1. A whole life insurance policy on (75) has a death benefit of 100,000 paid at the end of the year of death. The annual gross premium is 9700.

Chenxi performs a profit test on this policy. The interest rate used in the profit test is 8%. Mortality follows the Standard Ultimate Life Table.

The other profit test information is listed below for the first four years:

Year	Withdrawals	Reserve End of Year	Percent of Premium Expense	Per Policy Expense
1	20%	3,710	60%	125
2	10%	7,390	10%	25
3	8%	11,033	5%	25
4	4%	14,625	2%	25

Withdrawals occur at the end of the year. Cash values are equal to 80% of the reserves.

Calculate π_2 which is the profit signature for the second year.

Solution:

$$\begin{aligned} \Pr_2 &= (3710 + 9700 - (0.1)(9700) - 25)(1.08) - (100,000)(0.020668) \\ &- (7390)(0.8)(1 - 0.020668)(0.1) - (7390)(1 - 0.020668)(1 - 0.1) = 4248.88 \end{aligned}$$

$$\pi_2 = \text{Pr}_{2^{\cdot_1}} \, p_{75}^{(\tau)} = (4248.88)(1 - 0.018433)(1 - 0.2) = 3336.45$$

2. You are given the following profit vector for a whole life issued to (94):

t	Pr _r
0	-900
1	700
2	500
3	300
4	100

Mortality is the only decrement and follows the table below:

x	l_x
92	2500
93	2250
94	2000
95	1600
96	960
97	384
98	0

The gross premium used in the profit test is 1000.

Calculate the Profit Margin for this profit test using an interest rate of 8%.

Solution:

$$PM = \frac{NPV}{PVP}$$

$$=\frac{-900+700(1.08)^{-1}+500\bigg(\frac{1600}{2000}\bigg)(1.08)^{-2}+300\bigg(\frac{960}{2000}\bigg)(1.08)^{-3}+100\bigg(\frac{384}{2000}\bigg)(1.08)^{-4}}{1000\bigg[1+\frac{1600}{2000}(1.08)^{-1}+\frac{960}{2000}(1.08)^{-2}+\frac{384}{2000}(1.08)^{-3}\bigg]}$$

$$=\frac{219.508}{2304.68}=0.0953$$

3. You are given c = 1.04, j = 5%, i = 7% .

Calculate i^* .

Solution:

$$1 + i^* = \frac{1 + i}{c(1 + j)} = \frac{1.07}{(1.04)(1.05)} = 0.97985$$

$$i^* = 0.97985 - 1 = -0.02015$$