0.75
104	1.00

You are also given that $d=0.10$ which means that $v=0.90$. Further, you are given that deaths are uniformly distributed between integral ages for ages 100 and 101 and between ages 101 and 102. For ages over 102, mortality follows a constant force of mortality between integral ages.
a. (6 points) Calculate ${ }_{0.6} p_{101.8}$.
b. (6 points) Calculate μ_{102}.
c. Let $Z^{\text {CONT }}$ be the present value random variable for a whole life insurance policy to (100) with a death benefit of 10,000 paid at the moment of death.
i. (4 points) Write an expression of $Z^{\text {CONT }}$.
d. Let $Z^{\text {Discrete }}$ be the present value random variable for a 3 year endowment insurance to (100) with a death benefit of 10,000 paid at the end of the year of death.
i. (8 points) The expected present value which is $10,000 A_{100: 31}$ is 7800 to the nearest 100. Calculate $10,000 A_{100: 31}$ to the nearest 1 .
ii. (8 points) Calculate $\operatorname{Var}\left[Z^{\text {Discrete }}\right]$
2. You are given the following select and ultimate mortality table:

$[x]$	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}	$x+2$
75	0.10	0.20	0.4	77
76	0.15	0.30	0.6	78
77	0.20	0.40	0.8	79
78	0.25	0.55	0.9	80
79	0.30	0.70	1.00	81

You are also given that $d=0.08$.
a. (8 points) If $l_{[75]}=100,000$, calculate $l_{[76]}$.
b. (8 points) Calculate $100,000 A_{[77]}$ which is a whole life insurance to a newly underwritten life age 77 with a death benefit of 100,000 paid at the end of the year of death.
3. You are given that $S_{x}(t)=\left(1-0.008 t^{3}\right)$ for $0 \leq t \leq 5$.
a. (6 points) Calculate p_{3}.
b. (8 points) Calculate e_{0}.
4. (8 points) Let Z be the present value for a whole life insurance to (50) with a death benefit of 1 paid at the end of the year of death.

You are given:

1. $A_{52}=0.32$
2. $i=0.05$
3. $q_{50}=0.0018$ and $q_{51}=0.0020$ and $q_{52}=0.0022$

Determine $1000 A_{50}$
5. (8 points) Madeline (25) buys a 32 year pure endowment contract that will pay her $1,000,000$ at the end of the term provided she is alive.

You are given that mortality follows the Standard Ultimate Life Table with an interest rate of 5%.

Calculate the expected present value which is $1,000,000 A_{25: 321}$.
6. The probability that a new iPhone must be replaced over the next three years based on existing data is given in the table below. However, software improvements will result in an extended lifetime with a reduced "death" rate. The iPhone's mortality rates and improvement factors are given below:

x	$q(x, 0)$	$\varphi(x, 1)$	$\varphi(x, 2)$	$\varphi(x, 3)$
0	0.10	0.25	0.20	0.10
1	0.25	0.20	0.12	0.06
2	0.50	0.10	0.05	0.04

a. (8 points) Calculate probability that an iPhone placed into service today is still functioning at the end of three years if all software updates have been applied.

Let L_{3} be the random variable representing the number of iPhones still in service at the end of 3 years assuming that 20,000 new iPhones are sold today and all software updates are applied.
b. (6 points) Using the probability from Part (a), calculate $\operatorname{Var}\left[L_{3}\right]$. If you are not able to calculate the probability in Part (a), assume that it is 0.4 . If you get an answer for Part (a), please use that answer.
7. (8 points) You are given that mortality follows Gompertz Law with:

$$
B=0.00001 \text { and } c=1.11
$$

You are also given that $i=0.06$.
Calculate $1000 A_{80: 21}^{1}$.

STAT 472

Test 1
Fall 2020
September 29, 2020

1. You are given that mortality follows the following mortality table:

Age x	q_{x}
100	0.20
101	0.30
102	0.50
103	0.75
104	1.00

You are also given that $d=0.10$ which means that $v=0.90$. Further, you are given that deaths are uniformly distributed between integral ages for ages 100 and 101 and between ages 101 and 102. For ages over 102, mortality follows a constant force of mortality between integral ages.
a. (6 points) Calculate ${ }_{0.6} p_{101.8}$.
b. (6 points) Calculate μ_{102}.
c. Let $Z^{\text {CONT }}$ be the present value random variable for a whole life insurance policy to (100) with a death benefit of 10,000 paid at the moment of death.
i. (4 points) Write an expression of $Z^{\text {CONT }}$.
d. Let $Z^{\text {Discrete }}$ be the present value random variable for a 3 year endowment insurance to (100) with a death benefit of 10,000 paid at the end of the year of death.
i. (8 points) The expected present value which is $10,000 A_{100: 31}$ is 7800 to the nearest 100. Calculate $10,000 A_{100: 31}$ to the nearest 1 .
ii. (8 points) Calculate $\operatorname{Var}\left[Z^{\text {Discrete }}\right]$
2. You are given the following select and ultimate mortality table:

$[x]$	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}	$x+2$
75	0.10	0.20	0.4	77
76	0.15	0.30	0.6	78
77	0.20	0.40	0.8	79
78	0.25	0.55	0.9	80
79	0.30	0.70	1.00	81

You are also given that $d=0.08$.
a. (8 points) If $l_{[75]}=100,000$, calculate $l_{[76]}$.
b. (8 points) Calculate $100,000 A_{[77]}$ which is a whole life insurance to a newly underwritten life age 77 with a death benefit of 100,000 paid at the end of the year of death.
3. You are given that $S_{x}(t)=\left(1-0.008 t^{3}\right)$ for $0 \leq t \leq 5$.
a. (6 points) Calculate p_{3}.
b. (8 points) Calculate e_{0}.
4. (8 points) Let Z be the present value for a whole life insurance to (50) with a death benefit of 1 paid at the end of the year of death.

You are given:

1. $A_{52}=0.32$
2. $i=0.05$
3. $q_{50}=0.0018$ and $q_{51}=0.0020$ and $q_{52}=0.0022$

Determine $1000 A_{50}$
5. (8 points) Madeline (25) buys a 32 year pure endowment contract that will pay her $1,000,000$ at the end of the term provided she is alive.

You are given that mortality follows the Standard Ultimate Life Table with an interest rate of 5%.

Calculate the expected present value which is $1,000,000 A_{25: 321}$.
6. The probability that a new iPhone must be replaced over the next three years based on existing data is given in the table below. However, software improvements will result in an extended lifetime with a reduced "death" rate. The iPhone's mortality rates and improvement factors are given below:

x	$q(x, 0)$	$\varphi(x, 1)$	$\varphi(x, 2)$	$\varphi(x, 3)$
0	0.10	0.25	0.20	0.10
1	0.25	0.20	0.12	0.06
2	0.50	0.10	0.05	0.04

a. (8 points) Calculate probability that an iPhone placed into service today is still functioning at the end of three years if all software updates have been applied.

Let L_{3} be the random variable representing the number of iPhones still in service at the end of 3 years assuming that 20,000 new iPhones are sold today and all software updates are applied.
b. (6 points) Using the probability from Part (a), calculate $\operatorname{Var}\left[L_{3}\right]$. If you are not able to calculate the probability in Part (a), assume that it is 0.4 . If you get an answer for Part (a), please use that answer.
7. (8 points) You are given that mortality follows Gompertz Law with:

$$
B=0.00001 \text { and } c=1.11
$$

You are also given that $i=0.06$.
Calculate $1000 A_{80: 21}^{1}$.

