STAT 472

Fall 2021

Quiz 3

September 21, 2021

1. You are given:
a. $\quad X$ is the probability that (90) dies between ages 92.2 and 93.6 which is ${ }_{2.2 \mid 1.4} q_{90}$ given a constant force of mortality.
b. Y is the probability that (90) dies between ages 92.2 and 93.6 given uniform distribution of deaths between integral ages.
c. Mortality follows the Standard Ultimate Life Table.

Calculate $(100,000)(X-Y)$.

Solution:

${ }_{2.211 .4} q_{90}=\frac{l_{92.2}-l_{93.6}}{l_{90}}$
$l_{90}=41,841.1$

Under CFM $l_{92.2}=\left(l_{92}\right)^{1-0.2}\left(l_{93}\right)^{0.2}=(33,379.9)^{0.8}(29,183.8)^{0.2}=32,494.989$

Under CFM $l_{93.6}=\left(l_{93}\right)^{1-0.6}\left(l_{94}\right)^{0.6}=(29,183.8)^{0.4}(25,094.3)^{0.6}=26,656.418$

Under $\mathrm{CFM}_{2.2 \mid 1.4} q_{90}=\frac{32,494.989-26,656.418}{41,841.1}=0.139541529=X$

Under UDD $l_{92.2}=\left(l_{92}\right)(1-0.2)+\left(l_{93}\right)(0.2)=(33,379.9)(0.8)+(29,183.8)(0.2)=32,540.68$

Under CFM $l_{93.6}=\left(l_{93}\right)(1-0.6)+\left(l_{94}\right)(0.6)=(29,183.8)(0.4)+(25,094.3)(0.6)=26,730.10$

Under $\mathrm{CFM}_{2.2 \mid 1.4} q_{90}=\frac{32,540.68-26,730.10}{41,841.1}=0.138872544=Y$
$(100,000)(X-Y)=(100,000)(0.139541529-0.138872544)=66.89$
2. You are given the following two-year select and ultimate mortality table:

$[x]$	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}	$x+2$
80	0.03	0.11	0.12	82
81	0.09	0.13	0.15	83
82	0.11	0.18	0.22	84
83	0.13	0.20	0.25	85
84	0.14	0.21	0.29	86

You are given that $e_{[82]+2}=3$.
Calculate $e_{[82]}$.

Solution:

$$
\begin{aligned}
& e_{[82]+1}=p_{[82]+1}\left(1+e_{[82]+2}\right)=(1-0.18)(1+3)=3.28 \\
& e_{[82]}=p_{[82]}\left(1+e_{[82]+1}\right)=(1-0.11)(1+3.28)=3.81
\end{aligned}
$$

