1. A whole life insurance policy on (75) has a death benefit of 100,000 paid at the end of the year of death. The annual gross premium is 9700 .

Chenxi performs a profit test on this policy. The interest rate used in the profit test is 8%. Mortality follows the Standard Ultimate Life Table.

The other profit test information is listed below for the first four years:

Year	Withdrawals	Reserve End of Year	Percent of Premium Expense	Per Policy Expense
1	20%	3,710	60%	125
2	10%	7,390	10%	25
3	8%	11,033	5%	25
4	4%	14,625	2%	25

Withdrawals occur at the end of the year. Cash values are equal to 80% of the reserves.
Calculate π_{2} which is the profit signature for the second year.

Solution:

$$
\begin{aligned}
& \mathrm{Pr}_{2}= \\
&(3710+9700-(0.1)(9700)-25)(1.08)-(100,000)(0.020668) \\
& \quad-(7390)(0.8)(1-0.020668)(0.1)-(7390)(1-0.020668)(1-0.1)=4248.88 \\
& \pi_{2}= \operatorname{Pr}_{2} \cdot{ }_{1} p_{75}^{(\tau)}=(4248.88)(1-0.018433)(1-0.2)=3336.45
\end{aligned}
$$

2. You are given the following profit vector for a whole life issued to (94):

t	Pr_{t}
0	-900
1	700
2	500
3	300
4	100

Mortality is the only decrement and follows the table below:

x	l_{x}
92	2500
93	2250
94	2000
95	1600
96	960
97	384
98	0

The gross premium used in the profit test is 1000.

Calculate the Profit Margin for this profit test using an interest rate of 8\%.

Solution:

$P M=\frac{N P V}{P V P}$

$$
\begin{aligned}
& =\frac{-900+700(1.08)^{-1}+500\left(\frac{1600}{2000}\right)(1.08)^{-2}+300\left(\frac{960}{2000}\right)(1.08)^{-3}+100\left(\frac{384}{2000}\right)(1.08)^{-4}}{1000\left[1+\frac{1600}{2000}(1.08)^{-1}+\frac{960}{2000}(1.08)^{-2}+\frac{384}{2000}(1.08)^{-3}\right]} \\
& =\frac{219.508}{2304.68}=0.0953
\end{aligned}
$$

3. You are given $c=1.04, j=5 \%, i=7 \%$.

Calculate i^{*}.
Solution:
$1+i^{*}=\frac{1+i}{c(1+j)}=\frac{1.07}{(1.04)(1.05)}=0.97985$
$i^{*}=0.97985-1=-0.02015$

