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Abstract: This is a polished version of notes begun in the late 1980s, largely available
from my home page since then, meant to be accessible to mid-level graduate students.

The first three chapters treat the basics of derived categories and functors, and of the

rich formalism, over ringed spaces, of the derived functors, for unbounded complexes, of
the sheaf functors ⊗, Hom, f∗ and f∗ (where f is a ringed-space map). Included are

some enhancements, for concentrated (= quasi-compact and quasi-separated) schemes,

of classical results such as the projection and Künneth isomorphisms. The fourth
chapter presents the abstract foundations of Grothendieck Duality—existence and tor-

independent base change for the right adjoint of the derived functor Rf∗ when f is a
quasi-proper map of concentrated schemes, the twisted inverse image pseudofunctor for

separated finite-type maps of noetherian schemes, some refinements for maps of finite

tor-dimension, and a brief discussion of dualizing complexes.
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Introduction

(0.1) The first three chapters of these notes1 treat the basics of derived
categories and functors, and of the formalism of four of Grothendieck’s “six
operations” ([Ay], [Mb]), over, say, the category of ringed spaces (topo-
logical spaces equipped with a sheaf of rings)—namely the derived functors,
for complexes which need not be bounded, of the sheaf functors ⊗, Hom,
and of the direct and inverse image functors f∗ and f∗ relative to a map f .
The axioms of this formalism are summarized in §3.6 under the rubric
adjoint monoidal ∆-pseudofunctors, with values in closed categories (§3.5).

Chapter 4 develops the abstract theory of the twisted inverse image
functor f ! associated to a finite-type separated map of schemes f : X → Y .
(Suppose for now that Y is noetherian and separated, though for much
of what we do, weaker hypotheses will suffice.) This functor maps the
derived category of cohomologically bounded-below OY -complexes with
quasi-coherent homology to the analogous category over X. Its charac-
terizing properties are:

– Duality. If f is proper then f ! is right-adjoint to the derived
direct image functor Rf∗ .

– Localization. If f is an open immersion (or even étale), then f ! is
the usual inverse image functor f∗.

– Pseudofunctoriality (or 2-functoriality). To each composition

X
f
−→ Y

g
−→ Z we can assign a natural functorial isomorphism

(gf)! −→∼ f !g! , in such a way that a kind of associativity holds
with respect to any composition of three maps, see §(3.6.5).

Additional basic properties of f ! are its compatibility with flat base change
(Theorems (4.4.3), (4.8.3)), and the existence of canonical functorial maps,
for OY -complexes E and F having quasi-coherent homology:

RHom(Lf∗E, f !F )→ f !
RHom(E, F )

Lf∗E ⊗
=
f !F → f !(E⊗

=
F )

(where ⊗
=

denotes the left-derived tensor product), of which the first is
an isomorphism when E is cohomologically bounded above, with coherent
homology, andF is cohomologically bounded below, (Exercise (4.9.3)(b)),
and the second is an isomorphism whenever f has finite tor-dimension
(Theorem (4.9.4)) or E is a bounded flat complex (Exercise (4.9.6)(a)).

1 that are a polished version of notes written largely in the late 1980s, available
in part since then from < www.math.purdue.edu/~lipman > . I am grateful to Bradley

Lucier for his patient instruction in some of the finer points of TEX, and for setting up
the appearance macros in those days when canned style files were not common—and

when compilation was several thousand times slower than nowadays.



2 Introduction

The existence and uniqueness, up to isomorphism, of the twisted
inverse image pseudofunctor is given by Theorem (4.8.1), and compati-
bility with flat base change by Theorem (4.8.3). These are culminating
results in the notes. Various approximations to these theorems have been
known for decades, see, e.g., [H, p. 383, 3.4]. At present, however, the
proofs of the theorems, as stated here, seem to need, among other things,
a compactification theorem of Nagata, that any finite-type separable map
of noetherian schemes factors as an open immersion followed by a proper
map, a fact whose proof was barely accessible before the appearance of [Lt]
and [C′ ] (see also [Vj]); and even with that compactification theorem, I am
not aware of any complete, detailed exposition of the proofs in print prior
to the recent one by Nayak [Nk].2 There must be a more illuminating
treatment of this awesome pseudofunctor in the Plato-Erdös Book!

(0.2) The theory of f ! was conceived by Grothendieck [Gr′, pp. 112-
115], as a generalization of Serre’s duality theorems for smooth projective
varieties over fields. Grothendieck also applied his ideas in the context of
étale cohomology. The fundamental technique of derived categories was
developed by Verdier, who used it in establishing a duality theorem for
locally compact spaces that generalizes classical duality theorems for topo-
logical manifolds. Deligne further developed the methods of Grothendieck
and Verdier (cf. [De ′ ] and its references).

Hartshorne gave an account of the theory in [H]. The method there
is to treat separately several distinctive special situations, such as smooth
maps, finite maps, and regular immersions (local complete intersections),
where f ! has a nice explicit description; and then to do the general case
by pasting together special ones (locally, a general f can be factored as
smooth ◦finite). The fact that this approach works is indicative of con-
siderable depth in the underlying structure, in that the special cases, that
don’t a priori have to be related at all, can in fact be melded; and in that
the reduction from general to special involves several choices (for example,
in the just-mentioned factorization) of which the final results turn out to
be independent. Proving the existence of f ! and its basic properties in
this manner involves many compatibilities among those properties in their
various epiphanies, a notable example being the “Residue Isomorphism”
[H, p. 185]. The proof in [H] also makes essential use of a pseudofunctorial
theory of dualizing complexes,3 so that it does not apply, e.g., to arbitrary
separated noetherian schemes.

2 In fact Nayak’s methods, which are less dependent on compactifications, apply

to other contexts as well, for example flat finitely-presentable separated maps of not-

necessarily-noetherian schemes, or separated maps of noetherian formal schemes, see
[Nk, §7]. See also the summary of Nayak’s work in [S′ , §§3.1–3.3].

3 This enlightening theory—touched on in §4.10 below—is generalized to Cousin
complexes over formal schemes in [LNS]. A novel approach, via “rigidity,” is given

in [YZ], at least for schemes of finite type over a fixed regular one.
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On first acquaintance, [De′ ] appears to offer a neat way to cut through
the complexity—a direct abstract proof of the existence of f !, with indi-
cations about how to derive the concrete special situations (which, after
all, motivate and enliven the abstract formalism). Such an impression is
bolstered by Verdier’s paper [V ′ ]. Verdier gives a reasonably short proof
of the flat base change theorem, sketches some corollaries (for example, the
finite tor-dimension case is treated in half a page [ibid., p. 396], as is the
smooth case [ibid., pp. 397–398]), and states in conclusion that “all the
results of [H], except the theory of dualizing and residual complexes, are
easy consequences of the existence theorem.” In short, Verdier’s concise
summary of the main features, together with some background from [H]
and a little patience, should suffice for most users of the duality machine.

Personally speaking, it was in this spirit—not unlike that in which
many scientists use mathematics—that I worked on algebraic and geometric
applications in the late 1970s and early 1980s. But eventually I wanted to
gain a better understanding of the foundations, and began digging beneath
the surface. The present notes are part of the result. They show, I believe,
that there is more to the abstract theory than first meets the eye.

(0.3) There are a number of treatments of Grothendieck duality for
the Zariski topology (not to mention other contexts, see e.g., [Gl′], [De],
[LO]), for example, Neeman’s approach via Brown representability [N],
Hashimoto’s treatment of duality for diagrams of schemes (in particular,
schemes with group actions) [Hsh], duality for formal schemes [AJL′ ],
as well as various substantial enhancements of material in Hartshorne’s
classic [H], such as [C], [S], [LNS] and [YZ]. Still, some basic results in
these notes, such as Theorem (3.10.3) and Theorem (4.4.1) are difficult,
if not impossible, to find elsewhere, at least in the present generality and
detail. And, as indicated below, there are in these notes some significant
differences in emphasis.

It should be clarified that the word “Notes” in the title indicates that
the present exposition is neither entirely self-contained nor completely pol-
ished. The goal is, basically, to guide the willing reader along one path to
an understanding of all that needs to be done to prove the fundamental
Theorems (4.8.1) and (4.8.3), and of how to go about doing it. The intent
is to provide enough in the way of foundations, yoga, and references so that
the reader can, more or less mechanically, fill in as much of what is missing
as motivation and patience allow.

So what is meant by “foundations and yoga”?

There are innumerable interconnections among the various properties
of the twisted inverse image, often expressible via commutativity of some
diagram of natural maps. In this way one can encode, within a formal
functorial language, relationships involving higher direct images of quasi-
coherent sheaves, or, more generally, of complexes with quasi-coherent
homology, relationships whose treatment might otherwise, on the whole,
prove discouragingly complicated.
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As a strategy for coping with duality theory, disengaging the under-
lying category-theoretic skeleton from the algebra and geometry which
it supports has the usual advantages of simplification, clarification, and
generality. Nevertheless, the resulting fertile formalism of adjoint monoidal
pseudofunctors soon sprouts a thicket of rather complicated diagrams whose
commutativity is an essential part of the development—as may be seen, for
example, in the later parts of Chapters 3 and 4. Verifying such commuta-
tivities, fun to begin with, soon becomes a tedious, time-consuming, chore.
Such chores must, eventually, be attended to.4

Thus, these notes emphasize purely formal considerations, and atten-
tion to detail. On the whole, statements are made, whenever possible, in
precise category-theoretic terms, canonical isomorphisms are not usually
treated as equalities, and commutativity of diagrams of natural maps—
a matter of paramount importance—is not taken for granted unless ex-
plicitly proved or straightforward to verify. The desire is to lay down
transparently secure foundations for the main results. A perusal of §2.6,
which treats the basic relation “adjoint associativity” between the derived
functors ⊗

=
and RHom , and of §3.10, which treats various avatars of the

tor-independence condition on squares of quasi-compact maps of quasi-
separated schemes, will illustrate the point. (In both cases, total under-
standing requires a good deal of preceding material.)

Computer-aided proofs are often more convincing

than many standard proofs based on

diagrams which are claimed to commute,

arrows which are supposed to be the same,

and arguments which are left to the reader.

—J.-P. Serre [R, pp. 212–213].

In practice, the techniques used to decompose diagrams successively
into simpler ones until one reaches those whose commutativity is axiomatic
do not seem to be too varied or difficult, suggesting that sooner or later a
computer might be trained to become a skilled assistant in this exhausting
task. (For the general idea, see e.g., [Sm].) Or, there might be found a
theorem in the vein of “coherence in categories” which would help even
more.5 Though I have been saying this publicly for a long time, I have not
yet made a serious enough effort to pursue the matter, but do hope that
someone else will find it worthwhile to try.

(0.4) Finally, the present exposition is incomplete in that it does not
include that part of the “Ideal Theorem” of [H, pp. 6–7] involving concrete
realizations of the twisted inverse image, particularly through differential
forms. Such interpretations are clearly important for applications. More-
over, connections between different such realizations—isomorphisms forced

4 Cf. [H, pp. 117–119], which takes note of the problem, but entices readers to relax
their guard so as to make feasible a hike over the seemingly solid crust of a glacier.

5 Warning: see Exercise (3.4.4.1) below.
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by the uniqueness properties of the twisted inverse image—give rise to some
fascinating maps, such as residues, with subtle properties reflecting pseudo-
functoriality and base change (see [H, pp. 197–199], [L′ ]).

Indeed, the theory as a whole has two complementary aspects. With-
out the enlivening concrete interpretations, the abstract functorial approach
can be rather austere—though when it comes to treating complex relation-
ships, it can be quite advantageous. While the theory can be based on
either aspect (see e.g., [H] and [C] for the concrete foundations), bridging
the concrete and abstract aspects is not a trivial matter. For a simple ex-
ample (recommended as an exercise), over the category of open-and-closed
immersions f, it is easily seen that the functor f ! is naturally isomorphic
to the inverse image functor f∗ ; but making this isomorphism pseudofunc-
torial, and proving that the flat base-change isomorphism is the “obvious
one,” though not difficult, requires some effort.

More generally, consider smooth maps, say with d-dimensional fibers.
For such f : X → Y , and a complex A• of OY -modules, there is a natural
isomorphism

f∗A• ⊗OX ΩdX/Y [d] −→∼ f !A•

where ΩdX/Y [d] is the complex vanishing in all degrees except −d , at which
it is the sheaf of relative d-forms (Kähler differentials).6 For proper such f ,
where f ! is right-adjoint to Rf∗, there is, correspondingly, a natural map∫

(A•) : Rf∗f
!A• → A• . In particular, when Y = Spec(k), k a field, these

data give Serre Duality, i.e., the existence of natural isomorphisms

Homk(H
i(X,F ), k) −→∼ Extd−iX (F, ΩdX/Y )

for quasi-coherent OX -modules F .
Pseudofunctoriality of ! corresponds here to the standard isomorphism

ΩdX/Y ⊗OX f
∗ΩeY/Z −→

∼ Ωd+eX/Z

attached to a pair of smooth maps X
f
−→ Y

g
−→ Z of respective relative

dimensions d , e . For a map h : Y ′ → Y , and pX : X ′ := X ×Y Y
′ → X the

projection, the abstractly defined base change isomorphism ((4.4.3) below)
corresponds to the natural isomorphism

ΩdX′/Y ′ −→∼ p∗XΩdX/Y .

The proofs of these down-to-earth statements are not easy, and will not
appear in these notes.

6 A striking definition of this isomorphism was given by Verdier [V′, p. 397, Thm. 3].

See also [S′, §5.1] for a generalization to formal schemes.
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Thus, there is a canonical dualizing pair (f !,
∫
: Rf∗f

! → 1) when f is
smooth; and there are explicit descriptions of its basic properties in terms
of differential forms. But it is not at all clear that there is a canonical such
pair for all f, let alone one which restricts to the preceding one on smooth
maps. At the (homology) level of dualizing sheaves the case of varieties
over a fixed perfect field is dealt with in [Lp, §10], and this treatment
is generalized in [HS, §4] to generically smooth equidimensional maps of
noetherian schemes without embedded components.

All these facts should fit into a general theory of the fundamental
class of an arbitrary separated finite-type flat map f : X → Y with
d-dimensional fibers, a canonical derived-category map ΩdX/Y [d] → f !OY
which globalizes the local residue map, and expresses the basic relation
between differentials and duality. It is hoped that a “Residue Theorem”
dealing with these questions in full generality will appear not too many
years after these notes do.



Chapter 1

Derived and Triangulated Categories

In this chapter we review foundational material from [H, Chap. 1]7

(see also [De, §1]) insofar as seems necessary for understanding what fol-
lows. The main points are summarized in (1.9.1).

Why derived categories? We postulate an interest in various homology
objects and their functorial behavior. Homology is defined by means of
complexes in appropriate abelian categories; and we can often best un-
derstand relations among homology objects as shadows of relations among
their defining complexes. Derived categories provide a supple framework
for doing so.

To construct the derived category D(A) of an abelian category A , we
begin with the category C = C(A) of complexes in A . Being interested
basically in homology, we do not want to distinguish between homotopic
maps of complexes; and we want to consider a morphism of complexes
which induces homology isomorphisms (i.e., a quasi-isomorphism) to be an
“equivalence” of complexes. So force these two considerations on C : first
factor out the homotopy-equivalence relation to get the category K(A)
whose objects are those of C but whose morphisms are homotopy classes
of maps of complexes; and then localize by formally adjoining an inverse
morphism for each quasi-isomorphism. The resulting category is D(A),
see §1.2 below. The category D(A) is no longer abelian; but it carries a
supplementary structure given by triangles, which take the place of, and are
functorially better-behaved than, exact sequence of complexes, see 1.4, 1.5.8

Restricting attention to complexes which are bounded (above, below,
or both), or whose homology is bounded, or whose homology groups lie
in some plump subcategory of A , we obtain corresponding derived cate-
gories, all of which are in fact isomorphic to full triangulated subcategories
of D(A), see 1.6, 1.7, and 1.9.

7 an expansion of some of [V], for which [Do] offers some motivation. See the

historical notes in [N′, pp. 70–71]. See also [I′ ]. Some details omitted in [H] can be found
in more recent exposés such as [Gl], [Iv, Chapter XI], [KS, Chapter I], [W, Chapter 10],

[N′, Chapters 1 and 2], and [Sm].
8 All these constructs are Verdier quotients with respect to the triangulated sub-

category of K(A) whose objects are the exact complexes, see [N′, p. 74, 2.1.8].
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In 1.8 we describe some equivalences among derived categories. For
example, any choice of injective resolutions, one for each homologically
bounded-below complex, gives a triangle-preserving equivalence from the
derived category of such complexes to its full subcategory whose objects
are bounded-below injective complexes (and whose morphisms can be iden-
tified with homotopy-equivalence classes of maps of complexes). Similarly,
any choice of flat resolutions gives a triangle-preserving equivalence from
the derived category of homologically bounded-above complexes to its full
subcategory whose objects are bounded-above flat complexes. (For flat
complexes, however, quasi-isomorphisms need not have homotopy inverses).
Such equivalences are useful, for example, in treating derived functors, also
for unbounded complexes, see Chapter 2.

The truncation functors of 1.10 and the “way-out” lemmas of 1.11
supply repeatedly useful techniques for working with derived categories
and functors. These two sections may well be skipped until needed.

1.1. The homotopy category K

Let A be an abelian category [M, p. 194]. K = K(A) denotes the
additive category [M, p. 192] whose objects are complexes of objects in A :

C• · · · −→ Cn−1 dn−1

−−−→ Cn
dn
−→ Cn+1 −→ · · · (n ∈ Z, dn ◦dn−1 = 0)

and whose morphisms are homotopy-equivalence classes of maps of com-
plexes [H, p. 25]. (The maps dn are called the differentials in C•.)

