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Classical algebra was the art of resolving equations. Modern algebra, the
subject of this book, appears to be a different science entirely, hardly con-
cerned with equations at all. Yet the study of abstract structure which charac-
terizes modern algebra developed quite naturally out of the systematic
investigation of equations of higher degree. What is more, the modern
abstraction is needed to bring the classical theory of equations to a final
perfect form.

The main part of this text presents the elements of abstract algebra in a
concise, systematic, and deductive framework. Here we shall trace in a
leisurely, historical, and heuristic fashion the genesis of modern algebra from
its classical origins.

The word algebra comes from an Arabic word meaning “reduction™ or
“restoration.” It first appeared in the title of a book by Muhammad ibn
Musa al-Khwarizmi about the year 825 A.p. The renown of this work, which
gave complete rules for solving quadratic equations, led to use of the word
algebra for the whole science of equations. Even the author’s name lives on
in the word algorithm (a rule for reckoning) derived from it. Up to this point
the theory of equations had been a collection of isolated cases and special
methods. The work of al-Khwarizmi was the first attempt to give it form and
unity.

The next major advance came in 1545 with the publication of Artis Magnae
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sive de Regulis Algebraicis by Hieronymo Cardano (1501-1576). Cardano’s
book, usually called the Ars Magna, or *“ The Grand Art,”" gave the complete
solution of equations of the third and fourth degree. Exactly how much
credit for these discoveries is due to Cardano himself we cannot be certain.
The solution of the quartic is due to Ludovico Ferrari (1522-1565), Cardano’s
student, and the solution of the cubic was based in part upon earlier work of
Scipione del Ferro (14657-1526). The claim of Niccolo Fontana (15007-
1557), better known as Tartaglia (* the stammerer”’), that he gave Cardano
the cubic under a pledge of secrecy, further complicates the issue. The bitter
feud between Cardano and Tartaglia obscured the true primacy of del Ferro.

A solution of the cubic equation leading to Cardano’s formula is quite
simple to give and motivates what follows. The method we shall use is due
to Hudde, about 1650. Before we start, however, it is necessary to recall that
every complex number has precisely three cube roots. For example, the com-
plex number 1 =1 +0i has the three cube roots, 1 (itself), » = -1 +1V=3,
and w? = —4 — 1Y=3. In general, if z is any one of the cube roots of a com-
plex number w, then the other two are wz and w?z.

For simplicity we shall consider only a special form of the cubic equation,

x> +gx —r=0. 0

(However, the general cubic equation may always be reduced to one of this
form without difficulty.) First we substitute v + » for x to obtain a new
equation,

W + 3o + 3w + v +gu+v) —r =0, 2)
which we rewrite as
B+ +Buw+gu+)y—r=0. (3)

Since we have substituted two variables, v and v, in place of the one variable
x, we are free to require that 3uv 4+ ¢ = 0, or in other words, that v = —g/3u.
We use this to eliminate ¢ from (3), and after simplification we obtain,

3

u® — ru® — ‘;—7 =, @)

This last equation is called the resofvent equation of the cubic (1). We may
view it as a quadratic equation in u* and solve it by the usual method to

2 K]
s rt g
w==-=+ [~+_—=. (5)
27\ 4 27
Of course a complete solution of the two equations embodied in (5) gives six
values of u—three cube roots for each choice of sign. These six values of u are

obtain
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the roots of the sixth-degree resolvent (4). We observe however that if u is a

cube root of (r/2) t\/—(;iM) + (q_:“-/ijf), then v = —¢/3u is a cube root of

r/2) — /(Y4 +"(q3/27). Consequently the six roots of (4) may be con-
veniently designated as u, wu, @?u and v, wo, w*v, where uv = —¢q/3. Thus the
three roots of the original equation are

oy =u+v, o =outoe, o=a’u+ o, (6)

where

o
3 r r q —q
= L 4L apd v=—1,
“ 2+\/4 ta7 8¢ Ve,
In other words, the roots of the original cubic equation (1) are given by the
Sformula of Cardano,

o= -+ e z e o 1
\/2 \/4+27+ 2 Va T

in which the cube roots are varied so that their product is always —g/3.

