MA 271 Vector Calculus Fall 1999, Test Two

Instructor: Yip

- This test booklet has SIX QUESTIONS, totaling 60 points for the whole test. You have 50 minutes to do this test. **Plan your time well. Read the questions carefully.**
- This test is closed book and closed notes.
- (Any kind of) calculator is allowed. But you should **not** use it whenever it is possible (from the point of view of this class), i.e. your answers should be as **analytical** as possible.
- In order to get full credits, you need to give **correct** and **simplified** answers and explain in a **comprehensible way** how you arrive at them.
- You can use both sides of the papers to write your answers. But please indicate so if you do.

Question	Score
1.(10 pts)	
2.(10 pts)	
3.(10 pts)	
4.(10 pts)	
5.(10 pts)	
6.(10 pts)	
Total (60 pts)	

1. Write down a series (consisting of a finite number of terms) that will give the value of the following integral up to 10^{-16} accuracy:

$$\int_0^1 e^{x^2} \, dx$$

2. What are the following limits:

$$\lim_{t \to 0} \frac{1 - \cos(t^2) - \frac{t^4}{2}}{t^6} \tag{1}$$

$$\lim_{x \to \infty} x^2 \left(e^{-\frac{1}{x^2}} - 1 \right) \tag{2}$$

3. Compute the arc length of the following curve which is given by $r = 1 + \cos \theta$ in terms of the polar coordinates:

4. An object is given in terms of the spherical coordinates by

$$\rho = \cos \phi$$

- (a) Express the above object in terms of the cartesian coordinates (x, y, z);
- (b) *Identity* and *plot out* the above object in x y z space. Label important points.

5. Plot out the 0 and -1 level surfaces of the following function:

$$w = f(x, y, z) = z + x^2 + y^2$$

6. You are given the following function:

$$z = f(x, y) = \frac{1}{1 + x^2 + y^2}$$

- (a) Plot out the graph in the x y z space;
- (b) Find out the equation of the tangent plane to f at (x = 1, y = 2).

Taylor Series

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots + \frac{f^{(n)}(x-a)^n}{n!} + \frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$$
(where c is in between x and a)

(where c is in between x and a)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n}, \quad |x| < 1$$

Trigonemetric Formulas

$$\begin{aligned} \sin(\alpha + \beta) &= \sin \alpha \cos \beta + \sin \beta \cos \alpha; \\ \cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta; \\ \sin(2\alpha) &= 2\sin \alpha \cos \alpha; \\ \cos(2\alpha) &= \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha; \end{aligned}$$

Polar Coordinates

Cylindrical Coordinate Spherical Coordinates

$$ds = \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta$$