STAT 479

Test 2
Fall 2022
March 24, 2022

1. For Dental Insurance with no deductible, number of losses (N^{L}) is distributed as a Negative Binomial with $\gamma=2$ and $\beta=1$. The amount of the loss is distributed as an exponential distribution with $\theta=200$.

Deuschle Dental offers identical Dental Insurance except for an ordinary deductible of D.

Let N^{P} be the random variable representing the number of payments under the Dental Insurance offered by Deuschle. The $\operatorname{Var}\left[N^{P}\right]=2.625$.

Calculate D.
Solution:
$N^{P} \sim$ Negative Binommial with $\gamma=2$ and $\beta=v(1)$
$v=1-F(D)$
$\operatorname{Var}\left[N^{P}\right]=\gamma(\beta)(1+\beta)=(2)(v(1))(1+v(1))=2.625$
$2 v+2 v^{2}=2.625$
$2 v^{2}+2 v-2.625=0=>v=\frac{-2 \pm \sqrt{(2)^{2}-(4)(2)(-2.625)}}{2(2)}=0.75$
$1-F(D)=0.75=\Rightarrow e^{-D / 200}=0.75=\Rightarrow D=200(-\ln (0.75))=57.54$
2. In an experiment, there are three die in bowl. There are two four sided die with numbers 1, 2, 3 , and 4 on the faces of each four sided die. There is also one six sided die with numbers $1,2,3$, 4,5 , and 6 on the faces of the six sided die.

Let X be the number rolled for a die. You are given:

- For the 4 sided die $--E[X]=2.5$ and $\operatorname{Var}[X]=\frac{5}{4}$
- For the 6 sided die $--E[X]=3.5$ and $\operatorname{Var}[X]=\frac{35}{12}$

Jackson randomly selects a die and rolls it. He records the value on the face of the die.
a. Calculate the Expected Process Variance.

Solution:

$$
E P V=\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)+\left(\frac{1}{3}\right)\left(\frac{35}{12}\right)=1.80556
$$

b. Calculate the Variance of the Hypothetical Mean.

Solution:

$$
\begin{aligned}
& E(X)=\left(\frac{2}{3}\right)(2.5)+\left(\frac{1}{3}\right)(3.5)=2.83333 \\
& V H M=\left(\frac{2}{3}\right)(2.5-2.83333)^{2}+\left(\frac{1}{3}\right)(3.5-2.83333)^{2}=0.22222
\end{aligned}
$$

c. If you are using Buhlmann Credibility, calculate Z based on this one roll.

Solution:

$$
\begin{aligned}
& Z=\frac{N}{N+K} \\
& K=\frac{E P V}{V H M}=\frac{1.08556}{0.22222}=8.125 \\
& N=\frac{1}{1+8.125}=0.1096
\end{aligned}
$$

3. The frequency of claims is assumed to follow a Poisson distribution.
a. Under Classical Credibility, calculate the Full Credibility Criterion for Frequency such that the chance of being within 3% of the true mean in 88.12%.

Solution:

$$
\begin{aligned}
& \Phi(y)=\frac{1+P}{2}=\frac{1+0.8812}{2}=0.9406 \Rightarrow y=1.56 \\
& n_{0}=\left(\frac{1.56}{0.03}\right)^{2}=2704
\end{aligned}
$$

The severity of the claims is assumed to be Gamma with $\alpha=4$ and $\theta=1000$.
b. Under Classical Credibility, calculate the Full Credibility Criterion for Severity such that the chance of being within 3% of the true mean in 88.12%.

Solution:

$$
N=n_{0}\left(\frac{\sigma}{\mu}\right)^{2}=(2704)\left(\frac{(1000)^{2}(4)}{[(4)(1000)]^{2}}\right)=676
$$

4. The following sample is assumed to be drawn from a uniform distribution over the range of 0 to U :

$$
10002000545
$$

Calculate the Maximum Likelihood Estimator for U.

