STAT 479

Quiz 5

Spring 2020

April 7, 2020

1. You are given that aggregate losses for various risks a portfolio have the following probability distributions:

	Number of Risks	Probability of a Loss	Loss Amount	Probability of Loss	Loss Amount	Probability of Loss
Risk 1	60	0.2	100	0.9	500	0.1
Risk 2	30	0.5	200	0.8	800	0.2
Risk 3	10	0.6	300	0.7	1000	0.3

a. (1 point) Calculate the EPV for the claim frequency.

Solution:

	Number	Prob of Claim	$\mathrm{E}(\mathrm{N})$	$\operatorname{Var}(\mathrm{N})$
Risk 1	60	0.2	0.2	$(0.2)(0.8)=0.16$
Risk 2	30	0.5	0.5	$(0.5)(0.5)=0.25$
Risk 3	10	0.6	0.6	$(0.6)(0.4)=0.24$

$E P V=(0.6)(0.16)+(0.3)(0.25)+(0.1)(0.24)=0.195$
b. (1 point) Calculate the VHM for the claim frequency.

Solution:

$$
\begin{aligned}
& E[N]=(0.6)(0.2)+(0.3)(0.5)+(0.1)(0.6)=0.33 \\
& E\left[N^{2}\right]=(0.6)(0.2)^{2}+(0.3)(0.5)^{2}+(0.1)(0.6)^{2}=0.135 \\
& V H M=E\left[N^{2}\right]-(E[N])^{2}=0.135-(0.33)^{2}=0.0261
\end{aligned}
$$

c. (3 points) A risk is chosen at random and observed for three years. During the three years, the insured has 2 claims. Use Buhlmann Credibility to estimate the expected claim frequency for this insured for the fourth year.

Solution:

$Z=\frac{N}{N+K}=>K=\frac{E P V}{V H M}=\frac{0.195}{0.0261}=7.47126=\Rightarrow Z=\frac{3}{3+7.47126}=0.28650$
$N=3$ because we observed 3 years.

Expected Frequency in 4th year $=(Z)($ observed frequency $)+(1-Z)($ A Priori Expectation $)$
$=(0.28650)\left(\frac{2}{3}\right)+(1-0.28650)(0.33)=0.42646$
d. (2 points) Calculate the EPV for the claim severity.

Solution:

$$
\begin{aligned}
& E[X \mid 1]=(0.9)(100)+(0.1)(500)=140 \\
& E\left[X^{2} \mid 1\right]=(0.9)(100)^{2}+(0.1)(500)^{2}=34,000 \\
& \operatorname{Var}[X \mid 1]=34,000-(140)^{2}=14,400 \\
& E[X \mid 2]=(0.8)(200)+(0.2)(800)=320 \\
& E\left[X^{2} \mid 2\right]=(0.8)(200)^{2}+(0.2)(800)^{2}=160,000 \\
& \operatorname{Var}[X \mid 2]=160,000-(320)^{2}=57,600 \\
& E[X \mid 3]=(0.7)(300)+(0.3)(1000)=510 \\
& E\left[X^{2} \mid 3\right]=(0.7)(300)^{2}+(0.3)(1000)^{2}=363,000 \\
& \operatorname{Var}[X \mid 3]=363,000-(510)^{2}=102,900
\end{aligned}
$$

$\operatorname{Pr}($ Type 1 and Claim $)=(0.6)(0.2)=0.12$
$\operatorname{Pr}($ Type 2 and Claim $)=(0.3)(0.5)=0.15$
$\operatorname{Pr}($ Type 3 and Claim $)=(0.1)(0.6)=0.06$
Total Prob $=0.12+0.15+0.06=0.33$
$E P V=\left(\frac{0.12}{0.33}\right)(14,400)+\left(\frac{0.15}{0.33}\right)(57,600)+\left(\frac{0.06}{0.33}\right)(102,900)=50,127.27$
e. (2 points) Calculate the VHM for the claim severity.