We always assume that A comes equipped with a specific choice of
the zero-object, of a kernel and cokernel for each map, and of a direct sum
for any two objects. Nevertheless we will often abuse notation by allowing
the symbol 0 to stand for any initial object in A; thus for A ∈ A, A = 0
means only that A is isomorphic to the zero-object.

For a complex C• as above, since dn◦dn−1 = 0 therefore dn−1 induces
a natural map

Cn−1 → (kernel of dn) ,

the cokernel of which is defined to be the homology Hn(C•) . A map of
complexes u : A• → B• obviously induces maps

Hn(u) : Hn(A•)→ Hn(B•) (n ∈ Z),

and these maps depend only on the homotopy class of u . Thus we have a
family of functors

Hn : K→ A (n ∈ Z).

We say that u (or its homotopy class ū , which is a morphism in K)
is a quasi-isomorphism if for every n ∈ Z , the map Hn(u) = Hn(ū) is an
isomorphism.
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1.2. The derived category D

The derived category D = D(A) is the category whose objects are
the same as those of K, but in which each morphism A• → B• is the
equivalence class f/s of a pair (s, f)

A• s
←− C• f

−→ B•

of morphisms in K, with s a quasi-isomorphism, where two such pairs
(s, f) , (s′, f ′) are equivalent if there is a third such pair (s′′, f ′′) and a
commutative diagram in K :

A• B•C′′•

C•

C′•

s′′ f ′′

s f

s′ f ′

see [H, p. 30]. The composition of two morphisms f/s : A• → B•,
f ′/s′ : B• → B′•, is f ′g/st , where (t, g) is a pair (which always exists)
such that ft = s′g , see [H, pp. 30–31, 35–36]:

C• C′•

C•
1

B•

A• B′•

gt

s′f

s f ′

In particular, with (s, f) as above and 1C• the homotopy class of the
identity map of C•, we have

f/s = (f/1C•) ◦ (1C•/s) = (f/1C•) ◦ (s/1C•)−1.

There is a natural functor Q : K → D with Q(A•) = A• for each
complex A• in K and Q(f) = f/1A• for each map f : A• → B• in K .
If f is a quasi-isomorphism then Q(f) = f/1A• is an isomorphism (with
inverse 1A•/f ); and in this respect, Q is universal: any functor Q′ : K→ E
taking quasi-isomorphisms to isomorphisms factors uniquely via Q, i.e.,

there is a unique functor Q̃′ : D → E such that Q′ = Q̃′ ◦Q (so that

Q̃′(A•) = Q′(A•) and Q̃′(f/s) = Q′(f) ◦Q′(s)−1 ).
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This characterizes the pair (D, Q) up to canonical isomorphism.9

Moreover [H, p. 33, Prop. 3.4]: any morphism Q′
1 → Q′

2 of such func-

tors extends uniquely to a morphism Q̃′
1 → Q̃′

2 . In other words, compo-
sition with Q gives, for any category E, an isomorphism of the functor
category Hom(D,E) onto the full subcategory of Hom(K,E) whose ob-
jects are the functors K → E which transform quasi-isomorphisms in K
into isomorphisms in E .

One checks that the category D supports a unique additive structure
such that the canonical functor Q : K→ D is additive; and accordingly we
will always regard D as an additive category. If the category E and the

above functor Q′ : K→ E are both additive, then so is Q̃′.

Remarks. (1.2.1). The homology functors Hn : K → A defined
in (1.1) transform quasi-isomorphisms into isomorphisms, and hence may
be regarded as functors on D .

(1.2.2). A morphism f/s : A• → B• in D is an isomorphism if and
only if

Hn(f/s) = Hn(f) ◦Hn(s)−1 : Hn(A•)→ Hn(B•)

is an isomorphism for all n ∈ Z .
Indeed, if Hn(f/s) is an isomorphism for all n , then so is Hn(f), i.e.,

f is a quasi-isomorphism; and then s/f is the inverse of f/s .

(1.2.3). There is an isomorphism of A onto a full subcategory of D,
taking any object X ∈ A to the complex X• which is X in degree zero
and 0 elsewhere, and taking a map f : X → Y in A to f•/1X• , where
f• : X• → Y • is the homotopy class whose sole member is the map of
complexes which is f in degree zero.

Bijectivity of the indicated map HomA(X, Y ) → HomD(A)(X
•, Y •)

is a straightforward consequence of the existence of a natural functorial
isomorphism Z −→∼ H0(Z•) (Z ∈ A).

1.3. Mapping cones

An important construction is that of the mapping cone C•
u of a map

of complexes u : A• → B• in A . (For this construction we need only
assume that the category A is additive.) C•

u is the complex whose degree n
component is

Cn
u = Bn ⊕ An+1

9 The set Σ of quasi-isomorphisms in K admits a calculus of left and of right

fractions, and D is, up to canonical isomorphism, the category of fractions K[Σ−1] , see
e.g., [Sc, Chapter 19.] The set-theoretic questions arising from the possibility that Σ is

“too large,” i.e., a class rather than a set, are dealt with in loc. cit. Moreover, there is
often a construction of a universal pair (D,Q) which gets around such questions (but

may need the axiom of choice), cf. (2.3.2.2) and (2.3.5) below.
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and whose differentials dn : Cnu → Cn+1
u satisfy

dn|Bn = dnB, dn|An+1 = u|An+1 − dn+1
A (n ∈ Z)

where the vertical bars denote “restricted to,” and dB , dA are the differ-
entials in B•, A• respectively.

Cn+1
u = Bn+1 ⊕ An+2

d

x dB

x u

x−dA

Cnu = Bn ⊕ An+1

For any complex A•, and m ∈ Z, A•[m] will denote the complex
having degree n component

(A•[m])n = An+m (n ∈ Z)

and in which the differentials An[m] → An+1[m] are (−1)m times the
corresponding differentials An+m → An+m+1 in A•. There is a natural
“translation” functor T from the category of A-complexes into itself satis-
fying TA• = A•[1] for all complexes A•.

To any map u as above, we can then associate the sequence of maps
of complexes

(1.3.1) A• u
−→ B• v

−→ C•
u

w
−→ A•[1]

where v (resp. w ) is the natural inclusion (resp. projection) map. The
sequence (1.3.1) could also be represented in the form

(1.3.2)

A• B•

C•
u

[1]

u

and so we call such a sequence a standard triangle.
A commutative diagram of maps of complexes

A• u
−−−−→ B•

y
y

A′• −−−−→
u′

B′•

gives rise naturally to a commutative diagram of associated g triangles (each
arrow representing a map of complexes):

A• u
−−−−→ B• −−−−→ C•

u −−−−→ A•[1]
y

y
y

y

A′• −−−−→
u′

B′• −−−−→ C•
u′ −−−−→ A′•[1]
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Most of the basic properties of standard triangles involve homotopy,
and so are best stated in K(A). For example, the mapping cone C•

1 of the
identity map A• → A• is homotopically equivalent to zero, a homotopy
between the identity map of C•

1 and the zero map being as indicated:

Cn+1
1 = An+1 ⊕ An+2

hn+1

y 1

Cn1 = An ⊕ An+1

(i.e., for each n ∈ Z, hn+1 restricts to the identity on An+1 and to 0
on An+2; and dn−1hn + hn+1dn is the identity of Cn1 ). Other properties
can be found e.g., in [Bo, pp. 102–105], [Iv, pp. 22–33]. For subsequent
developments we need to axiomatize them, as follows.

1.4. Triangulated categories (∆-categories)

A triangulation on an arbitrary additive category K consists of an
additive automorphism T (the translation functor) of K, and a collection T
of diagrams of the form

(1.4.1) A
u
−→ B

v
−→ C

w
−→ TA .

A triangle (with base u and summit C ) is a diagram (1.4.1) in T .
(See (1.3.2) for a more picturesque—but typographically less convenient—
representation of a triangle.) The following conditions are required to hold:

(∆1)′ Every diagram of the following form is a triangle:

A
identity
−−−−−→ A −−−−→ 0 −−−−→ TA .

(∆1)′′ Given a commutative diagram

A −−−−→ B −−−−→ C −−−−→ TA

α

y β

y γ

y
yTα

A′ −−−−→ B′ −−−−→ C′ −−−−→ TA′

if α, β, γ are all isomorphisms and the top row is a triangle then
the bottom row is a triangle.
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(∆2) For any triangle (1.4.1) consider the corresponding infinite dia-
gram (1.4.1)∞ :

· · · −→ T−1C
−T−1w
−−−−−→ A

u
−→ B

v
−→ C

w
−→ TA

−Tu
−−−→ TB −→ · · ·

in which every arrow is obtained from the third preceding one by
applying −T . Then any three successive maps in (1.4.1)∞ form
a triangle.

(∆3)′ Any morphism A
u
−→ B in K is the base of a triangle (1.4.1).

(∆3)′′ For any diagram

A
u

−−−−→ B −−−−→ C −−−−→ TA

α

y β

y (∃γ)

yTα

A′ −−−−→
u′

B′ −−−−→ C′ −−−−→ TA′

whose rows are triangles, and with maps α, β given such that
βu = u′α, there exists a morphism γ : C → C′ making the entire
diagram commute, i.e., making it a morphism of triangles.10

As a consequence of these conditions we have [H, p. 23, Prop. 1.1 c]:

(∆3)∗ If in (∆3)′′ both α and β are isomorphisms, then so is γ.

Thus, and by (∆3)′ :

Every morphism A
u
−→ B is the base of a triangle, uniquely determined

up to isomorphism by u.

10 (∆3)′′ is implied by a stronger “octahedral” axiom, which states that for a

composition A
u
−→ B

β
−→ B′ and triangles ∆u, ∆βu, ∆β with respective bases u, βu,

β, there exist morphisms of triangles ∆u → ∆βu → ∆β extending the diagram

A
u

−−−−−→ B∥∥∥
yβ

A −−−−−→
βu

B′

u

y
∥∥∥

B −−−−−→
β

B′

and such that the induced maps on summits Cu → Cβu → Cβ are themselves the

sides of a triangle, whose third side is the composed map Cβ → TB → TCu. This
axiom is incompletely stated in [H, p. 21], see [V, p. 3] or [Iv, pp. 453–455]. We omit it

here because it plays no role in these notes (nor, as far as I can tell, in [H]). Thus the
adjective “pre-triangulated” may be substituted for “triangulated” throughout, see [N′,

p. 51, Definition 1.3.13 and p. 60, Remark 1.4.7].
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Definition (1.4.2). A triangulated category (∆-category for short) is
an additive category together with a triangulation.

Exercise (1.4.2.1). (Cf. [N ′ , pp. 42–45].) For any triangle

A
u
−→ B

v
−→ C

w
−→ TA

in a ∆-category K, and any object M , the induced sequence of abelian groups

Hom(M,A)→ Hom(M,B)→ Hom(M,C)

is exact [H, p. 23, 1.1 b)]. Using this and (∆2) (or otherwise), show that u is an
isomorphism iff C ∼= 0. More generally, the following conditions are equivalent:

(a) u is a monomorphism.

(b) v is an epimorphism.
(c) w = 0.

(d) There exist maps A←−
t
B ←−

s
C such that

1A = tu, 1B = sv + ut, 1C = vs

(so that B ∼= A⊕ C ).

Consequently, in view of (∆3)′, any monomorphism in K has a left inverse and
any epimorphism has a right inverse. And incidentally, the existence of finite direct sums

in K follows from the other axioms of ∆-categories.

Example (1.4.3): K(A) . For any abelian (or just additive) cate-
gory A , the homotopy category K := K(A) of (1.1) has a triangulation,
with translation T such that

TA• = A•[1] (A• ∈ K)

(i.e., T is induced by the translation functor on complexes, see (1.3), a func-
tor which respects homotopy), and with triangles all those diagrams (1.4.1)
which are isomorphic (in the obvious sense, see (∆3)∗ ) to the image in K
of some standard triangle, see (1.3) again. The properties (∆1)′, (∆1)′′,
and (∆3)′ follow at once from the discussion in (1.3). To prove (∆3)′′ we
may assume that C = C•

u , C′ = C•
u′ , and the rows of the diagram are

standard triangles. By assumption, βu is homotopic to u′α, i.e., there is a
family of maps hn : An → B′n−1 (n ∈ Z) such that

βnun − u′nαn = dn−1
B′ hn + hn+1dnA .

Define γ by the family of maps

γn : Cn = Bn ⊕ An+1 −→ B′n ⊕ A′n+1 = C′n (n ∈ Z)

such that for b ∈ Bn and a ∈ An+1,

γn(b, a) =
(
βn(b) + hn+1(a), αn+1(a)

)
,

and then check that γ is as desired.
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For establishing the remaining property (∆2), we recall some facts
about cylinders of maps of complexes (see e.g., [B, §2.6]—modulo sign
changes leading to isomorphic complexes).

Let u : A• → B• be a map of complexes, and let w : C•
u → A•[1] be

the natural map, see §1.3. We define the cylinder of u, C̃•
u , to be the

complex

C̃•
u := C•

w[−1] .

(C̃•
u is also the cone of the map (−1, u) : A → A ⊕ B .) One checks that

there is a map of complexes ϕ : C̃•
u → B• given in degree n by the map

ϕn : C̃nu = An ⊕Bn ⊕An+1 → Bn

such that

ϕn(a, b, a′) = u(a) + b .

The map ϕ is a homotopy equivalence, with homotopy inverse ψ given in
degree n by

ψn(b) = (0, b, 0) .

[If dn : C̃nu → C̃n+1
u is the differential and hn+1 : C̃n+1

u → C̃nu is given by
hn+1(a, b, a′) = (0, 0,−a) , then 1

C̃nu
− ψnϕn = dn−1hn + hn+1dn . . . ]

There results a diagram of maps of complexes

(1.4.3.1)

A• ũ
−−−−→ C̃•

u
ṽ

−−−−→ C•
u

w
−−−−→ A•[1]

∥∥∥ ϕ

y
∥∥∥

∥∥∥

A• −−−−→
u

B• −−−−→
v= ṽψ

C•
u −−−−→

w
A•[1]

in which ũ and ṽ are the natural maps, the bottom row is a standard tri-
angle, the two outer squares commute, and the middle square is homotopy-
commutative, i.e., ṽ − vϕ = ṽ(1− ψϕ) is homotopic to 0.

Now, (1.4.3.1) implies that the diagram

C•
u[−1]

−w[−1]
−−−−−→ A• u

−→ B• v
−→ C•

u

is isomorphic in K to the diagram

C•
u[−1]

−w[−1]
−−−−−→ A• ũ

−→ C̃•
u

ṽ
−→ C•

u

which is a standard triangle, since C̃•
u = C•

w[−1] = C•
−w[−1] .
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Hence if

A• u′

−→ B• v′
−→ C• w′

−→ A•[1]

is any triangle in K, then

C•[−1]
−w′[−1]
−−−−−→ A• u′

−→ B• v′
−→ C•

is a triangle, and—by the same reasoning—so is

B•[−1]
−v′[−1]
−−−−−→ C•[−1]

−w′[−1]
−−−−−→ A• u′

−→ B• ,

and consequently so is

B• v′
−→ C• −w′

−−→ A•[1]
u′[1]
−−−→ B•[1]

(because if A• ∼= C•
−v′[−1] = C•

v′ [−1] , then A•[1] ∼= C•
v′), as is the isomor-

phic diagram

B• v′
−→ C• w′

−→ A•[1]
−u′[1]
−−−−→ B•[1] .

Property (∆2) for K results.11

We will always consider K to be a ∆-category, with this triangulation.

There is a close relation between triangles in K and certain exact
sequences. For any exact sequence of complexes in an abelian category A

(1.4.3.2) 0 −→ A• u
−→ B• v

−→ C• −→ 0 ,

if u0 is the isomorphism from A• onto the kernel of v induced by u, then
we have a natural exact sequence of complexes

(1.4.3.3) 0 −→ C•
u0

inclusion
−−−−−→ C•

u
χ
−→ C• −→ 0

where χn : Cnu → Cn (n ∈ Z) is the composition

χn : Cnu = Bn ⊕An+1 natural
−−−−→ Bn

v
−−−−→ Cn

(see (1.3)). It is easily checked—either directly, or because C•
u0

is isomor-
phic to the cone of the identity map of A•—that Hn(C•

u0
) = 0 for all n;

and then from the long exact cohomology sequence associated to (1.4.3.3)
we conclude that χ is a quasi-isomorphism.

11 For other treatments of (∆2) and (∆3)′′ see [Bo, pp. 102–104] or [Iv, p. 27, 4.16;
and p. 30, 4.19]. And for the octahedral axiom, use triangle (4.22) in [Iv, p. 32], whose

vertices are the cones of two composable maps and of their composition.
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If the exact sequence (1.4.3.2) is semi-split, i.e., for every n ∈ Z, the
restriction vn : Bn → Cn of v to Bn has a left inverse, say ϕn, then with

Φn = ϕn ⊕ (ϕn+1dnC − d
n
Bϕ

n) : Cn → Bn ⊕ An+1

(where An+1 is identified with ker(vn+1) via u), the map of complexes
Φ:= (Φn)n∈Z is a homotopy inverse for χ : χ ◦Φ is the identity map of C•,
and also the map (1C•

u
− Φ ◦χ) : C•

u → ker(χ) = C•
u0
∼= 0 vanishes in K.

[More explicitly, if hn+1 : Cn+1
u → Cnu is given by

hn+1(b, a) := b− φn+1vn+1b ∈ An+1 ⊂ Cnu (b ∈ Bn+1, a ∈ An+2)

and d is the differential in C•
u , then 1Cnu −Φn ◦χn = (dn−1hn +hn+1dn).]

