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‘ Suppose that (ny,n,) = 1 and that the problem is soluble for n = n,
! and for n = n,. There are integers r, and ry such that

f3n1+fzn2 = 1

or T, -|-ra—r2'”+r2" ot
18T 70y 1% znl "1‘”’2'

Hence, if the problem is soluble for n = ny and n = n,, it is soluble
for n = n,n,. It follows that we need only consider cases in which z
is & power of & prime. In what follows we suppose % = p prime,

We can construct « if we can construct cosa (or sina); and the

numbers coska+tisinka (k= L2,..,n—1)
are the roots of

= ey e A

ar—1
(5.8.1) ey B h-lpgn-24 41 =0,
b jud Hence we can construct « if we can construct the roots of (5.8.1).

: ‘Euclidean’ constructions, by ruler and compass, are equivalent

i analytically to the solution of a series of linear or quadratic equations.t
? Hence our construction is possible if we can reduce the solution of

: (5.8.1) to that of such a series of equations.

3 : The problem was solved by Gauss, who proved (as we stated in §2.4)

: that the reduction is possible if and only if n is & ‘Fermat prime’}

! n=p=2"{1=F,
3 | ; The first five values of &, viz. 0, 1, 2, 3, 4, give
H ‘ n =3, 5, 17, 257, 65537,

- all of which are prime, and in these cases the problem is soluble,

: R The constructions for » = 3 and n = & are familiar. We give here

1. the construction for » = 17. We shall not attempt any systematic
exposition of Gauss’s theory; but this particular construction gives a
fair example of the working of his method, and should make it plain
to the reader that (as is plausible from the beginning) success is to be
expected when n = p and p—1 does not contain any prime but 2.
This requires that p is a prime of the form 2m4-1, and the only such

~ primes are the Fermat primes.||

Suppose then that n = 17. The corresponding equation is

[ R R SN R A T YT e

17__
% 11 = a4l 4] =0,

" el

(5.8.2)

t Bee § 11.5. $ See § 2.5. l| Bee § 2.5, Theorem 17.
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We write o= —f—:, & = 8(137) = 008 ka+18in ko,
so that the roots of (5.8.2) are

(5.8.3) Z = ¢, €., €.
From these roots we form certain sums, known as periods, which are
. the roots of quadratic equations.
The numbers 3 (0<m<<15)
are congruent (mod 17), in some order, to the numbers % — 1,2,., 16,1
as is shown by the table
m=0,1,2 3, 4,5 6, 7,8, 910,11,12, 13, 14, 15,
k=1,3,9,10,13,51511,16,14, 8, 7, 4,12, 2, 6.

We define 2, and z, by
z =m§an€k = atetestetegtegtete,
% =m%d‘k = @teaotetenteteate,te;

and ¥y, ¥,, ¥s, Ys by
h= D = € tetegteg,

m=0(mod 4)

¥, = D = €te5t+es+e,
m=2(mod 4)

Y3 = b € = e3t€54-€4+€p,,
m=1({mod 4)

3 Y= (Z € = €19t €ete1-€.
me=3(mod 4)

Since €+€5_p = 2cos ke,

we have Z; = 2(cos o -+ c08 8a + cos 4a 4 cos 2a),

%, = 2(cos 3a 4 cos Ta 4 cos 5 + cos 6a),
¥1 = 2(cos « + cos 4a), Y» = 2(cos 8« 4 cos 2a),
Y3 = 2(cos 3« + cos 5a), Y4 = 2(cos 7o + cos 6a).

We prove first that 2, and z, are the roots of a quadratic equation L
with rational coefficients. Since the roots of (56.8.2) are the numbers &
(5.8.3), we have '

Z 42, = 2 icoska - §ek = —1
[ =51 ¥=1
Again,
%%, = 4(cos o + o8 8« 4 cos 4a + cos 2a) X
X (co8 8« + cos 7o + o8 ba + cos 6a).

If we multiply out the right-hand side and use the identity

(5.8.4) 2 cos ma cos no = cos(m-+ n)x+cos(m—n)a,

t In fact 3 is & ‘primitive root of 17" in the sense which will be explained in § 6.8.
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we obtain Z, 2y = 4(@,47;) = —4.

Hence z, and z, are the roots of

(5.8.5)  a'4z—4=0.

Also

cosa -+ cos2a > 2cos }mr = 42 > —cos8x,  cosda > 0.
Hence z;, > 0 and therefore
(5.8.6) ' x, > 5
We prove next that y,, ¥, and y;, ¥, are the roots of quadratic equa-
tions whose coefficients are rational in , and z,. We have

' L Nty =2,
and, using (5.8.4) again,

Y1 Yz = 4(cos a + cos 4a)(cos Bx -+ cos 2a)

8
=2 coska = —1.
kZ:IOSa

Hence y,, y, are the roots of

(5.8.7) yi—x,y—1=0;

and it is plain that

(5.8.8) Y1 > Yo

Similarly Ys+Ys = %o Ys¥s = —1,
and 50 ¥, y, are the roots of ,
(5.8.9) yi—z,y—1 =0,

and

(5.8.10) Ya > Yy

- Finally

2cosxt2cosda = ¥,
4 cos a cos 4a = 2(cos Ba4-cos 3a) = Y.

