Exercise 1

You are completing a mortality study which begins on $1 / 1 / 2012$ and ends on $12 / 31 / 2018$. You will give calculate the seriatim exposure exactly as is done in Section 4.3.1 of Experience Studies Calculations. For your calculations, we want calculate the exposure for ages 50,51 , and 52.

You are given the following ten lives:

- Life A was born on $3 / 28 / 1961$, is alive on $1 / 1 / 2012$ and is still alive on $12 / 31 / 2018$
- Life B was born on $11 / 29 / 1960$. She is alive on $1 / 1 / 2012$ but dies on $2 / 13 / 2013$
- Life C was born on $7 / 4 / 1962$, is alive on $1 / 1 / 2012$ but withdraws from the study on $8 / 15 / 2015$
- Life D was born on $5 / 30 / 1961$, is alive on $1 / 1 / 2012$ but withdraws on $4 / 4 / 2014$
- Life E was born on 9/15/1961 and died on 12/18/2011
- Life F was born on $10 / 25 / 1961$, is alive on $1 / 1 / 2012$ but dies on $1 / 2 / 2012$
- Life G is born on $5 / 31 / 1967$, is alive on $1 / 1 / 2012$ and is still alive at $12 / 31 / 2018$
- Life H is born on $6 / 5 / 1967$, is alive on $1 / 1 / 2012$ but dies on $10 / 15 / 2018$
- Life I is born on $2 / 14 / 1966$, is alive on $1 / 1 / 2012$ but dies on $1 / 15 / 2019$
- Life J is born on $4 / 1 / 1966$, is alive on $1 / 1 / 2012$ but dies on $3 / 20 / 2016$

Complete the following table showing the number of days of exposure that each live will contribute to this study for ages 50,51 , and 52 :

	Age 50	Age 51	Age 52
Life A			
Life B			
Life C			
Life D			
Life E			
Life F			
Life G			
Life J			

Complete the following table showing the number of years of exposure that each live will contribute to this study for ages 50, 51, and 52:

	Age 50	Age 51	Age 52
Life A			
Life B			
Life C			
Life D			
Life J			
Life E I			
Life G			

Complete this table:

Age	E_{x}	d_{x}	q_{x}	p_{x}
50				
51				
52				

Explain why the results of our table are volatile.

The following table indicates the amount of insurance that each life had.

Life	Amount ($\mathbf{B}_{\mathbf{x}}$)	Life	Amount ($\mathbf{B}_{\mathbf{x}}$)
A	10,000	F	5,000
B	25,000	G	13,000
C	15,000	H	20,000
D	12,000	I	22,000
E	7,000	J	18,000

Calculate the following table using Individual Amount Weights as done in Section 4.4.1.

Age	E_{x}	d_{x}	q_{x}	p_{x}
50				
51				
52				