For our purposes we do not need to understand fully this complete solution
of the cubic equation—only the general pattern ts of interest here. The im-
portant fact is that the roots of the cubic equation can be expressed in terms
of the roots of a resolvent equation which we know how to solve. The same
fact is true of the general equation of the fourth degree.

For a long time mathematicians tried to find a solution of the general
quintic, or fifth-degree, equation without success. No method was found to
carry them beyond the writings of Cardano on the cubic and quartic. Con-
sequently they turned their attention to other aspects of the theory of equa-
tions, proving theorems about the distribution of roots and finding methods
of approximating roots. In short, the theory of equations became analytic.

One result of this approach was the discovery of the fundamental theorem
of algebra by D’Alembert in 1746. The fundamental theorem states that every
algebraic equation of degree n has n roots. It implies, for example, that the
equation x" — 1 = 0 has » roots—the so-called nth roots of unity—from which
it follows that every complex number has precisely # nth roots. D’Alembert’s
proof of the fundamental theorem was incorrect (Gauss gave the first correct
proof in 1799) but this was not recognized for many years, during which the
theorem was popularly known as *“ D’Alembert’s theorem.”

D’Alembert’s discovery made it clear that the question confronting alge-
braists was not the existence of solutions of the general quintic equation, but
whether or not the roots of such an equation could be expressed in terms of
its coefficients by means of formulas like those of Cardano, involving only
the extraction of roots and the rational operations of addition, subtraction,
multiplication, and division.
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In a new attempt to resolve this question Joseph Louis Lagrange (1736-
1813) undertook a complete restudy of all the known methods of solving
cubic and quartic equations, the results of which he published in 1770 under
the title Réflexions sur la résolution algébrique des equations. Lagrange
observed that the roots of the resolvent equation of the cubic (4) can be ex-
pressed in terms of the roots «y, a;, o3 of the original equation (1) in a com-
pletely symmetric fashion. Specifically,

v = Hoy + wxy + '), u = 4(a; + woy + 0ay),
wo = Yoy + 02, + 0?0,), ou=Ie, + oz + o’a), N

wlu = %(“z I oty + (,!JICII), wzu = '}(ag + Wity + a)zal).

All these expressions may be obtained from any one of them by permuting
the occurrences of &, a,, «y in all six possible ways.

Lagrange’s observation was important for several reasons. We obtained
the resolvent of the cubic by making the substitution x = u + v. Although
this works quite nicely, there is no particular rhyme nor reason to it—it is
definitely ad hoc. However Lagrange’s observation shows how we might have
constructed the resolvent on general principles and suggests a method for
constructing resolvents of equations of higher degrees. Furthermore it shows
that the original equation is solvable in radicals if and only if the resolvent
equation is.

To be explicit let us consider a quartic equation,

opxP gt —rx+5 =0, ®)

and suppose that the roots are the unknown complex numbers ay, oy, 03, oy .
Without giving all the details we shall indicate how to construct the resolvent
equation. First we recall that the fourth roots of unity are the complex
numbers 1, i, i?, i®, where i=\/:i and i2 = —1, i* = —i. Then the roots of
the resolvent are the twenty-four complex numbers

U= $o; + doy + i%oy + o), )

where the indices i, j, k, [ are the numbers 1, 2, 3, 4 arranged in some order.
Therefore the resolvent equation is the product of the twenty-four distinct
factors (x — u;j,,). That is, we may write the resolvent equation in the form

d(x) = H (x— Wijm) =0. (10)

ijki

Thus the resolvent of the quartic has degree 24, and it would seem hopeless
to solve. It turns out, however, that every exponent of x in ¢(x) is divisible by
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4,and consequently ¢(x) =0 may be viewed as a sixth-degree equation in x*.
What is more, this sixth-degree equation can be reduced to the product of two
cubic equations (in a way we cannot make explicit here). Since cubics can be
solved, a solution of the quartic can be obtained by a specific formula in
radicals. (Such a formula is so unwieldy that it is more useful and understand-
able simply to describe the process for obtaining solutions.) -

For quintic, or fifth-degree, equations Lagrange’s theory yields a resolvent
equation of degree 120, which is a 24th-degree equation in x°. Lagrange was
convinced that his approach, which revealed the similarities in the resolution
of cubics and quartics, represented the true metaphysics of the theory of
equations. The difficulty of the computations prevented Lagrange from
testing whether his techniques could produce a formula for resolving the
quintic in radicals. Moreover, with his new insights, Lagrange could foresee
the point at which the process might break down, and he gave equal weight to
the impossibility of such a formula.

