Random Variables

Whole Life insurance with Death Benefit of 1 paid at the moment of death of (x) $Z=v^{T_{x}}$

Whole Life insurance with Death Benefit of 1 paid at the end of the year of death of (x) $Z=v^{K_{x}+1}$
n year Term Life insurance with Death Benefit of 1 paid at the moment of death of (x) $Z=v^{T_{x}} \quad$ for $0 \leq T_{x}<n \quad$ and $\quad 0$ for $T_{x} \geq n$
n year Term Life insurance with Death Benefit of 1 paid at the end of the year of death of (x) $Z=v^{K_{x}+1} \quad$ for $0 \leq K_{x} \leq n-1 \quad$ and $\quad 0$ for $K_{x} \geq n$
n year Pure Endowment with an endowment of 1 paid at time n if (x) is alive
$Z=0$ for $0 \leq T_{x}<n \quad$ and $\quad v^{n}$ for $\mathrm{T}_{x} \geq n$
n year Endowment insurance with Death Benefit of 1 paid at the moment of death of (x)
$Z=v^{T_{x}} \quad$ for $0 \leq T_{x}<n \quad$ and $\quad v^{n}$ for $T_{x} \geq n$
Or
$Z=v^{\min \left\{T_{x}, n\right\}}$
n year Endowment insurance with Death Benefit of 1 paid at the end of the year of death of (x) $Z=v^{K_{x}+1} \quad$ for $0 \leq K_{x} \leq n-1 \quad$ and $\quad v^{n} \quad$ for $\mathrm{K}_{x} \geq n$

Or
$Z=v^{\min \left\{K_{x}+1, n\right\}}$

Whole Life Annuity due with annual payments of 1
$Y=\ddot{a}_{\bar{K}_{x}+1}=\frac{1-v^{K_{x}+1}}{d}$

Whole Life Annuity with continuous payments at a rate of 1 per year
$Y=\bar{a}_{\bar{T}_{x}}=\frac{1-v^{T_{x}}}{\delta}$
n year term Life Annuity due with annual payments of 1
$Y=\ddot{a}_{\overline{K_{x}+1 \mid}}=\frac{1-v^{K_{x}+1}}{d} \quad$ for $K_{x}=0,1, \ldots, n-1 \quad$ and $\quad Y=\ddot{a}_{n}=\frac{1-v^{n}}{d}$ for $K_{x} \geq n$
Or
$Y=\ddot{a}_{\min \left(K_{x}+1, n\right)}=\frac{1-v^{\min \left(K_{x}+1, n\right)}}{d}$
n year Life Annuity with continuous payments at a rate of 1 per year $Y=\bar{a}_{\bar{T}_{x} \mid}=\frac{1-v^{T_{x}}}{\delta}$ for $0 \leq T_{x}<n \quad$ and $\quad Y=\bar{a}_{n}=\frac{1-v^{n}}{\delta}$ for $T_{x} \geq n$

Or
$Y=\bar{a} \overline{\min \left(T_{x}, n\right)}=\frac{1-v^{\min \left(T_{x}, n\right)}}{\delta}$

Whole Life Annuity due with mthly payments of $1 / \mathrm{m}$
$Y=\ddot{a}_{\overline{x_{x}^{(m)}+1 / m}}^{(m)}=\frac{1-v^{K_{x}^{(m)}+1 / m}}{d^{(m)}}$ for $K_{x}<0,1, \ldots, n$
and $\quad Y=\ddot{a}_{n}^{(m)}=\frac{1-v^{n}}{d^{(m)}}$ for $K_{x} \geq n$

Or
$Y=\ddot{a} \frac{(m)}{\min \left(K_{x}^{(m)}+1, n\right)}=\frac{1-v^{\min \left(K_{x}^{(m)}+1 / m, n\right)}}{d^{(m)}}$

