Groups of order p2q, p > q both prime.

Let G be a group of order p?q, with p > ¢ both prime. Since 1 + kp divides ¢
only if k = 1, the Sylow p-subgroup S, is normal in G. It follows that G = &), x¢ Z,
for some 0: Z, — Aut(S,). If ¢ does not divide p? — 1 then 1 + kq # p or p?, so
1 + kq does not divide p? unless k = 0. In this case, then, S, too is normal, whence
G is abelian, and so isomorphic to Z,> x Z, or to Z, x Z, x Z,. Thus there is no
more to do unless ¢|(p? — 1), which is assumed from now on.

Assume further that 6 is injective, since otherwise G is abelian.

Then check that with W:= 6(Z,), G is isomorphic to the group of transforma-
tions T, 1y Sp — Sp (2 € Sp, w € W) where

T, w(z) =wz + 2.

To classify such groups, suppose first that S, = Z,..
Lemma 1. AutZ,. = Zy, is cyclic, of order p(p —1).

Proof. We have seen the isomorphism before; and |Z;.| = é(p?) = p(p —1). We
also know that Z; is cyclic. Choose z € Z;‘;2 so that its natural image in Z; is a
generator. It holds that 2 =1 (mod p?) = 2% =1 (mod p) = (p— 1)|a. So
the order of z is a multiple of p — 1, and also is a divisor of p(p — 1), and thus can
only be p — 1 or p(p — 1). In the latter case, z generates Z;,. In the former case,
the binomial expansion gives

(z4+p)P ' = 227 4 (p—1)pzP2 = 1—p2P"2 # 1 (mod p?).

As before, z + p—which has the same image in Z; as z does—has order p — 1
or p(p — 1), and we’ve just seen that it can’t be p — 1, so it must be p(p — 1), i.e.,
z + p generates Z;Z. Thus in any case, Z;Z is indeed cyclic. U

Remark. A similar argument shows, via induction, that Z;n is cyclic for any n > 0.

Clearly, an injective 0 exists <= ¢|p(p—1), i.e., ¢|(p—1). So when g does divide
p — 1, we find, arguing as for groups of order pq, that there is just one nonabelian
group of order p?q having a cyclic S, namely, with W the unique order-q subgroup
of ZZQ, the group of transformations T, ., : Zy2 — Zy2 (2 € Zy2,w € W) where

T, w(x) =wz + 2.

Now the fun begins.

Suppose next that S, = Z, xZ,,, a two-dimensional vector space over the field Z,,.
Any group automorphism of Z,, x Z, is an invertible Z,-linear map (why?), and so
Aut(Z, x Z,) is isomorphic to the group GL2(Z,) of invertible 2 x 2 matrices with
Z,-entries.

Noting that any automorphism ¢ of G must take the unique order-p? subgroup
H:= &, to itself, and that H is abelian, deduce from the handout on isomorphisms
of semi-direct products that, for two homomorphisms 6,: Z, — Aut(S,),

Spxg, Ly = Spxg, Ly <= 61(Z,) and 02(Z,) are conjugate subgroups of Aut(S,).

Thus the classification problem becomes the linear-algebra problem of determining
the conjugacy classes of order-q subgroups of GLa(Z,).
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One often says two matrices in GLo(Z,) are “similar” rather than “conjugate.”
(Both terms mean the same thing here.) How do we detect similarity?

Lemma 2. Let A be a 2 X 2 matrixz over a field k. If A is not a scalar multiple
of the identity matriz, then A is similar to the matriz

((1) _f) (d=det A, t = trace A.)

Proof. Representing elements of k% as 2 x 1 column vectors, let T': k? — k2 be the
linear map given by left multiplication by A. If every vector in k2 is an eigenvector
of A, then A is a scalar multiple of the identity. (Show this, e.g., by using that ((1)),

((1)), and (}) are eigenvectors.)

Otherwise, some nonzero vector v € k? is not an eigenvector of A, and the pair
(v,Tv) forms a basis of k2. The matrix of 7" w.r.t. this basis has the form (? 4.
This matrix, being similar to A, has the same determinant and trace, i.e., —a = d

and b =t. O

Corollary. Two non-scalar 2 x 2 matrices over k are similar iff they have the
same etgenvalues.

