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Introduction

This note is provided as an accompaniment to ‘Actuarial Mathematics for Life Contingent

Risks’ by Dickson, Hardy and Waters (2009, Cambridge University Press).

Actuarial Mathematics for Life Contingent Risks (AMLCR) includes almost all of the material

required to meet the learning objectives developed by the SOA for exam MLC for implemen-

tation in 2012. In this note we aim to provide the additional material required to meet the

learning objectives in full. This note is designed to be read in conjunction with AMLCR, and

we reference section and equation numbers from that text. We expect that this material will

be integrated with the text formally in a second edition.

There are four major topics in this note. Section 1 covers additional material relating to

mortality and survival models. This section should be read along with Chapter 3 of AMLCR.

The second topic is policy values and reserves. In Section 2 of this note, we discuss in detail

some issues concerning reserving that are covered more briefly in AMLCR. This material can

be read after Chapter 7 of AMLCR.

The third topic is Multiple Decrement Tables, discussed in Section 3 of this note. This material

relates to Chapter 8, specifically Section 8.8, of AMLCR. It also pertains to the Service Table

used in Chapter 9.

The final topic is Universal Life insurance. Basic Universal Life should be analyzed using the

methods of Chapter 11 of AMLCR, as it is a variation of a traditional with profits contract, but

there are also important similarities with unit-linked contracts, which are covered in Chapter

12.

The survival models referred to throughout this note as the Standard Ultimate Survival Model

(SUSM) and the Standard Select Survival Model (SSSM) are detailed in Sections 4.3 and 6.3

respectively, of AMLCR.
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1 Survival models and assumptions

1.1 The Balducci fractional age assumption

This section is related to the fractional age assumption material in AMLCR, Section 3.2.

We use fractional age assumptions to calculate probabilities that apply to non-integer ages

and/or durations, when we only have information about integer ages from our mortality table.

Making an assumption about spx, for 0 ≤ s < 1, and for integer x, allows us to use the mortality

table to calculate survival and mortality probabilities for non-integer ages and durations, which

will usually be close to the true, underlying probabilities. The two most useful fractional age

assumptions are Uniform Distribution of Deaths (UDD) and constant force of mortality (CFM),

and these are described fully in Section 3.2 of AMLCR.

A third fractional age assumption is the Balducci assumption, which is also known as harmonic

interpolation. For integer x, and for 0 ≤ s ≤ 1, we use an approximation based on linear

interpolation of the reciprocal survival probabilities – that is

1

spx
= (1− s) 1

0px
+ s

1

px
= 1− s+

s

px
= 1 + s

(
1

px
− 1

)
.

Inverting this to get a fractional age equation for spx gives

spx =
px

px + s qx
.

The Balducci assumption had some historical value, when actuaries required easy computation

of sp
−1
x , but in a computer age this is no longer an important consideration. Additionally,

the underlying model implies a piecewise decreasing model for the force of mortality (see the

exercise below), and thus tends to give a worse estimate of the true probabilities than the UDD

or CFM assumptions.

Example SN1.1 Given that p40 = 0.999473, calculate 0.4q40.2 under the Balducci assumption.

Solution to Example SN1.1 As in Solution 3.2 in AMLCR, we have 0.4q40.2 = 1 − 0.4p40.2

and

0.4p40.2 =
0.6p40

0.2p40

=
p40 + 0.2q40

p40 + 0.6q40

= 2.108× 10−4.

Note that this solution is the same as the answer using the UDD or CFM assumptions (see

Examples 3.2 and 3.6 in AMLCR). It is common for all three assumptions to give similar
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answers at younger ages, when mortality is very low. At older ages, the differences between the

three methods will be more apparent.

Exercise Show that the force of mortality implied by the Balducci assumption, µx+s, is a

decreasing function of s for integer x, and for 0 ≤ s < 1.

1.2 Some comments on heterogeneity in mortality

This section is related to the discussion of selection and population mortality in Chapter 3 of

AMLCR, in particular to Sections 3.4 and 3.5, where we noted that there can be considerable

variability in the mortality experience of different populations and population subgroups.

There is also considerable variability in the mortality experience of insurance company cus-

tomers and pension plan members. Of course, male and female mortality differ significantly,

in shape and level. Actuaries will generally use separate survival models for men and women

where this does not breach discrimination laws. Smoker and non-smoker mortality differences

are very important in whole life and term insurance; smoker mortality is substantially higher

at all ages for both sexes, and separate smoker / non-smoker mortality tables are in common

use.

In addition, insurers will generally use product-specific mortality tables for different types of

contracts. Individuals who purchase immediate or deferred annuities may have different mor-

tality than those purchasing term insurance. Insurance is sometimes purchased under group

contracts, for example by an employer to provide death-in-service insurance for employees.

The mortality experience from these contracts will generally be different to the experience of

policyholders holding individual contracts. The mortality experience of pension plan members

may differ from the experience of lives who purchase individual pension policies from an insur-

ance company. Interestingly, the differences in mortality experience between these groups will

depend significantly on country. Studies of mortality have shown, though, that the following

principles apply quite generally.

� Wealthier lives experience lighter mortality overall than less wealthy lives.

� There will be some impact on the mortality experience from self-selection; an individual

will only purchase an annuity if he or she is confident of living long enough to benefit.

An individual who has some reason to anticipate heavier mortality is more likely to

5

Copyright 2011 D.C.M. Dickson, M.R.Hardy, H.R. Waters



purchase term insurance. While underwriting can identify some selective factors, there

may be other information that cannot be gleaned from the underwriting process (at

least not without excessive cost). So those buying term insurance might be expected to

have slightly heavier mortality than those buying whole life insurance, and those buying

annuities might be expected to have lighter mortality.

� The more rigorous the underwriting, the lighter the resulting mortality experience. For

group insurance, there will be minimal underwriting. Each person hired by the employer

will be covered by the insurance policy almost immediately; the insurer does not get to

accept or reject the additional employee, and will rarely be given information sufficient

for underwriting decisions. However, the employee must be healthy enough to be hired,

which gives some selection information.

All of these factors may be confounded by tax or legislative systems that encourage or require

certain types of contracts. In the UK, it is very common for retirement savings proceeds to

be converted to life annuities. In other countries, including the US, this is much less common.

Consequently, the type of person who buys an annuity in the US might be quite a different

(and more self-select) customer than the typical individual buying an annuity in the UK.

1.3 Mortality trends

A further challenge in developing and using survival models is that survival probabilities are not

constant over time. Commonly, mortality experience gets lighter over time. In most countries,

for the period of reliable records, each generation, on average, lives longer than the previous

generation. This can be explained by advances in health care and by improved standards of

living. Of course, there are exceptions, such as mortality shocks from war or from disease, or

declining life expectancy in countries where access to health care worsens, often because of civil

upheaval. The changes in mortality over time are sometimes separated into three components:

trend, shock and idiosyncratic. The trend describes the gradual reduction in mortality rates

over time. The shock describes a short term mortality jump from war or pandemic disease.

The idiosyncratic risk describes year to year random variation that does not come from trend

or shock, though it is often difficult to distinguish these changes.

While the shock and idiosyncratic risks are inherently unpredictable, we can often identify

trends in mortality by examining mortality patterns over a number of years. We can then

allow for mortality improvement by using a survival model which depends on both age and
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calendar year. A common model for projecting mortality is to assume that mortality rates at

each age are decreasing annually by a constant factor, which depends on the age and sex of

the individual. That is, suppose q(x, Y ) denotes the mortality rate for a life aged x in year Y ,

so that the q(x, 0) denotes the mortality rate for a baseline year, Y = 0. Then, the estimated

one-year mortality probability for a life age x at time Y = s is

q(x, s) = q(x, 0)Rs
x where 0 < Rx ≤ 1.

The Rx terms are called Reduction Factors, and typical values are in the range 0.95 to 1.0 ,

where the higher values (implying less reduction) tend to apply at older ages. Using Rx = 1.0

for the oldest ages reflects the fact that, although many people are living longer than previous

generations, there is little or no increase in the maximum age attained; the change is that a

greater proportion of lives survive to older ages. In practice, the reduction factors are applied

for integer values of s.

Given a baseline survival model, with mortality rates q(x, 0) = qx, say, and a set of age-based

reduction factors, Rx, we can calculate the survival probabilities from the baseline year, tp(x, 0),

say, as

tp(x, 0) = p(x, 0) p(x+ 1, 1) . . . p(x+ t− 1, t− 1)

= (1− qx) (1− qx+1Rx+1)
(
1− qx+2R

2
x+2

)
...
(
1− qx+t−1R

t−1
x+t−1

)
.

Some survival models developed for actuarial applications implicitly contain some allowance

for mortality improvement. When selecting a survival model to use for valuation and risk

management, it is important to verify the projection assumptions.

The use of reduction factors allows for predictable improvements in life expectancy. However, if

the improvements are underestimated, then mortality experience will be lighter than expected,

leading to losses on annuity and pension contracts. This risk, called longevity risk, is of great

recent interest, as mortality rates have declined in many countries at a much faster rate than

anticipated. As a result, there has been increased interest in stochastic mortality models,

where the force of mortality in future years follows a stochastic process which incorporates

both predictable and random changes in longevity, as well as pandemic-type shock effects. See,

for example, Lee and Carter (1992), Li et al (2010) or Cairns et al (2009) for more detailed

information.

References:

Cairns A.J.G., D. Blake, K. Dowd, G.D. Coughlan, D. Epstein, A. Ong and I. Balevich (2009).
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A quantitative comparison of stochastic mortality models using data from England and Wales

and the United States. North American Actuarial Journal 13(1) 1-34.

