
Groups of order p2q, p > q both prime.

Let G be a group of order p2q, with p > q both prime. Since 1 + kp divides q
only if k = 1, the Sylow p-subgroup Sp is normal in G. It follows that G ∼= Sp ⋊θ Zq

for some θ : Zq → Aut(Sp). If q does not divide p2 − 1 then 1 + kq 6= p or p2, so
1+ kq does not divide p2 unless k = 0. In this case, then, Sq too is normal, whence
G is abelian, and so isomorphic to Zp2 × Zq or to Zp × Zp × Zq. Thus there is no
more to do unless q|(p2 − 1), which is assumed from now on.

Assume further that θ is injective, since otherwise G is abelian.
Then check that with W := θ(Zq), G is isomorphic to the group of transforma-

tions Tz,w : Sp → Sp (z ∈ Sp, w ∈ W ) where

Tz,w(x) = wx + z.

To classify such groups, suppose first that Sp
∼= Zp2 .

Lemma 1. AutZp2
∼= Z∗

p2 is cyclic, of order p(p − 1).

Proof. We have seen the isomorphism before; and |Z∗

p2 | = φ(p2) = p(p − 1). We
also know that Z∗

p is cyclic. Choose z ∈ Z∗

p2 so that its natural image in Z∗

p is a

generator. It holds that za ≡ 1 (mod p2) =⇒ za ≡ 1 (mod p) =⇒ (p − 1)|a. So
the order of z is a multiple of p − 1, and also is a divisor of p(p − 1), and thus can
only be p − 1 or p(p − 1). In the latter case, z generates Z∗

p2 . In the former case,

the binomial expansion gives

(z + p)p−1 ≡ zp−1 + (p − 1)pzp−2 ≡ 1 − pzp−2 6≡ 1 (mod p2).

As before, z + p—which has the same image in Z∗

p as z does—has order p − 1
or p(p − 1), and we’ve just seen that it can’t be p − 1, so it must be p(p − 1), i.e.,
z + p generates Z∗

p2 . Thus in any case, Z∗

p2 is indeed cyclic. �

Remark. A similar argument shows, via induction, that Z
∗

pn is cyclic for any n > 0.

Clearly, an injective θ exists ⇐⇒ q|p(p−1), i.e., q|(p−1). So when q does divide
p − 1, we find, arguing as for groups of order pq, that there is just one nonabelian

group of order p2q having a cyclic Sp, namely, with W the unique order-q subgroup
of Z∗

p2 , the group of transformations Tz,w : Zp2 → Zp2 (z ∈ Zp2 , w ∈ W ) where

Tz,w(x) = wx + z.

Now the fun begins.

Suppose next that Sp
∼= Zp×Zp, a two-dimensional vector space over the field Zp.

Any group automorphism of Zp ×Zp is an invertible Zp-linear map (why?), and so
Aut(Zp ×Zp) is isomorphic to the group GL2(Zp) of invertible 2× 2 matrices with
Zp-entries.

Noting that any automorphism φ of G must take the unique order-p2 subgroup
H := Sp to itself, and that H is abelian, deduce from the handout on isomorphisms
of semi-direct products that, for two homomorphisms θi : Zq → Aut(Sp),

Sp⋊θ1
Zq

∼= Sp⋊θ2
Zq ⇐⇒ θ1(Zq) and θ2(Zq) are conjugate subgroups of Aut(Sp).

Thus the classification problem becomes the linear-algebra problem of determining

the conjugacy classes of order-q subgroups of GL2(Zp).
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One often says two matrices in GL2(Zp) are “similar” rather than “conjugate.”
(Both terms mean the same thing here.) How do we detect similarity?

Lemma 2. Let A be a 2 × 2 matrix over a field k. If A is not a scalar multiple

of the identity matrix, then A is similar to the matrix

(

0 −d
1 t

)

(d = detA, t = trace A.)

Proof. Representing elements of k2 as 2× 1 column vectors, let T : k2 → k2 be the
linear map given by left multiplication by A. If every vector in k2 is an eigenvector
of A, then A is a scalar multiple of the identity. (Show this, e.g., by using that

(

1

0

)

,
(

0

1

)

, and
(

1

1

)

are eigenvectors.)

Otherwise, some nonzero vector v ∈ k2 is not an eigenvector of A, and the pair
(v, Tv) forms a basis of k2. The matrix of T w.r.t. this basis has the form

(

0 a
1 b

)

.
This matrix, being similar to A, has the same determinant and trace, i.e., −a = d
and b = t. �

Corollary. Two non-scalar 2 × 2 matrices over k are similar iff they have the

same eigenvalues.

