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1. The problem

Find integer sequences

(1.1) 0 ≤ x1 < x2 < · · · < xn (n ≥ 3)

satisfying

(1.2)

x21 − 2x22 + x23 = 2

x22 − 2x23 + x24 = 2
...

x2n−2 − 2x2n−1 + x2n = 2

“Trivial” case: x1 < x2 < · · · < xn successive integers (xi+1 = xi+1).
Otherwise, call (x1, x2, . . . , xn) a Büchi n-tuple.

Example 1.3. (6, 23, 32, 39) is a Büchi 4-tuple.

Equivalent guises occurring in the literature:

Example 1.4. (1.1) is a Büchi n-tuple ⇐⇒
the sequence x21 < x22 < · · · < x2n differs termwise by a nonzero
constant from a sequence of squares of successive integers

a < a + 1 < a + 2 < . . . (a > 3).

E.g., 2462 − 62 = 2472 − 232 = 2482 − 322 = 2492 − 392 = 60480.

Variant: (1.1) is a Büchi n-tuple ⇐⇒
∃ g(X) := X2 + bX + c (b, c ∈ Z, b ≥ 3, b2 6= 4c)

such that g(i) = x2i (i = 1, 2, . . . , n).

E.g., X2 + 490X− 455 takes values 62, 232, 322, 392 at X = 1, 2, 3, 4.
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Why this, from among the endless recreational puzzles about integers?

Büchi found an application of the nonexistence of Büchi n-tuples, for
some n, to a strengthening of a theorem of Matijasevic (based on work
of Davis and Robinson) asserting nonexistence of a single algorithm
for deciding integer solvability of all polynomial equation with integer
coefficients. (Hilbert’s tenth problem.) Büchi showed, for any such
equation, that the existence of an integer solution is equivalent to the
existence of an integer solution of a system of equations each of which
is either “diagonal quadratic,” i.e., of the form∑

i
aix

2
i = b

or of the form
xi = ±xj ± 1.

Now if for some n there exist no Büchi n-tuples, then x1 = ±x2 ± 1
is equivalent to ∃x3, . . . , xn ∈ Z such that (1.2) holds. Thus the
solvability of any polynomial equation (or system of equations, since
P1 = P2 = · · · = Pm = 0 is equivalent to ΣP 2

i = 0) would be
equivalent to that of some diagonal quadratic system.
One would then have the impossibility of finding an algorithm to
decide diagonal quadratic systems.
Büchi’s argument is explained in a few lines, e.g., in §1 of [V].

Example 1.5. If there existed an algorithm for deciding diagonal
quadratic systems, one could decide whether or not there exists a
“perfect Euler brick,” i.e., a rectangular parallelopiped for which any
line segment joining two vertices has integer length. (So far, no one
knows).
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2. What’s known?

• The formulas

x1 =
q2 − 1

2p
− p, x2 =

q2 − 1

2p
+ q + p, x3 =

q2 − 1

2p
+ 2q + p

give a bijection between Büchi 3-tuples and pairs of positive integers
(p, q) such that q2 ≡ 1 (mod 2p) and q >

√
2p.

For instance, (p, q) = (4, 9) corresponds to (x1, x2, x3) = (6, 23, 32),
and (p, q) = (1, 7) corresponds to (x1, x2, x3) = (23, 32, 39).

Proof. That the formulas define a Büchi 3-tuple is simple to check.
Conversely, looking mod 4, one sees that in any Büchi n-tuple, succes-
sive members have opposite parities; and one checks that the succesive
differences xi+1 − xi form a decreasing sequence. So for any Büchi
3-tuple x1 < x2 < x3 we can set x2− x1 = 2p + q, x3− x2 = q, and
substitute into (1.2). . . �

• There are infinitely many Büchi 4-tuples. For example:

S0 = (1, 2, 3, 4), S1 = (6, 23, 32, 39), and Si+1 = 10Si− Si−1 (i > 0).
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Buell (1987) related finding Büchi 4-tuples to questions about when
certain indefinite binary quadratic forms represent 1. In essence, he
transformed solving (1.2) (nontrivially) for n = 4 into solving

(*) 1 = j2y2 − 2(l2 + jl − j2)yz + j2z2

for positive integers j < l, y, z.
As a quadratic form in y and z, the right side has discriminant

D := 4(l2 + jl − j2)2 − 4j4 = 4(l − j)l(l + j)(l + 2j) > 0.