Lee, R. D., and L. R. Carter (1992) Modeling and forecasting U.S. mortality. Journal of the

American Statistical Association 87, 659 - 675.

Li, S.H., M.R. Hardy and K. S. Tan (2010) Developing mortality improvement formulae: the

Canadian insured lives case study. North American Actuarial Journal 14(4), 381-399.
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2 Policy values and reserves

2.1 When are retrospective policy values useful?

In Section 7.7 of AMLCR we introduce the concept of the retrospective policy value, which

measures, under certain assumptions, the expected accumulated premium less the cost of in-

surance, per surviving policyholder, while a policy is in force. We explain why the retrospective

policy value is not given much emphasis in the text, the main reason being that the policy value

should take into consideration the most up to date assumptions for future interest and mortality

rates, and it is unlikely that these will be equal to the original assumptions. The asset share is

a measure of the accumulated contribution of each surviving policy to the insurer’s funds. The

prospective policy value measures the funds required, on average, to meet future obligations.

The retrospective policy value, which is a theoretical asset share based on a different set of

assumptions (the asset share by definition uses experience, not assumptions), does not appear

necessary.

However, there is one application where the retrospective policy value is sometimes useful, and

that is where the insurer uses the net premium policy value for determination of the appropriate

capital requirement for a portfolio. Recall (from Definition 7.2 in AMLCR) that under the net

premium policy value calculation, the premium used is always calculated using the valuation

basis (regardless of the true or original premium). If, in addition, the premium is calculated

using the equivalence principle, then the retrospective and prospective net premium policy

values will be the same. This can be useful if the premium or benefit structure is complicated,

so that it may be simpler to take the accumulated value of past premiums less accumulated

value of benefits, per surviving policyholder (the retrospective policy value), than to use the

prospective policy value. It is worth noting that many policies in the US are still valued using

net premium policy values, often using a retrospective formula. In this section we discuss

the retrospective policy value in more detail, in the context of the net premium approach to

valuation.

2.2 Defining the retrospective net premium policy value

Consider an insurance sold to (x) at time t = 0 with term n (which may be ∞ for a whole life

contract). For a policy in force at age x + t, let Lt denote the present value at time t of all

the future benefits less net premiums, under the terms of the contract. The prospective policy
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value, tV
P , say, was defined for policies in force at t < n as

tV
P = E[Lt].

If (x) does not survive to time t then Lt is undefined.

The value at issue of all future benefits less premiums payable from time t < n onwards is the

random variable

I(Tx > t) vt Lt

where I() is the indicator function.

We define, further, L0,t, t ≤ n:

L0,t = Present value at issue of future benefits payable up to time t

−Present value at issue, of future net premiums payable up to t

If premiums and benefits are paid at discrete intervals, and t is a premium or benefit payment

date, then the convention is that L0,t would include benefits payable at time t, but not premiums.

At issue (time 0) the future net loss random variable L0 comprises the value of benefits less

premiums up to time t, L0,t, plus the value of benefits less premiums payable after time t, that

is:

L0 = L0,t + I(Tx > t)vtLt

We now define the retrospective net premium policy value as

tV
R =
−E[L0,t](1 + i)t

tpx
=
−E[L0,t]

tEx

and this formula corresponds to the calculation in Section 7.3.1 for the policy from Example 7.1.

The term −E[L0,t](1 + i)t is the expected value of premiums less benefits in the first t years,

accumulated to time t. Dividing by tpx expresses the expected accumulation per expected

surviving policyholder.

Using this definition it is simple to see that under the assumptions

(1) the premium is calculated using the equivalence principle,

(2) the same basis is used for prospective policy values, retrospective policy values and the

equivalence principle premium,
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the retrospective policy value at time t must equal the prospective policy value tV
P , say. We

prove this by first recalling that

E[L0] = E
[
L0,t + I(Tx > t) vt Lt

]
= 0 by the equivalence principle

⇒ −E[L0,t] = E
[
I(Tx > t) vt Lt

]
⇒ −E[L0,t] = tpx v

t
tV

P

⇒ tV
R = tV

P .

The same result could easily be derived for gross premium policy values, but the assumptions

listed are far less likely to hold when expenses are taken into consideration.

Example SN2.1 An insurer issues a whole life insurance policy to a life aged 40. The death

benefit in the first five years of the contract is $5 000. In subsequent years, the death benefit

is $100 000. The death benefit is payable at the end of the year of death. Premiums are paid

annually for a maximum of 20 years. Premiums are level for the first five years, then increase

by 50%.

(a) Write down the equation of value for calculating the net premium, using standard actu-

arial functions.

(b) Write down equations for the net premium policy value at time t = 4 using (i) the

retrospective policy value approach and (ii) the prospective policy value approach.

(c) Write down equations for the net premium policy value at time t = 20 using (i) the

retrospective policy value approach and (ii) the prospective policy value approach.

Solution to Example SN2.1

For convenience, we work in $000s:

(a) The equivalence principle premium is P for the first 5 years, and 1.5 P thereafter, where,

P =
5A 1

40:5
+ 100 5E40A45

ä40:5 + 1.5 5E40 ä45:15

(1)
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(b) The retrospective and prospective policy value equations at time t = 4 are

4V
R =

P ä40:4 − 5A 1
40:4

4E40

, (2)

4V
P = 5A 1

44:1
+ 100 1E44A45 − P

(
ä44:1 + 1.5 1E44 ä45:15

)
. (3)

(c) The retrospective and prospective policy value equations at time t = 20 are

20V
R =

P
(
ä40:5 + 1.5 5E40 ä45:15

)
− 5A 1

40:5
− 100 5E40A45:15

20E40

, (4)

20V
P = 100A60. (5)

From these equations, we see that the retrospective policy value offers an efficient calculation

method at the start of the contract, when the premium and benefit changes are ahead, and the

prospective is more efficient at later durations, when the changes are past.

Example SN2.2 For Example SN2.1 above, show that the prospective and retrospective policy

values at time t = 4, given in equations (2) and (3), are equal under the standard assumptions

(premium and policy values all use the same basis, and the equivalence principle premium).

Solution to Example SN2.2

Note that, assuming all calculations use the same basis:

A 1
40:5

= A 1
40:4

+ 4E40A
1

44:1

ä40:5 = ä40:4 + 4E40 ä44:1

and

5E40 = 4E40 1E44.

Now we use these to re-write the equivalence principle premium equation (1),

P
(
ä40:5 + 1.5 5E40 ä45:15

)
= 5A 1

40:5
+ 100 5E40A45

⇒ P
(
ä40:4 + 4E40 ä44:1 + 1.5 4E40 1E44 ä45:15

)
= 5

(
A 1

40:4
+ 4E40A

1
44:1

)
+ 100 4E40 1E44A45.

Rearranging gives

P ä40:4 − 5A 1
40:4

= 4E40

(
5A 1

44:1
+ 100 1E44A45 − P

(
ä44:1 + 1.5 1E44 ä45:15

))
.

Dividing both sides by 4E40 gives 4V
R = 4V

P as required.
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2.3 Deferred Acquisition Expenses and Modified Premium Reserves

The policy value calculations described in AMLCR Chapter 7, and in the sections above, may

be used to determine the appropriate provision for the insurer to make to allow for the uncertain

future liabilities. These provisions are called reserves in insurance. The principles of reserve

calculation, such as whether to use a gross or net premium policy value, and how to determine

the appropriate basis, are established by insurance regulators. While most jurisdictions use a

gross premium policy value approach, as mentioned above, the net premium policy value is still

used, notably in the US.

In some circumstances, the reserve is not calculated directly as the net premium policy value,

but is modified, to approximate a gross premium policy value approach. In this section we will

motivate this approach by considering the impact of acquisition expenses on the policy value

calculations.

Let tV
n denote the net premium policy value for a contract which is still in force t years

after issue and let tV
g denote the gross premium policy value for the same contract, using the

equivalence principle and using the original premium interest and mortality basis. This point

is worth emphasizing as, in most jurisdictions, the basis would evolve over time to differ from

the premium basis. Then we have

tV
n = EPV future benefits− EPV future net premiums

tV
g = EPV future benefits + EPV future expenses− EPV future gross premiums

0V
n = 0V

g = 0.

So we have

tV
g = EPV future benefits + EPV future expenses

− (EPV future net premiums + EPV future expense loadings)

⇒ tV
g = tV

n + EPV future expenses− EPV future expense loadings

That is tV
g = tV

n + tV
e, say, where

tV
e = EPV future expenses− EPV future expense loadings

What is important about this relationship is that, generally, tV
e is negative, meaning that

the net premium policy value is greater than the gross premium policy value, assuming the
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same interest and mortality assumptions for both. This may appear counterintuitive – the

reserve which takes expenses into consideration is smaller than the reserve which does not –

but remember that the gross premium approach offsets the higher future outgo with higher

future premiums. If expenses were incurred as a level annual amount, and assuming premiums

are level and payable throughout the policy term, then the net premium and gross premium

policy values would be the same, as the extra expenses valued in the gross premium case would

be exactly offset by the extra premium. In practice though, expenses are not incurred as a flat

amount. The initial (or acquisition) expenses (commission, underwriting and administrative)

are large relative to the renewal and claims expenses. This results in negative values for tV
e,

in general.

Suppose the gross premium for a level premium contract is P g, and the net premium is P n.