Now we can start counting conjugacy classes. Henceforth, A is a matrix of
order q, i.e., if I is the 2 × 2 identity matrix then Aq = I and A 6= I. The
eigenvalues of such an A are q-th roots of unity.

If these eigenvalues are both 1, and A 6= I, then Lemma 2 gives that A is similar

to B :=
(

0 −1

1 2

)

. By induction, one shows that for n > 0,

Bn =

(

0 −1
1 2

)n

=

(

1 − n −n
n n + 1

)

.

Hence Bp = I, hence Bq 6= I (else B = I would follow), hence Aq 6= I. So the
eigenvalues can’t both be 1.

Recall that q divides p2 − 1, so q divides p− 1 or p + 1, but not both if q is odd.
There are, then, three cases to examine.
(A) q = 2.
(B) q|(p + 1), q 6 | (p − 1).
(C) q|(p − 1), q 6 | (p + 1).

(A) Two order-2 subgroup of GL2(Zp) are conjugate if and only if their unique
generators are similar. The eigenvalues of A are (−1,−1) or (1,−1). It follows
that every order-2 subgroup of GL2(Zp) is similar to one and only one of the three
groups generated respectively by

(

−1 0
0 −1

)

,

(

−1 1
0 −1

)

,

(

1 0
0 −1

)

.

The corresponding three pairwise nonisomorphic semidirect products G have gen-
erators x, y, z which satisfy xp = yp = z2 = e, xy = yx, and zx = x−1z, zy = y−1z,
respectively zx = x−1z, zy = xy−1z, respectively zx = xz, zy = y−1z. (The third
of these is isomorphic to Zp × D2p.)
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(B) Since q doesn’t divide p − 1, Z∗

p has no elements of order q, that is, 1 is
the only q-th root of unity in Zp. Hence the eigenvalues λ and λ′ of A satisfy
λλ′ = detA = 1. If λ = 1, then λ′ = 1, which, we’ve seen, can’t happen. Since λ is
a root of a quadratic equation—the characteristic equation of A—therefore Zp[λ]
is a quadratic extension of Zp (considered as a field); and this quadratic extension
contains all the roots of the equation Xq = 1 (over Zp), namely the powers of λ.

Now if B 6= I satisfies Bq = I, then the eigenvalues of B must be of the form
(λa, 1/λa) (a, q) = 1. Hence B is similar to Aa, and there is at most one conjugacy
class of order-q subgroups of GL2(Zp).

To show that there is at least one order-q subgroup, i.e., that there is an element
of order q, we need only show that q divides the order of GL2(Zp). But to specify
an invertible 2×2 Zp-matrix, we can put any one of the p2 − 1 nonzero row vectors
in the first row, and then put any one of the p2−p row vectors which are not scalar
multiples of the first row in the second row. Thus GL2(Zp) has order (p2−1)(p2−p),
which is indeed divisible by q.

In conclusion, in this case there exists a unique nonabelian semidirect product.

(C) Now there are q q-th roots of unity, forming a subgroup, necessarily cyclic, of
Z∗

p, with generator, say, ζ. The eigenvalues of A must then have the form (ζa, ζb),

where at least one of a, b, say a, is not divisible by q ; and then if c = a−1 (mod q),
Ac has eigenvalues (ζ, ζd) (0 ≤ d < q), and Ac generates the same order-q subgroup,
call it U, as A does.

Suppose B generates an order-q subgroup V , and that the eigenvalues of B are
(ζ, ζe). Then U is conjugate to V iff A is similar to some power Bf , i.e., the
unordered pairs (ζ, ζd) and (ζf , ζef ) are the same. This means that either f = 1
and e = d or f = d 6= 0 and e = d−1.

In conclusion, when q is odd and q|(p−1), the set of conjugacy classes of order-q
subgroups of GL2(Zp) corresponds 1-1 with the set consisting of the (q−3)/2 pairs
(d, d−1) (d 6= d−1 ∈ Z∗

q) together with the pairs (1, 1), (1,−1), and (1, 0). Thus
there are (q +3)/2 such conjugacy classes, and correspondingly, there are (q +3)/2
nonabelian semidirect products.

Question: Which of these is Zp × Hpq, where Hpq is the nonabelian group of
order pq?

Exercise. How many distinct nonabelian groups are there having the following
orders?

98, 147 (cf. D&F, p. 185,#10), 847, 1183, 5887.