Thus χ induces a natural isomorphism in K

C•
u −→

∼ C• ,

and hence by (∆1)′′ we have a triangle

(1.4.3.4) A• ū
−→ B• v̄

−→ C• w̄
−→ A•[1]

where ū, v̄ are the homotopy classes of u, v respectively, and w̄ is the
homotopy class of the composed map

(1.4.3.5) (ϕn+1dnC − d
n
Bϕ

n)n∈Z : C• Φ
−→ C•

u
natural
−−−−→ A•[1] ,

a class independent of the choice of splitting maps ϕn, because χ does not
depend on that choice, so that neither does its inverse Φ, up to homotopy.
This w̄ is called the homotopy invariant of (1.4.3.2) (assumed semi-split).12

Moreover, any triangle in K is isomorphic to one so obtained.

This is shown by the image in K of (1.4.3.1) (in which the bottom
row is any standard triangle, and the homotopy equivalence ϕ becomes an
isomorphism) as soon as one checks that the top row is in fact of the form
specified by (1.4.3.4) and (1.4.3.5).

12 The category A need only be additive for us to define the homotopy invariant

of a semi-split sequence of complexes A•
u

⇄
ψ
B•

v

⇄
ϕ
C• (i.e., Bn ∼= An ⊕ Cn for all n,

and un, ψn, vn, ϕn are the usual maps associated with a direct sum): it’s the homotopy
class of the map

ψ(ϕdC − dBϕ) : C• → A•[1],

a class depending, as above, only on u and v . [More directly, note that if ϕ′ is another

family of splitting maps then

ψ(ϕdC − dBϕ)− ψ(ϕ′dC − dBϕ
′) = dA[1]ψ(ϕ − ϕ′) + ψ(ϕ− ϕ′)dC . ]
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By way of illustration here is an often used fact, whose proof involves
triangles. (See also [H, pp. 35–36].)

Lemma (1.4.3.6). Any diagram A• s
← C• f

→ B• in K(A), with s
a quasi-isomorphism, can be embedded in a commutative diagram

(1.4.3.7)

C• f
−−−−→ B•

s

y
ys′

A• −−−−→
f ′

D•

with s′ a quasi-isomorphism.

Proof. By (∆3)′ there exists a triangle

(1.4.3.8) C• (s,−f)
−−−−→ A• ⊕B• −→ D• −→ C•[1] .

If f ′ is the natural composition A• → A• ⊕ B• → D•, and s′ is the
composition B• → A• ⊕B• → D•, then commutativity of (1.4.3.7) results
from the easily-verifiable fact that the composition of the first two maps in
a standard triangle is homotopic to 0.13 And if s is a quasi-isomorphism,
then from (1.4.3.8) we get exact homology sequences

0→ Hn(C•)→ Hn(A•)⊕Hn(B•)→ Hn(D•)→ 0 (n ∈ Z)

(see (1.4.5) below) which quickly yield that s′ is a quasi-isomorphism too.

Example (1.4.4): D(A) . The above triangulation on K leads
naturally to one on the derived category D of 1.2. The translation func-

tor T̃ is determined by the relation QT = T̃Q, where Q : K → D is
the canonical functor, and T is the translation functor in K (see (1.4.3)):
note that QT transforms quasi-isomorphisms into isomorphisms, and use

the universal property of Q given in 1.2. In particular T̃ (A•) = A•[1]

for every complex A• ∈ D. ( T̃ is additive, by the remarks just before
(1.2.1).) The triangles are those diagrams which are isomorphic—in the
obvious sense, see (∆3)∗—to those coming from K via Q, i.e., diagrams
isomorphic to natural images of standard triangles.

Conditions (∆1)′, (∆1)′′, and (∆2) are easily checked.

13 In fact in any ∆-category, any two successive maps in a triangle compose to 0

[H, p. 23, Prop. 1.1 a)].
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Next, given f/s : A• → B• in D, represented by A• s
← X• f

→B• in K

(see 1.2), we have, by (∆3)′ for K, a triangle X• f
→ B• g

→ C• h
→ X•[1]

in K, whose image is the top row of a commutative diagram in D, as
follows:

(1.4.4.1)

X• Q(f)
−−−−→ B• Q(g)

−−−−→ C• Q(h)
−−−−→ X•[1]

Q(s)

y≃

∥∥∥
∥∥∥ ≃

yT̃Q(s)

A• −−−−→
f/s

B• −−−−→ C• −−−−→ X•[1]

Condition (∆3)′ for D results. As for (∆3)′′, we can assume, via isomor-
phisms, that the rows of the diagram in question come from K, via Q.
Then we check via definitions in 1.2 that the commutative diagram

A• u
−−−−→ B•

α

y β

y

A′• −−−−→
u′

B′•

in D can be expanded to a commutative diagram of the form

A• u
−−−−→ B•

α1

x≃ β1

x≃

X• −−−−→ Y •

α2

y β2

y

A′• −−−−→
u′

B′•

(i.e., α = α2α
−1
1 , β = β2β

−1
1 ), where all the arrows represent maps coming

from K, i.e., maps of the form Q(f). By (∆3)′ and (∆3)′′ for K, this
diagram embeds into a larger commutative one whose middle row also comes
from K :

A• u
−−−−→ B• −−−−→ C• −−−−→ A•[1]

α1

x≃ β1

x≃ γ1

x ≃

xT̃α1

X• −−−−→ Y • −−−−→ Z• −−−−→ X•[1]

α2

y β2

y γ2

y
yT̃α2

A′• −−−−→
u′

B′• −−−−→ C′• −−−−→ A′•[1]

Using (1.2.2) and the exact homology sequences associated to the top
two rows (see (1.4.5) below), we find that γ1 is an isomorphism. Then
γ := γ2γ

−1
1 fulfills (∆3)′′.
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So we have indeed defined a triangulation; and from (∆1)′′, (∆3)∗,
and (1.4.4.1) we conclude that this is the unique triangulation on D with

translation T̃ and such that Q transforms triangles into triangles.

We will always consider D to be a ∆-category, with this triangulation.

Now for any exact sequence of complexes in A

(1.4.4.2) 0 −→ A• u
−→ B• v

−→ C• −→ 0

the quasi-isomorphism χ of (1.4.3.3) becomes an isomorphism χ̃ in D, so
that in D there is a natural composed map

w̃ : C• χ̃−1

−→ C•
u −→ A•[1] ;

and then with ũ and ṽ corresponding to u and v respectively, the diagram

(1.4.4.2)∼ A• ũ
−→ B• ṽ

−→ C• w̃
−→ A•[1]

is a triangle in D. If the sequence (1.4.4.2) is semi-split, then (1.4.4.2)∼ is
the image in D of the triangle (1.4.3.4) in K. Since every triangle in K
is isomorphic to one coming from a semi-split exact sequence (see end of
example (1.4.3)), therefore every triangle in D is isomorphic to one of the
form (1.4.4.2)∼ arising from an exact sequence of complexes in A (in fact,
from a semi-split such sequence).

(1.4.5). To any triangle A• u
−→ B• v

−→ C• w
−→ A•[1] in K or

in D, we can apply the homology functors Hn (see (1.2.1)) to obtain an
associated exact homology sequence
(1.4.5)H

· · · −−→ Hi−1(C•)
Hi−1(w)
−−−−−−→ Hi(A•)

Hi(u)
−−−−→ Hi(B•)

Hi(v)
−−−−→ Hi(C•)

Hi(w)
−−−−→ Hi+1(A•) −−→ · · ·

Exactness is verified by reduction to the case of standard triangles.
For an exact sequence (1.4.4.2), the usual connecting homomorphism

Hi(C•)→ Hi+1(A•) (i ∈ Z)

is easily seen to be −Hi(w̃) (see (1.4.4.2)∼ ). Thus (1.4.5)H (for (1.4.4.2)∼ )
is, except for signs, the usual homology sequence associated to (1.4.4.2).

It should now be clear why it is that we can replace exact sequences of
complexes in A by triangles in D. And the following notion of “∆-functor”
will eventually make it quite advantageous to do so.
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1.5. Triangle-preserving functors (∆-functors)

Let K1 , K2 be ∆-categories (1.4.2) with translation functors T1, T2

respectively. A (covariant) ∆-functor is defined to be a pair (F, θ) con-
sisting of an additive functor F : K1 → K2 together with an isomorphism
of functors

θ : FT1 −→
∼ T2F

such that for every triangle

A
u
−→ B

v
−→ C

w
−→ T1A

in K1 , the corresponding diagram

FA
Fu
−−−−→ FB

Fu
−−−−→ FC

θ◦Fw
−−−−→ T2FA

is a triangle in K2 .
These are the exact functors of [V, p. 4], and also the ∂-functors of

[H, p. 22]; it should be kept in mind however that θ is not always the
identity transformation (see Examples (1.5.3), (1.5.4) below—but see also
Exercise (1.5.5)). In practice, for given F if there is some θ such that (F, θ)
is a ∆-functor then there will usually be a natural one, and after specifying
such a θ we will simply say (abusing language) that F is a ∆-functor.

Let K3 be a third ∆-category, with translation T3 . If each of
(F, θ) : K1 → K2 and (H,χ) : K2 → K3 is a ∆-functor, then so is

(H ◦F, χ ◦θ) : K1 → K3

where χ ◦θ is defined to be the composition

HFT1
via θ
−−−→ HT2F

via χ
−−−→ T3HF .

A morphism η : (F, θ)→ (G,ψ) of ∆-functors (from K1 to K2) is a
morphism of functors η : F → G such that for all objects X in K1 , the
following diagram commutes:

FT1(X)
θ(X)
−−−−→ T2F (X)

η(T1(X))

y
yT2(η(X))

GT1(X) −−−−→
ψ(X)

T2G(X)

The set of all such η can be made, in an obvious way, into an abelian
group. If µ : (G,ψ) → (G′, ψ′) is also a morphism of ∆-functors, then
so is the composition µη : (F, θ) → (G′, ψ′) . And if (H,χ) : K2 → K3

[respectively (H ′, χ′) : K3 → K1 ] is, as above, another ∆-functor then
η naturally induces a morphism of composed ∆-functors

(H ◦F, χ ◦θ)→ (H ◦G, χ ◦ψ)

[ respectively (F ◦H ′, θ ◦χ′)→ (G ◦H ′, ψ ◦χ′) ] .
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We find then that:

Proposition. The ∆-functors from K1 to K2, and their morphisms,
form an additive category Hom∆(K1, K2) ; and the composition operation

Hom∆(K1, K2)×Hom∆(K2, K3) −→ Hom∆(K1, K3)

is a biadditive functor.

A morphism η as above has an inverse in Hom∆(K1, K2) if and only
if η(X) is an isomorphism in K2 for all X ∈ K1 . We call such an η a
∆-functorial isomorphism.

Similarly, a contravariant ∆-functor is a pair (F, θ) with F : K1 → K2

a contravariant additive functor and

θ : T−1
2 F −→∼ FT1

an isomorphism of functors such that for every triangle in K1 as above,
the corresponding diagram

FA
Fu
←−−−− FB

Fv
←−−−− FC

−Fw◦θ
←−−−−− T−1

2 FA

is a triangle in K2 . Composition and morphisms etc. of contravariant
∆-functors are introduced in the obvious way.

Exercise. A contravariant ∆-functor is the same thing as a covariant ∆-functor
on the opposite (dual) category Kop

1
[M, p. 33], suitably triangulated. (For example,

D(A)op is ∆-isomorphic to D(Aop), see (1.4.4).)

Examples. (1.5.1) (see [H, p. 33, Prop. 3.4]). By (1.4.4), the natural
functor Q : K → D of §1.2, together with θ = identity, is a ∆-functor.
Moreover, as in 1.2: composition with Q gives, for any ∆-category E,
an isomorphism of the category of ∆-functors Hom∆(D, E) onto the full
subcategory of Hom∆(K, E) whose objects are the ∆-functors (F, θ) such
that F transforms quasi-isomorphisms in K to isomorphisms in E.14

(1.5.2). Let F : A1 → A2 be an additive functor of abelian categories,
and set K1 = K(A1) , K2 = K(A2). Then F extends in an obvious way
to an additive functor F̄ : K1 → K2 which commutes with translation,
and which (together with θ = identity) is easily seen to be a ∆-functor,
essentially because F̄ takes cones to cones, i.e., for any map u of complexes
in A1 we have

(1.5.2.1) F̄ (C•
u) = C•

F̄ (u) .

14 Equivalently (∗): F (C•) ∼= 0 for every exact complex C• ∈ K. (“C• exact”

means Hi(C•) = 0 for all i, i.e., the zero map C• → 0 is a quasi-isomorphism). Exact-
ness of the homology sequence (1.4.5)H of a standard triangle shows that a map u in K

is a quasi-isomorphism iff the cone C•
u is exact. Also, the base of a triangle is an isomor-

phism iff the summit is 0, see (1.4.2.1). So since F (C•
u) is the summit of a triangle with

base F (u), (∗) implies that if u is a quasi-isomorphism then F (u) is an isomorphism.
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(1.5.3) (expanding [H, p. 64, line 7] and illustrating [De, p. 265,
Prop. 1.1.7]). For complexes A•, B• in the abelian category A , the com-
plex of abelian groups Hom•(A•, B•) is given in degree n by

Homn(A•, B•) = Homgr(A
•[−n], B•) =

∏

j∈Z

Hom(Aj, Bj+n)

(“Homgr” denotes “homomorphisms of graded groups”) and the differential

dn : Homn → Homn+1 takes f ∈ Homgr(A
•[−n], B•) to

dn(f) := (dB ◦f)[−1] + f ◦ dA[−n−1] ∈ Homgr(A
•[−n− 1], B•).

In other words, if f = (f j)j∈Z with f j ∈ Hom(Aj , Bj+n) then

dn(f) =
(
dn+j
B ◦f j + (−1)n+1f j+1

◦ djA
)
j∈Z.

15

For fixed C•, the additive functor of complexes

F1(A
•) = Hom•(C•, A•)

preserves homotopy, and so gives an additive functor (still denoted by F1)
from K = K(A) into K(Ab) (where Ab is the category of abelian groups).
One checks that F1T = T∗F1 , (T = translation in K, T∗ = translation
in K(Ab)) and that F1 takes cones to cones (cf. (1.5.2.1)); and hence
F1 (together with θ1 = identity) is a ∆-functor.

Similarly, for fixed D•,

F2(A
•) = Hom•(A•, D•)

gives a contravariant additive functor from K into K(Ab). But now we
run into sign complications: the complexes T−1

∗ F2(A
•) and F2T (A•), while

coinciding as graded objects, are not equal, the differential in one being the
negative of the differential in the other. We define a functorial isomorphism

θ2(A
•) : T−1

∗ F2(A
•) −→∼ F2T (A•)

to be multiplication in each degree n by (−1)n, and claim that the pair
(F2, θ2) is a contravariant ∆-functor.

Indeed, if u : A• → B• is a morphism of complexes in A , then we
check (by writing everything out explicitly) that, with F = F2 , θ = θ2 ,
the map of graded objects

C•
Fu = FA• ⊕ T∗FB

• T∗(θ(A•))⊕(−1)
−−−−−−−−−−→ T∗FTA

• ⊕ T∗FB
• = T∗FC

•
u

is an isomorphism of complexes, whence, v : B• → C•
u and w : C•

u → TA•

being the canonical maps, the diagram

FB• Fu
−−−−→ FA• (T∗Fw)◦T∗(θ(A•))

−−−−−−−−−−−−→ T∗FC
•
u

−T∗Fv−−−−→ T∗FB
•

is a triangle in K(Ab), i.e.,

T−1
∗ FA• (−Fw)◦θ(A•)

−−−−−−−−−→ F (C•
u)

Fv
−−−−→ FB• Fu

−−−−→ FA•

is a triangle (see (∆2) in §1.4); and the claim follows.

15 This standard dn differs from the one in [H, p. 64] by a factor of (−1)n+1 .
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(1.5.4) (see again [De, p. 265, Prop. 1.1.7]). Let U be a topological
space, O a sheaf of rings—say, for simplicity, commutative—and A the
abelian category of sheaves of O-modules. For complexes A•, B• in A ,
the complex A• ⊗B• is given in degree n by

(A• ⊗B•)n =
⊕

p∈Z

(Ap ⊗Bn−p) (⊗ = ⊗O)

and the differential

dn : (A• ⊗B•)n → (A• ⊗B•)n+1

is the unique map whose restriction to Ap ⊗Bn−p is

dn|(Ap ⊗Bn−p) = dpA ⊗ 1 + (−1)p ⊗ dn−pB (p ∈ Z).

With the usual translation functor T , we have for each i, j ∈ Z a unique
isomorphism of complexes

θij : T iA• ⊗ T jB• −→∼ T i+j(A• ⊗B•)

satisfying, for every p, q ∈ Z,

θij|(A
p+i ⊗Bq+j) = multiplication by (−1)pj .

[Note that Ap+i ⊗ Bq+j is contained in both (T iA• ⊗ T jB•)p+q and
(T i+j(A⊗B))p+q .]

For fixed A•, we find then that the functor of complexes taking B• to
B• ⊗ A• preserves homotopy and takes cones to cones, giving an additive
functor from K(A) into itself, which, together with θ10 = identity, is a
∆-functor.