The difference, P e, say, is the expense loading (or expense premium) for the contract. This is

the level annual amount paid by the policyholder to cover the policy expenses. If expenses are

incurred as a level sum at each premium date, then P e would equal those incurred expenses

(assuming premiums are paid throughout the policy term). If expenses are weighted to the

start of the contract, as is normally the case, then P e will be greater than the renewal expense

as it must fund both the renewal and initial expenses. We illustrate with an example.

Example SN2.3 An insurer issues a whole life insurance policy to a life aged 50. The sum

insured of $100 000 is payable at the end of the year of death. Level premiums are payable

annually in advance throughout the term of the contract. All premiums and policy values are

calculated using the SSSM, and an interest rate of 4% per year effective. Initial expenses are

50% of the gross premium plus $250. Renewal expenses are 3% of the gross premium plus $25

at each premium date after the first.

Calculate

(a) the expense loading, P e and

(b) 10V
e, 10V

n and 10V
g.

Solution to Example SN2.3

(a) The expense premium P e depends on the gross premium P g which we calculate first:

P g =
100 000A[50] + 25ä[50] + 225

0.97 ä[50] − 0.47
= 1435.89
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Now P e can be calculated by valuing the expected present value of future expenses, and

calculating the level premium to fund those expenses – that is

P e ä[50] = 25ä[50] + 225 + 0.03P gä[50] + 0.47P g.

Alternatively, we can calculate the net premium, P n = 100 000A[50]/ä[50] = 1321.31, and

use P e = P g − P n. Either method gives P e = 114.58.

Compare the expense premium with the incurred expenses. The annual renewal expenses,

payable at each premium date after the first, are $68.08. The rest of the expense loading,

$46.50 at each premium date, reimburses the acquisition expenses, which total $967.94

at inception. Thus, at any premium date after the first, the value of the future expenses

will be smaller than the value of the future expense loadings.

(b) The expense reserve at time t = 10, for a contract still in force, is

10V
e = 25ä60 + 0.03P gä60 − P eä60 = −46.50ä60 = −770.14.

The net premium policy value is

10V
n = 100 000A60 − P n ä60 = 14 416.12.

The gross premium policy value is

10V
g = 100 000A60 + 25ä60 − 0.97P g ä60 = 13 645.98.

We note that, as expected, the expense reserve is negative, and that

10V
g = 10V

n + 10V
e.

The negative expense reserve is referred to as the deferred acquisition cost, or DAC. The

use of the net premium reserve can be viewed as being overly conservative, as it does not

allow for the DAC reimbursement. An insurer should not be required to hold the full net

premium policy value as capital, when the true future liability value is smaller because of the

DAC. One solution would be to use gross premium reserves. But to do so would lose some of

the numerical advantage offered by the net premium approach, including simple formulas for

standard contracts, and including the ability to use either a retrospective or prospective formula

to calculate the valuation. An alternative method, which maintains most of the numerical
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simplicity of the net premium approach, is to modify the net premium method to allow for the

DAC, in a way that is at least approximately correct. Modified premium reserves use a net

premium policy value approach to reserve calculation, but instead of assuming a level annual

premium, assume a lower initial premium to allow implicitly for the DAC. We note briefly that

it is only appropriate to modify the reserve to allow for the DAC to the extent that the DAC

will be recovered in the event that the policyholder surrenders the contract. The cash values for

surrendering policyholders will be determined to recover the DAC as far as is possible. If the

DAC cannot be fully recovered from surrendering policyholders, then it would be inappropriate

to take full credit for it.

The most common method of adjusting the net premium policy value is the Full Preliminary

Term (FPT) approach. Before we define the FPT method, we need some notation. Consider

a life insurance contract with level annual premiums. Let P n
[x]+s denote the net premium for

a contract issued to a life age x + s, who was selected at age x. Let 1P
n
[x] denote the single

premium to fund the benefits payable during the first year of the contract (this is called the

first year Cost of Insurance). Then the FPT reserve for a contract issued to a select life aged

x is the net premium policy value assuming that the net premium in the first year is 1P
n
[x] and

in all subsequent years is P n
[x]+1. This is equivalent to considering the policy as two policies, a

1-year term, and a separate contract issued to the same life 1 year later, if the life survives.

Example SN2.4

(a) Calculate the modified premiums for the policy in Example SN2.3.

(b) Compare the net premium policy value, the gross premium policy value and the FPT

reserve for the contract in Example SN2.3 at durations 0, 1, 2 and 10.

Solution to Example SN2.4

(a) The modified net premium assumed at time t = 0 is

1P
n
[50] = 100 000A 1

[50]:1
= 100 000 v q[50] = 99.36.

The modified net premium assumed paid at all subsequent premium dates is

P n
[50]+1 =

100 000A[50]+1

ä[50]+1

= 1387.90
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(b) At time 0:

0V
n = 100 000A[50] − P n

[50]ä[50] = 0,

0V
g = 100 000A[50] + 225 + 25 ä[50] + 0.47P g

[50] − 0.97P g
[50]ä[50] = 0,

0V
FPT = 100 000A[50] − 1P

n
[50] − P n

[50]+1vp[50]ä[50]+1

= 100 000
(
A 1

[50]:1
+ vp[50]A[50]+1

)
− 100 000A 1

[50]:1

−
(

100 000A[50]+1

ä[50]+1

)
vp[50]ä[50]+1

⇒ 0V
FPT = 0.

At time 1:

1V
n = 100 000A[50]+1 − P n

[50]ä[50]+1 = 1272.15,

1V
g = 100 000A[50]+1 + 25 ä[50]+1 − 0.97P g

[50]ä[50]+1 = 383.73,

1V
FPT = 100 000A[50]+1 − P n

[50]+1ä[50]+1 = 0.

At time 2:

2V
n = 100 000A52 − P n

[50]ä52 = 2574.01,

2V
g = 100 000A[50]+1 + 25 ä[50]+1 − 0.97P g

[50]ä[50]+1 = 1697.30,

2V
FPT = 100 000A[50]+1 − P n

[50]+1ä[50]+1 = 1318.63.

At time 10, we have the net premium and gross premium policy values from Example

SN2.3,

10V
n = 14 416.12 10V

g = 13 645.98

and

10V
FPT = 100 000A60 − P n

[50]+1ä60 = 13 313.34.

The FPT reserve is intended to approximate the gross premium reserve, particularly in

the first few years of the contract. We see that the insurer would benefit significantly in

the first year from using the FPT approach rather than the net premium policy value.
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As the policy matures, all the policy values converge (though perhaps not until extremely

advanced ages).

The FPT method implicitly assumes that the whole first year premium is spent on the cost

of insurance and the acquisition expenses. In this case, that assumption overstates the

acquisition expenses slightly, with the result that the FPT reserve is actually a little lower

than the gross premium policy value. Modifications of the method (partial preliminary

term) would allow for a net premium after the first year that lies somewhere between the

FPT premium and the level net premium. �

2.4 Exercises

1. An insurer issues a deferred annuity with a single premium. The annuity is payable

continuously at a level rate of $50 000 per year after the 20-year deferred period, if the

policyholder survives. On death during the deferred period the single premium is returned

with interest at rate i per year effective.

(a) Write down an equation for the prospective net premium policy value (i) during the

deferred period and (ii) after the deferred period, using standard actuarial functions.

Assume an interest rate of i per year effective, the same as the accumulation rate

for the return of premium benefit.

(b) Repeat (a) for the retrospective net premium policy value.

(c) Show that under certain conditions, which you should state, the retrospective and

prospective policy values are equal.

2. Repeat Example SN2.4, assuming now that the premium term is limited to a maximum

of 20 years.
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3 Multiple decrement tables

3.1 Introduction

This section relates to Section 8.8 of AMLCR. Throughout this section we assume a multiple

decrement model with n + 1 states. The starting state is labelled 0, and is referred to as the

‘in-force’ state (as we often use the model for insurance and pension movements), and there

are n possible modes of exit. The model is described in Figure 8.7 of AMLCR. The objectives

of this section are (i) to introduce multiple decrement tables and (ii) to demonstrate how to

construct multiple decrement tables from tabulated independent rates of decrement, and vice

versa. In order to do this, we extend the fractional age assumptions for mortality used in the

alive-dead model, as described in Section 3.3 of AMLCR, to fractional age assumptions for

multiple decrements.

3.2 Multiple decrement tables

In discussing the multiple decrement models in Section 8.8 of AMLCR, we assumed that the

transition forces are known, and that all probabilities required can be constructed using the

numerical methods described in Chapter 8. It is sometimes convenient to express a multiple

decrement model in table form, similarly to the use of the life table for the alive-dead model.

Recall that in Chapter 3 of AMLCR we describe how a survival model for the future lifetime

random variable is often summarized in a table of lx, for integer values of x. We showed

that the table can be used to calculate survival and mortality probabilities for integer ages

and durations. We also showed that if the table was the only information available, we could

use a fractional age assumption to derive estimates for probabilities for non-integer ages and

durations.

The multiple decrement table is analogous to the life table. The table is used to calculate

survival probabilities and exit probabilities, by mode of exit, for integer ages and durations.

With the addition of a fractional age assumption for decrements between integer ages, the table

can be used to calculate all survival and exit probabilities for ages within the range of the table.

We expand the life table notation of Section 3.2 of AMLCR as follows.

Let lx0 be the radix of the table (an arbitrary positive number) at the initial age x0. Define

lx+t = lx0 tp
00
x0
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and for j = 1, 2, ..., n, and x ≥ x0,

d(j)
x = (lx) p

0j
x .