A short time afterward, Paolo Ruffini (1765-1822) published a proof of the
unsolvability of quintic equations in radicals. Ruffini’s argument, given in his
two-volume Teoria generale delle equazioni of 1799, was correct in essence,
but was not, in actual fact, a proof. A complete and correct proof was given
by Niels Henrik Abel (1802-1829) in 1826 in a small book published at his
own expense. The brilliant work of Abel closed the door on a problem which
had excited and frustrated the best mathematical minds for almost three
centuries.

There remained one final step. Some equations of higher degree are clearly
solvable in radicals even though they cannot be factored. Abel’s theorem
raised the question: which equations are solvable in radicals and which are
not? The genius Evariste Galois (1811-1832) gave a complete answer to this
question in 1832. Galois associated to each algebraic equation a system of
permutations of its roots, which he called a group. He was able to show
equivalence of the solvability of an equation in radicals, with a property of its
group. Thus he made important discoveries in the theory of groups as well as
the theory of equations. Unfortunately Galois’ brief and tragic life ended in a
foolish duel before his work was understood. His theory perfected the ideas
of Lagrange, Ruffini, and Abel and remains one of the stunning achievements
of modern mathematical thought.

At this point we can only leave as a mystery the beautiful relation Galois
discovered between the theory of equations and the theory of groups—a
mystery resolved by the deep study of both theories undertaken in the text.

We can, however, gain some insight into modern abstraction by a short and
informal discussion of groups. To take an example near at hand, we shall
consider the group of permutations of the roots «,, o, , a; of the cubic equa-
tion—which happens to be the Galois group of this equation in general. This
group consists of six operations, 4, B, C, D, E, and 1, specified as follows:
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leaves , fixed and interchanges the roots «, and a5 wherever they occur.
leaves «, fixed and interchanges o; and 5.

interchanges &, and a,, leaving «, fixed.

replaces oy by o, at each occurrence, o, by a5, and oy by «.

replaces o, by a3, a3 by «,, and «; by «;.

is the identity operation, which makes no change at all.

ST Qwa

For example, the result of applying the operation A4 to v, as expressed in
(7), is u. We indicate this by writing

A(v) = u.

Similarly, the result of applying the operation E to v is wv, or in other words,
E(v) = wv. Of course, by definition, f(v) =v. It is easy to verify that by
applying the six operations 4, B, C, D, E, and I to v, we obtain all six of the
expressions in (7) for the roots of the resolvent equation.

These operations have the property that if any two of them are applied suc-
cessively, the result is the same as if one of the others had been applied once.
For example, suppose we apply the operation A to v, obtaining w, and then
apply the operation D to u, obtaining wu. The result is the same as if we had
applied the operation C directly to v. We can express this in symbols by

D(A(v)) = C(v).

In fact this remains true no matter what we put in place of v. That is, the
result of first applying the operation 4 and then applying D is the same as
applying the operation C. We sum this up in the simple equation: D4 = C.
There are many other relations of this sort among these operations. For
example, we may compute the result of the composite operation EB on any
function f(a,, o, , &5) as follows:

B(f(oy, 065, 203)) = flety, oz, 04),
EB(f(ah 0y, G‘-'3)) = E(f(Of3 s 0oy 0!1)) =f(a2 s Oy 053) === C(f(&'[, o3, al))'

Thus EB = C. The thirty-six relations of this type can be given conveniently
in a table. We put the result of the composite operation XY in the X row and
the ¥ colpmn.

We observe now that composition of the operations 4, B, C, D, E, and [
has the following properties.

