STAT 472 Fall 2021 Quiz 3 September 21, 2021

- 1. You are given:
 - a. X is the probability that (90) dies between ages 92.2 and 93.6 which is $_{2.2|1.4}q_{90}$ given a constant force of mortality.
 - b. Y is the probability that (90) dies between ages 92.2 and 93.6 given uniform distribution of deaths between integral ages.
 - c. Mortality follows the Standard Ultimate Life Table.

Calculate (100,000)(X - Y).

Solution:

$$_{2.2|1.4}q_{90} = \frac{l_{92.2} - l_{93.6}}{l_{90}}$$

 $l_{90} = 41,841.1$

Under CFM $l_{92.2} = (l_{92})^{1-0.2} (l_{93})^{0.2} = (33,379.9)^{0.8} (29,183.8)^{0.2} = 32,494.989$

Under CFM $l_{93.6} = (l_{93})^{1-0.6} (l_{94})^{0.6} = (29,183.8)^{0.4} (25,094.3)^{0.6} = 26,656.418$

Under CFM
$$_{2.2|1.4}q_{90} = \frac{32,494.989 - 26,656.418}{41,841.1} = 0.139541529 = X$$

Under UDD $l_{92.2} = (l_{92})(1-0.2) + (l_{93})(0.2) = (33,379.9)(0.8) + (29,183.8)(0.2) = 32,540.68$

Under CFM $l_{93.6} = (l_{93})(1-0.6) + (l_{94})(0.6) = (29,183.8)(0.4) + (25,094.3)(0.6) = 26,730.10$

Under CFM
$$_{2.2|1.4}q_{90} = \frac{32,540.68 - 26,730.10}{41,841.1} = 0.138872544 = Y$$

(100,000)(X - Y) = (100,000)(0.139541529 - 0.138872544) = 66.89

2. You are given the following two-year select and ultimate mortality table:

[<i>x</i>]	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}	<i>x</i> +2
80	0.03	0.11	0.12	82
81	0.09	0.13	0.15	83
82	0.11	0.18	0.22	84
83	0.13	0.20	0.25	85
84	0.14	0.21	0.29	86

You are given that $\,e_{_{[82]+2}}=3\,$.

Calculate $e_{[82]}$.

Solution:

 $e_{[82]+1} = p_{[82]+1}(1 + e_{[82]+2}) = (1 - 0.18)(1 + 3) = 3.28$

 $e_{[82]} = p_{[82]}(1 + e_{[82]+1}) = (1 - 0.11)(1 + 3.28) = 3.81$