Given integer age values for lx and for d
(j)
x , all integer age and duration probabilities can be

calculated. We interpret lx, x > x0 as the expected number of survivors in the starting state 0

at age x out of lx0 in state 0 at age x0; d
(j)
x is the expected number of lives exiting by mode of

decrement j in the year of age x to x+ 1, out of lx lives in the starting state at age x.

Note that the pension plan service table in Chapter 9 of AMLCR is a multiple decrement table,

though with the slightly different notation that has evolved from pension practice.

Example SN3.1 The following is an excerpt from a multiple decrement table for an insurance

policy offering benefits on death or diagnosis of critical illness. The insurance expires on the

earliest event of death (j = 1), surrender (j = 2) and critical illness diagnosis (j = 3).

x lx d
(1)
x d

(2)
x d

(3)
x

40 100 000 51 4 784 44

41 95 121 52 4 526 47

42 90 496 53 4 268 50

43 86 125 54 4 010 53

44 82 008 55 3 753 56

45 78 144 56 3 496 59

46 74 533 57 3 239 62

47 71 175 57 2 983 65

48 68 070 58 2 729 67

49 65 216 58 2 476 69

50 62 613 58 2 226 70

Table 1: Excerpt from a critical illness multiple decrement table.

(a) Calculate (i) 3p
00
45, (ii) p01

40, (iii) 5p
03
41.

(b) Calculate the probability that a policy issued to a life aged 45 generates a claim for death

or critical illness before age 47.

(c) Calculate the probability that a policy issued to a life age 40 is surrendered between ages

45 and 47.
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Solution to Example SN3.1

(a) (i) 3p
00
45 =

l48

l45

= 0.87108

(ii) p01
40 =

d
(1)
40

l40

= 0.00051

(iii) 5p
03
41 =

d
(3)
41 + d

(3)
42 + ...+ d

(3)
45

l41

= 0.00279

(b) 2p
01
45 + 2p

03
45 =

d
(1)
45 + d

(1)
46 + d

(3)
45 + d

(3)
46

l45

= 0.00299

(c) 5p
00
40 2p

02
45 =

d
(2)
45 + d

(2)
46

l40

= 0.06735.

3.3 Fractional age assumptions for decrements

Suppose the only information that we have about a multiple decrement model are the integer

age values of lx and d
(j)
x . To calculate non-integer age or duration probabilities, we need to

make an assumption about the decrement probabilities or forces between integer ages.

UDD in the Multiple Decrement Table Here UDD stands for uniform distribution of

decrements. For 0 ≤ t ≤ 1, and integer x, and for each exit mode j, assume that

tp
0j
x = t (p0j

x ) (6)

The assumption of UDD in the multiple decrement model can be interpreted as assuming that

for each decrement, the exits from the starting state are uniformly spread over each year.

Constant transition forces For 0 ≤ t ≤ 1, and integer x, assume that for each exit mode j,

µ0j
x+t is a constant for each age x, equal to µ0j(x), say. Let

µ0•(x) =
n∑
k=1

µ0k(x)

so µ0•(x) represents the total force of transition out of state 0 at age x+ t for 0 ≤ t < 1. It is

convenient also to denote the total exit probability from state 0 for the year of age x to x + 1

as p0•
x . That is

p0•
x = 1− p00

x =
n∑
k=1

p0k
x = 1− e−µ0•(x).
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Assuming constant transition forces between integer ages for all decrements,

tp
0j
x =

p0j
x

p0•
x

(
1−

(
p00
x

)t)
. (7)

We prove this as follows:

tp
0j
x =

∫ t

0
rp

00
x µ0j

x+rdr (8)

=

∫ t

0

e−r µ
0•(x) µ0j(x)dr by the constant force assumption

=
µ0j(x)

µ0•(x)

(
1− e−t µ0•(x)

)
=

µ0j(x)

µ0•(x)

(
1−

(
p00
x

)t)
. (9)

Now let t→ 1, and rearrange, giving

µ0j(x)

µ0•(x)
=
p0j
x

p0•
x

(10)

where the left hand side is the ratio of the mode j force of exit to the total force of exit, and

the right hand side is the ratio of the mode j probability of exit to the total probability of exit.

Substitute from equation (10) back into (9) to complete the proof.

The intuition here is that the term 1− (p00
x )

t
represents the total probability of exit under the

constant transition force assumption, and the term p0j
x /p

0•
x divides this exit probability into the

different decrements in proportion to the full 1-year exit probabilities.

Example SN3.2

Calculate 0.2p
0j
50 for j = 1, 2, 3 using the model summarized in Table 1, and assuming (a) UDD

in all the decrements between integer ages, and (b) constant transition forces in all decrements

between integer ages.

Solution to Example SN3.2

(a) 0.2p
0j
50 = 0.2 p0j

50 which gives

0.2p
01
50 = 0.000185, 0.2p

02
50 = 0.007110, 0.2p

03
50 = 0.000224.

(b) Now

0.2p
0j
50 =

p0j
50

p0•
50

(
1− (p00

50)
0.2
)
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which gives

0.2p
01
50 = 0.000188 0.2p

02
50 = 0.007220 0.2p

03
50 = 0.000227

3.4 Independent and Dependent Probabilities

In AMLCR Section 8.8 we introduce the concept of dependent and independent probabilities

of decrement. Recall that the independent rates are those that would apply if no other

modes of decrement were present. The dependent rates are those determined with all modes

of decrement included. In the following subsections of this note, we discuss in much more

detail how the dependent and independent probabilities are related, under different fractional

age assumptions for decrements, and how these relationships can be used to adjust or con-

struct multiple decrement tables when only integer age rates are available. In order to do this,

we introduce some notation for the independent transition probabilities associated with each

decrement in a multiple decrement model. Let

tp
j
x = e−

∫ t
0 µ

0j
x+rdr and tq

j
x = 1− tp

j
x.

This means that tq
j
x represents the t-year probability that a life aged x moves to state j from

state 0, and tp
j
x represents the probability that (x) does not move, under the hypothetical

2-state model where j is the only decrement. The force of transition from state 0 to state j,

µ0j
x , is assumed to be the same in both the dependent and independent cases. The independent

transition probabilities, and the associated transition forces, have all the same relationships

as the associated life table probabilities from Chapter 2 of AMLCR, because the structure of

the independent model is the same 2-state, one transition model as the alive-dead model. It is

illustrated in Figure 8.9 of AMLCR. The independent model is also called the associated single

decrement model.

3.5 Constructing a multiple decrement table from dependent and

independent decrement probabilities

When constructing or adjusting multiple decrement tables without knowledge of the underly-

ing transition forces, we need to assume (approximate) relationships between the dependent

and independent decrement probabilities. For example, suppose an insurer is using a double

decrement table of deaths and lapses to model the liabilities for a product. When a new mor-

tality table is issued, the insurer may want to adjust the dependent rates to allow for the more
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up-to-date mortality probabilities. However, the mortality table is an independent table – the

probabilities are the pure mortality probabilities. In the double decrement table, what we are

interested in is the probability that death occurs from the ‘in-force’ state – so deaths after

lapsation do not count here. We can combine independent probabilities of lapse and mortality

to construct the dependent multiple decrement table, but first we may need to extract the

independent lapse probabilities from the original table, which generates dependent rates, not

independent rates.

In order to deconstruct a multiple decrement table into the independent models, we need to

find values for the independent decrement probabilities tq
j
x from the dependent decrement prob-

abilities tp
0j
x , j = 1, 2, ...n. Then to re-construct the table, we need to reverse the process. The

difference between the dependent and independent rates for each cause of decrement depends

on the pattern of exits from all causes of decrement between integer ages. For example, suppose

we have dependent rates of mortality and withdrawal for some age x in the double decrement

table, of p01
x = 0.01 and p02

x = 0.05 respectively. This means that, given 100 lives in force

at age x, we expect 1 to die (before withdrawing) and 5 to withdraw. Suppose we know that

withdrawals all happen right at the end of the year. Then from 100 lives in force, none can after

withdrawal, and the independent mortality rate must also be 1/100 – as we expect 1 person to

die from 100 lives observed for 1 year. But if, instead, all the withdrawals occur right at the

beginning of the year, then we have 1 expected death from 95 lives observed for 1 year, so the

independent mortality rate is 1/95.

If we do not have such specific information, we use fractional age assumptions to derive the

relationships between the dependent and independent probabilities.

UDD in the MDT

Assume, as above, that each decrement is uniformly distributed in the multiple decrement

model. Then we know that for integer x, and for 0 ≤ t < 1,

tp
0k
x = t p0k

x , tp
00
x = 1− tp0•

x and tp
00
x µ0j

x+t = p0j
x (11)

where the last equation, is derived exactly analogously to Equation (3.9) in AMLCR. Notice

that the right hand side of the last equation does not depend on t. Then from (11) above

µ0j
x+t =

p0j
x

1− t p0•
x

and integrating both sides gives∫ 1

0

µ0j
x+t dt =

p0j
x

p0•
x

(
− log(1− p0•

x )
)

=
p0j
x

p0•
x

(
− log(p00

x )
)
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Note that the decrement j independent survival probability is

pjx = e−
∫ 1
0 µ

0j
x+tdt

and substituting for the exponent, we have

pjx =
(
p00
x

)(p0j
x /p0•x )

(12)

So, given the table of dependent rates of exit, p0j
x , we can calculate the associated independent

rates, under the assumption of UDD in the MDT.