Now we can start counting conjugacy classes. Henceforth, A is a matrix of
order ¢, i.e., if I is the 2 x 2 identity matrix then A? = [ and A # I. The
eigenvalues of such an A are ¢-th roots of unity.

If these eigenvalues are both 1, and A # I, then Lemma 2 gives that A is similar
to B:= (0 *1). By induction, one shows that for n > 0,

12
n_ (0 —1 n_ 1—-n —n
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Hence BP = I, hence B? # I (else B = I would follow), hence A% # I. So the
eigenvalues can’t both be 1.

Recall that ¢ divides p?> — 1, so ¢ divides p — 1 or p + 1, but not both if g is odd.

There are, then, three cases to examine.

(A) g=2.

B)qllp+1),¢f(p—1).

(©) allp—1), g f(p+1).

(A) Two order-2 subgroup of GL3(Z,) are conjugate if and only if their unique
generators are similar. The eigenvalues of A are (—1,—1) or (1,—1). It follows
that every order-2 subgroup of GL3(Z,) is similar to one and only one of the three

groups generated respectively by
1 0
0 -1/

) (a)

The corresponding three pairwise nonisomorphic semidirect products G have gen-
erators x, v, z which satisfy 2P = y? = 22 = e, 2y = yx, and zx = 27 12, 2y = y %,
respectively zo = 2712, 2y = zy~ !z, respectively zo = xz, zy = y~'2. (The third

of these is isomorphic to Z, x Dag,.)
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(B) Since g doesn’t divide p — 1, Z;, has no elements of order ¢, that is, 1 is
the only ¢-th root of unity in Z,. Hence the eigenvalues A\ and A of A satisfy
AN =det A=1. If A =1, then \' = 1, which, we’ve seen, can’t happen. Since \ is
a root of a quadratic equation—the characteristic equation of A—therefore Z,[\]
is a quadratic extension of Z, (considered as a field); and this quadratic extension
contains all the roots of the equation X9 =1 (over Z,), namely the powers of A.

Now if B # I satisfies BY = I, then the eigenvalues of B must be of the form
(A%, 1/A%) (a,q) = 1. Hence B is similar to A%, and there is at most one conjugacy
class of order-¢ subgroups of GL3(Z,).

To show that there is at least one order-q subgroup, i.e., that there is an element
of order ¢, we need only show that ¢ divides the order of GL3(Z,). But to specify
an invertible 2 x 2 Z,-matrix, we can put any one of the p? — 1 nonzero row vectors
in the first row, and then put any one of the p? — p row vectors which are not scalar
multiples of the first row in the second row. Thus GL3(Z,) has order (p*—1)(p*—p),
which is indeed divisible by gq.

In conclusion, in this case there exists a unique nonabelian semidirect product.

(C) Now there are g g-th roots of unity, forming a subgroup, necessarily cyclic, of
Z;, with generator, say, (. The eigenvalues of A must then have the form (¢, ¢h),
where at least one of a, b, say a, is not divisible by ¢; and then if ¢ = a™! (mod ¢),
A€ has eigenvalues (¢, %) (0 < d < q), and A€ generates the same order-q subgroup,
call it U, as A does.

Suppose B generates an order-q subgroup V, and that the eigenvalues of B are
(¢,¢%). Then U is conjugate to V iff A is similar to some power B, i.e., the
unordered pairs (¢,¢?%) and (¢/, /) are the same. This means that either f = 1
ande=d or f=d#0ande=d %

In conclusion, when ¢ is odd and ¢|(p — 1), the set of conjugacy classes of order-q
subgroups of GLy(Z,) corresponds 1-1 with the set consisting of the (¢ —3)/2 pairs
(d,d™") (d # d~" € Z?) together with the pairs (1,1), (1,—1), and (1,0). Thus
there are (¢ + 3)/2 such conjugacy classes, and correspondingly, there are (¢ + 3)/2
nonabelian semidirect products.

Question: Which of these is Z, x H,,, where H,, is the nonabelian group of
order pq?

Exercise. How many distinct nonabelian groups are there having the following
orders?
98, 147 (cf. D&F, p.185,#10), 847, 1183, 5887.