This integer is not a square (see [E]).
For fixed j < l, if (y, z) satisfies (∗) then y/z is a continued fraction
convergent to j2−jl− l2±

√
D ; and if there are any such pairs (y, z)

then there are infinitely many. So the Büchi 4-tuples come in infinite
families (not necessarily disjoint).

There are lots of “good” (j, l) for which solutions exist. To check,
one need only look at a finite set of convergents, of cardinality the
“period” of

√
D. This is easy to do with Mathematica or Maple.

Buell examines thousands of random pairs, and finds that about 40%
are good. But I don’t know any nice characterization of which pairs
are good.

For example, taking j = 1 yields a doubly indexed family of Büchi
4-tuples Sn(l) (n > 0, l > 1), specified by

S0 = (1, 2, 3, 4),

S1(l) =
(
2l3 − 5l, 2l3 + 2l2−l + 1, 2l3 + 4l2 + l − 2, 2(l + 1)3− 5(l + 1)

)
,

Si+1(l) = 2(l2 + l − 1)Si − Si−1 (i > 0).

• It is not known whether there exist Büchi 5-tuples.
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3. More on 3- and 4-tuples

Naive strategy: use 3-tuples to learn about 4-tuples then 5-tuples.

• # of 3-tuples with given x1 is 0 or ∞. (Known for centuries.)

• # of such 4-tuples <∞: equations (1.2) =⇒
w2 := (x3x4)

2 = (2x22 + 2− x21)(3x
2
2 + 6− x21);

and for fixed x1, an old theorem of Siegel guarantees that only finitely
many integer pairs (w, x2) satisfy this. (Google “elliptic curve”.)

• In 1993, Pinch computed all 36 Büchi 4-tuples with x1 < 1000.
Note: Any bound on x2 forces bounds on x3 = 2x22 + 2 − x21 and
x4 = 3x22 + 6− x21. But:

(?) Could x2 be huge w.r.t. x1
Pinch bounded x2 in terms of x1 via Baker’s theory of linear combi-
nations of logarithms.
Pinch’s computation showed that if x1 < 1000, then x2 ≤ 26605.
(The corresponding 4-tuple is (916, 26605, 37614, 46063)). Knowing
this, one can nowadays reproduce his table, essentially by brute-force
checking, in a fraction of a second—but that’s cheating, since one
doesn’t have any such bound a priori. Brute force means just list all
x1 and x2 within certain bounds (for instance using the above formula
for Büchi triples), and then check via (1.2) whether x3 and x4 exist.
The same brute-force method produces, in a couple of hours, all the
754 4-tuples with x1 < x2 < 107. (And none of these extends to a
5-tuple: neither 2 + 2x21 − x22 nor 2 + 2x24 − x23 is an integer square.)
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Among these 754 4-tuples, 60 have x1 <
√

107.

(??) Could there be any more 4-tuples with x1 <
√

107 ?

The ratios x2/x
2
1 for these sixty range from 0.831444. . .

for (1413, 1660036, 2347645, 2875266) down to 0.000426. . .
for (2607, 2894, 3155, 3396).
For x1 > 1637, the ratio is < 0.1.

This suggests (at least):

Conjecture: x2 < x2
1 for all Büchi 4-tuples.

For bounding x2 in terms of x1, this would be much simpler than the
approach via Baker.
In any case, thinking about it could conceivably teach one something
about 4-tuples that might be useful in thinking about 5-tuples.
(Actually, it is not hard to show that for a 5-tuple, x2 < .75x2

1 ; but
one would hope to learn other things.)

Computations (see below) show:

The conjecture holds if x2 < 101000.

So a Büchi 4-tuple with x1 <
√

107 = 3162.28 . . . and x2 > 107 would
have an x2 with more than 1000 decimal digits. This seems unlikely
to occur, but I can’t yet exclude it. Perhaps Pinch’s methods could
be applied, but I would stubbornly prefer a proof of the conjecture.
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Here is a quick sketch of the calculation.
If (w, x, y, z) is a Büchi 4-tuple then w2 = 2x2 + 2 − y2 ; so if this
4-tuple were a counterexample to the conjecture then

0 < 2x2 + 2− y2 < x.

Call a Büchi 3-tuple

(x, y, z) =

q
2 − 1

2p
− p,

q2 − 1

2p
+ q + p,

q2 − 1

2p
+ 2q + p


exotic if 0 < 2x2 + 2− y2 < x.