Constant forces of transition

Interestingly, the relationship between dependent and independent rates under the constant

force fractional age assumption is exactly that in equation (12). From Equation (10) we have

µ0j(x) = µ0•(x)
p0j
x

p0•
x

,

so

pjx = e−µ
0j(x) =

(
e−µ

0•(x)
)(p0j

x /p0•x )
=
(
p00
x

)(p0j
x /p0•x )

.

Example SN3.3

Calculate the independent 1-year exit probabilities for each decrement for ages 40-50, using

Table 1 above. Assume uniform distribution of decrements in the multiple decrement model.

Solution to Example SN3.3

The results are given in Table 2.

You might notice that the independent rates are greater than the dependent rates in all cases.

This will always be true, as the effect of exposure to multiple forces of decrement must reduce

the probability of exit by each individual mode, compared with the probability when only a

single force of exit is present.

Now suppose we know the independent rates, and wish to construct the table of dependent

rates.

UDD in the MDT

We can rearrange equation (12) to give

p0j
x =

log pjx
log p00

x

p0•
x (13)

25

Copyright 2011 D.C.M. Dickson, M.R.Hardy, H.R. Waters



x q1
x q2

x q3
x

40 0.000523 0.047863 0.000451

41 0.000560 0.047607 0.000506

42 0.000600 0.047190 0.000566

43 0.000642 0.046590 0.000630

44 0.000687 0.045795 0.000699

45 0.000733 0.044771 0.000773

46 0.000782 0.043493 0.000851

47 0.000819 0.041947 0.000933

48 0.000870 0.040128 0.001005

49 0.000907 0.038004 0.001079

50 0.000944 0.035589 0.001139

Table 2: Independent rates of exit for the MDT in Table 1, assuming UDD in the multiple

decrement table.

In order to apply this, we use the fact that the product of the independent survival probabilities

gives the dependent survival probability, as

n∏
j=1

tp
j
x =

n∏
j=1

exp

(
−
∫ t

0

µ0j
x+rdr

)
= exp

(
−
∫ t

0

n∑
j=1

µ0j
x+rdr

)
= tp

00
x

Constant transition forces

Equation (13) also applies under the constant force assumption.

UDD in the independent models

If we assume a uniform distribution of decrement in each of the independent models, the result

will be slightly different from the assumption of UDD in the multiple decrement model.

The assumption now is that for each decrement j, and for integer x, 0 ≤ t ≤ 1,

tq
j
x = t qjx ⇒ tp

j
x µ

0j
x+t = qjx.

Then

p0j
x =

∫ 1

0
tp

00
x µ

0j
x+tdt =

∫ 1

0
tp

1
x tp

2
x ... tp

n
x µ

0j
x+tdt.
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Extract tp
j
x µ

0j
x+t = qjx to give

p0j
x = qjx

∫ 1

0

n∏
k=1,k 6=j

tp
j
xdt

= qjx

∫ 1

0

n∏
k=1,k 6=j

(
1− t qkx)

)
dt.

The integrand here is just a polynomial in t, so for example, if there are two decrements, we

have

p01
x = q1

x

∫ 1

0

(
1− t q2

x)
)
dt

= = q1
x

(
1− 1

2
q2
x

)
and similarly for p02

x .

Exercise: Show that with three decrements, under the assumption of UDD in each of the

single decrement models, we have

p01
x = q1

x

{
1− 1

2

(
q2
x + q3

x

)
+

1

3

(
q2
x q

3
x

)}
,

and similarly for p02
x and p03

x .

Generally it will make little difference whether the assumption used is UDD in the multiple

decrement model or UDD in the single decrement models. The differences may be noticeable

though where the transition forces are large.

Example SN3.4

The insurer using Table 1 above wishes to revise the underlying assumptions. The indepen-

dent annual surrender probabilities are to be decreased by 10% and the independent annual

critical illness diagnosis probabilities are to be increased by 30%. The independent mortality

probabilities are unchanged.

Construct the revised multiple decrement table for ages 40 to 50 assuming UDD in the multiple

decrement model and comment on the impact of the changes on the dependent mortality

probabilities.

Solution to Example SN3.4

This is a straightforward application of Equation (13). The results are given in Table 3. We note
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the increase in the mortality (j = 1) probabilities, even though the underlying (independent)

mortality rates were not changed. This arises because fewer lives are withdrawing, so more

lives die before withdrawal, on average.

x lx d
(1)
x d

(2)
x d

(3)
x

40 100 000.00 51.12 4 305.31 57.34

41 95 586.22 52.38 4 093.01 61.55

42 91 379.28 53.64 3 878.36 65.80

43 87 381.48 54.92 3 661.31 70.07

44 83 595.18 56.19 3 442.71 74.39

45 80 021.90 57.47 3 221.64 78.73

46 76 664.06 58.75 2 998.07 83.09

47 73 524.15 59.00 2 772.92 87.48

48 70 604.74 60.28 2 547.17 90.53

49 67 906.76 60.50 2 319.97 93.58

50 65 432.71 60.71 2 093.26 95.27

Table 3: Revised Multiple Decrement Table for Example SN3.4.

3.6 Comment on Notation

Multiple decrement models have been used by actuaries for many years, but the associated no-

tation is not standard. We have retained the more general multiple state notation for multiple

decrement (dependent) probabilities. The introduction of the hypothetical independent models

is not easily incorporated into our multiple state model notation, which is why we revert to

something similar to the 2-state alive-dead notation from earlier chapters for the single decre-

ment probabilities. In the table below we have summarized the multiple decrement notation

that has evolved in North America (see, for example, Bowers et al (1997)), and in the UK and

Australia (Neill, 1977). In the first column we show the notation used in this note (which we

call MS notation, for Multiple State), in the second we show the North American notation, and

in the third we show the notation that has been used commonly in the UK and Australia.
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Multiple State US and UK and

Canada Australia

Dependent survival probability tp
00
x tp

(τ)
x t(ap)x

Dependent transition probability tp
0j
x tq

(j)
x t(aq)

j
x

Dependent total transition probability tp
0•
x tq

(τ)
x t(aq)x

Independent transition probability tq
j
x tq

′(j)
x tq

j
x

Independent survival probability tp
j
x tp

′(j)
x tp

j
x

Transition forces µ0j
x+t µ

(j)
x (t) µjx+t

Total transition force µ0•
x+t µ

(τ)
x (t) (aµ)x+t

3.7 Exercises

1. You are given the following three-decrement service table for modelling employment.

x lx d
(1)
x d

(2)
x d

(3)
x

60 10 000 350 150 25

61 9 475 360 125 45

62 8 945 380 110 70

(a) Calculate 3p
01
60.

(b) Calculate 2p
00
61.

(c) Calculate the expected present value of a benefit of $10 000 payable at the end of

the year of exit, if a life aged 60 leaves by decrement 3 before age 63. Use a rate of

interest of 5% per year.

(d) Calculate the expected present value of an annuity of $1 000 per year payable at the

start of each of the next 3 years if a life currently aged 60 remains in service. Use a

rate of interest of 5% per year.

(e) By calculating the value to 5 decimal places, show that q1
62 = 0.0429 assuming a

constant force of decrement for each decrement.

(f) Calculate the revised service table for age 62 if q1
62 is increased to 0.1, with the other

independent rates remaining unchanged. Use (a) the constant force assumption and

(b) the UDD in the single decrement models assumption.

2. Employees of a certain company enter service at exact age 20, and, after a period in

Canada, may be transferred to an overseas office. While in Canada, the only causes of
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decrement, apart from transfer to the overseas office, are death and resignation from the

company.

(a) Using a radix of 100 000 at exact age 39, construct a service table covering service in

Canada for ages 39, 40 and 41 last birthday, given the following information about

(independent) probabilities:

Mortality (j = 1): Standard Ultimate Survival Model.

Transfer (j = 2): q2
39 = 0.09, q2

40 = 0.10, q2
41 = 0.11.

Resignation (j = 3): 20% of those reaching age 40 resign on their 40th birthday.

No other resignations take place.

Assume uniform distribution of deaths and transfers between integer ages in the

single decrement tables.

(b) Calculate the probability that an employee in service in Canada at exact age 39 will

still be in service in Canada at exact age 42.

(c) Calculate the probability that an employee in service in Canada at exact age 39 will

transfer to the overseas office between exact ages 41 and 42.

(d) The company has decided to set up a scheme to give each employee transferring

to the overseas office between exact ages 39 and 42 a grant of $10,000 at the date

of transfer. To pay for these grants the company will deposit a fixed sum in a

special account on the 39th, 40th and 41st birthday of each employee still working

in Canada (excluding resignations on the 40th birthday). The special account is

invested to produce interest of 8% per year.

Calculate the annual deposit required.

3. The following table is an extract from a multiple decrement table modelling withdrawals

from life insurance contracts. Decrement (1) represents withdrawals, and decrement (2)

represents deaths.

x lx d
(1)
x d

(2)
x

40 15490 2400 51

41 13039 2102 58

42 10879 1507 60

(a) Stating clearly any assumptions, calculate q2
40.
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(b) What difference would it make to your calculation in (a) if you were given the

additional information that all withdrawals occurred on the policyholders’ birthdays?

31

Copyright 2011 D.C.M. Dickson, M.R.Hardy, H.R. Waters



4 Universal Life Insurance

This section should be read as an addition to Chapter 11 of AMLCR, although Chapter 12

might also offer some useful background.

