

Selbo Stop Loss Insurance Company had the following five claims in 2019:

Claim Number	Loss	
1	50,000	
2	70,000	
3	90,000	
4	95,000	
5	150,000	

Selbo expects the claims will be subject to 10% trend for 2020. Selbo keeps 100,000 of risk and then reinsures the rest of risk over 100,000 to Rahn Reinsurance Company.

a. Determine the amount that Selbo paid in 2019.

Solution:

50,000 + 70,000 + 90,000 + 95,000 + 100,000 = 405,000

b. Determine the amount that Rahn paid in 2019.

Solution:

The only claim that Rahn pays on is claim 5 where Rahn pays 50,000.

c. Calculate the percentage increase in claims expected to be paid by Selbo in 2020 based on the 10% trend.

Solution:

Claim Number	Loss Before Trend	Loss After Trend	Selbo Portion	Rah Portion
1	50,000	55,000	55,000	0
2	70,000	77,000	77,000	0
3	90,000	99,000	99,000	0
4	95,000	104,500	100,000	4,500
5	150,000	165,000	100,000	65,000
Total	455,000	500,500	431,000	69,500

Selbo percentage increase = 431,000/405,000 - 1 = 6.42%

d. Calculate the percentage increase in claims expected to be paid by Rahn in 2020 based on the 10% trend.

Solution:

Rahn percentage increase = 69,500/50,000 - 1 = 39.00%

*A reinsurance treaty pays 80% of 1,000,000 excess of 2,000,000 and 90% of 1,000,000 excess of 3,000,000.

Calculate the amount paid on a loss of 3,500,000.

Solution:

This is really to a large extent a test of reinsurance language which I did not emphasize in the lecture. 80% of 1,000,000 excess of 2,000,000 means that it pays 80% of the losses between 2,000,000 and 3,000,000. 90% of 1,000,000 excess of 3,000,000 means that it pays 90% of the losses of between 3,000,000 and 4,000,000.

Therefore the amount paid is (0.8)(3,000,000-2,000,000) + (0.9)(3,500,000-3,000,000) = 1,250,000.

* A primary insurance company has a 100,000 retention limit. The company purchases a catastrophe reinsurance treaty that provides the following coverage:

- 1. Layer 1 is 85% of 100,000 excess 100,000
- 2. Layer 2 is 90% of 100,000 excess 200,000
- 3. Layer 3 is 95% of 300,000 excess 300,000

The primary company suffers a loss of 450,000.

Calculate the total amount retained by the primary insurance company.

Solution:

The primary company will pay the 100% of the first 100,000, 15% of the next 100,000, 10% of the amount between 200,000 and 300,000 and 5% of the amount above 300,000.

Amount paid = (1)(100,000) + (0.15)(200,000 - 100,000) + (0.10)(300,000 - 200,000) + (0.05)(450,000 - 300,000) = 132,500

10.

Paredo
$$\Rightarrow F_{\lambda}(x^{**}) = 1 - \left(\frac{6}{x^{**} + 6}\right)^{\alpha}$$

$$.6 = 1 - \left(\frac{2000}{2000 + x^{**}}\right)^{3} \Rightarrow \frac{2000}{2000 + x^{**}} = \sqrt[3]{.4}$$

$$\Rightarrow$$
 $x^{**} = \frac{2000}{\sqrt[3]{.4}} - 2000 = 7/4.42$

$$F(x) = \int_{0}^{x} f(x) dx = \int_{0}^{x} \frac{x^{2}}{9} dx = \frac{x^{3}}{27}\Big|_{0}^{x} = \frac{x^{3}}{27}$$

$$u^{**} = \frac{\chi^{**}}{27} \Rightarrow \chi^{**} = 3\sqrt{u^{**}}$$

$$u^{**} = .729 \Rightarrow x^{**} = 3(.9) = 2.7$$

$$u^{**} = .125 \Rightarrow x^{**} = 3(.5) = 1.5$$

$$\sqrt{2} = \frac{.6 + 2.7 + 1.5}{3} = 1.6$$

Therefore all simulated realises less than or egual to . 49 are mapped to zero

$$Po = e^{-2} = .135335$$

Since the first random number = 0.7 we have 3 clams

u** = 1-e-1000 ln (1-u**) FOR CLASEM AMOUNTS

u**= 0.1 = x**= 105.36

U** = 0.5 > x = 693.15

Kyli pags 105.36

500,00

500,00

1105.36 TOTAL

Simulated cont = 15000 ± = (2000)

$$U^{++} = .5398 \Rightarrow \chi^{++} = 15000 + 2000(.1) = 15,200$$

$$U^{++} = .1151 \Rightarrow \chi^{++} = 15000 - 2000(1.2) = 12,600$$

$$U^{++} = .0013 \Rightarrow \chi^{++} = 15000 - 2000(3) = 9,000$$

$$U^{++} = .7881 \Rightarrow \chi^{++} = 15000 + 2000(.8) = 16,600$$

claims

$$15,200 - 10,000 = 5,200$$
 $12,600 - 10,000 = 2,600$
 $9000 - 9000 = -0$
 $16,600 - 10,000 = 6,600$
 $14,400$

$$P0 = 0.135335 \frac{Z}{0.135}$$

$$P_1 = 0.270671 \frac{2}{0.270671}$$

$$pz = 0.270671$$
 . 676
 $pz = 0.180447$. 857

Amount of clams

$$ToTAL = 290.57 + 77.35$$

$$+ 412.87 = 780.79$$

$$+ 407.87 = 780.79$$

U**= . 8 > 3 clams