1. (10 points) You are given the following:
i. The random variable X has the density function $f(x)=\{2(\theta-x)\} / \theta^{2}, 0<x<\theta$
ii. A random sample of two observations of X yields values of 0.50 and 1.00.

Determine the maximum likelihood estimate for θ.

Solution:

$$
\begin{aligned}
& L(\theta)=f(0.5) f(1.0)=\left(\frac{2(\theta-0.5)}{\theta^{2}}\right)\left(\frac{2(\theta-1)}{\theta^{2}}\right)=4(\theta-0.5)(\theta-1) \theta^{-4} \\
& l(\theta)=\ln (4)+\ln (\theta-0.5)+\ln (\theta-1)-4 \ln \theta \\
& l^{\prime}(\theta)=\frac{1}{(\theta-0.5)}+\frac{1}{(\theta-1)}-\frac{4}{\theta}=0 \\
& \theta(\theta-1)+\theta(\theta-0.5)-4(\theta-0.5)(\theta-1)=0 \\
& \theta^{2}-\theta+\theta^{2}-0.5 \theta-4 \theta^{2}+6 \theta-2=0==>-2 \theta^{2}+4.5-2=0 \\
& \theta=\frac{-4.5 \pm \sqrt{(4.5)^{2}-(4)(-2)(-2)}}{-4}=0.6096 \text { or } 1.64
\end{aligned}
$$

But $\theta=1.64$ since we know $0<x<\theta$ and one x is 1.0 .
2. I would like to receive 10 points for this question.