4.1 Introduction to Universal Life Insurance

Universal Life (UL) was described briefly in Section 1.3.3 of AMLCR, as a policy which is

popular in Canada and the US, and which is similar to the European unit-linked policy. The

UL contract offers a mixture of term life insurance and an investment product in a transparent,

flexible combination format. The policyholder may vary the amount and timing of premiums,

within some constraints. The premium is first used to pay for the death benefit cover, and

an expense charge is deducted to cover the insurer’s costs. The remainder of the premium is

invested, earning a rate of interest at the discretion of the insurer (the credited interest)

which is used to increase the death or maturity benefit. Typically, the insurer will declare the

credited interest rate based on the overall investment performance of some underlying funds,

with a margin, but the policy will also carry a minimum credited interest rate guarantee. The

accumulated premiums (after deductions) are tracked through the UL policy account balance

or account value.

The account value represents the the insurer’s liability, analogously to the reserve under a

traditional contract. Under the basic UL design, the account value is a notional amount. Poli-

cyholder’s funds are merged with the other assets of the insurer. The policyholder’s (notional)

account balance is not associated with specific assets. The credited interest declared need not

reflect the interest earned on funds. Variable Universal Life (VUL), on the other hand, is essen-

tially the same as the European unit-linked contract. The VUL policyholder’s funds are held

in an identifiable separate account; interest credited is directly generated by the yield on the

separate account assets, with no annual minimum interest rate guarantee. VUL and Variable

Annuities (described in Chapter 12 of AMLCR), are often referred to, collectively, as separate

account policies.

In this note we will consider only the basic UL policy, which can be analyzed using the profit

test techniques from Chapter 11 of AMLCR. The VUL policy is an equity-linked policy, and

would be analyzed using the techniques of Chapter 12 of AMLCR.

The key design features of a UL policy are:
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1. Death Benefit: On the policyholder’s death the benefit amount is the account value of

the policy, plus an additional death benefit (ADB).

The ADB is required to be a significant proportion of the total death benefit, except

at very old ages, to justify the policy being considered an insurance contract for tax

purposes. The proportions are set through the corridor factor requirement which

sets the minimum value for ratio of the total death benefit to the account value at death.

This ratio is called the corridor factor. In the US the corridor factor is around 2.5 up to

age 40 , decreasing to 1.05 at age 90, and to 1.0 at age 95 and above.

There are two types of death benefit, which we will describe here.

Type A offers a level total benefit, which comprises the account value plus the additional

death benefit. As the account value increases, the ADB decreases. However the ADB

cannot decline to zero, except at very old ages, because of the corridor factor requirement.

For a type A UL policy the level death benefit is the Face Amount of the policy.

Type B offers a level ADB. The amount paid on death would be the policyholder’s fund

plus the additional death benefit selected by the policyholder, provided this satisfies the

corridor factor requirement.

The policyholder may have the option to adjust the ADB to allow for inflation. Other

death benefit increases may require evidence of health to avoid adverse selection.

2. Premiums: These may be subject to some minimum level, but otherwise are highly

flexible. Any amount not required to support the death benefit or the expense charge is

credited to the policyholder’s account balance.

3. Expense Charges: These are deducted from the premium. The rates will be variable

at the insurer’s discretion, subject to a maximum specified in the original contract.

4. Credited Interest: Usually the credited interest rate will be declared by the insurer, but

it may be based on a published exogenous rate, such as yields on government bonds. A

minimum guaranteed credited interest rate is generally specified in the policy document.

5. Mortality Charge: Each premium is subject to a charge to cover the cost of the selected

death benefit cover, up to the following premium date. The charge is called the Cost of

Insurance, or CoI. Usually, the CoI is calculated using an estimate (perhaps conservative)

of the mortality rate for that period, so that, as the policyholder ages, the mortality charge

(per $1 of ADB) increases. However, there are (in Canada) some level cost of insurance
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UL policies, under which the death benefit cover is treated as traditional term insurance,

with a level risk premium through the term of the contract deducted from the premium

deposited.

If the premium is insufficient to pay the total charge for expenses and mortality, the

balance will be deducted from the policyholder’s account value.

6. Surrender Charge: If the policyholder chooses to surrender the policy early, the surren-

der value paid will be the policyholder’s account balance reduced by a surrender charge.

The main purpose of the charge is to ensure that the insurer receives enough to pay the

acquisition costs. The total cash available to the policyholder on surrender is the account

value minus the surrender charge (or zero if greater), and is referred to as the cash value

of the contract at each duration.

7. Secondary Guarantees: There may be additional benefits or guarantees attached to

the policy. A common feature is the no lapse guarantee under which the death benefit

cover continues even if the policyholder fund is exhausted, provided that the policyholder

pays a pre-specified minimum premium at each premium date. This could come into

the money if expense and mortality charges increase sufficiently to exceed the minimum

premium. The policyholder’s account would support the balance until it is exhausted, at

which time the no lapse guarantee would come into effect.

8. Policy Loans: A common feature of UL policies is the option for the policyholder to

take out a loan using the policy account or cash value as collateral. The interest rate on

the loan could be fixed in the policy document, or could depend on prevailing rates at

the time the loan is taken, or might be variable. Pre-specified fixed interest rates add

substantial risk to the contract; if interest rates rise, it could benefit the policyholder to

take out the maximum loan at the fixed, lower rate, and re-invest at the prevailing, higher

rate.

As mentioned above, the UL policy should be treated similarly to a traditional insurance policy,

except that the schedule of death benefits and surrender values depends on the accumulation

of the policyholder’s funds, which depends on the interest credited by the insurer, as well as

on the variable premium flow arising from the ability of the policyholder to pay additional

premiums, or to skip premiums.

In the basic UL contract, the insurer expects to earn more interest than will be credited to

the policyholder account value. The difference between the interest earned and the interest
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credited is the interest spread, and this is the major source of profit for the insurer. This

is, in fact, no different to any traditional whole life or endowment insurance. For a traditional

insurance, the premium might be set assuming interest of 5% per year, even though the insurer

expects to earn 7% per year. The difference generates profit for the insurer. The difference for

UL, perhaps, is that the interest spread is more transparent.

4.2 Universal Life examples

In this section we illustrate a simple UL contract through some examples.

Example SN4.1 A universal life policy with a 20-year term is sold to a 45 year old man. The

initial premium is $2250 and the ADB is a fixed $100 000 (which means this is a type B death

benefit). The initial policy charges are:

Cost of Insurance: 120% of the mortality of the Standard Select Mortality Model,

(AMLCR, Section 6.3), 5% per year interest.

Expense Charges: $48+1% of premium at the start of each year.

Surrender penalties at each year end are the lesser of the full account value and the following

surrender penalty schedule:

Year of surrender 1 2 3-4 5-7 8-10 > 10

Penalty $4500 $4100 $3500 $2500 $1200 $0

Assume (i) the policy remains in force for the whole term, (ii) interest is credited to the account

at 5% per year, (iii) a no lapse guarantee applies to all policies provided full premiums are paid

for at least 6 years and (iv) all cash flows occur at policy anniversaries. Project the account

value and the cash value at each year end for the full 20-year term, given

(a) the policyholder pays the full premium of $2250 each year;

(b) the policyholder pays the full premium of $2250 for 6 years, and then pays no further

premiums.

Solution to Example SN4.1 The account value projection is similar to the method used for

unit-linked contracts in Chapter 12 of AMLCR. The purpose of projecting the account value is

that it is needed to determine the death and surrender benefit amounts, as well as the policy
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reserves. These values are required for a profit test of the contract. The profit test for this

policy is described in Example SN4.2, below.

Projecting the account value also shows how the policy works under the idealised assumptions

– level premiums, level credited interest. Each year, the insurer deducts from the account value

the expense charge and the cost of insurance (which is the price for a 1-year term insurance

with sum insured equal to the Additional Death Benefit), and adds to the account value any

new premiums paid, and the credited interest for the year.

The spreadsheet calculation for (a) is given in Table 4 and for (b) is given in Table 5. The

columns are calculated as follows:

(1) denotes the term at the end of the policy year;

(2) is the premium assumed paid at t− 1;

(3) is the expense deduction at t− 1, (3)t = 48 + 0.01 (2)t;

(4) is the cost of insurance for the year from t−1 to t, assumed to be deducted at the start of

the year. The mortality rate assumed is 1.2qd[45]+t−1 where qd[x]+t is taken from the Standard

Select Survival Model from AMLCR. Multiply by the Additional Death Benefit, and

discount from the year end payment date, to get the CoI, (4)t = 100 000(1.2)qd[45]+t−1 v5%.

(5) is the credited interest at t, assuming a 5% level crediting rate applied to the account

value from the previous year, plus the premium, minus the expense loading and CoI, that

is (0.05)((6)t−1 + (2)t − (3)t − (4)t)

(6) is the year end account value, which comprises the previous year’s account value carried

forward, plus the premium, minus the expense and CoI deductions, plus the interest

earned, (6)t = (6)t−1 + (2)t − (3)t − (4)t + (5)t;

(7) is the year end cash value, which is the account value minus any applicable surrender

penalty, with a minimum value of $0.

In more detail, the first two rows are calculated as follows:

First Year

Premium: 2250

Expense Charge: 48 + 0.01× 2250 = 70.50
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CoI: 100 000× 1.2× 0.0006592× v5% = 75.34

Interest Credited: 0.05× (2250− 70.50− 75.34) = 105.21

Account Value: 2250− 70.50− 75.34 + 105.21 = 2209.37

Cash Value: max(2209.37− 4500, 0) = 0

Second Year

Premium: 2250

Expense Charge: 48 + 0.01× 2250 = 70.50

CoI: 100 000× 1.2× 0.0007973× v5% = 91.13

Interest Credited: 0.05× (2209.37 + 2250− 70.50− 91.13) = 214.89

Account Value: 2209.37 + 2250− 70.50− 91.13 + 214.89 = 4512.63

Cash Value: 4512.63-4100=412.63

We note that the credited interest rate is easily sufficient to support the cost of insurance and

expense charge after the first six premiums are paid, so it appears that the no-lapse guarantee

is not a significant liability. However, this will not be the case if the interest credited is allowed

to fall to very low levels. Note also that the total death benefit is always greater than four times

the account value, well above the 2.5 maximum, so the corridor factors will not be significant

in this example.

