STAT 472

Spring 2021

Quiz 3

February 16, 2021

1. You are given:

a.
$$q_{85} = 0.2$$

b.
$$q_{86} = 0.4$$

- c. Deaths are uniformly distributed between age 85 and 86.
- d. There is a constant force of mortality between age 86 and 87.

Calculate $_{0.4\mid0.7}\,q_{85.6}$.

Solution:

$$_{0.4|0.7}q_{85.6} = \frac{l_{86} - l_{86.7}}{l_{85.6}} = \frac{800 - 559.49455}{880} = 0.27330$$

$$l_{85} = 1000$$

$$l_{86} = (1000)(1 - 0.2) = 800$$

$$l_{87} = 800(1 - 0.4) = 480$$

$$l_{85.6} = (1000)(1 - 0.6) + 800(0.6) = 880$$
 since it is UDD

$$l_{86.7} = (800)^{(1-0.7)} \cdot (480)^{0.3} = 559.49445$$

2. You are given the following one year select and ultimate mortality table:

[x]	$q_{[x]}$	q_{x+1}	<i>x</i> +1
80	0.05	0.10	81
81	0.07	0.12	82
82	0.10	0.15	83
83	0.13	0.19	84

If
$$l_{\rm [81]} = 100,000$$
 , calculate $l_{\rm [80]}$.

Solution:

$$l_{[82]} = l_{[80]} \cdot p_{[80]} \cdot p_{81}$$

$$l_{[82]} = l_{[81]} \cdot p_{[81]}$$

$$==>l_{[80]}\cdot p_{[80]}\cdot p_{81}=l_{[81]}\cdot p_{[81]}$$

$$=> l_{[80]} = \frac{l_{[81]} \cdot p_{[81]}}{p_{[80]} \cdot p_{81}} = \frac{(100,000)(1-0.07)}{(1-0.05)(1-0.10)} = 108,771.93$$