Solution:

$\hat{U}=\operatorname{Max}\{1000,2000,525\}=2000$
5. The claims for a hospital indemnity policy with an upper limit of 1000 is assumed to be from an exponential distribution with a parameter of θ. You have the following sample of claim payments:

$$
10020040010001000
$$

Calculate the Maximum Likelihood Estimator for θ.

Solution:

$\hat{\theta}=\frac{\text { Sum of all values }}{\text { Number of uncensored values }}=\frac{100+200+400+1000+1000}{3}=900$
6. Ding Dental Company sells a dental insurance policy with an upper limit per claim of 1000. There is no deductible and no coinsurance.

The first two claims received resulted in payments of:
100 and 1000
Ding believes that the total claim amount is distributed as a Weibull distribution with parameters $\tau=2$ and θ.

Ding uses the maximum likelihood estimate to estimate θ.
a. Show that $L(\theta)=\frac{200 e^{-\frac{1,010,000}{\theta^{2}}}}{\theta^{2}}$.

Solution:

$$
\begin{aligned}
& L(\theta)=f(100)(1-F(1000))=\frac{2\left(\frac{100}{\theta}\right)^{2} e^{-\left(\frac{100}{\theta}\right)^{2}}}{100} \cdot e^{-\left(\frac{1000}{\theta}\right)^{2}} \\
& 2\left(\frac{200}{\theta^{2}}\right) e^{-\left(\frac{100}{\theta}\right)^{2}-\left(\frac{1000}{\theta}\right)^{2}}= \\
& \frac{200 e^{-\frac{1,010,000}{\theta^{2}}}}{\theta^{2}}
\end{aligned}
$$

b. Calculate the Maximum Likelihood Estimate of θ.

Solution:

$$
\begin{aligned}
& l(\theta)=\ln (200)-1,010,000 \theta^{-2}-2 \ln (\theta) \\
& l^{\prime}(\theta)=0-(-2)(1,010,000) \theta^{-3}-2 / \theta=0 \\
& 2,020,000-2 \theta^{2}=0=>\hat{\theta}=\sqrt{\frac{2,020,000}{2}}=1004.99
\end{aligned}
$$

7. The number of claims under an automobile policy is assumed to be distributed as a Poisson with a parameter of λ. You have the following information about a sample of claims from 10,000 drivers:

Number of Claims	Number of Drivers
0	5000
1	3000
2	1800
3	200

Calculate the 90% Linear Confidence Interval of the Maximum Likelihood Estimator of λ.

Solution:

$\hat{\lambda}=\bar{X}=\frac{(0)(5000)+(1)(3000)+(2)(1800)+(3)(200)}{10,000}=0.72$
$\operatorname{Var}(\hat{\lambda})=\frac{0.72}{10,000}=0.000072$
$C I=0.72 \pm(1.0645)(0.000072)^{0.5}=(0.70604 ; 0.73396)$
8. Brett wants to test the following hypothesis using the Chi Square Test with a 97.5% significance level:
H_{0} : The data is from a Poisson distribution.
H_{1} : The data is not from a Poisson distribution.

Brett uses the data in the following table to complete the Chi Square Test:

Number of Accidents in 2021	Number of Policies
0	1600
1	3000
2	2600
$3+$	2800

Using this data, the Maximum Likelihood Estimator of λ is 1.8 .
(a) Calculate the Chi Square test statistic.

Solution:

j	Observed	Expected	$\chi^{2}=\frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}$
$\mathbf{0}$	$\mathbf{1 6 0 0}$	$(10,000) p_{0}=(10,000)\left(\frac{e^{-1.8}(1.8)^{0}}{0!}\right)=1652.99$	1.6986
$\mathbf{1}$	$\mathbf{3 0 0 0}$	$(10,000) p_{0}=(10,000)\left(\frac{e^{-1.8}(1.8)^{1}}{1!}\right)=2975.38$	$\mathbf{0 . 2 0 3 7}$
$\mathbf{2}$	$\mathbf{2 6 0 0}$	$(10,000) p_{0}=(10,000)\left(\frac{e^{-1.8}(1.8)^{2}}{2!}\right)=2677.65$	$\mathbf{2 . 2 6 2 8}$
$\mathbf{3}$	$\mathbf{2 8 0 0}$	$10,000-1652.99-2975.38-2677.64$ $=2693.79$	$\mathbf{4 . 1 8 7 7}$
Total			$\mathbf{8 . 3 5 2 8}$

(b) Calculate the critical value for this test.