Example SN4.2

For each of the two scenarios described below, calculate the profit signature, the discounted

payback period and the net present value, using a hurdle interest rate of 10% per year effective

for the UL policy described in Example SN4.1.

For both scenarios, assume:

• Premiums of $2 250 are paid for six years, and no premiums are paid thereafter.

• The insurer does not change the CoI rates, or expense charges from the initial values

given in Example SN4.1 above.

• Interest is credited to the policyholder account value in the tth year using a 2% interest

spread, with a minimum credited interest rate of 2%. In other words, if the insurer earns

more than 4%, the credited interest will be the earned interest rate less 2%. If the insurer
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tth year Premium Expense Cost of Interest Account Value Cash Value

t Charge Insurance Credited at year end at year end

(1) (2) (3) (4) (5) (6) (7)

1 2 250 70.50 75.34 105.21 2 209.37 0.00

2 2 250 70.50 91.13 214.89 4 512.63 412.63

3 2 250 70.50 104.71 329.37 6 916.79 3 416.79

4 2 250 70.50 114.57 449.09 9 430.80 5 930.80

5 2 250 70.50 125.66 574.23 12 058.87 9 558.87

6 2 250 70.50 138.12 705.01 14 805.27 12 305.27

7 2 250 70.50 152.12 841.63 17 674.28 15 174.28

8 2 250 70.50 167.85 984.30 20 670.23 19 470.23

9 2 250 70.50 185.54 1 133.21 23 797.40 22 597.40

10 2 250 70.50 205.41 1 288.57 27 060.06 25 860.06

11 2 250 70.50 227.75 1 450.59 30 462.40 30 462.40

12 2 250 70.50 252.84 1 619.45 34 008.51 34 008.51

13 2 250 70.50 281.05 1 795.35 37 702.31 37 702.31

14 2 250 70.50 312.74 1 978.45 41 547.53 41 547.53

15 2 250 70.50 348.35 2 168.93 45 547.61 45 547.61

16 2 250 70.50 388.37 2 366.94 49 705.68 49 705.68

17 2 250 70.50 433.33 2 572.59 54 024.44 54 024.44

18 2 250 70.50 483.84 2 786.01 58 506.11 58 506.11

19 2 250 70.50 540.59 3 007.25 63 152.27 63 152.27

20 2 250 70.50 604.34 3 236.37 67 963.80 67 963.80

Table 4: Example SN4.1(a). Projected account values for the UL policy, assuming level premi-

ums throughout the term.
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tth year Premium Expense Cost of Interest Account Value Cash Value

t Charge Insurance Credited at year end at year end

(1) (2) (3) (4) (5) (6) (7)

0 2 250.00 75.34 70.50 105.21 2 209.37 0.00

1 2 250.00 91.13 70.50 214.89 4 512.63 412.63

2 2 250.00 104.71 70.50 329.37 6 916.79 3 416.79

3 2 250.00 114.57 70.50 449.09 9 430.80 5 930.80

4 2 250.00 125.66 70.50 574.23 12 058.87 9 558.87

5 2 250.00 138.12 70.50 705.01 14 805.27 12 305.27

6 0.00 152.12 48.00 730.26 15 335.41 12 835.41

7 0.00 167.85 48.00 755.98 15 875.53 14 675.53

8 0.00 185.54 48.00 782.10 16 424.09 15 224.09

9 0.00 205.41 48.00 808.53 16 979.22 15 779.22

10 0.00 227.75 48.00 835.17 17 538.64 17 538.64

11 0.00 252.84 48.00 861.89 18 099.69 18 099.69

12 0.00 281.05 48.00 888.53 18 659.17 18 659.17

13 0.00 312.74 48.00 914.92 19 213.35 19 213.35

14 0.00 348.35 48.00 940.85 19 757.85 19 757.85

15 0.00 388.37 48.00 966.07 20 287.56 20 287.56

16 0.00 433.33 48.00 990.31 20 796.54 20 796.54

17 0.00 483.84 48.00 1 013.24 21 277.94 21 277.94

18 0.00 540.59 48.00 1 034.47 21 723.82 21 723.82

19 0.00 604.34 48.00 1 053.57 22 125.05 22 125.05

Table 5: Example SN4.1(b). Projected account values for the UL policy, assuming level premi-

ums for 6 years, no premiums subsequently.
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earns less than 4% the credited interest rate will be 2%.

• The ADB remains at $100 000 throughout.

Scenario 1

• Interest earned on all insurer’s funds at 7% per year.

• Mortality experience is 100% of the Standard Select Survival Model.

• Incurred expenses are $2000 at inception, $45 plus 1% of premium at renewal, $50

on surrender (even if no cash value is paid), $100 on death.

• Surrenders occur at year ends. The surrender rate given in the following table is the

proportion of in-force policyholders surrendering at each year end.

Duration Surrender Rate

at year end qw45+t−1

1 5%

2-5 2%

6-10 3%

11 10%

12-19 15%

20 0%.

• The insurer holds the full account value as reserve for this contract.

Scenario 2

As Scenario 1, but stress test the interest rate sensitivity by assuming earned interest on

insurer’s funds follows the schedule below. Recall that the policyholder’s account value

will accumulate by 2% less than the insurer’s earned rate, with a minimum of 2% per

year.

Year Interest rate per year

on insurer’s funds

1-5 6%

6-10 3%

11-15 2%

16-20 1%
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Solution to Example SN4.2

We note here that the insurer incurs expenses that are different in timing and in amount to the

expense charge deducted from the policyholder’s account value. The expense charge (also

called the MER, for Management Expense Rate) is determined by the insurer, and is set at

the outset of the policy. It may be changeable by the insurer, within some constraints. It is a

part of the policy terms. There does not need to be any direct relationship with the insurer’s

actual or anticipated expenses, although, overall, the insurer will want the expense charge to

be sufficient to cover the expenses incurred. In this example, the expense charge is $48 plus

1% of the premium paid. This impacts the account value calculation, but otherwise does not

directly influence the profit test. The profit test expense assumption is the estimated incurred

expenses for the insurer, selected for projecting the insurer’s cash flows. This is not part of

the policy conditions. It does not impact the policyholder’s account value. It is included in

the profit test table as an outgoing cash flow for the insurer. In this example, the estimated

incurred expenses for the contract are $2000 at inception, $45 plus 1% of premium at renewal,

as well as contingent expenses on surrender of $50 and contingent expenses on death of $100.

Similarly, we have two different expressions of interest rates. The first is the credited interest

rate for determining how the account value accumulates. This may be fixed or related to some

measure of investment performance. It may be a rate declared by the insurer without any

well-defined basis. The earned interest rate is the rate that the insurer actually earns on its

assets, and this is an important factor in determining the profitability of the contract.

In this example, we assume the credited rate is always 2% less than the earned rate, subject to

a minimum of 2%. The minimum credited rate would be established in the policy provisions

at inception. For scenario 1, the earned rate is assumed to be 7% throughout, so the credited

rate for the policyholder is 5% throughout, which corresponds to the assumption in Example

SN4.1. For scenario 2, the earned rates are given in the schedule above. The credited rates will

be 4% in the first 5 years, and 2% thereafter.

For the profit test, we note that the income cash flows each year arise from premiums, from

the account values brought forward, and from interest. The account value here plays the role

of the reserve in the traditional policy profit test. We discuss this in more detail below. The

outgo cash flows arise from incurred expenses at the start of each year (associated with policy

renewal), from cash value payouts for policyholders who choose to surrender (including expenses

of payment), from death benefits for policyholders who do not survive the year, and from the

account value established at the year end for continuing policyholders. Because surrender and
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death benefits depend on the account value, we need to project the account values and cash

values for the policy first. For scenario 1, this has been done in Example SN4.1. For Scenario

2, we need to re-do the account value projection with the revised credited interest rates.

Scenario 1:

We describe here the calculations for determining the profit vector. The results are given in

Table 6. Details of the numerical inputs for the first two rows of the table are also given below.

(1) labels the policy duration at the end of the year, except for the first row which is used to

account for the initial expense outgo of $2000.

(2) is the account value brought forward for a policy in force at t−1; this is taken from Table

5.

(3) is the gross premium received, $2250 for six years, zero thereafter.

(4) is the assumed incurred expenses at the start of the tth year; the first row covers the

initial expenses, subsequent rows allow for the renewal expenses, of $45 plus 1% of the

premium.

(5) is the interest assumed earned in the year t to t+1, on the net investment. Under scenario

1, this is assumed to be at a rate of 7% each year, and it is paid on the premium and

account value brought forward, net of the expenses incurred at the start of the year.

(6) gives the expected cost of the total death benefit payable at t, given that the policy is in

force at t− 1. The death benefit paid at t is AVt+ADB, where AVt is the projected end

year account value, taken from Table 5, and there are expenses of an additional $100.

The probability that the policyholder dies during the year is assumed (from the scenario

assumptions) to be qd[45]+t−1. Hence, the expected cost of deaths in the year t− 1 to t is

EDBt = qd[45]+t−1 (AVt + ADB + 100).

