MA 182

Final Exam

Prof. NaughtonShow all work for full credit.Only scientific calculators without graphing capabilities are allowed.

Name in capitals:

1. The integral

$$\int_0^1 \int_x^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} \, dy \, dx$$

is equivalent to which of the following integrals?

- A) $\int_0^{\pi/4} 2\cos^2\theta d\theta$
- B) $\int_{\pi/4}^{\pi/2} 8/3 \cos^3 \theta d\theta$
- C) $\int_0^{\pi/2} 2\cos^2\theta d\theta$
- D) $\int_{\pi/4}^{\pi/2} 2\cos^2\theta d\theta$
- E) $\int_0^{\pi/2} 8/3 \cos^3 \theta d\theta$

2. The integral

$$\int \int_R e^{(x+y)/(x-y)} \, dA$$

where R is the trapezoidal region with vertices (1,0), (2,0), (0,-2), and (0,-1), is equivalent to which of the following integrals?

A) $\int_{1}^{2} \int_{0}^{1} e^{(v/u)} 2 \, dv \, du$ B) $\int_{1}^{2} \int_{-u}^{u} e^{(v/u)} 2 \, dv \, du$ C) $\int_{1}^{2} \int_{u-2}^{u-1} e^{(v/u)} 1/2 \, dv \, du$ D) $\int_{1}^{2} \int_{-u}^{u} e^{(v/u)} 1/2 \, dv \, du$ E) $\int_{1}^{2} \int_{0}^{1} e^{(v/u)} \, dv \, du$ 3. Evaluate

 $\int_0^3 \int_{y^2}^9 y \cos\left(x^2\right) \, dx \, dy$

by reversing the order of integration.

A)
$$\frac{\sin 81}{8}$$
 B) $\frac{\sin 9}{16}$ C) $\frac{\sin 9}{8}$ D) $\frac{\sin 81}{4}$ E) $\frac{\sin 81}{16}$

4. Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the xy-plane, and below the cone $z = \sqrt{x^2 + y^2}$

A)
$$\frac{8\sqrt{2}\pi}{3}$$
 B) $\frac{16\sqrt{2}\pi}{3}$ C) $\frac{16\sqrt{2}\pi}{9}$ D) $\frac{8\sqrt{2}\pi}{9}$
E) $\frac{4\sqrt{2}\pi}{3}$

5. Let D be the solid region bounded by the planes x + 2y + z = 2, y = 2x, x = 0, and z = 0 with density function $\delta(x, y, z) = 2x^2 + 1$. Use a triple integral to find the moment of inertia of D about the y-axis. Write your answer as an iterated integral in the order z first, then y, and finally x **but do not evalute it**. Find the volume of the region D inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$ using cylindrical coordinates. Express your answer as an iterated integral. 6. Rewrite the integral $\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) dz \, dy \, dx$ as an equivalent iterated integral using the order x, y, and z.

7. Evaluate the integral $\int_0^1 \int_x^1 e^{x/y} dy \, dx$ by reversing the order of integration.

8. Let D be the region inside the sphere with radius 1/2 and center (0, 0, 1/2) given by $x^2 + y^2 + z^2 = z$, and above the cone $z = \sqrt{x^2 + y^2}$. Express the volume of D as an iterated integral in spherical coordinates. Do not compute the integral.

9. Compute the volume of the region D inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$. Choose any coordinate system you want.

10. Use spherical coordinates to determine the volume of the solid over the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$. Express your answer in terms of iterated integrals. Do not compute these integrals. 11. Use a change of variable u = x + y, v = x - y to compute the integral

$$\int_{R} e^{\frac{x+y}{x-y}} dA,$$

where R is the trapezoidal region with vertices (1,0), (2,0), (0,-2), and (0,-1). As part of your answer you must sketch the region of integration in the uv-plane. 12. Express the moment of inertia about the y-axis of the tetrahedron bounded by the planes x + 2y + z = 2, x + 2y, x = 0, z = 0 as an iterated triple integral. Do not evaluate the integral.

- 13. Let f be a continuous function on [0, 1] and R the triangular region with vertices (0,0), (1,0), (0,1). Show that $\iint_R f(x+y) dA = \int_0^1 u f(u) du.$
- 14. Sketch the curve C: $\vec{r}(t) = \langle \cos t, \sin t, \sin t \rangle, 0 \le t \le 2\pi$. Find $\oint_C 2xe^{2y} dx + (2x^2e^{2y} + 2y \cot z) dy y^2 \csc^2 z dz$.
- 15. Compute the integral $\int_0^1 \int_0^{\sqrt{1-y^2}} e^{x^2+y^2} dx \, dy$ after converting to polar coordinates.