We could then prove the conjecture by showing that for any exotic
triple (x, y, z), 2x2 + 2− y2 is not a perfect square.
An exotic (x, y, z) is determined by x, because y = x

√
2x y and

z = x
√

3x y. (Easy proof.)
The calculation gives that that there are about 2000 exotic triples
with x < 101000—so they are very sparse—and for each of these,
2x2 + 2− y2 is not a perfect square.
This calculation takes a few minutes with Mathematica on a Mac.
What makes it feasible is, very roughly, that one can express (p, q) for
an exotic triple via continued fraction convergents to (

√
2−1)(

√
3−1)

or (
√

2 − 1)(
√

3 − 1)/2, and the numerators and denominators of
these convergents grow very quickly. I went up to the two-thousandth
convergent, where the numerator and denominator have more than
1000 digits.
Unfortunately, the calculation did not suggest any patterns on which
some general proof could be based.
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Let me mention in passing one really exotic triple, where
x =

26352185630150586644443921684341997297798285735502455029231965414

24150799193864238326819400897385118209853983553454991283146348016

122730027059861106783826343262184743120915074572081708445291792412

and

2x2 + 2− y2 =

354027662012117690947418275043702269114057822800970066354286280224

715623765511042431270791922404483840907750149254855485888403317369

645680964373668042375162209795945459741916418433124023707961

so that

x/(2x2 + 2− y2) .= 7443.54,

whereas if
√

2x2 + 2− y2 ∈ Z, the conjecture would say that the
ratio is < 1 !

Here 2x2 + 2 − y2 = (
√

2x − y)(
√

2x + y) + 2 is relatively small
because

√
2x− y .= 0.0000475.

In fact the conjecture is equivalent to:

3 < x < y ∈ Z, 2x2 + 2− y2 and 2y2 + 2− x2 both squares =⇒
√

2x− y > 1/
√

8.
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4. Arithmetic Geometry

Let Bm be the surface in Pm whose homogeneous equations are gotten
by writing 2x20 in place of each 2 in (1.2). It is a nonsingular complete
intersection, of general type when m ≥ 6. It contains the 2m lines

[u,±t,±(t + u), · · · ,±(t + (m− 1)u)]

parametrized by (t, u) ∈ P1.

There is a conjecture of Lang related to Falting’s theorem that
there are only finitely many rational points on curves of general type
(i.e., of genus > 1). Lang’s conjecture says that a surface of general
type should have only finitely many rational points outside the union
of its curves of genus 0 or 1.

Vojta showed that for m ≥ 8, the only curves on Bm of genus 0
or 1 are the above lines. However, any Büchi m-tuple would give a
rational point outside those lines.

Hence Lang’s conjecture implies that for such m there are only finitely
many—say M—Büchi m-tuples, and hence there could be no Büchi
(m + M)-tuple.

This would at least give the logic application.



10 BÜCHI’S SQUARE PROBLEM

The surface B5 is what’s called a Kummer surface. Projecting from
any of the 32 lines we get a degree 4 surface in P3 containing 25 lines:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2xyz wyz −wxz −2wxy
w x y z
2 1 −1 −2
1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

the so-called Weddle surface (treated at length in a 1916 book by
Jessop). The pencil of planes through any of the 25 lines cuts the
surface in a family of degree-3 plane curves, i.e., the surface is fibered
by a pencil of elliptic curves. The rational points on these curves
form an abelian group. By a theorem of Mazur, the torsion subgroup
has order at most 16. But with help from the known lines one can
explicitly write down at least 17 rational points on the general member
of the pencil, so its group has infinite order. Hence B5 has infinitely
many rational points, each of which gives a rational solution of (1.2).

I calculated quite a few of these rational Büchi 5-tuples, hoping of
course to come up with one where the common denominator was 1,
but the smallest denominators found were for

(11, 50, 71, 88, 103)/9, (13656, 26317, 34622, 41289, 47020)/11,

(4937, 9265, 12137, 14449, 16439)/12, (445, 1179, 1607, 1943, 2229)/14.

(whence, incidentally, Büchi 5-tuples exist in Z/n for all n).

These calculations suggest the conjecture that there are at most
finitely many rational Büchi 5-tuples with a given denominator d.

Taking d = 1 this would imply that for some m, no (integral) Büchi
m-tuple exists.