Also cosa > cos4a. Hence z; = 2cosa and z, = 2 cos 4« are the roots
of the quadratic

(5.8.11) 22—y, 2+y; =0
and ’
(5.8.12) 2, > 2,

We can now determine z, = 2cosa by solving the four quadratics
(6.8.5), (5.8.7), (5.8.9), and (5.8.11), and remembering the associated
inequalities. We obtain '

20080 = }{—1+V174(34—2V17)}+
4+ 3J(68+12V17—16,/(3442417) — 2(1 — V17){/(34—2v17)},
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an expression involving only rationals and square roots. This number
may now be constructed by the use of the ruler and compass only, and

§0 a may be constructed.
There is a simpler geometrical construction. Let C be the least

positive acute angle such that
tan4C = 4,
go that C, 2C, and 4C are all acute. Then (5.8.5) may be written
2?4 4zcot 4C—4 = 0.

; B A
K
/

Ns F O0E

Fia. 6

The roots of this equation are
2tan 20, —2cot 2C.
Since z;, > x,, this gives
z, = 2tan20,  z, = —2cot 2C.
Substituting in (5.8.7) and (5.8.9) and solving, we obtain
y, = tan(C+1m), y, = tan C,

y, = tan(C—}m), gy, = —cotC. .
Hence
2 cos 3x + 2c08 b = y; = tan C,

(5.8.13) { i
2 008 3a. 2 008 o = 208 20 + 2 cos 8a = ¥, = tan(C—im).

Now let 0A, OB (Fig. 6) be two perpendicular radii of a circle. Make
01 one-fourth of OB and the angle OIE (with E in O4) one-fourth of
the angle OIA. Find on AO produced a point F such that EIF = }m.
Let the circle on A F as diameter cut OB in K, and let the circle whose
centre is E and radius EK cut OA in N, and N (N on 04, N; on A0
produced). Draw N, B, N; P, perpendicular to 04 to cut the circum-
ference of the original circle in F; and F;. '
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’ _ Then 04 = 4C and OIE = C. Also

: _ oON,—ON;, 40E _OF _
2cosA0.F’,+2cosA0}’,—2 04~ =04 — o = tanC,

2
2003 AOP,.2005 AOP, = — 4 % ON; _ _.4%%

042
OF OF
= —4m = ---O-I- = tan(O’-—iw).

L Comparing these equations with (5.8.13), we see that AOP, = 3« and

] AOF; = ba.

It follows that A, B, P, are the first, fourth, and sixth vertices of a
= B regular polygon of 17 sides inscribed in the circle; and it is obvious how
the polygon may be completed.

i NOTES ON CHAPTER V
i § 5.1. The contents of this chapter are all ‘classical’ (except the properties of
Ramanujan’s and Kloosterman's sums proved in § 5.6), and will be found in
text-books. The theory of congruences was first developed scientifically by Gauss,
D.A., though the main results must have been familiar to earlier mathematicians
such as Fermat and Euler. We give occasional references, especially when some
famous funetion or theorem is habitually associated with the name of a Particular
f mathematician, but make no attempt to be systematic.
L § 5.5. Euler, Novi Comm. Acad. Petrop. 8 (1760-1), 74-104 [Opera (1), ii.
_ b 531-44], ,
2 fe iy It might seem more natural to say that f(m) is multiplicative if
Jmm’) = f(m)f(m’)

for all m, m’. This definition would be too restrictive, and the less exacting
definition of the text is much more useful. )

§5.6. The sums of this section oceur in Gauss, ‘Summatio quarumdam
serierum singularium’ (1808), Werke, ii. 11-45; Ramanujan, Trans. Camb, Phil.
Soc. 22 (1918), 259-76 (Coliected Papers, 179-99); Kloosterman, Acta Math. 49
(1926), 407-64. ‘Ramanujan’s sum’ may be found in earlier writings; see, for
example, Jensen, Beretning d. tredje Skand. Matematikercongres (1913), 145, and
Landau, Handbuch, 572: but Ramanujan was the first mathematician to see its
. full importance and use it systematically. It is particularly important in the
, z Eid theory of the representation of numbers by sums of squares,
R § 5.8. The general theory was developed by Gauss, D.4., §§ 335-66. The first
! J : ‘ explicit geometrical construction of the 17-agon was made by Erchinger (see
i it Gauss, Werke, ii. 186-7). That in the text is due to Richmond, Quarterly Journal
£ of Math. 26 (1893), 206-7, and Math. Annalen, 67 (1909), 459-61. Our figure is
i copied from Richmond’s. )
T Gauss (D.4., § 341) proved that the equation (5.8.1) is irreducible, i.e. that ;
¢ its left-hand side cannot be resolved into factors of lower degree with rational :
% . coefficients, when n is prime. Kronecker and Eisenstein proved, more generally, :
¢ that the equation satisfied by the ¢(n) primitive nth roots of unity is irreducible; -
B & see, for example, Mathews, 186-8. Grandjot has shown that the theorem can be ;
: deduced very simply from Dirichlet's Theorem 16: see Landau, Vorlesungen, iii. 219.
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