- 16. Evaluate the integral $\int_0^1 \int_x^1 e^{x/y} dy \, dx$ by reversing the order of integration.
- 17. Let D be the region inside the sphere $x^2 + y^2 + z^2 = 4$, outside the sphere $x^2 + y^2 + z^2 = 2$ and above the *xy*-plane. Express $\int \int \int_D yz \, dV$ as an iterated integral in spherical coordinates. Do not compute the integral.
- 18. The critical points of $f(x, y) = x^2y 6y^2 3x^2$ are (0, 0), (6, 3), and (-6, 3). Classify them as local maxima, local minima, or saddle points.

19. Find the critical points of f(x, y) = (1 + xy)(x + y).

20. The volume of a pyramid of height h and square base l is given by $V(l,h) = \frac{1}{3}l^2h$. Use differentials to estimate the change in the volume if the l is decreased from 1m to 0.9m and h is increased from 2m to 2.2m.

21. The temperature of a point in space is T(x, y, z) = 5x² - 3xy + xyz.
(a) In what direction does the temperature increase fastest at P(3,4,5)
(b) Find the rate of change of T at P in the direction (1,1,-1).

22. Show that any function of the form z = f(xy) satisfies the partial differential equation $\partial z/\partial x + \partial z/\partial y = 0$.

23. Use differentials to estimate how much $f(x, y, z) = e^x \cos yz$ changes as the point P(x, y, z) moves from the origin a distance of ds = 0.1unit in the direction $\langle 2, 2, -2 \rangle$

24. Find all points on $z = 9x^2 + 4y^2$ where the normal line is parallel to the line through P(4, -2, 5) and Q(-2, -6, 4).

25. Use Lagrange multipliers to find the extreme values of f(x, y, z) = x - y + z on the unit sphere $x^2 + y^2 + z^2 = 1$.

26. Find the speed of the particle with position function $\vec{r}(t) = \langle e^{3t}, e^{-3t}, te^{3t} \rangle$ when t = 0.

a) $\langle 3, -3, 1 \rangle$ b) 1 c) $\sqrt{2}$ d) $\sqrt{17}$ e) $\sqrt{19}$

27. The plane S passes through the point P(1,2,3) and contains the line x = 3t, y = 1 + t, and z = 2 - t. Which of the following vectors are normal to S?

a) $\langle 1, 2, 1 \rangle$ b) $\langle 1, -2, 1 \rangle$ c) $\langle 1, 0, 1 \rangle$ d) $\langle 1, -2, 0 \rangle$ e) $\langle 1, 2, 0 \rangle$ 28. A particle moves so that the magnitude of its velocity is constant with value 2 and the magnitude of its acceleration is constant with value 3. Find the curvature of the particle's path.

- a) 0
 b) 1/4
 c) 1/2
 d) 2/3
- e) 3/4
- 29. Find the points of intersection of the sphere $x^2 + y^2 + z^2 = 10$ and the space curve $\vec{r}(t) = \langle \cos(\pi t), \sin(\pi t), t \rangle$.

a) $(\sqrt{10}, 0, 0), (-\sqrt{10}, 0, 0)$ b) $(\sqrt{10}/2, -\sqrt{10}/2, \sqrt{5}), (\sqrt{10}/2, -\sqrt{10}/2, -\sqrt{5})$ c) (1, 0, 3), (1, 0, -3)d) (-1, 0, 3), (-1, 0, -3)e) $(1/\sqrt{2}, 1/\sqrt{2}, 3), (1/\sqrt{2}, 1/\sqrt{2}, -3)$ 30. Let $f(x, y) = ye^x$. Find an equation for the level curve that passes through $(\ln 2, 1)$.

31. Sketch the domain of the function $f(x, y) = \sqrt{y - x} \ln(y + x)$? Is it closed, open, or neither? Is it bounded or unbounded?

32. Compute $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$, if it exists. Is f continuous at (0,0)? Explain your answer.

33. Given a position function $\vec{r}(t)$ define the unit tangent vector, $\vec{T}(t)$, the unit normal vector, $\vec{N}(t)$, the binormal vector, $\vec{B}(t)$, and the curvature $\kappa(t)$. Let $\vec{r}(t) = \langle t, t^2, 0 \rangle$. Find $\kappa(0)$.

34. The position function of a spaceship is $\vec{r}(t) = \langle t^2, -t, 6 \rangle$, and the coordinates of a space station are (-8,1,6). The captain wants the spaceship to coast into the space station. At what value of t should the engine of the spaceship be turned off?

