STAT 475
 Quiz 2
 Spring 2020
 March 26, 2020

1. Michelle, (25), is employed at Goh Company. Goh provides a post-retirement medical benefit to its retirees that covers the first three years following retirement. You are given:
i. Retirement is assumed to occur at age 65 .
ii. Michelle is assumed to remain employed with Goh until retirement or earlier death.
iii. Currently, annual health insurance premiums are X at age 60 and increase by 2.000\% with each age year.
iv. Health insurance premium inflation is assumed to be 3.5% per year.
v. Mortality follows the Standard Ultimate Life Table.
vi. $i=0.05$

The expected present value today of Michelle's benefits under the plan are 6664.99.

Calculate X.

Solution:

First we note that $X=B(60,0)$. Then $P V @ 65=B(65,40)+v_{1} p_{65}^{(\tau)} B(66,41)+v^{2}{ }_{2} p_{65}^{(\tau)} B(67,42)$

$$
\begin{aligned}
& =B(65,40)\left[1+(1.02)(1.035)(1.05)^{-1}\left(\frac{94,020.3}{94,579.7}\right)+(1.02)^{2}(1.035)^{2}(1.05)^{-2}\left(\frac{93,398.10}{94,579.7}\right)\right] \\
& B(65,40)=B(60+5,40)=B(60,0)(1.02)^{5}(1.035)^{40}
\end{aligned}
$$

$$
P V @ 25=(1.05)^{-40}{ }_{40} p_{25}^{(\tau)}[P V @ 65]
$$

$$
6664.99=(1.05)^{-40}\left(\frac{94,579.7}{99,871.1}\right) B(60,0)(1.02)^{5}(1.035)^{40}\left[\begin{array}{c}
1+(1.02)(1.035)(1.05)^{-1}\left(\frac{94,020.3}{94,579.7}\right) \\
+(1.02)^{2}(1.035)^{2}(1.05)^{-2}\left(\frac{93,398.10}{94,579.7}\right)
\end{array}\right]
$$

$$
B(60,0)=\frac{6664.99}{1.762766749}=3780.98
$$

2. For a four year term insurance product, you are given the following:

Time t	Pr_{t}	${ }_{t} p_{x}^{(\tau)}$	Annual Premium
0	-120	1	200
1	Pr_{1}	0.9	200
2	+70	0.8	200
3	+80	0.7	200
4	+60	0.6	

The internal rate of return on this product is 22.5%.
Calculate the Profit Margin using a discount rate of 10\%.
Solution:

Time t	Pr_{t}	${ }_{t} p_{x}^{(\tau)}$	π_{t}
0	-120	1	$-120)(1)=-120$
1	Pr_{1}	0.9	$\left(\operatorname{Pr}_{1}\right)(1)=\operatorname{Pr}_{1}$
2	+70	0.8	$(70)(0.9)=63$
3	+80	0.7	$(80)(0.8)=64$
4	+60	0.6	$(60)(0.7)=42$

$N P V @ 22.5 \%=0$
$0=120+\operatorname{Pr}_{1}(1.225)^{-1}+63(1.225)^{-2}+(64)(1.225)^{-3}+(42)(1.225)^{-4}=\Rightarrow \operatorname{Pr}_{1}=30.08$
$N P V @ 10 \%=120+\operatorname{Pr}_{1}(1.10)^{-1}+63(1.10)^{-2}+(64)(1.10)^{-3}+(42)(1.10)^{-4}=36.18$
$P V P @ 10 \%=200+(200)(0.9)(1.10)^{-1}+(200)(0.8)(1.10)^{-2}+(200)(0.7)(1.10)^{-3}=601.05$
$P M=\frac{36.18}{601.05}=0.0602$