Solution:
$d f=4-1-1=2 \Longrightarrow$ Critical Value $=7.378$
(c) State Brett's conclusion.

Solution:
We reject H_{0} since $\chi^{2}>7.378$
9. You are given the following claim amounts:
$\begin{array}{lllll}10 & 21 & 35 & 45 & 55\end{array}$

Your hypotheses are:
H_{0} : The data is from an exponential distribution with a mean of 40 .
H_{1} : The data is not from an exponential distribution with a mean of 40 .

Your boss completed the following work before heading to a meeting. He asked you to complete the work and answer the following questions.
a. Complete this table. (Show your work.)

x	$F_{5}\left(x^{-}\right)$	$F_{5}(x)$	$F^{*}(x)$	K-S Value
10	0	0.2	0.221	0.221
21	0.2	0.4	0.408	0.208
35	0.4	0.6	0.583	0.183
45	0.6	0.8	$1-e^{-\left[\frac{45}{40}\right]}=0.67535$	$0.8-0.67535$ $=0.12465$
55	0.8	1	$1-e^{-\left[\frac{55}{40}\right]}=0.74716$	$1-0.74716$ $=0.25284$

b. Calculate the Kolmogorov-Smirnov test Statistic to test this hypothesis.

Solution:

$\operatorname{Max}\{K-S$ Value $\}=0.25284$
c. State the critical value at a 95% confidence level.

Solution:
CriticalValue $=\frac{1.36}{\sqrt{5}}=0.6082$
d. State your conclusion from this Hypothesis Test.

Solution:

We fail to reject H_{0} since $K S<0.6082$.
10. You are given the following sample of 10 claim amounts:
$110,120,120,125,130,150,165,175,190,300$
Determine $F(125)$ for a smoothed empirical distribution.

Solution:

$$
F(125)=\frac{i}{n+1}=\frac{4}{10+1}=\frac{4}{11}
$$

11. The random variable X is distributed as a Pareto distribution with $\alpha=5$ and $\theta=800$.

You want to discretize this distribution using a span of 200.
a. Calculate the probability associated with the discrete value of 400 using the method of mass dispersal.

Solution:

Answer $=F(500)-F(300)$
$=\left(1-\left(\frac{800}{800+500}\right)^{5}\right)-\left(1-\left(\frac{800}{800+300}\right)^{5}\right)=0.1152$
b. Calculate the probability associated with the discrete value of 400 using the method of moment matching where you match the mean.

Solution:

$$
\begin{aligned}
& \text { Answer }=\frac{2 E[X \wedge 400]-E[X \wedge 200]-E[X \wedge 600]}{200} \\
& =\frac{2\left(\frac{800}{4}\left(1-\left(\frac{800}{800+400}\right)^{4}\right)\right)-\left(\frac{800}{4}\left(1-\left(\frac{800}{800+200}\right)^{4}\right)\right)-\left(\frac{800}{4}\left(1-\left(\frac{800}{800+600}\right)^{4}\right)\right)}{200} \\
& =0.12116
\end{aligned}
$$

12. The following sample of four claims were received during 2021:

10005000 14,000 100,000
These losses are assumed to be distributed as a normal distribution with parameters of μ and σ. Determine the maximum likelihood estimates of μ and σ.

Solution:
$\hat{\mu}=\bar{X}=\frac{1000+500+14,000+100,000}{4}=30,000$
$\hat{\sigma}=\sqrt{\operatorname{Var}(X)}$
$=\sqrt{\frac{(1000-30,000)^{2}+(5000-30,000)^{2}+(14,000-30,000)^{2}+(100,000-30,000)^{2}}{4}}$
$=40,687.84$