Similarly, for fixed A• the functor taking B• to A• ⊗ B• induces
a functor of K(A) into itself which, together with θ01 6= identity, is a
∆-functor. And for fixed A•, the family of isomorphisms

(1.5.4.1) θ(B•) : A• ⊗B• −→∼ B• ⊗A•

defined locally by

θ(B•)(a⊗ b) = (−1)pq(b⊗ a) (a ∈ Ap, b ∈ Bq)

constitutes an isomorphism of ∆-functors.
Exercise (1.5.5). Let K1 , K2 be ∆-categories with respective translation func-

tors T1, T2 ; and let (F, θ) : K1 → K2 be a ∆-functor. An object A in K1 is periodic
if there is an integer m > 0 such that Tm1 (A) = A. Suppose that 0 is the only periodic

object in K1 . (For example, K1 could be any one of the ∆-categories K* of §1.6

below.) Then we can choose a function ν : (objects of K1)→ Z such that ν(0) = 0 and
ν(T1A) = ν(A)− 1 for all A 6= 0; and using θ, we can define isomorphisms

ηA : F (A) −→∼ T
−ν(A)
2 F (T

ν(A)
1 A) =: f(A) (A ∈ K1).

Note that f(T1A) = T2f(A) . Verify that there is a unique way of extending f to

a functor such that the η
A

form an isomorphism of ∆-functors (F, θ) −→∼ (f, identity).
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1.6. ∆-subcategories

A full additive subcategory K′ of a ∆-category K carries at most one
triangulation for which the translation is the restriction of that on K, and
such that the inclusion functor ι : K′ →֒ K (together with the identity
transformation from ιT to Tι) is a ∆-functor. For the existence of such
a triangulation it is necessary and sufficient that K′ be stable under the
translation automorphism and its inverse, and that the summit of any tri-
angle in K with base in K′ be isomorphic to an object in K′; the triangles
in K′ are then precisely the triangles of K whose vertices are all in K′.
(Details left to the reader.) Such a K′ is called a ∆-subcategory of K.

For example, if K = K(A) is as in (1.4.3), then a full additive subcat-
egory K′ is a ∆-subcategory if and only if:

(i) for every complex A• ∈ K we have A• ∈ K′ ⇔ A•[1] ∈ K′, and

(ii) the mapping cone of any A-morphism of complexes u : A• → B•

with A• and B• in K′ is homotopically equivalent to a complex
in K′.

Example (1.6.1). We consider various full additive subcategories

K+, K−, Kb, K+, K−, Kb, of K = K(A).

The objects of K+ are complexes A• which are bounded below, i.e.,
there is an integer n0 (depending on A• ) such that An = 0 for n < n0. The
objects of K+ are complexes B• whose homology is bounded below, i.e.,
Hm(B•) = 0 for all m < m0(B

•). The objects of K− and K− (respectively

Kb and Kb ) are specified similarly, with “bounded above” (resp. “bounded
above and below”) in place of “bounded below.” We have, obviously,

Kb = K+ ∩K− , Kb = K+ ∩K− ;

and if * stands for any one of +, −, or b, then

K* ⊂ K* .

Using the natural exact sequence (see (1.3))

(1.6.2) 0→ B• → C•
u → A•[1]→ 0

associated with a morphism u : A• → B• of complexes in A , we find that
if both A• and B• satisfy one of the above boundedness conditions then
so does the cone C•

u , whence K* and K* are ∆-subcategories of K.

Remark (1.6.3). In (1.4.3.6) and its proof, we can replace K(A) by
any ∆-subcategory.
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1.7. Localizing subcategories of K ; ∆-equivalent categories

In the description of the derived category D given in §1.2, we can
replace K by any ∆-subcategory L, and obtain a derived category DL

together with a functor QL : L→ DL which is universal among all functors
transforming quasi-isomorphisms into isomorphisms. (Here, as in 1.2, for
checking details one needs [H, p. 35, Prop. 4.2].) Then, just as in (1.4.4),
DL has a unique triangulation for which the translation functor is the
obvious one and for which QL is a ∆-functor; and (1.5.1) remains valid
with QL in place of Q.

If L′ ⊂ L′′ are ∆-subcategories of K and j : L′ → L′′ is the inclusion,
then there exists a natural commutative diagram of ∆-functors

L′ j
−−−−→ L′′

Q′:=QL′

y
yQL′′=:Q′′

D′ := DL′ −−−−→
̃

DL′′ =: D′′

Note that on objects of D′ (= objects of L′), ̃ is just the inclusion map
to objects of D′′.

Recalling that passage to derived categories is a kind of localization
in categories (§1.2, footnote), we say that L′ localizes to a ∆-subcategory
of D′′, or more briefly, that L′ is a localizing subcategory of L′′, if the
functor ̃ is fully faithful, i.e., the natural map is an isomorphism

HomD′(A•, B•) −→∼ HomD′′(̃A•, ̃B•)

for all A• and B• in D′.
When this condition holds, ̃ is an additive isomorphism of D′ onto

the full subcategory ̃(D′) of D′′, so ̃ carries the triangulation on D′

over to a triangulation on ̃(D′); and then since ̃ is a ∆-functor, the
inclusion functor ̃(D′) →֒ D′′, together with θ = identity, is a ∆-functor,
i.e., ̃(D′) is a ∆-subcategory of D′′. Thus if L′ is localizing in L′′, then
we can identify D′ with the ∆-subcategory of D′′ whose objects are the
complexes in L′, and Q′ with the restriction of Q′′ to L′.

(1.7.1). From definitions in §1.2, we deduce easily the following simple
sufficient condition for L′ to be localizing in L′′ :

For every quasi-isomorphism X• → B• in L′′ with B• in L′, there
exists a quasi-isomorphism A• → X• with A• in L′.

(1.7.1)op . A “dual” argument (see [H, p. 32, proof of 3.2]) yields:
The same condition with arrows reversed is also sufficient.

For example, if the objects in L′ are precisely those complexes in K
which satisfy some condition on their homology (for instance, if L′ is any
one of the categories K* of (1.6.1)), then L′ is localizing in L′′.

This follows at once from (1.7.1) (take A• = X•).
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The following results will provide a useful interpretation of various
kinds of resolutions (injective, flat, flasque, etc.) as defining an equivalence
of ∆-categories.

(1.7.2). If for every X• ∈ L′′ there exists a quasi-isomorphism
A• → X• with A• ∈ L′ then ̃ is an equivalence of categories, i.e., there
exists a functor ρ : D′′ → D′ together with functorial isomorphisms

(1.7.2.1) 1D′′ −→∼ ̃ρ , 1D′ −→∼ ρ̃

(see [M, p. 91]). Moreover, for the usual translation T there is then a
unique functorial isomorphism

θ : ρ T −→∼ Tρ

such that the pair (ρ, θ) is a ∆-functor and the isomorphisms (1.7.2.1) are
isomorphisms of ∆-functors (§1.5).

We say then that ̃ and ρ—or more precisely (̃, identity) and (ρ, θ)—
are ∆-equivalences of categories, quasi-inverse to each other.

(1.7.2)op . Same as (1.7.2), with A• → X• replaced by X• → A•.

To prove (1.7.2)op, for example, suppose that we have a family of
quasi-isomorphisms (“right L′-resolutions”)

ϕX• : X• → A•
X• ∈ L′ (X• ∈ L′′) .

Then by (1.7.1)op, L′ is localizing in L′′. So finding an additive functor ρ
with isomorphisms (1.7.2.1) is equivalent to finding for each object X•

of D′′ an isomorphism to an object in D′ ⊂ D′′ (see [M, p. 92, (iii)⇒(ii)]).
But Q′′(ϕX•) is such an isomorphism. Thus we have ρ : D′′ → D′ with

ρ(X•) = A•
X• (X• ∈ D′′) .

Next, define θ(X•) to be the unique map making the following diagram
(with all arrows representing isomorphisms in D′′ ) commute:

(1.7.2.2)

TX•

A•
TX• TA•

X•ρTX• = = TρX•

Q′′(ϕ
TX•) TQ′′(ϕ

X•)

θ(X•)

Then, one checks, the family θ(X•) constitutes an isomorphism of functors
θ : ρT −→∼ Tρ.
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Furthermore, if

X• u
−→ Y • v

−→ Z• w
−→ TX•

is a triangle in D′′, then (∆1)′′ (see §1.4) applied to the commutative
diagram in D′′

X• u
−−−−→ Y • v

−−−−→ Z• w
−−−−−−−→ TX•

Q′′ϕ
X•

y Q′′ϕ
Y•

y
yQ′′ϕ

Z•

yTQ′′ϕ
X•

A•
X• −−−−→

ρ(u)
A•
Y • −−−−→

ρ(v)
A•
Z• −−−−−−−→

θ(X•)◦ρ(w)
TA•

X•

guarantees that the bottom row is a triangle; and so (ρ, θ) is a ∆-functor.
Finally, the fact that the isomorphisms in (1.7.2.1) (induced by the

family ϕX•) are isomorphisms of ∆-functors is nothing but the commuta-
tivity of (1.7.2.2). Thus the family θ := {θ(X•)} is the unique functorial
isomorphism having the properties stated in (1.7.2)op.

Remark (1.7.2.3). It is sometimes possible to choose the functor ρ so
that ρ T = Tρ and θ = identity, i.e., to find a family of quasi-isomorphisms
ϕX• : X• → A•

X• commuting with translation (see (1.8.1.1), (1.8.2), and
(1.8.3) below).

1.8. Examples

(1.8.1). If L′ ⊂ K is any one of the ∆-subcategories K* of (1.6.1)
and if L′′ is any ∆-subcategory of K containing L′, then L′ is localizing
in L′′. The same holds for L′ = K+ or L′ = K−; and also for L′ = Kb

if L′′ is localizing in K.

For L′ = K* the assertion follows at once from (1.7.1). For the rest
(and for other purposes) we need the truncation operators τ + , τ−, defined
as follows:

For any B• ∈ K, set

i = i(B•) := inf{m | Hm(B•) 6= 0 }

and let τ + (B•) be the complex

· · · → 0→ 0→ coker(Bi−1 → Bi)→ Bi+1 → Bi+2 → · · · .

(When i =∞, i.e., when B• is exact, this means τ + (B•) = 0•; and when
i = −∞, τ + (B•) = B•.) There is an obvious quasi-isomorphism

(1.8.1)+ B• → τ
+
(B•) .
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Dually, for any C• ∈ K set

s = s(C•) := sup{n | Hn(C•) 6= 0 }

and let τ−(C•) be the complex

· · · → Cs−2 → Cs−1 → ker(Cs → Cs+1)→ 0→ 0→ · · · .

There is an obvious quasi-isomorphism

(1.8.1)− τ−(C•)→ C• .

Now if C• → B• is a quasi-isomorphism in L′′ with B• ∈ K− then
C• ∈K−, and we have the quasi-isomorphism (1.8.1)− with τ−(C•) ∈ K−.
So (1.7.1) with L′ = K− ⊂ L′′ shows that K− is localizing in L′′.

Dually, via (1.8.1)+ , (1.7.1)op implies that K+ is localizing in any
∆-subcategory L′′ of K containing K+.

And again via (1.8.1)−, (1.7.1) shows that Kb is localizing in K+ ; and

since as above K+ is localizing in K, the natural functors Db → D+ → D
between the corresponding derived categories are both fully faithful, whence
so is their composition, i.e., Kb is localizing in K. It follows at once that
Kb is localizing in any L′′ ⊃ Kb such that L′′ is localizing in K.

Consequently, as in (1.7): the derived category D* (resp. D*) of K*

(resp. K*) can be identified in a natural way with a ∆-subcategory of D.

Then the inclusion D+ →֒D+ is a ∆-equivalence of categories. Indeed,
as in the proof of (1.7.2)op, with L′ = K+, L′′ = K+, and ϕB• = (1.8.1)+ ,
we can see that τ + —which commutes with translation—extends to a
∆-functor

(1.8.1.1) (τ +, 1) : D+→ D+

which is quasi-inverse to the inclusion.

Similarly the inclusions D− →֒ D−, Db →֒ Db are ∆-equivalences,
with respective quasi-inverses τ− and τb = τ− ◦ τ + = τ +

◦ τ−. More
precisely, τb is the composition

Db τ+

−→Db ∩D+ τ−

−→ D− ∩D+ = Db .
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(1.8.2) Let I be a full additive subcategory of A such that every
object of A admits a monomorphism into an object in I. Then there exists
a family of quasi-isomorphisms

ϕB• : B• → I•B•

(
B• ∈K+ = K+(A)

)

where each I• = I•B• is a bounded-below I-complex (i.e., In ∈ I for all n,
and In = (0) for n≪ 0); and such that moreover with the usual translation
functor T we have

(1.8.2.1) I•TB• = TI•B• , ϕTB• = T (ϕB•) .

To see this, first construct quasi-isomorphisms ϕB• as in [H, p. 42, 4.6, 1)]
for those B• such that H0(B•) 6= 0 and Bm = 0 for m < 0. Then (1.8.2.1)
forces the definition of ϕB• for any B• such that there exists i ∈ Z with
Hi(B•) 6= 0 and Bm = 0 for all m < i (i.e., 0• 6= B• = τ +B•, see (1.8.1)).
Set I0• = 0•, and finally for any B• ∈K+ set

ϕB• = (ϕτ+B•) ◦ (1.8.1)
+
.

Now let K+
I be the full subcategory of K+ whose objects are the

bounded-below I-complexes. Since the additive subcategory I ⊂ A is
closed under finite direct sums, one sees that K+

I is a ∆-subcategory of K+.

According to (1.7.2)op, the derived category D+
I of K+

I can be identified

with a ∆-subcategory of D+, and the above family ϕB• gives rise to an
I-resolution functor

(1.8.2.2) ρ : D+→ D+
I

which is, together with θ = identity, a ∆-equivalence of categories, quasi-
inverse to the inclusion D+

I →֒D+.

For example, if I is the full subcategory of A whose objects are all
the injectives in A, then by [H, p. 41, Lemma 4.5] every quasi-isomorphism
in K+

I is an isomorphism, so that K+
I can be identified with its derived cat-

egory D+
I . Thus, if A has enough injectives (i.e., every object of A admits

a monomorphism into an injective object), then the natural composition

D+
I = K+

I →֒K+→D+

is a ∆-equivalence, having as quasi-inverse an injective resolution func-
tor (1.8.2.2) (cf. [H, p. 46, Prop. 4.7]).
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(1.8.3). Let P be a full additive subcategory of A such that for
every object B ∈ A there exists an epimorphism PB → B with PB ∈ P.
An argument dual to that in (1.8.2) yields that there exists a family of
quasi-isomorphisms

ψB• : P •
B• → B•

(
B• ∈K−(A)

)

commuting with translation, and such that each P •
B• is a bounded-above

P-complex.
According to (1.7.2), we have then a P-resolution functor which is

a ∆-equivalence into D−(A) from its ∆-subcategory whose objects are
bounded-above P-complexes.

For example, if U is a topological space, O is a sheaf of rings on U ,
and A is the abelian category of (sheaves of) left O-modules, then we
can take P to be the full subcategory of A whose objects are all the flat
O-modules [H, p. 86, Prop. 1.2].

1.9. Complexes with homology in a plump subcategory

(1.9.1). Here, in brief, are some essential basic facts.

Let A# be a plump subcategory of the abelian category A , i.e., a full
subcategory containing 0 and such that for every exact sequence in A

X1 → X2 → X → X3 → X4 ,

if X1, X2, X3, and X4 all lie in A# then so does X . Then the kernel and
cokernel (in A) of any map in A# must lie in A# (whence A# is abelian),
and any object of A isomorphic to an object in A# must itself be in A#.

Considering only complexes in A whose homology objects all lie in A#,
we obtain full subcategories K# of K, K*

#
of K*, and K*

#
of K*

(see (1.6.1)). Via the exact homology sequence (1.4.5)H of a standard
triangle (1.3.1), we find that these subcategories are all ∆-subcategories
(see (i) and (ii) in §1.6), and indeed, by (1.7.1), localizing subcategories.

From (1.8.1) it follows then that K# , K*
#
, and K*

#
are localizing subcate-

gories of K, from which we derive ∆-subcategories D# , D*
#
, and D*

#
of D,

with universal properties analogous to (1.5.1). As in (1.8.1) the inclusion
D*

#
→֒D*

#
is a ∆-equivalence of categories, with quasi-inverse τ∗.

(1.9.2). The following isomorphism test will be useful.

Lemma. If A# is a plump subcategory of A, and u : A•
1 → A•

2 is a

map in D+
#

such that for all B• ∈ Db
#

the induced map

HomD(B•, A•
1)→ HomD(B•, A•

2)

is an isomorphism, then u is an isomorphism.

Proof. Let C• ∈ D+
#

be the summit of a triangle with base u, so
that by (1.4.2.1), u is an isomorphism iff C• ∼= 0, i.e., iff τ +(C•) = 0•,
see (1.8.1), (1.2.2).
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For each m ∈ Z and each object M ∈ A# we have, by (1.4.2.1)
and (∆2) in §1.4, an exact sequence (with Hom = HomD):

Hom(M [−m], A•
1) −̃−→

via u
Hom(M [−m], A•

2) −→ Hom(M [−m], C•)

−→ Hom(M [−m], A•
1[1]) ˜−−−−−→

via −u[1]
Hom(M [−m], A•

2[1]).

The two labeled maps are, by hypothesis, isomorphisms, and hence

Hom(M [−m], C•) = 0 .

Were τ +(C•) 6= 0•, then with m := i(C•) (see (1.8.1) and

M := Hm(C•) = ker
(
τ

+
(C•)m → τ

+
(C•)m+1

)
6= 0 ,

the inclusion M →֒ τ +(C•)m would lead to a map j : M [−m] → τ +(C•)
with Hm(j) the (non-zero) identity map of M , so we’d have

Hom
(
M [−m], C•

)
˜−−−−→

(1.8.1)+

Hom
(
M [−m], τ

+
(C•)

)
6= 0 ,

contradiction. Thus τ +(C•) = 0•. Q.E.D.

1.10. Truncation functors

Let A be an abelian category, and let D = D(A) be the derived
category. For any complex A• in A , and n ∈ Z, we let τ≤nA

• be the
truncated complex

· · · −→ An−2 −→ An−1 −→ ker(An → An+1) −→ 0 −→ 0 −→ · · · ,

and dually we let τ≥nA be the complex

· · · −→ 0 −→ 0 −→ coker(An−1 → An) −→ An+1 −→ An+2 −→ · · · .