(7) The surrender benefit payable at t for a policy surrendered at that time is the Cash Value,

CVt from Table 5, and there is an additional $50 of expenses. The surrender probability

at t for a life in-force at t − 1 is (1 − qd[45]+t−1)q
w
45+t−1, so the expected cost of the total

surrender benefit, including expenses, payable at t, given the policy is in force at t− 1, is

ESBt = (1− qd[45]+t−1)q
w
45+t−1 (CVt + 50).

42

Copyright 2011 D.C.M. Dickson, M.R.Hardy, H.R. Waters



(8) For policies which remain in force at the year end, the insurer will set the account value,

AVt, as the reserve. The probability that a policy which is in-force at t − 1 remains in

force at t is (1 − qd[45]+t−1)(1 − qw45+t−1), so the expected cost of maintaining the account

value for continuing policyholders at t, per policy in force at t− 1, is

EAVt = (1− qd[45]+t−1)(1− qw45+t−1) (AVt).

(9) The profit vector in the final column shows the expected profit emerging at t for each

policy in force at t− 1;

Pr t = (2)t + (3)t − (4)t + (5)t − (6)t − (7)t − (8)t

The profit test details for Scenario 1 are presented in Table 6. The numbers are rounded to the

nearest integer for presentation only. EDB denotes the expected cost of death benefits at the

end of each year, ESB is the expected cost of surrender benefits, and EAV is the expected cost

of the account value carried forward at the year end. As usual, the expectation is with respect

to the lapse and survival probabilities, conditional on the policy being in force at the start of

the policy year.

To help to understand the derivation of the table, we show here the detailed calculations for

the first two years cash flows.

At t=0

Initial Expenses: 2000

Pr0: −2000

First Year

Account Value brought forward: 0

Premium: 2250

Expenses: 0 (all accounted for in Pr0)

Interest Earned: 0.07× 2250 = 157.50

Expected Death Costs: 0.0006592× (100 000 + 2209.37 + 100) = 67.44

Expected Surrender Costs: 0.999341× 0.05× (0 + 50) = 2.50

Expected Cost of AV

for continuing policyholders: 0.999341× 0.95× 2209.37 = 2097.52

Pr1: 2250 + 157.50− 67.44− 2.50− 2097.52 = 240.04
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Second Year

Account Value brought forward: 2209.37

Premium: 2250

Expenses: 45 + 0.01× 2250 = 67.50

Interest Earned: 0.07× (2209.37 + 2250− 67.50) = 307.43

Expected Death Costs: 0.0007973× (100 000 + 4512.63 + 100) = 83.41

Expected Surrender Costs: 0.9992027× 0.02× (412.63 + 50) = 9.25

Expected Cost of AV

for continuing policyholders: 0.9992027× 0.98× 4512.63 = 4418.85

Pr2: 2209.37 + 2250− 67.50 + 307.43− 83.41− 9.25− 4418.85

=187.79

To determine the NPV and discounted payback period, we must apply survival probabilities

to the profit vector to generate the profit signature, and discount the profit signature values

to calculate the present value of the profit cashflow, at the risk discount rate. The details are

shown in Table 7. The profit signature is found by multiplying the elements of the profit vector

by the in-force probabilities for the start of each year; that is, let tp
00
[45] denote the probability

that the policy is in-force at t, then the profit signature Πk = Prk k−1p
00
[45] for k = 1, 2, ..., 20.

The final column shows the emerging NPV, from the partial sums of the discounted emerging

surplus, that is

NPVt =
t∑

k=0

Πk v
k
10%.

NPV20 is the total net present value for the profit test. The Πt column in Table 7 gives the

profit signature. From the final column of the table, we see that the NPV of the emerging

profit, using the 10% risk discount rate, is $75.15. The table also shows that the discounted

payback period is 17 years.

Scenario 2

Because the interest credited to the policyholder’s account value will change under this scenario,

we must re-calculate the AV and CV to determine the benefits payable. In Table 8 we show

the AV, the profit signature and the emerging NPV for this scenario. We note that as the

earned rate decreases, the profits decline. In the final years of this scenario the interest spread
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Year t AV Premium Expenses Interest EDB ESB EAV Prt

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0 0 0 2 000 −2 000

1 0 2 250 0 158 67 2 2 098 240

2 2 209 2 250 68 307 83 9 4 419 188

3 4 513 2 250 68 469 98 69 6 772 224

4 6 917 2 250 68 637 110 119 9 233 274

5 9 431 2 250 68 813 123 192 11 805 306

6 12 059 2 250 68 997 139 370 14 344 385

7 14 805 0 45 1 033 154 386 14 856 398

8 15 335 0 45 1 070 170 441 15 377 373

9 15 876 0 45 1 108 189 457 15 906 387

10 16 424 0 45 1 147 210 474 16 440 401

11 16 979 0 45 1 185 234 1 755 15 753 377

12 17 539 0 45 1 225 262 2 716 15 351 390

13 18 100 0 45 1 264 292 2 799 15 821 406

14 18 659 0 45 1 303 326 2 882 16 287 422

15 19 213 0 45 1 342 365 2 962 16 743 440

16 19 758 0 45 1 380 409 3 040 17 186 458

17 20 288 0 45 1 417 458 3 115 17 610 476

18 20 797 0 45 1 453 514 3 186 18 010 495

19 21 278 0 45 1 486 576 3 251 18 378 514

20 21 724 0 45 1 518 646 0 22 008 542

Table 6: Scenario 1 profit test part 1 – calculating the profit vector.
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t Pr[in force at Prt Πt NPVt

start of year]

0 1.00000 −2000.00 −2000.00 −2000.00

1 1.00000 240.04 240.04 −1781.78

2 0.94937 187.79 178.28 −1634.44

3 0.92964 224.22 208.45 −1477.83

4 0.91022 274.02 249.41 −1307.48

5 0.89112 306.24 272.90 −1138.03

6 0.87234 385.44 336.23 −948.23

7 0.84514 398.25 336.57 −775.52

8 0.81870 372.64 305.08 −633.20

9 0.79297 386.51 306.49 −503.22

10 0.76793 400.94 307.89 −384.51

11 0.74356 376.50 279.95 −286.39

12 0.66787 389.57 260.18 −203.49

13 0.56643 405.70 229.80 −136.92

14 0.48028 422.41 202.88 −83.50

15 0.40712 439.70 179.01 −40.65

16 0.34500 457.56 157.86 −6.29

17 0.29225 475.98 139.11 21.23

18 0.24747 494.96 122.49 43.26

19 0.20946 514.47 107.76 60.88

20 0.17720 541.96 96.03 75.15

Table 7: Profit signature, NPV and DPP at 10% risk discount rate for Example SN4.2, scenario

1.
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t AVt Πt NPVt

0 −2 000.00 −2 000.00

1 2 188.33 237.53 −1 784.06

2 4 447.77 176.99 −1 637.79

3 6 783.46 206.24 −1 482.84

4 9 202.32 245.92 −1 314.87

5 11 706.41 267.68 −1 148.67

6 14 022.75 205.23 −1 032.82

7 14 099.08 201.28 −929.53

8 14 160.89 165.58 −852.29

9 14 205.90 162.88 −783.21

10 14 231.54 160.28 −721.42

11 14 234.91 22.97 −713.37

12 14 212.74 21.38 −706.55

13 14 161.37 20.44 −700.63

14 14 076.64 19.53 −695.49

15 13 953.90 18.64 −691.03

16 13 787.88 −30.20 −697.60

17 13 572.68 −23.20 −702.19

18 13 301.66 −17.31 −705.30

19 12 967.33 −12.37 −707.33

20 12 561.29 −6.92 −708.35

Table 8: Account Values, profit signature and emerging NPV for Example SN4.2, scenario 2.

is negative, and the policy generates losses each year. The initial expenses are never recovered,

and the policy earns a significant loss.

4.3 Note on reserving for Universal Life

In the example above, we assume that the insurer holds the full account value as reserve for

the contract. There is no need here for an additional reserve for the death benefit, as the CoI

always covers the death benefit cost under this policy design. In fact, it might be possible to

hold a reserve less than the full account value, to allow for the reduced benefit on surrender,
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and perhaps to anticipate the interest spread.

From a risk management perspective, allowing for the surrender penalty in advance by holding

less than the account value is not ideal; surrenders are notoriously difficult to predict. History

does not always provide a good model for future surrender patterns, in particular as economic

circumstances have a significant impact on policyholder behaviour. In addition, surrenders are

not as diversifiable as deaths; that is, the impact of the general economy on surrenders is a

systematic risk, impacting the whole portfolio at the same time.

There may be a case for holding more than the account value as reserve, in particular for

level CoI policies. In this case, the CoI deduction is calculated as a level premium. The term

insurance aspect of the policy is similar to a stand alone level premium term policy, and like

those policies, requires a reserve. This is particularly important if the policy is very long term.

The example above is simplified. In particular, we have not addressed the fact that the expense

charge, CoI and credited interest are changeable at the discretion of the insurer. However,

there will be maximum, guaranteed rates set out at issue for expense and CoI charges, and a

minimum guaranteed credited interest rate. The profit test would be conducted using several

assumptions for these charges, including the guaranteed rates. However, it may be unwise to

set the reserves assuming the future charges and credited interest are at the guaranteed level.

Although the insurer has the right to move charges up and interest down, it may be difficult,

commercially, to do so unless other firms are moving in the same direction. When there is so

much discretion, both for the policyholder and the insurer, it would be usual to conduct a large

number of profit tests with different scenarios to assess the full range of potential profits and

losses.
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