STAT 479 Spring 2022 Quiz 4 March 8, 2022

1. You are given the following claim amounts:

8 12 24 30

Your hypotheses are:

 H_0 : The data is from an exponential distribution with a mean of 20.

H₁: The data is not from an exponential distribution with a mean of 20.

a. Calculate the Kolmogorov-Smirnov test Statistic to test this hypothesis.

x	$F_5(x^-)$	$F_5(x)$	$F^*(x)$	K-S Value
8	0	0.25	$1 - e^{-8/20} = 0.32968$	0.32968
12	0.25	0.50	$1 - e^{-12/20} = 0.45119$	0.20119
24	0.50	0.75	$1 - e^{-24/20} = 0.69881$	0.19881
30	0.75	1.00	$1 - e^{-30/20} = 0.77687$	0.22313
Max Value				0.32968

Solution:

b. State the critical value at a 95% confidence level.

Solution:

Critical Value =
$$\frac{1.36}{\sqrt{n}} = \frac{1.36}{\sqrt{4}} = 0.68$$

c. State your conclusion from this Hypothesis Test.

Solution:

Since 0.32968<0.68, we fail to reject the Null Hypothesis

- 2. Del wants to test the following hypothesis using the Chi Square Test with a 99% significance level:
 - H_0 : The data is from a Poisson distribution.
 - H_1 : The data is not from a Poisson distribution.

Del uses the data in the following table to complete the Chi Square Test:

Number of Accidents in 2021	Number of Policies
0	2400
1	3400
2	2400
3+	1800

(a) Calculate the Chi Square test statistic.

Solution:

This problem is flawed as we should estimate λ using MLE we cannot do. The best we can do is approximate the MLE for λ as

$$\overline{X} = \frac{(0)(2400) + (1)(3400) + (2)(2400) + (3)(1800)}{10,000} = 1.36$$

	O_{j}	E_{j}	$\frac{\left(E_{j}-O_{j}\right)^{2}}{E_{j}}$
0	2400	$10,000 p_0 = (10,000)e^{-1.36} = 2566.61$	10.82
1	3400	$10,000 p_1 = (10,000)(1.36)e^{-1.36} = 3490.6$	2.35
2	2400	$10,000 p_2 = (10,000) \frac{(1.36)^2 e^{-1.36}}{2} = 2373.6$	0.29
3+	1800	$10,000(1 - p_0 - p_1 - p_2 = 1569.2$	33.94
Total			47.4

(b) Calculate the critical value for this test.

Solution:

Degrees of Freedom= 4 - 1 – Estimated Parameters = 4 - 1 - 1 = 2Critical Value = 9.21

(c) State Del's conclusion.

Solution:

Since 47.4 > 9.21, we reject the null hypothesis