Note that

Hm(τ≤nA
•) = Hm(A•) if m ≤ n ,

= 0 if m > n ,

and that

Hm(τ≥nA
•) = Hm(A•) if m ≥ n ,

= 0 if m < n .



1.10. Truncation functors 33

One checks that τ≥n (respectively τ≤n) extends naturally to an
additive functor of complexes which preserves homotopy and takes quasi-
isomorphisms to quasi-isomorphisms, and hence induces an additive functor
D→ D, see §1.2. In fact if D≤n (resp. D≥n) is the full subcategory of D
whose objects are the complexes A• such that Hm(A•) = 0 for m > n
(resp. m < n) then we have additive functors

τ≤n : D −→ D≤n ⊂ D

τ≥n : D −→ D≥n ⊂ D

together with obvious functorial maps

inA : τ≤nA
• −→ A•

jnA : A• −→ τ≥nA
• .

Proposition (1.10.1). The preceding maps inA , j
n
A induce functorial

isomorphisms

(1.10.1.1) HomD≤n
(B•, τ≤nA

•) −→∼ HomD(B•, A•) (B• ∈ D≤n),

(1.10.1.2) HomD≥n
(τ≥nA

•, C•) −→∼ HomD(A•, C•) (C• ∈ D≥n).

Proof. Bijectivity of (1.10.1.1) means that any map ϕ : B• → A•

(in D) with B• ∈ D≤n factors uniquely via iA := inA .
Given ϕ, we have a commutative diagram

τ≤nB
•

τ≤nϕ
−−−−→ τ≤nA

•

iB

y
yiA

B• −−−−→
ϕ

A•

and since B• ∈ D≤n , therefore iB is an isomorphism in D, see (1.2.2), so

we can write ϕ = iA ◦ (τ≤nϕ ◦ i
−1
B ) , and thus (1.10.1.1) is surjective.

To prove that (1.10.1.1) is also injective, we assume that iA ◦ τ≤nϕ = 0
and deduce that τ≤nϕ = 0. As in §1.2, the assumption means that there is
a commutative diagram in K(A)

C•
f

−−−−→ τ≤nA
•

s
x

yiA

τ≤nB
• ←−−−−

s′′
C′′• −−−−→

0
A•

where s and s′′ are quasi-isomorphisms, and f/s = τ≤nϕ.
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Applying the (idempotent) functor τ≤n , we get a commutative diagram

τ≤nC
•

τ≤nf
−−−−→ τ≤nA

•

τ≤ns
x 0

τ≤nB
• ←−−−−

τ≤ns′′
τ≤nC

′′•

Since τ≤ns and τ≤ns
′′ are quasi-isomorphisms, we have

τ≤nϕ = τ≤nf/τ≤ns = 0/τ≤ns
′′ = 0 ,

as desired.

A similar argument proves the bijectivity of (1.10.1.2).

Remarks (1.10.2). Let n ∈ Z, A• ∈ D(A).

(i) There exist natural isomorphisms

τ
≤nτ≥nA

• ∼= Hn(A•)[−n] ∼= τ
≥nτ≤nA

• .

(ii) The cokernel of in−1
A : τ

≤n−1A
• → A• maps quasi-isomorphically

to τ
≥nA

•; and hence there are natural triangles in D(A) (see (1.4.4.2)∼):

τ
≤n−1A

•
in−1
A−−−→ A• jnA−→ τ

≥nA
• −→ (τ

≤n−1A
•)[1] ,(1.10.2.1)

τ
≤n−1A

• −→ τ
≤nA

• −→ Hn(A•)[−n] −→ (τ
≤n−1A

•)[1] .(1.10.2.2)

Details are left to the reader.

1.11. Bounded functors; way-out lemma

Many of the main results in subsequent chapters will be to the effect
that some natural map or other is a functorial isomorphism. So we’ll need
isomorphism criteria. In (1.11.3) we review some commonly used ones
(“Lemma on way-out functors,” [H, p. 68, Prop. 7.1]).

Throughout this section, A and B are abelian categories, A# is a
plump subcategory of A , and D*

#
(A) ⊂ D(A) is as in (1.9.1). We iden-

tify A# with a full subcategory of D*
#
(A), see (1.2.3).

For a subcategory E of D(A), E≤n (resp. E≥n) will denote the
full subcategory of E whose objects are those complexes A• such that
Hm(A•) = 0 for m > n (resp. m < n).
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Definition (1.11.1). Let E be a subcategory of D(A), and let F
(resp. F ′) : E→ D(B) be a covariant (resp. contravariant) additive functor.
The upper dimension dim+ and lower dimension dim− of these functors
are:

dim+F := inf
{
d

∣∣ F (E≤n) ⊂ D≤n+d(B) for all n ∈ Z
}
,

dim+F ′ := inf
{
d

∣∣ F ′(E≥−n) ⊂ D≤n+d(B) for all n ∈ Z
}
,

dim−F := inf
{
d

∣∣ F (E≥n) ⊂ D≥n−d(B) for all n ∈ Z
}
,

dim−F ′ := inf
{
d

∣∣ F ′(E≤−n) ⊂ D≥n−d(B) for all n ∈ Z
}
.

The functor F is bounded above 16 (resp. bounded below)17 if dim+F <∞
(resp. dim−F < ∞); and similarly for F ′. F (resp. F ′) is bounded if it is
both bounded-above and bounded-below.

Remarks (1.11.2). (i) Let T1 and T2 be the translation functors
in D(A) and D(B) respectively. Suppose that T1E = E and that there
is a functorial isomorphism FT1 −→

∼ T2F (resp. T−1
2 F ′ −→∼ F ′T1). (For

example, E could be a ∆-subcategory of D(A) and F ′ a ∆-functor.)
Then, for instance, F ′(E≥−n) ⊂ D≤n+d(B) holds for all n ∈ Z as soon as
it holds for one single n.

(ii) If E is a ∆-subcategory of D(A) such that for all n ∈ Z, τ
≤nE ⊂ E

and τ
≥nE ⊂ E (e.g., E = D*

#
(A)), and if F (resp. F ′) is a ∆-functor, then:

dim+F ≤ d ⇐⇒ HiF (A•) −̃−→
jn
A

HiF (τ
≥nA

•)

for all A• ∈ E, n ∈ Z, and i ≥ n+ d.

(The display signifies that the map Hi(jnA) (see §1.10) is an isomorphism;
and as in (i), we can restrict attention to a single n.) The implication
⇒ follows from the exact homology sequence (1.4.5)H of the triangle
gotten by applying F to (1.10.2.1); while ⇐ is obtained by taking A•

to be an arbitrary complex in E≤n−1. An equivalent condition is that
if α : A•

1 → A•
2 is a map in E such that Hi(α) is an isomorphism for

all i ≥ n, (that is, if α induces an isomorphism τ
≥nA

•
1 −→

∼ τ
≥nA

•
2 ),

then Hi(Fα) is an isomorphism for all i ≥ n+ d.

Similarly:

dim+F ′ ≤ d ⇐⇒ HiF ′(A•) −̃−→
i−n
A

HiF ′(τ
≤−nA

•) (i ≥ n+ d),

dim−F ≤ d ⇐⇒ HiF (τ
≤nA

•) −̃−→
in
A

HiF (A•) (i ≤ n− d),

dim−F ′ ≤ d ⇐⇒ HiF ′(τ
≥−nA

•) −̃−→
j−n
A

HiF ′(A•) (i ≤ n− d).

16 way-out left in the terminology of [H, p. 68]
17 way-out right
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(iii) If E = A# (so that E≥0 = E = E≤0 ), then dim+F ≤ d ⇔
HjF (A) = 0 for all j > d and all A ∈ A#. Similarly, dim−F ≤ d ⇔
HjF (A) = 0 for j < −d and A ∈ A#. These assertions remain true
when F is replaced by F ′.

(iv) If E = D+
#
(A) and F is a ∆-functor, then dim+F = dim+F0

where F0 is the restriction F |A# . A similar statement holds for dim−F ′;
and analogous statements hold for dim−F or dim+F ′ when E = D−

#
(A).

Here is a typical proof: we deal with dim−F ′ when E = D+
#
(A).

Obviously dim−F ′ ≥ dim−F ′
0 . To prove the opposite inequality, sup-

pose that dim−F ′
0 ≤ d < ∞, fix an n ∈ Z, and let us show for any

A• ∈ E≤−n that HjF ′(A•) = 0 whenever j < n− d.
We proceed by induction on the number ν = ν(A•) of non-vanishing

homology objects of A•, the case ν = 0 being trivial. If ν = 1, say
H−m(A•) =: H 6= 0 (m ≥ n), then A• ∼= τ−τ +A• ∼= H[m] (see (1.8.1)),
and since F ′ is a contravariant ∆-functor, F ′(A•) ∼= F ′(H)[−m] ; so by
definition of dim−F ′

0 ,

HjF ′(A•) ∼= Hj−mF ′(H) = 0 if j −m < −d,

whence the conclusion. When ν > 1, choose any integer s such that
there exist integers p < s ≤ q with Hp(A•) 6= 0, Hq(A•) 6= 0 (so that
ν(τ

≤s−1A
•) < ν(A•) and ν(τ

≥sA
•) < ν(A•)). Then apply F ′ to (1.10.2.1)

to get a triangle

F ′(τ
≤s−1A

•)←− F ′(A•)←− F ′(τ
≥sA

•)←− F ′(τ
≤s−1A

•)[−1]

whose associated homology sequence (1.4.5)H yields the inductive step.

Lemma (1.11.3). Let (F, θ) and (G,ψ) be covariant ∆-functors
from D*

#
(A) to D(B), and assume one of the following sets of conditions:

(i) * = b.
(ii) * = + and both F and G are bounded below.
(iii) * = − and both F and G are bounded above.
(iv) * = blank and F and G are bounded above and below.

Then for a morphism η : F → G of ∆-functors to be an isomorphism it
suffices that η(X) be an isomorphism for all objects X ∈ A#.

A similar assertion holds for contravariant functors if we interchange
“bounded above” and “bounded below.”

Complement (1.11.3.1). Let I (resp. P) be a set of objects in A#

such that every object in A# admits a monomorphism into one in I (resp. is
the target of an epimorphism out of one in P). If * = + and F and G
are bounded below (resp. * = − and F and G are bounded above) and if
η(X) is an isomorphism for all objects X ∈ I (resp. X ∈ P), then η is an
isomorphism.

A similar assertion holds for contravariant functors if we interchange
“bounded above” and “bounded below.”
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Proof. We deal first with the covariant case.
(i) Using the definition of “morphism of ∆-functors” (§1.5) we see by

induction on |n| that η(X [−n]) is an isomorphism for all X ∈ A# and

n ∈ Z. In showing that η(A•) is an isomorphism for all A• ∈ Db
#
(A),

we may replace A• by the isomorphic complex τ−(A•) = τ
≤nA

• with
n := s(A•), see (1.8.1). From (1.10.2.2), and (∆2) of §1.4, we obtain a map
of triangles, induced by η :

F (Hn(A•)[−n− 1]) −−−→ F (τ
≤n−1A

•) −−−→ F (τ
≤nA

•) −−−→ F (Hn(A•)[−n])y
y

y
y

G(Hn(A•)[−n− 1]) −−−→ G(τ
≤n−1A

•) −−−→ G(τ
≤nA

•) −−−→ G(Hn(A•)[−n])

and then we can conclude by (∆3)∗ of §1.4 and induction on the number of
non-vanishing homology objects of A• (a number which is less for τ

≤n−1A
•

than for A• whenever n is finite).

(ii) By (1.2.2), it suffices to show that η(A•) induces an isomorphism
from HiF (A•) to HiG(A•) for all A• ∈ D+

#
(A) and all i ∈ Z. For

this, remark (1.11.2)(ii) lets us replace A• by τ
≤i+dA

• ∈ Db
#
(A) for any

d ≥ max(dim−F, dim−G), and then (i) applies.

(iii) Similar to (ii).

(iv) As in the proof of (i), (1.10.2.1) with n = 0 gives rise to a map of
triangles, induced by η :

F (τ
≥0A

•)[−1]) −−−→ F (τ
≤−1A

•) −−−→ F (A•) −−−→ F (τ
≥0A

•)y≃

y≃ ?

y ≃

y
G((τ

≥0A
•)[−1]) −−−→ G(τ

≤−1A
•) −−−→ G(A•) −−−→ G(τ

≥0A
•)

in which the maps other than ? are isomorphisms by (ii) and (iii), whence,
by (∆3)∗ of §1.4, so is ?.

For (1.11.3.1), it now suffices to show that η(X) is an isomorphism for
all objects X ∈ A#. By a standard resolution argument (see [H, p. 43]),
X is isomorphic in D#(A) to a bounded-below complex I• of objects of I
(resp. bounded-above complex P • of objects of P), and so it suffices to show
that η(I•) (resp. η(P •)) is an isomorphism for any such I• (resp. P •). This
is done as above, except that in the inductive step in (i), say for bounded I• ,
one uses instead of (1.10.2.2) the triangle associated as in (1.4.3) to the
natural semi-split exact sequence

0 −→ In[−n] −→ τ ′
≤nI

• −→ τ ′
≤n−1I

• −→ 0

where for any A• and m ∈ Z , τ ′
≤mA

• is the complex

· · · −→ Am−2 −→ Am−1 −→ Am −→ 0 −→ 0 −→ · · · ;

and in (ii), for example, one replaces I• by the bounded complex τ ′
≤i+d+1I

• .

Similar arguments settle the contravariant case. (Or, use the exercise
just before (1.5.1).) Q.E.D.
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Derived Functors

Derived functors are ∆-functors out of derived categories, giving rise,
upon application of homology, to functors such as Ext, Tor, and their sheaf-
theoretic variants—in particular sheaf cohomology. Derived functors are
characterized in §2.1 below by a universal property, and conditions for their
existence are given in 2.2, leading up to the construction of right-derived
functors via injective resolutions in 2.3 and, dually, of some left-derived
functors via flat resolutions in 2.5. We use ideas of Spaltenstein [Sp] to
deal throughout with unbounded complexes. The basic examples RHom

•

and ⊗
=

are described in 2.4 and 2.5 respectively. Illustrating all that has
gone before, their relation “adjoint associativity” is given in 2.6, which
includes an abbreviated discussion of what is, in all conscience, involved
in constructing natural transformations of multivariate derived functors:
a host of underlying category-theoretic trivialities, usually ignored, but of
whose existence one should at least be aware. The last section 2.7 develops
further refinements.

2.1. Definition of derived functors

Fix an abelian category A , let J be a ∆-subcategory of K(A), let DJ

be the corresponding derived category, and let

Q = QJ : J→ DJ

be the canonical ∆-functor (see (1.7)). For any ∆-functors F and G from J
to another ∆-category E, or from DJ to E, Hom(F, G) will denote the
abelian group of ∆-functor morphisms from F to G.

Definition (2.1.1). A ∆-functor F : J→ E is right-derivable if there
exists a ∆-functor

RF : DJ → E

and a morphism of ∆-functors

ζ : F → RF ◦Q

such that for every ∆-functor G : DJ → E the composed map

Hom(RF, G)
natural
−−−−→ Hom(RF ◦Q, G ◦Q)

via ζ
−−−−→ Hom(F, G ◦Q)

is an isomorphism (i.e., by (1.5.1), the map “via ζ ” is an isomorphism).
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The ∆-functor F is left-derivable if there exists a ∆-functor

LF : DJ → E

and a morphism of ∆-functors

ξ : LF ◦Q→ F

such that for every ∆-functor G : DJ → E the composed map

Hom(G, LF )
natural
−−−−→ Hom(G ◦Q, LF ◦Q)

via ξ
−−−−→ Hom(G ◦Q, F )

is an isomorphism (i.e., by (1.5.1), the map “via ξ ” is an isomorphism).
Such a pair (RF, ζ)

(
respectively: (LF, ξ)

)
is called a right-derived

(respectively: left-derived) functor of F .

As in (1.5.1), composition with Q gives an embedding of ∆-functor
categories

(2.1.1.1) Hom∆(DJ, E) →֒ Hom∆(J, E),

with image the full subcategory whose objects are the ∆-functors which
transform quasi-isomorphisms into isomorphisms. Consequently we can
regard a right-(left-)derived functor of F as an initial (terminal ) object
[M, p. 20] in the category of ∆-functor morphisms F → G′ (G′ → F )
where G′ ranges over all ∆-functors from J to E which transform quasi-
isomorphisms into isomorphisms. As such, the pair (RF, ζ) (or (Lf, ξ))—if
it exists—is unique up to canonical isomorphism.

Complement (2.1.2). Let A′ be another abelian category. Any ad-
ditive functor F : A → A′ extends to a ∆-functor F̄ : K(A) → K(A′)
(see (1.5.2)). Q′ : K(A′) → D(A′) being the canonical map, we will refer
to derived functors of Q′F̄ , or of the restriction of Q′F̄ to some specified
∆-subcategory J of K(A), as being “derived functors of F ” and denote
them by RF or LF .

Example (2.1.3). If F : J → E transforms quasi-isomorphisms into

isomorphisms then F = F̃ ◦Q for a unique F̃ : DJ → E; and (F̃ , identity)
is both a right-derived and a left-derived functor of F .

Remark (2.1.4). Let A′ be an abelian category, and in (2.1.1)
suppose that E is a ∆-subcategory of K(A′) or of D(A′). If RF exists
we can set

R
iF (A) := Hi(RF (A)) (A ∈ J, i ∈ Z).