- a) -4 b) -2 c) 0 d) 2 e) 4
- 35. Suppose $\langle a, b, c \rangle$ is a unit vector. Find an equation of the plane with normal vector $\langle a, b, c \rangle$ that contains (a, b, c).(d)

- a) x = at, y = bt, z = ct, where t is a real number.
- b) x = a
- c) ax + by + cz = 0
- d) ax + by + cz = 1e) $a^2x + b^2y + c^2z = 1$

36. Let $f(x,y) = x^2 + y^2 + x^2y + 4$. Find all critical points of f and classify them as local maximums, local minimums, or saddle points.

37. True or false. Justify your answer.

- a) Any constant vector field is conservative.
- b) The binormal vector is $\vec{B}(t)=\vec{N}(t)\times\vec{T}(t).$

c) There exists a function f with continuous second order partial derivatives such that $f_x(x, y) = x + y^2$ and $f_y(x, y) = x - y^2$.

38. Find an equation of the tangent plane to the surface $x \cos(z) - y^2 \sin(xz) = 2$ at P(2,1,0).

39. Let D be the region inside the sphere with center (0,0,0) and radius 2, outside the cylinder $x^2 + y^2 = 1$, satisfying $x - y \ge 0$, and $y \ge 0$ Express $\int \int \int_D yz dV$ as one or more iterated integrals using spherical coordinates. Do not evaluate the integral. 40. a) Find the rate of change of $f(x, y) = 3x^2y + y^3$ at (1,2) in the direction $\langle -3, 4 \rangle$.

b) In what direction should one move from (1,2) so that f decreases fastest?

c) Use the total differential of f to estimate the change in f in moving from (1,2) to (0.9,2.2).

41. Find the area of the region bounded by $y = x^2$, $y = 2x^2$, $x = y^2$, and $x = 4y^2$. Use the substitution $u = \frac{y}{x^2}$, $v = \frac{x}{y^2}$. State clearly the Jacobian and sketch the region of integration in the *uv*-plane.

42. Find the circulation of $\vec{F}(x, y, z) = \langle y + x^2, x, 3xz + y \rangle$ around C, the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane z = x + 2y with counterclockwise orientation when viewed from above. Use Stoke's Theorem.

43. Find the outward flux through the sphere with center (0,0,0) and radius 5 of the vector field $\vec{F}(x, y, z) = \langle x + e^{y^2 + z^2}, y + e^{z^2 + x^2}, z + e^{x^2 + y^2} \rangle.$

44. State the first three Maxwell Equations for an electric field \vec{E} and magnetic field \vec{B} , defined on a region D with charge density $\rho(x, y, z)$ and boundary surface S. Given Faraday's Law for a changing magnetic field

$$\oint_C \vec{E} \cdot d\vec{r} = \frac{\partial}{\partial t} \iint_S \vec{B} \cdot \vec{n} \, d\sigma,$$

where C is a closed curve and S is any capping surface of C derive Maxwell's third equation.

45. Use Lagrange multipliers to find the extreme values of f(x, y, z) = 8x - 4z subject to the condition $x^2 + 10y^2 + z^2 = 5$.

46. Find the points on the surface $(y + z)^2 + (z - x)^2 = 16$ where the normal line is parallel to the yz-plane.

47. Given a parametrization $\vec{r}(t)$ of a space curve C, state formulas for $\vec{T}(t)$, $\vec{N}(t)$, $\vec{B}(t)$, arc length from t = a to t = b, and curvature $\kappa(t)$.

- 48. A blue plane B: x + 3y 2z = 6 and a yellow plane Y: 2x + y + z = 3 intersect in a grenn line G. a) If you stand at P(1, -2, -1) and look in the direction $\vec{v} = \langle 1, 2, 1 \rangle$, what color do you see?
 - b) Find a parametrization of G.
 - c) What directions should you look to see G?

Answers:

49. Let $\vec{F}(x, y, z) = \langle 3x^2yz - 3y, x^3z - 3x, x^3y + 2z \rangle$. Find curl \vec{F} . Compute the work done by \vec{F} in moving a particle from A(0, 0, 2) to B(0, 3, 0) along the curve in the diagram: 50. Calculate the outward flux of the vector field $\vec{F}(x, y, z) = \langle x^3, y^3, z^3 \rangle$ across the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$, z = 0, and z = 2. 51. Sketch the curve C: $\vec{r}(t) = \langle \cos t, \sin t, \sin t \rangle, 0 \le t \le 2\pi$. Find $\oint_C 2xe^{2y} dx + (2x^2e^{2y} + 2y \cot z) dy - y^2 \csc^2 z dz$.

52. Express the volume of the tetrahedron bounded by the planes x + 2y + z = 2, x + 2y, x = 0, z = 0 as an iterated triple integral. Do not evaluate the integral.