Solution:

$$
\begin{aligned}
& E[\text { Mean }]=\left(\frac{0.12}{0.33}\right)(140)+\left(\frac{0.15}{0.33}\right)(320)+\left(\frac{0.06}{0.33}\right)(510)=289.09 \\
& E\left[\text { Mean }^{2}\right]=\left(\frac{0.12}{0.33}\right)(140)^{2}+\left(\frac{0.15}{0.33}\right)(320)^{2}+\left(\frac{0.06}{0.33}\right)(510)^{2}=100,963.64
\end{aligned}
$$

$$
V H M=100,963.64-(289.09)^{2}=17,390.61
$$

f. (5 points)A risk is chosen at random and observed for three years. During the three years, the insured has 2 claims for a total of 1000 . Use Buhlmann Credibility to estimate the expected claim severity for this insured for the fourth year.

Solution:

$$
Z=\frac{N}{N+K}=\Rightarrow K=\frac{E P V}{V H M}=\frac{50,127.27}{17,390.61}=2.8824 \Rightarrow=>Z=\frac{2}{2+2.8824}=0.40963
$$

$N=2$ because we observed 2 claims.

Expected Frequency in 4th year $=(Z)$ (observed severity) $+(1-Z)$ (A Priori Expectation)

$$
=(0.40963)(500)+(1-0.40963)(289.09)=375.49
$$

g. (2 points) Calculate the EPV for the pure premium.

Solution:

$$
\begin{aligned}
& E[P P \mid 1]=E[N \mid 1] E[X \mid 1]=(0.2)(140)=28 \\
& \operatorname{Var}[P P \mid 1]=E[N \mid 1] \operatorname{Var}[X \mid 1]+(E[X \mid 1])^{2} \operatorname{Var}[N \mid 1]=(0.2)(14,400)+(140)^{2}(0.16)=6016 \\
& E[P P \mid 2]=E[N \mid 2] E[X \mid 2]=(0.5)(320)=160 \\
& \operatorname{Var}[P P \mid 2]=E[N \mid 2] \operatorname{Var}[X \mid 2]+(E[X \mid 2])^{2} \operatorname{Var}[N \mid 2]=(0.5)(57,600)+(320)^{2}(0.25)=54,400 \\
& E[P P \mid 3]=E[N \mid 3] E[X \mid 3]=(0.6)(510)=306 \\
& \operatorname{Var}[P P \mid 3]=E[N \mid 3] \operatorname{Var}[X \mid 3]+(E[X \mid 3])^{2} \operatorname{Var}[N \mid 3]=(0.6)(102,900)+(510)^{2}(0.24)=124,164 \\
& E P V=(0.6)(6016)+(0.3)(54,400)+(0.1)(124,164)=32,346
\end{aligned}
$$

h. (1 point) Calculate the VHM for the pure premium.

Solution:

$$
\begin{aligned}
& E[P P]=(0.6)(28)+(0.3)(160)+(0.1)(306)=95.4 \\
& E\left[P P^{2}\right]=(0.6)(28)^{2}+(0.3)(160)^{2}+(0.1)(306)^{2}=17,514 \\
& V H M=17,514-(95.4)^{2}=8412.84
\end{aligned}
$$

i. (3 points) A risk is chosen at random and observed for three years. During the three years, the insured has 2 claims for a total loss of 1000 . Use Buhlmann Credibility to estimate the expected pure premium for this insured for the fourth year.

Solution:

$Z=\frac{N}{N+K}==>K=\frac{E P V}{V H M}=\frac{32,346}{8412.84}=3.8448=\Rightarrow Z=\frac{3}{3+3.8448}=0.4383$
$N=3$ because we observed 3 years.

Expected Pure Premium in 4th year $=(Z)$ (observed severity) $+(1-Z)$ (A Priori Expectation)
$=(0.4383)\left(\frac{1000}{3}\right)+(1-0.4383)(95.4)=199.69$