Since RF is a ∆-functor, any triangle A → B → C → A[1] in J is
transformed by RF into a triangle in E, and hence we have an exact
homology sequence (see (1.4.5)H ):

(2.1.4)H

· · · → R
i−1F (C)→ R

iF (A)→ R
iF (B)→ R

iF (C)→ R
i+1F (A)→ · · ·
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This applies in particular to the triangle (1.4.4.2)∼ associated to an exact
sequence of A-complexes

0→ A→ B → C → 0 (A,B,C ∈ J).

A similar remark can be made for LF .

2.2. Existence of derived functors

Derivability of a given functor is often proved by reduction, via suit-
able ∆-equivalences of categories, to the trivial example (2.1.3), as we now
explain—and summarize in (2.2.6).

We consider, as in (1.7), a diagram

J′ j
−−−−→ J′′

Q′

y
yQ′′

D′ −−−−→
̃

D′′

where J′ ⊂ J′′ are ∆-subcategories of K(A), D′ and D′′ are the corre-
sponding derived categories, Q′ and Q′′ are the canonical ∆-functors, j is
the inclusion, and ̃ is the unique ∆-functor making the diagram commute;
and we assume that the conditions of (1.7.2) or of (1.7.2)op obtain. In other
words we have a family of quasi-isomorphisms

(2.2.1) ψX : AX → X, X ∈ J′′, AX ∈ J′, (see (1.7.2)),

or a family of quasi-isomorphisms

(2.2.1)op ϕX : X → AX , X ∈ J′′, AX ∈ J′, (see (1.7.2)op).

In either situation, ̃ identifies D′ with a ∆-subcategory of D′′; there is a
∆-functor (ρ, θ) : D′′ → D′ with

ρ(X) = AX (X ∈ J′′);

and there are isomorphisms of ∆-functors

(2.2.2) 1D′′ −→∼ ̃ρ, 1D′ −→∼ ρ̃

induced by ψ or by ϕ.
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Proposition (2.2.3). With preceding notation, let E be a ∆-category,
let F : J′′ → E be a ∆-functor, and suppose that the restricted functor

F ′ := F ◦ j : J′ → E

has a right-derived functor

RF ′ : D′ → E, ζ ′ : F ′ → RF ′
◦Q′.

If there exists a family ϕX : X → AX as in (2.2.1)op, whence a functor ρ
as above, then F has the right-derived functor (RF, ζ) where

RF = RF ′
◦ρ : D′′ → E

so that
RF (X) = RF ′(AX) (X ∈ J′′),

and where for each X ∈ J′′, ζ(X) is the composition

F (X)
F (ϕX)
−−−−→ F (AX) = F ′(AX)

ζ′(AX)
−−−−→ RF ′(AX) = RF (X) .

A similar statement holds for left-derived functors when there exists a
family ψX as in (2.2.1).

Proof. We check first that ζ is actually a morphism of ∆-functors.
Consider a map u : X → Y in J′′. Since Q′′(ϕX) is an isomorphism, there
is a unique map ũ :AX → AY in D′′ (and hence in the full subcategory D′ )
making the following D′′ -diagram commute:

X
Q′′(ϕX )
−−−−−→ AX

Q′′(u)

y
yũ

Y −−−−−→
Q′′(ϕ

Y
)
AY

By the definition of the functor ρ (see proof of (1.7.2)), that ζ is a morphism
of functors means that the following diagram D(u) commutes for all u :

F (X)
F (ϕX)
−−−−→ F (AX)

ζ′(AX)
−−−−→ RF ′(AX)

F (u)

y ?

yRF ′(ũ)

F (Y ) −−−−→
F (ϕ

Y
)
F (AY ) −−−−→

ζ′(AY )
RF ′(AY )

If there were a J′ -map u′ : AX → AY such that u′ϕX = ϕY u, whence
Q′′(u′)Q′′(ϕX) = Q′′(ϕY )Q′′(u) and ũ = Q′′(u′) = Q′(u′) , then the broken
arrow in D(u) could be replaced by the map F (u′), making both resulting
subdiagrams of D(u), and hence D(u) itself, commute. We don’t know that
such a u′ exists; but, I claim, there exists a quasi-isomorphism v : Y → Z
such that (with self-explanatory notation) both v′ and (vu)′ exist. This
being so, both diagrams D(v) and D(vu) commute; and since ṽ is an
isomorphism (because v is a quasi-isomorphism), therefore RF ′(ṽ) is an
isomorphism, and it follows easily that D(u) also commutes, as desired.
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To verify the claim, use (1.6.3) to construct in J′′ a commutative
diagram

X
ϕX−−−−→ AX

u

y w

Y −−−−→
ϕ
Y

AY −−−−→
ϕ

Z −−−−→
ϕ
Z

AZ

with ϕ a quasi-isomorphism, and set

v := ϕ ◦ϕY

v′ := ϕZ ◦ϕ

(vu)′ := ϕZ ◦w.

Then v′ϕY = ϕZv and (vu)′ϕX = ϕZ(vu), as desired.
Thus ζ is a morphism of functors; and it is straightforward to check,

via commutativity of (1.7.2.2), that ζ is in fact a morphism of ∆-functors.

Now we need to show (see (2.1.1)) that for every ∆-functor G : D′′ → E
the composed map

Hom(RF, G)
(1.5.1)
−−−−→ Hom(RF ◦Q′′, G ◦Q′′)

via ζ
−−−−→ Hom(F, G ◦Q′′)

is bijective. For this it suffices to check that the following natural composi-
tion is an inverse map:

Hom(F, G ◦Q′′) −−−−→ Hom(F ◦ j, G ◦Q′′
◦ j)

Hom(F ′, G ◦ ̃ ◦Q′)

(2.1.1)
−−−−→ Hom(RF ′, G ◦ ̃ )

−−−−→ Hom(RF ′
◦ρ, G ◦ ̃ ◦ρ)

(2.2.2)
−−−−→ Hom(RF ′

◦ρ, G)

Hom(RF, G) .

This checking is left to the reader, as is the proof for left-derived functors.
Q.E.D.

Example (2.2.4) [H, p. 53, Thm. 5.1]. Let j : J′ →֒ J′′, F : J′′ → E,
and ϕX : X → AX be as above, and suppose that the restricted functor
F ′ := F ◦ j transforms quasi-isomorphisms into isomorphisms (or, equiv-
alently, F (C) ∼= 0 for every exact complex C ∈ J′, see (1.5.1)). Then
by (2.1.3), F ′ has a right-derived functor (RF ′, 1) where F ′ = RF ′ ◦Q′

and 1 is the identity morphism of F ′.
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So by (2.2.3), F has a right-derived functor (RF, ζ) with

RF (X) = F (AX)

and

ζ(X) = F (ϕX) : F (X)→ F (AX) = RF (X)

for all X ∈ J′′. Note that if X ∈ J′ then ϕX is a quasi-isomorphism in J′,
whence ζ(X) is an isomorphism.

The action of RF on maps can be described thus: if u : X → Y is a
map in J′′ then with v′ and (vu)′ as in the preceding proof,

RF (u/1) = F (v′)−1
◦F ((vu)′) ;

and for any map f/s in D′′ (see §1.2), we have

RF (f/s) = RF (f/1) ◦RF (s/1)−1.

As for the ∆-structure on RF , one has for each X the isomorphism

θ(X) : RF (X [1]) = F (AX[1]) ˜−−−−→
F (η

X
)
F (AX [1])−̃−→

θF
F (AX)[1] = RF (X)[1]

where

ηX := Q′′(ϕX [1]) ◦Q′′(ϕX[1])
−1 : AX[1] −̃−→ AX [1] ,

and where the isomorphism θF comes from the ∆-functoriality of F .

(2.2.5). Let A be an abelian category, let J be a ∆-subcategory
of K(A), and let F be a ∆-functor from J to a ∆-category E. We will
say that a complex X ∈ J is right-F -acyclic if for each quasi-isomorphism
u : X → Y in J there exists a quasi-isomorphism v : Y → Z in J such
that the map F (vu) : F (X) → F (Z) is an isomorphism. Left-F -acyclicity
is defined similarly, with arrows reversed.

For example, if J := J′′ in (2.2.4), then every complex X ∈ J′ is
right-F -acyclic—just take Z := AY and v := ϕY . Conversely:

Lemma (2.2.5.1). The right-F -acyclic complexes in J are the
objects of a localizing subcategory (§1.7). Moreover, the restriction of F
to this subcategory transforms quasi-isomorphisms into isomorphisms; in
other words, if the complex X is both exact and right-F -acyclic, then
F (X) ∼= 0 (see (1.5.1)).

Proof. Since F commutes with translation—up to isomorphism—it
is clear that X is right-F -acyclic iff so is X [1].
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Next, suppose we have a triangle X → X1 → X2 → X [1] in which
X1 and X2 are right-F -acyclic. We will show that then X is right-F -
acyclic. Any quasi-isomorphism u : X → Y can be embedded into a map
of triangles

X −−−−→ X1 −−−−→ X2 −−−−→ X [1]

u

y u1

y u2

y
yu[1]

Y −−−−→ Y1 −−−−→ Y2 −−−−→ Y [1]

where u1 is a quasi-isomorphism whose existence is given by (1.6.3), and
where u2 is then given by (∆3)′ and (∆3)′′ in §1.4. Such a u2 is also a
quasi-isomorphism, as one sees by applying the five-lemma to the natural
map between the homology sequences of the two triangles (see (1.4.5)H).
Similarly, from the definition of right-F -acyclic we deduce a triangle-map

Y1 −−−−→ Y2 −−−−→ Y [1] −−−−→ Y1[1]

v1

y v2

y v[1]

y
yv1[1]

Z1 −−−−→ Z2 −−−−→ Z[1] −−−−→ Z1[1]

where v1 , v2 , and v are quasi-isomorphisms such that F (v1u1) and
F (v2u2) are isomorphisms. (Here (∆2) in §1.4 should be kept in mind.)
We can then apply the ∆-functor F to the map of triangles

X1 −−−−→ X2 −−−−→ X [1] −−−−→ X1[1]

v1u1

y v2u2

y (vu)[1]

y
y(v1u1)[1]

Z1 −−−−→ Z2 −−−−→ Z[1] −−−−→ Z1[1]

and deduce from (∆3)∗ that F ((vu)[1]), and hence F (vu), is also an iso-
morphism. Thus X is indeed right-F -acyclic.

In particular, the direct sum of two right-F -acyclic complexes is
right-F -acyclic, because the direct sum is the summit of a triangle whose
base is the zero-map from one to the other, see (1.4.2.1). Also, 0 ∈ J is
clearly right-F -acyclic. We see then that the right-F -acyclic complexes are
the objects of a ∆-subcategory of J.

For this subcategory to be localizing it suffices, by (1.7.1)op, that if
X → Y → Z is as in the definition of right-F -acyclic, then Z is right-F -
acyclic; and this follows from:

Lemma (2.2.5.2). If X is right-F -acyclic and if there exists a quasi-
isomorphism α : X → Z such that F (α) : F (X) → F (Z) is an epimor-
phism, then Z is right-F -acyclic.

Proof. Given a quasi-isomorphism Z → Y ′, there exists a quasi-
isomorphism Y ′ → Z ′ such that F (X) → F (Z) → F (Z ′) is an isomor-
phism (since X is right-F -acyclic); and since F (X)→ F (Z) is an epimor-
phism, therefore F (Z)→ F (Z ′) is an isomorphism. Q.E.D.
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To justify the last assertion in (2.2.5.1), take Y := 0 in the definition
of right-F -acyclicity. Q.E.D.

We leave it to the reader to establish a corresponding statement for
left-F -acyclic complexes.

In summary:

Proposition (2.2.6). Let A be an abelian category, let J be a ∆-
subcategory of K(A), and let F be a ∆-functor from J to a ∆-category E.
Suppose J contains a family of quasi-isomorphisms ϕX : X → AX (X ∈ J)
such that AX is right-F -acyclic for all X, see (2.2.5). Then F has a
right-derived functor (RF, ζ) such that for all X ∈ J,

RF (X) = F (AX) and ζ(X) = F (ϕX) : F (X)→ F (AX) = RF (X) .

Moreover, X is right-F -acyclic ⇔ ζ(X) is an isomorphism.

Proof. Everything is contained in (2.2.4) and (2.2.5), except for the
fact that if ζ(X) is an isomorphism then X is right-F -acyclic, which is
proved by taking, in (2.2.5), Z := AY , v := ϕY , and noting that then
F (vu) is the composite isomorphism

F (X) ˜−−−→
ζ(X)

RF (X) −̃−→ RF (Y ) = F (Z).

Q.E.D.

Corollary (2.2.6.1). With assumptions as in (2.2.6), if G : E→ E′

is any ∆-functor then (G ◦RF, G(ζ)) is a right-derived functor of GF .

Proof. Clearly, right-F -acyclic complexes are right-(GF )-acyclic. It
follows then from (2.2.4) and (2.2.5) that the assertion need only be proved
for the restriction of F to the subcategory of right-F -acyclic complexes, in
which case it follows from (2.1.3). Q.E.D.

Corollary (2.2.7). Let A and A′ be abelian categories, let J ⊂ K(A)
and J′ ⊂ K(A′) be ∆-subcategories with canonical functors Q : J → DJ,
Q′ : J′ → DJ′ to their respective derived categories, and let F : J→ J′ and
G : J′ → E be ∆-functors. Assume that G has a right-derived functor RG
and that every complex X ∈ J admits a quasi-isomorphism into a right-
(Q′F )-acyclic complex AX such that F (AX) is right-G-acyclic. Then Q′F
and GF have right-derived functors, denoted RF and R(GF ), and there
is a unique ∆-functorial isomorphism

α : R(GF ) −→∼ RGRF

such that the following natural diagram commutes for all X ∈ J :

(2.2.7.1)

GF (X) −−−−→ R(GF )(QX)
y ≃

yα(QX)

RGQ′F (X) −−−−→ RGRF (QX)
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Proof. Derivability of Q′F results from (2.2.6). Derivability of GF
results similarly once we show, as follows, that AX is right-(GF )-acyclic:
just note for any quasi-isomorphism AX → Y in J that, by (2.2.5.1),
the resulting composed map F (AX) → F (Y ) → F (AY ) is a quasi-
isomorphism and so GF (AX) −→∼ GF (AY ) . The existence of a unique ∆-
functorial α making (2.2.7.1) commute follows from the definition of right-
derived functor. Since AX is right-(GF )-acyclic and right-(Q′F )-acyclic,
and F (AX) is right-G-acyclic, (2.2.6) implies that α(QX) is isomorphic to
the identity map of GF (AX). Thus α is an isomorphism. Q.E.D.

We leave the corresponding statements for left-F -acyclic complexes
and left-derived functors to the reader.

Incidentally, (2.2.6) generalizes in a simple way to triangulation-
compatible multiplicative systems in any ∆-category (see [H, p. 31]). It
is of course of little interest unless we can construct a family (ϕX). That
matter is addressed in the following sections.

Exercises (2.2.8). (a) Verify that F transforms quasi-isomorphisms into isomor-

phisms iff every complex X ∈ J is right-F -acyclic.

(b) Verify that if X ∈ J is exact then X is right-F -acyclic iff F (X) ∼= 0.

(c) Let F be a ∆-functor from J to a ∆-category E. Let J′ be the full subcategory

of J whose objects are all the complexes in J admitting a quasi-isomorphism to a
right-F -acyclic complex. Then J′ is a ∆-subcategory of J.

(d) X is right-F -acyclic iff every map C → X in J with C exact factors as

C → C′ → X with C′ exact and F (C′) ∼= 0.

(e) X is said to be “unfolded for F ” if for every Z ∈ E the natural map

HomE(Z, F (X))→ lim
−→
X→Y

HomE(Z, F (Y ))

is an isomorphism, where the lim
−→

is taken over the category of all quasi-isomorphisms

X → Y in J [De, p. 274, (iv)]. Check that any right-F -acyclic X is unfolded for F ;

and that the converse holds under the hypotheses of (2.2.6).

(f) Show: X is unfolded for F iff every map C → X in J with C exact factors
as C → C′ → X with C′ is exact and F (C) → F (C′) the zero map. (For this, the

octahedral axiom in E may be needed, see §1.4.)

2.3. Right-derived functors via injective resolutions

The basic example of a family (ϕX) as in (2.2.6) arises when A has
enough injectives, i.e., every object of A admits a monomorphism into
an injective object. Then every complex X ∈ K+(A) admits a quasi-
isomorphism ϕX : X → IX into a bounded-below complex of injectives
(see (1.8.2)); and by (2.3.4) and (2.3.2.1) below, this IX is right-F -acyclic
for every ∆-functor F : K+(A)→ E, whence F is right-derivable.

Later on, however, it will become important for us to be able to deal
with unbounded complexes; and for this purpose the following more general
injectivity notion is, via (2.3.5), essential.
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Definition (2.3.1). Let A be an abelian category, and let J be a

∆-subcategory of K(A). A complex I ∈ J is said to be q-injective in J

(or J-q-injective) if for every diagram Y
s
←− X

f
−→ I in J with s a quasi-

isomorphism, there exists g : Y → I such that gs = f .18

Lemma (2.3.2). I ∈ J is J-q-injective iff every quasi-isomorphism
I → Y in J has a left inverse.

Proof. In (2.3.1) take X := I and f := identity to see that if I is
q-injective then the quasi-isomorphism s has a left inverse. Conversely,

by (1.6.3) any diagram Y
s
←− X

f
−→ I is part of a commutative diagram

X
f

−−−−→ I

s

y
ys′

Y −−−−→
f ′

Y ′

in which s′ is a quasi-isomorphism; and then if t is a left inverse for s′

and g := tf ′, we have gs = f . Q.E.D.