(1) For any three operations X, Y, and Z, we have

X(YZ)=(XY)Z

In other words, the result of first performing the operation YZ and then the
operation X is the same as the result of first performing the operation Z and
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Table 1

A B C D E I
A|lI D E B C A4
B|\E I D C A B
cC|D E I A B C
D|\|C A B E I D
E|B C A I D E
l1 |4 B C D E I

then the operation X'Y. For example, from Table 1 we see that 4B = D and
BC = D, and therefore

A(BC) = AD = B= DC = (AB)C.

Thus we have verified the equation above for the special case where X = 4,
Y = B, and Z = C. This property of the composition of the operations is
called associativity. To verify associativity completely from Table 1 we would
have to make 216 checks like the one above.

(2) For any operation X we have

XI=X=IX.

In other words, the composition of any operation X with the identity operation
I always gives X again. This property is easily checked by examining the last
row and the last column of Table 1.

(3) For any operation X there is precisely one operation ¥ such that

XY=I=YX.

In other words, whatever the operation X does to the roots a,, a,, a3, ¥ does
just the opposite. We call ¥ the inverse of X and denote it by X 7' Itis easy
to see from Table 1 that

A'=d B '=B, C'=C, D'=E E'=D, I'=IL

Whenever we have a set of operations and a rule for composing them that
satisfies these three properties, we say that the operations form a group.

Once we know that a set of operations with a particular rule for composing
them is a group, we can analyze properties of these operations and their
composition without regard to the manner in which they are defined or
the context in which they arose. This simplifies the situation by eliminating
irrelevant details, and gives the work generality.

To clarify this process of abstraction, let us consider another group of
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operations defined in a completely different way. Again we shall have six
operations, but this time we shall call them by the Greek letters «, f8, v, 4, ¢,
and 1. These will operate on the rational numbers (except 0 and 1) by the
following rules:

1
ot(x):;c, o(x) = r_l—x,

B =1—x, e(x)=xT‘I,

§(x) = x—f—l 1(x) = x,

where x is any rational number except 0 or 1. We may compose these opera-

tions and the result will always be one of the other operations. For example,
we have that do = y, since

S(a(x)) = a(}—‘{) o = = = ()

=I——W;)=x—

Again, we may make a table of all thirty-six compositions of these six opera-
tions.

Table 2
e ffiy O € 1
a1 6 ¢ f vy «a
ple + &6 vy a B
yl|é e 1 a By
dly a B e 1 &
e | f y a1 0 &
tla By 6 & 1

It is immediately apparent that Table 2 has a strong resemblance to Table 1.
For example, every occurrence of A in the first table corresponds to an occur-
rence of a invthe second. Similarly the letters B and f§ occur in the same posi-
tions in each table. In fact Table 1 may be transformed into Table 2 by making
the substitutions:

A—o, B-f, C—y, D-J5, E-s I-.

In other words, these two groups have the same structure as groups even
though the individual operations are defined in quite different ways. To put
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it another way, all the facts which depend solely upon the way operations are
composed will be the same for both groups. In such a case two groups are
said to be isomorphic. Group theory studies the properties of groups which
remain unchanged in passing from one group to another isomorphic with it.

Group theory was called the ““ theory of substitutions™ until 1854 when the
English mathematician Arthur Cayley (1821-1895) introduced the concept of
abstract group. The convenience and power of the abstract approach to group
theory was evident by the end of the nineteenth century. Subsequent abstrac-
tions, such as field and ring, have also proved to be powerful concepts. The
success of abstract thinking in algebra has been so enormous that the terms
modern algebra and abstract algebra are synonymous.

Abstraction is simply the process of separating form from content. We
abstract whenever we pass from a particular instance to the general case. Even
the simplest mathematics, ordinary arithmetic, is an abstraction from physical
reality. In modern mathematics we abstract from previous mathematical
experience and reach a new and higher plane of abstraction. Indeed, each
mathematical generation abstracts from the work of preceding ones, continu-
ally distilling and concentrating the essence of old thought into new and more
perfect forms. The rewards are great. Not only does abstraction greatly en-
hance our understanding, it also dramatically increases the applications of
mathematics to practical life. Even such an apparently recondite subject as
group theory has applications in crystallography and quantum mechanics.
Over centuries modern algebra has grown into a large body of abstract
knowledge worthy of study both for its intrinsic fascination and extrinsic
application.