Corollary (2.3.2.1). I ∈ J is J-q-injective iff I is right-F -acyclic
for every ∆-functor F : J→ E.

Proof. If any quasi-isomorphism I → Y has a left inverse, then set-
ting X := I in (2.2.5) we see at once that I is right-F -acyclic. Conversely,
if I is right-F -acyclic for the identity functor J → J, then every quasi-
isomorphism I → Y has a left inverse. Q.E.D.

Taking F := identity in (2.2.5.1), we deduce:

Corollary (2.3.2.2). The J-q-injective complexes are the objects of a
localizing subcategory I. Every quasi-isomorphism in I is an isomorphism,
so the pair (I, identity) has the characteristic universal property of the
derived category DI (§1.2), and therefore I ∼= DI can be identified with a
∆-subcategory of DJ.

Corollary (2.3.2.3). Suppose that there exists a family of q-injective
resolutions ϕX : X → IX (X ∈ J), i.e., for each X, ϕX is a quasi-
isomorphism and IX is J-q-injective. Then any ∆-functor F : J → E
has a right-derived functor (RF, ζ) 19 with

RF (X) = F (IX) and ζ(X) = F (ϕX) : F (X)→ F (IX) = RF (X) ,

18 Here “q” stands for the class of quasi-isomorphisms. The equivalent term
“K-injective” in [Sp, p. 127] seems to me less suggestive.

19 So the embedding functor (2.1.1.1) has a left adjoint, taking F to RF .
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and such that for any morphism f/s : X1
s
← X

f
→ X2 in DJ,

RF (f/s) = F (f ′) ◦F (s′)−1

where f ′ is the unique map in I making the following square in J commute

X
ϕX−−−−→ IX

f

y
yf ′

X2 −−−−→
ϕ
X2

IX2

and similarly for s′.

Proof. Since ϕX becomes an isomorphism in DJ, the map f ′ exists
uniquely in DJ, hence in I (2.3.2.2). For the rest see (2.2.4), with J′ := I,
J′′ := J, and v := identity. Q.E.D.

Example (2.3.3). An object I in A is injective iff when considered
as a complex vanishing in all nonzero degrees it is q-injective in K(A) (or

in Kb(A)).

Sufficiency: for any A-diagram Y 0 s0
←− X

f
−→ I with s0 a mono-

morphism, take Y to be the complex which looks like the natural map
Y 0 → coker(s0) in degrees 0 and 1, and vanishes elsewhere, and take
s : X → Y to be the obvious quasi-isomorphism; then deduce from (2.3.1)
that if I is q-injective there exists g0 : Y 0 → I such that g0s0 = f—so that
I is A-injective.

For necessity, use (2.3.2): to find a left inverse in K(A) for a quasi-
isomorphism β : I → Y we may replace Y by the complex τ

≥0Y , to which
Y maps quasi-isomorphically (§1.10), i.e., we may assume that Y van-
ishes in all negative degrees; then β induces a monomorphism (in A)
β0 : I → Y 0, which has a left inverse if I is A-injective, and that gives rise,
obviously, to a left inverse for β. (One could also use (iv) in (2.3.8) below.)

Example (2.3.4). Any bounded-below complex I of A-injectives is
q-injective in K(A). Indeed, by [H, p. 41, Lemma 4.5], I satisfies the con-
dition in (2.3.2). (One could also use (2.3.8)(iv).) Thus (2.3.2.3) applies to
J := K+(A) whenever A has enough injectives (see beginning of this §2.3).
In that case, further, every K+(A)-q-injective complex admits a quasi-
isomorphism, hence, by (2.3.2.2), an isomorphism, to a bounded-below
complex of A-injectives.

Example (2.3.5). Let U be a topological space, O a sheaf of rings
on U , and A the abelian category of left O-modules. Then a theorem of
Spaltenstein [Sp, p. 138, Theorem 4.5] asserts that every complex in K(A)
admits a q-injective resolution. Hence by (2.3.2.3), every ∆-functor out
of K(A) is right-derivable.
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More generally, a q-injective resolution exists for every complex in any
Grothendieck category, i.e., an abelian category with exact direct limits
and having a generator [AJS, p. 243, Theorem 5.4]. For example, injective
Cartan-Eilenberg resolutions [EGA, III, Chap. 0, (11.4.2)] always exist in
Grothendieck categories; and their totalizations—which generally require
countable direct products—give q-injective resolutions when such products
of epimorphisms are epimorphisms (a condition which holds in the category
of modules over a fixed ring, but fails, for instance, in most categories of
sheaves on topological spaces).

Example (2.3.6). Let A1 , A2 be abelian categories, A1 having
enough injectives. As in (1.5.2) any additive functor F : A1 → A2 extends
to a ∆-functor F̄ : K+(A1)→ K+(A2) which has, by (2.3.4), a right-derived
functor

R
+F̄ : D+(A1)→ K+(A2)

satisfying, for a given family ϕX : X → IX of injective resolutions,

R
+F̄ (X) = F̄ (IX) .

We can extend the domain of R
+F̄ to D+(A1) by composing with

the equivalence τ + defined in (1.8.1). Moreover, if every A1 -complex
has a q-injective resolution, then there is a further extension to a derived
functor RF̄ : D(A1)→ K(A2)—whose composition with the canonical map
K(A2)→ D(A2) is RF , see (2.1.2).

With Hi the usual homology functor, let RiF : A1 → A2 (i ∈ Z) be
the composition

A1
(1.2.2)
−−−−→ D+(A1)

R
+F

−−−−→ K+(A2)
Hi
−−−−→ A2

(cf. (2.1.4)). Then RiF = 0 for i < 0, and there is a natural map of
functors F → R0F which is an isomorphism if and only if F is left-exact.

Example (2.3.7). Let f : U1 → U2 be a continuous map of topo-
logical spaces. Let Ai be the category of sheaves of abelian groups on Ui
(i = 1, 2). Then Ai is abelian, and has enough injectives. The direct image
functor f∗ : A1 → A2 is left-exact, and has, as in (2.3.6), a derived functor

R
+f∗ : D+(A1)→ K+(A2) .

By (2.3.5), the composition K(A1)
f∗
−→ K(A2)

Q
−→ D(A2) has a de-

rived functor Rf∗ , whose restriction to D+(A1) is isomorphic to Q ◦R+f∗ .
In particular, when U2 is a single point then A2 = Ab, the category of

abelian groups, and f∗ is the global section functor Γ = Γ(U1,−). In this
case one usually sets, for i ∈ Z, see (2.1.4),

Rf∗ = RΓ, R
if∗ = R

iΓ = H
i, Rif∗(−) = Hi(U1,−) .

Here are some other characterizations of q-injectivity, see [Sp, p. 129,
Prop. 1.5], [BN, Def. 2.6 etc.].
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Proposition (2.3.8). Let A be an abelian category, and let J be a
∆-subcategory of K(A). The following conditions on a complex I ∈ J are
equivalent:

(i) I is q-injective in J.
(i)′ For every diagram Y

s
←− X

f
−→ I in J with s a quasi-isomorphism

there is a unique g : Y → I such that gs = f .
(ii) Every quasi-isomorphism I → Y in J has a left inverse.
(ii)′ Every quasi-isomorphism I → Y in J is a monomorphism.
(iii) I is right-F -acyclic for every ∆-functor F : J→ E.
(iii)′ I is right-F -acyclic for F the identity functor J→ J.
(iv) For every exact complex X ∈ J, we have HomJ(X, I) = 0.
(iv)′ The ∆-functor Hom•(−, I) : J→ K(Ab) of (1.5.3) takes

quasi-isomorphisms into quasi-isomorphisms.
(v) For every complex X ∈ J, the natural map

HomJ(X, I )→ HomDJ
(X, I ) is bijective.

Proof. The equivalence of (i), (ii), (iii) and (iii)′ has already been
shown (see (2.3.2) and the proof of (2.3.2.1)). For (ii)⇔ (ii)′ see (1.4.2.1).
Taking Y := 0 in (2.3.1), we see that (i) ⇒ (iv). The equivalence of (iv)
and (iv)′ results from the footnote in (1.5.1) and the easily-checked relation

(2.3.8.1) Hn
(
Hom•(X, I )

)
∼= HomJ(X [−n], I ) (n ∈ Z, X ∈ J).

The implications (v)⇒ (i)′ ⇒ (i) are simple to verify.
We show next that (iv)⇒ (ii). Let X be the summit of a triangle T

in J whose base is a quasi-isomorphism I → Y . By [H, p. 23, 1.1 b)], the
resulting sequence

Hom(X, I )→ Hom(Y, I )→ Hom(I, I )→ Hom(X [−1], I )

is exact. Moreover, the exact homology sequence (1.4.5)H of T shows that
X is exact. So if (iv) holds, then Hom(Y, I) → Hom(I, I) is bijective,
and (ii) follows.

Finally, we show that (ii) ⇒ (v). For any map f/s : X → I in DJ ,
(1.6.3) yields a commutative diagram in J, with s′ a quasi-isomorphism:

A
f

−−−−→ I

s

y
ys′

X −−−−→
f ′

B

If ts′ = identity, then f/s = (s′/1)−1(f ′/1) = (tf ′)/1, and so the
map HomJ(X, I) → HomDJ

(X, I) is surjective. For the injectivity, given
f : X → I in J, note that f/1 = 0 =⇒ there exists a quasi-isomorphism
t : X ′ → X such that ft = 0 (see §1.2) =⇒ there exists a quasi-
isomorphism s : I → Y such that sf = 0 [H, p. 37]; and if s has a left
inverse, then sf = 0 =⇒ f = 0. Q.E.D.
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Exercise (2.3.9). Show: If A is a Grothendieck category then D(A) is equivalent
to the homotopy category of q-injective complexes. Hence if A has inverse limits then

so does D(A) .

2.4. Derived homomorphism functors

Let A be an abelian category, and let L be a ∆-subcategory of K(A)
in which there exists a family of quasi-isomorphisms ϕX : X → IX (X ∈ L)
such that IX ∈ L is q-injective in K(A) for every X. Then for any quasi-
isomorphism s : X → Y with Y in K(A) there exists, by (2.3.1), a map
g : Y → IX , necessarily a quasi-isomorphism, such that gs = ϕX ; and
hence by (1.7.1)op, L is a localizing subcategory of K(A), i.e., the derived
category DL identifies naturally with a ∆-subcategory of D(A).

For example, if A has enough injectives we could take L := K+(A),
see (2.3.4). Or, if U is a topological space with a sheaf of rings O and A is
the category of left O-modules, we could take L := K(A), see (2.3.5).

By (2.3.2.3), every ∆-functor F : L→ E is right-derivable. So for any
fixed object A ∈ K(A), the ∆-functor FA : L→ K(Ab) given by

FA(B) = Hom•(A, B) (B ∈ L)

(see (1.5.3)) has a right-derived functor

RFA : DL → K(Ab)

with
RFA(B) = Hom•(A, IB).

For fixed B and variable A, Hom•(A, IB) is a contravariant ∆-functor
from K(A) to K(Ab) (see 1.5.3), which takes quasi-isomorphisms in K(A)
to quasi-isomorphisms in K(Ab) ((2.3.8)(iv)′ ) and hence—after compo-
sition with the natural functor Q′ : K(Ab) → D(Ab)—to isomorphisms
in D(Ab). So by (1.5.1)—and the exercise preceding it—there results a
∆-functor D(A)op → D(Ab). Thus we obtain a functor of two variables

RHom•(A, B) : D(A)op ×DL → D(Ab)

which, together with appropriate θ (see (1.5.3)), is a ∆-functor in each
variable separately:

(2.4.1) RHom•(A, B) = Q′Hom•(A, IB)

for all objects A ∈ D(A)op, B ∈ DL ; and we leave it to the reader to make
explicit the effect of RHom• on morphisms in D(A)op and DL respectively.
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From (2.3.8)(v) and (2.3.8.1) (with J := K(A)), we deduce canonical
isomorphisms (Yoneda theorem):

(2.4.2) Hn(RHom•(X, B)) −→∼ HomD(A)(X, B[n]) (n ∈ Z).

This leads, in particular, to an elementary interpretation of the exact se-
quence (2.1.4)H when F := FX , see [H, p. 23, Prop. 1.1, b)].

(2.4.3). The variables A,B are treated quite differently in the above
definition of RHom•. But there is a more symmetric characterization of
this derived functor, analogous to the one in (2.1.1). This is given in (2.4.4),
after the necessary preparation.

Let K1 , K2 , E be ∆-categories, with respective translation functors
T1 , T2 , T . A ∆-functor from K1 × K2 to E is defined to be a triple
(F, θ1, θ2) with

F : K1 ×K2 → E

a functor and

θ1 : F ◦ (T1 × 1) −→∼ T ◦F, θ2 : F ◦ (1× T2) −→
∼ T ◦F

isomorphisms of functors, such that for each B ∈ K2 the functor

FB(A) := F (A,B)

together with θ1 is a ∆-functor from K1 to E, and for each A ∈ K1 the
functor

FA(B) := F (A,B)

together with θ2 is a ∆-functor from K2 to E; and such that furthermore
the composed functorial isomorphisms

F (T1 × T2) = F (T1 × 1)(1× T2)
via θ1−−−→ TF (1× T2)

via θ2−−−−→ TTF

F (T1 × T2) = F (1× T2)(T1 × 1)
via θ2−−−−→ TF (T1 × 1)

via θ1−−−→ TTF

are negatives of each other. Similarly, we can define ∆-functors of three or
more variables—with a condition indicated by the equation

(via θi) ◦ (via θj) = −(via θj) ◦ (via θi) (i 6= j).

Morphisms of ∆-functors are defined in the obvious way, see (1.5).
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For example, let L ⊂ K := K(A) be as above, with respective derived
categories DL ⊂ D, and consider the functor

Hom• : Kop × L→ K(Ab).

As in the exercise preceding (1.5.1), we can consider the opposite cate-
gory Kop to be triangulated, with translation inverse to that in K, in such
a way that the canonical contravariant functor K → Kop and its inverse,
together with θ = identity, are both ∆-functors. This being so, one checks
then that Hom• is a ∆-functor (see (1.5.3)).

Similarly

RHom• : Dop ×DL → D(Ab)

is a ∆-functor. Furthermore, the q-injective resolution maps ϕB : B → IB
induce a natural morphism of ∆-functors

η : Q′Hom•(A, B)→ Q′Hom•(A, IB)
(2.4.1)

= RHom•(QA, QB)

where Q : K → D is the canonical functor. This η is, in the following
sense, universal (hence unique up to isomorphism):

Lemma (2.4.4). Let

G : Dop ×DL → D(Ab)

be a ∆-functor, and let

µ : Q′Hom•(A, B)→ G(QA,QB) (A ∈ Kop, B ∈ L)

be a morphism of ∆-functors. Then there exists a unique morphism of
∆-functors

µ : RHom• → G

such that µ = µη.

Proof. µ is the composition

RHom•(QA, QB) = Q′Hom•(A, IB)
µ
−→ G(QA,QIB) −→∼ G(QA,QB) .

The rest is left to the reader. (See also (2.6.5) below.)
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(2.4.5). Next we discuss the sheafified version of the above. Let U be
a topological space, O a sheaf of commutative rings, and A the abelian
category of (sheaves of) O-modules. The “sheaf-hom” functor

Hom : Aop ×A → A

extends naturally to a ∆-functor

Hom
• : K(A)op ×K(A)→ K(A)

(essentially because everything in (1.5.3) is compatible with restriction to
open subsets—details left to the reader).

Taking note of the following Lemma, we can proceed as above to derive
a ∆-functor

RHom
• : D(A)op ×D(A)→ D(A) .

Lemma (2.4.5.1). If I is a q-injective complex in K(A) then the
functor Hom

•(−, I) takes quasi-isomorphisms to quasi-isomorphisms.

Proof. For A ∈ K(A) and i ∈ Z, the homology Hi(Hom
•(A, I)) is

the sheaf associated to the presheaf

V 7→ Hi
(
Γ(V,Hom

•(A, I)
)

= Hi
(
Hom•(A|V, I|V )

)
(V open in U).

We can then apply (2.3.8)(iv)′ to the category AV of (O|V )-modules,
as soon as we know:

Lemma (2.4.5.2). Let V be an open subset of U, with inclusion
map i : V →֒ U . Then for any q-injective complex I ∈ K(A), the re-
striction i∗I = I|V is q-injective in K(AV ).

Proof. The extension by zero of an OV -module M is the sheaf i!M
associated to the presheaf on U which assigns M(W ) to any open W ⊂ V
and 0 to any open W * V . The restriction i∗i!M can be identified with M ;
and the stalk of i!M at any point w /∈ V is 0. So i! is an exact functor.

Now from any diagram Y
s
← X

f
→ i∗I of maps of AV -complexes with

s a quasi-isomorphism, we get the diagram

i!Y
i!s←− i!X

i!f
−−→ i!i

∗I
α
→֒ I

where i!s is a quasi-isomorphism (since i! is exact) and α is the natural
map. By (2.3.1), there exists a map g : i!X → I such that g ◦ i!s = α ◦ i!f
in K(A); and then we have, in K(AV ),

i∗g ◦s = i∗g ◦ i∗i!s = i∗α ◦ i∗i!f = 1 ◦f = f .

Thus i∗I is indeed q-injective. Q.E.D.

(2.4.5.3). Similarly, any functor having an exact left adjoint preserves q-injectivity.
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2.5. Derived tensor product

Let U be a topological space, O a sheaf of commutative rings, and
A the abelian category of (sheaves of) O-modules. Recall from (1.5.4)
the definition of the tensor product (over O) of two complexes in K(A),
and its ∆-functorial properties. The standard theory of the derived tensor
product, via resolutions by complexes of flat modules, applies to complexes
in D−(A), see e.g., [H, p. 93]. Following Spaltenstein [Sp] we can use direct
limits to extend the theory to arbitrary complexes in D(A). Before defining,
in (2.5.7), the derived tensor product, we need to develop an appropriate
acyclicity notion, “q-flatness.”

Definition (2.5.1). A complex P ∈ K(A) is q-flat if for every quasi-
isomorphism Q1 → Q2 in K(A), the resulting map P ⊗Q1 → P ⊗Q2 is
also a quasi-isomorphism; or equivalently (see footnote under (1.5.1)), if for
every exact complex Q ∈ K(A), the complex P ⊗Q is also exact.

Example (2.5.2). P ∈ K(A) is q-flat iff for each point x ∈ U , the
stalk Px is q-flat in K(Ax), where Ax is the category of modules over the
ring Ox. (In verifying this statement, note that an exact Ox-complex Qx
is the stalk at x of the exact O-complex Q which associates Qx to those
open subsets of U which contain x, and 0 to those which don’t.)

For instance, a complex P which vanishes in all degrees but one (say n)
is q-flat if and only if tensoring with the degree n component Pn is an exact
functor in the category of O-modules, i.e., Pn is a flat O-module, i.e., for
each x ∈ U, Pnx is a flat Ox-module.

Example (2.5.3). Tensoring with a fixed complex Q is a ∆-functor,
and so the exact homology sequence (1.4.5)H of a triangle yields that the
q-flat complexes are the objects of a ∆-subcategory of K(A).

A bounded complex

P : · · · → 0→ 0→ Pm → · · · → Pn → 0→ 0→ . . .

fits into a triangle P ′ → P → P ′′ → P ′[1] where P ′ is Pn in degree n
and 0 elsewhere, and where P ′′ is the cokernel of the obvious map P ′ → P .
So starting with (2.5.2) we see by induction on n −m that any bounded
complex of flat O-modules is q-flat.

Example (2.5.4). Since (filtered) direct limits commute with both
tensor product and homology, therefore any such limit of q-flat complexes
is again q-flat.

A bounded-above complex

P : · · · → Pm → · · · → Pn → 0→ 0→ · · ·

is the limit of the direct system P0 → P1 → · · · → Pi → · · · where Pi is
obtained from P by replacing all the components P j with j < n− i by 0,
and the maps are the obvious ones. Hence, any bounded-above complex of
flat O-modules is q-flat.
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A q-flat resolution of an A-complex C is a quasi-isomorphism P → C
with P q-flat. The totality of such resolutions (with variable P and C ) is
the class of objects of a category, whose morphisms are the obvious ones.

Proposition (2.5.5). Every A-complex C is the target of a quasi-
isomorphism ψC from a q-flat complex PC , which can be constructed to
depend functorially on C, and so that PC[1] = PC [1] and ψC[1] = ψC [1].

Proof. Every O-module is a quotient of a flat one; in fact there exists
a functor P0 from A to its full subcategory of flat O-modules, together
with a functorial epimorphism P0(F) ։ F (F ∈ A). Indeed, for any open
V ⊂ U let OV be the extension of O|V by zero, (i.e., the sheaf associated
to the presheaf taking an open W to O(W ) if W ⊂ V and to 0 otherwise),
so that OV is flat, its stalk at x ∈ U being Ox if x ∈ V and 0 otherwise.
There is a canonical isomorphism

ψ : F(V ) −→∼ Hom(OV , F) (F ∈ A)

such that ψ(λ) takes 1 ∈ OV (V ) to λ. With Oλ := OV for each λ ∈ F(V ),
the maps ψ(λ) define an epimorphism, with flat source,

P0(F) :=
( ⊕

V open

⊕

λ∈F(V )

Oλ

)
։ F,

and this epimorphism depends functorially on F.
We deduce then, for each F, a functorial flat resolution

· · · → P2(F)→ P1(F)→ P0(F) ։ F

with P1(F) := P0

(
ker(P0(F) ։ F)

)
, etc. Set Pn(F) = 0 if n < 0.

Then to a complex C we associate the flat complex P = PC such that
P r := ⊕m−n=r Pn(C

m) and the restriction of the differential P r → P r+1

to Pn(C
m) is Pn(C

m → Cm+1)⊕ (−1)m
(
Pn(C

m)→ Pn−1(C
m) , together

with the natural map of complexes P → C induced by the epimorphisms
P0(C

m) ։ Cm (m ∈ Z). Elementary arguments, with or without spec-
tral sequences, show that for the truncations τ

≤mC of §1.10, the maps
Pτ

≤m
C → τ

≤mC are quasi-isomorphisms. Since homology commutes with

direct limits, the resulting map

ψC : PC = lim
−→m

Pτ
≤m

C → lim
−→m

τ
≤mC = C,

(which depends functorially on C) is a quasi-isomorphism; and by (2.5.4),
PC is q-flat. That PC[1] = PC [1] and ψC[1] = ψC [1] is immediate. Q.E.D.

Exercises (2.5.6). (a) Let P and Q be complexes in A, the category of O-

modules, and suppose that for all integers s, t, u, v the complex τ≤sτ≥tP ⊗O τ≤uτ≥vQ
is exact. Then

P ⊗Q = lim
−→
s,u

τ≤sP ⊗ τ≤uQ

is exact.

(b) If for all n ∈ Z the homology Hn(P ) is a flat O-module and furthermore, for

all n the kernel of Pn → Pn+1 is a direct summand of Pn (or, for all n the image

of Pn → Pn+1 is a direct summand of Pn+1), then P is q-flat. (Use (a) to reduce to
where P is bounded; then apply induction to the number of n such that Pn 6= 0.)
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(2.5.7). Let A be, as above, the category of O-modules, and let

J′ ⊂ K := K(A)

be the ∆-subcategory of K whose objects are all the q-flat complexes,
see (2.5.3). Fix B ∈ K and consider the ∆-functor

FB : K→ D := D(A)

such that
FB(A) = A⊗B (see (1.5.4)).

If A is both q-flat and exact, then A ⊗ B is exact: to see this, we may
replace B by any quasi-isomorphic complex B′ (since A is q-flat), and
by (2.5.5) we may assume that B′ is q-flat, whence, by (2.5.1), A ⊗ B′ is
exact. Hence the restriction of FB to J′ transforms quasi-isomorphisms
into isomorphisms.

There exists, by (2.5.5), a functorial family of quasi-isomorphisms

ψA : PA → A (A ∈ K, PA ∈ J′).

with PA[1] = PA[1] . An argument dual to that in (2.2.4) (with J′′ := K)

shows then that FB has a left-derived ∆-functor

(2.5.7.1) (LFB , identity) : D→ D

with
LFB(A) = PA ⊗B ∼= PA ⊗ PB ∼= A⊗ PB ,

the isomorphisms being the ones induced by ψA and ψB . Alternatively,
PA is left-FB-acyclic for all A , B (see 2.5.10(d)), so one can apply (2.2.6).

For fixed A and variable B, PA⊗B is a ∆-functor from K to D which
takes quasi-isomorphisms to isomorphisms, so by (1.5.1) there results a ∆-
functor from D to D. Hence there is a functor of two variables, called a
derived tensor product,

⊗
=

: D×D −→ D

which together with appropriate θ (see (1.5.4)) is a ∆-functor in each
variable separately (i.e., it is a ∆-functor as defined in (2.4.3)).

Though the variables A and B have been treated differently in the
foregoing, their roles are essentially equivalent. Indeed, there is a univer-
sal property analogous to (the dual of) that in (2.4.4), characterizing the
natural composite map of ∆-functors from K×K to D :

QA⊗
=
QB −→∼ Q(PA ⊗ PB) −→ Q(A⊗B) .

Hence, in view of (1.5.4.1), there is a canonical ∆-bifunctorial isomorphism

B ⊗
=
A −→∼ A⊗

=
B.

This arises, in fact, from the natural isomorphism PB ⊗ PA −→
∼ PA ⊗ PB .
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(2.5.8). The local hypertor sheaves are defined by

Torn(A,B) = H−n(A⊗
=
B) (n ∈ Z; A,B ∈ D).

As in (2.1.4), short exact sequences in either the A or B variable give rise
to long exact hypertor sequences.

We remark that when U is a scheme and O = OU , if the homology
sheaves of the complexes A and B are all quasi-coherent then so are the
sheaves Torn(A,B). This is clear, by reduction to the affine case, if A
and B are quasi-coherent OX -modules (i.e., complexes vanishing except in
degree 0). In the general case, since

A⊗B = lim
−→s,u

τ
≤sA⊗ τ≤uB ,

we may assume that A and B lie in D−, and then argue as in [H, p. 98,
Prop. 4.3], or alternatively, use the Künneth spectral sequence

E2
pq = ⊕

i+j=q
Torp(H

−i(A), H−j(B))⇒ Tor•(A,B)

(as described e.g., in [B, p. 186, Exercise 9(b)], with flat resolutions replac-
ing projective ones). Thus, with notation as in (1.9), denoting by Dqc the

∆-subcategory D# ⊂ D with A# ⊂ A the subcategory of quasi-coherent
OU -modules (which is plump, see [GD, p. 217, (2.2.2) (iii)]), we have a
∆-functor

(2.5.8.1) ⊗
=

: Dqc ×Dqc −→ Dqc .

(2.5.9). The definitions in (1.5.4) can be extended to three (or more)
variables, to give a ∆-functor A⊗B ⊗ C from K×K×K to K.

There exists a ∆-functor T3 : D × D × D → D together with a
∆-functorial map

η : T3(A,B,C) −→ A⊗B ⊗ C (A,B,C ∈ K)

such that for any ∆-functor H : D × D × D → D and any ∆-functorial
map µ : H(A,B,C) −→ A ⊗ B ⊗ C there is a unique ∆-functor map
µ̄ : H → T3 such that µ = η ◦ µ̄. (The reader can fill in the missing Q’s.)
In fact there is such a T3 with

T3(A,B,C) = PA ⊗ PB ⊗ PC .

We usually write
T3(A,B,C) = A⊗

=
B ⊗

=
C .

There are canonical ∆-functorial isomorphisms

(A⊗
=
B)⊗

=
C −→∼ A⊗

=
B ⊗

=
C ←−∼ A⊗

=
(B ⊗

=
C) .

Similar considerations hold for n > 3 variables. Details are left to the
reader. (See, for example, (2.6.5) below.)
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Exercises (2.5.10). (a) Show that if A ∈ K(A) is q-flat and B ∈ K(A) is
q-injective then Hom

•(A,B) is q-injective.

(b) Let Γ: A → Ab be the global section functor. Show that there is a natural
isomorphism of ∆-functors (of two variables, see (2.4.3))

RHom•(A,B) −→∼ RΓRHom
•(A,B).

(Use (a) and (2.2.7), or [Sp, 5.14, 5.12, 5.17].)

(c) Let (Aα) be a (small, directed) inductive system of A-complexes. Show that

for any complex B ∈ D(A) there are natural isomorphisms

lim
−→
α

Torn(Aα, B) −→∼ Torn((lim
−→
α

Aα), B) (n ∈ Z).

(d) Show that for P to be q-flat it is necessary that P be left-FB-acyclic for all B

(FB as in (2.5.7)), and sufficient that P be left-FB-acyclic for all exact B. (For the last

part, (2.2.6) could prove helpful.) Formulate and prove an analogous statement involving
q-injectivity and Hom• . (See (2.3.8).)

2.6. Adjoint associativity

Again let U be a topological space, O a sheaf of commutative
rings, and A the abelian category of O-modules. Set K := K(A),
D := D(A). This section is devoted to (2.6.1)—or better, (2.6.1)∗ at the
end—which expresses the basic adjointness relation between the ∆-functors
RHom

• : Dop×D→ D and ⊗
=

: D×D→ D defined in (2.4.5) and (2.5.7)
respectively.

Proposition (2.6.1). There is a natural isomorphism of ∆-functors
(see (2.4.3)):

RHom
•(A⊗

=
B, C) −→∼ RHom

•(A, RHom
•(B, C)) .

Remarks. (i) Strictly speaking, the ∆-functors RHom
• and ⊗

=
are

defined only up to canonical isomorphism by universal properties, for ex-
ample, (2.5.9). We leave it to the reader to verify that the map in (2.6.1)
(to be constructed below) is compatible, in the obvious sense, with such
canonical isomorphisms.

(ii) A proof similar to the following one20 yields a natural isomorphism

RHom•(A⊗
=
B, C) −→∼ RHom•(A, RHom

•(B, C)) .

Applying homology H0 we have, by (2.4.2), the adjunction isomorphism

(2.6.1)′ HomD(A⊗
=
B, C) −→∼ HomD(A, RHom

•(B, C)) .

(iii) Prop. (2.6.1) gives a derived-category upgrade of the standard
sheaf isomorphism

(2.6.2) Hom(F ⊗G, H) −→∼ Hom (F, Hom (G, H)) (F,G,H ∈ A).

20 or application of the functor RΓ to (2.6.1), see (2.5.10),
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Proof of (2.6.1). We discuss the proof at several levels of pedantry,
beginning with the argument, in full, given in [I, p. 151, Lemme 7.4] (see
also [Sp, p. 147, Prop. 6.6]): “Resolve C injectively and B flatly.”

This argument can be expanded as follows. Choose quasi-isomorphisms

C → IC , PB → B

where IC is q-injective and PB is q-flat. It follows from (2.3.8)(iv) that
the complex of sheaves Hom

•(PB, IC) is q-injective, since for any exact
complex X ∈ K, the isomorphism of complexes

Hom•(X ⊗ PB , IC) −→∼ Hom•(X, Hom
•(PB, IC))

coming out of (2.6.2) yields, upon application of homology H0,

0 = HomK(X ⊗ PB , IC) −→∼ HomK(X, Hom
•(PB, IC)).

Now consider the natural sequence of D-maps

RHom
•(A⊗

=
B, C) RHom

•(A, RHom
•(B, C))

y
y

RHom
•(A⊗

=
B, IC) RHom

•(A, RHom
•(B, IC))

y
y

RHom
•(A⊗

=
PB, IC) RHom

•(A, RHom
•(PB, IC))

x
x

RHom
•(A⊗ PB, IC) RHom

•(A, Hom
•(PB, IC))

x
x

Hom
•(A⊗ PB, IC) −−−−−−−→

from (2.6.2)
Hom

•(A, Hom
•(PB, IC))

Since PB is q-flat, and IC and Hom
•(PB , IC) are q-injective, all these

maps are isomorphisms (as follows, e.g., from the last assertion of (2.2.6));
so we can compose to get the isomorphism (2.6.1).

But we really should check that this isomorphism does not depend
on the chosen quasi-isomorphisms, and that it is in fact ∆-functorial. This
can be quite tedious. The following remarks outline a method for managing
such verifications. The basic point is (2.6.4) below.
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Let M be a set. An M-category is an additive category C plus a map
t:M → Hom(C,C) from M into the set of additive functors from C to C,
such that with Tm := t(m) it holds that Ti ◦Tj = Tj ◦Ti for all i, j ∈ M .
Such an M -category will be denoted CM , the map f—or equivalently, the
commuting family (Tm)m∈M—understood to have been specified; and when
the context renders it superfluous, the subscript “M ” may be omitted.

An M-functor F : CM → C′
M is an additive functor F : C → C′

together with isomorphisms of functors

θi : F ◦ Ti −→
∼ T ′

i ◦F (i ∈M)

(with (T ′
m)m∈M the commuting family of functors defining the M -structure

on C′ ) such that for all i 6= j, the following diagram commutes:

F ◦Ti ◦Tj
via θi−−−−→ T ′

i ◦F ◦Tj
T ′
i (θj)−−−−→ T ′

i ◦T
′
j ◦F∥∥∥

∥∥∥

F ◦Tj ◦Ti −−−−→
via θj

T ′
j ◦F ◦Ti −−−−−→

−T ′
j
(θi)

T ′
j ◦T

′
i ◦F

where, for instance, T ′
j(θi) is the isomorphism of functors such that for

each object X ∈ C , [T ′
j(θi)](X) is the C′-isomorphism

T ′
j

(
θi(X)

)
:T ′
j

(
FTi(X)

)
−→∼ T ′

j

(
T ′
iF (X)

)
.

A morphism η : (F, {θi}) → (G, {ψi}) of M -functors is a morphism of
functors η : F → G such that for every i ∈ M and every object X in C,
the following diagram commutes:

FTi(X)
θi(X)
−−−−→ T ′

iF (X)

η(Ti(X))

y
yT ′

i (η(X))

GTi(X) −−−−→
ψi(X)

T ′
iG(X)

Composition of such η being defined in the obvious way, the M -functors
from C to C′, and their morphisms, form a category H := HomM(C, C′).
If M ′ ⊃M and C′

M ′ is viewed as an M-category via “restriction of scalars”
then H is itself an M ′-category, with j ∈ M ′ being sent to the functor

T#
j : H→ H such that on objects of H,

T#
j

(
F, {θi}

)
=

(
T ′
j ◦F, {−T

′
j(θi)}

)
,

where the isomorphism of functors

T ′
j(θi) : (T ′

j ◦F ) ◦Ti −→
∼ T ′

j ◦ T
′
i ◦F = T ′

i ◦ (T
′
j ◦F )

is as above.21 The definition of T#
j η (η as above), and the verification

that H is thus an M ′-category, are straightforward.

21 The reason for the minus sign in the definition of T#
j

is hidden in the details
of the proof of Lemma (2.6.3) below.
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Suppose given such categories AM , BN , and CM∪N , where the sets
M and N are disjoint. A × B is considered to be an (M ∪ N)-category,
with i ∈M going to the functor Ti × 1 and j ∈ N to the functor 1× Tj .
Also, HomN (B, C) is considered, as above, to be an (M ∪N)-category

Lemma (2.6.3). With preceding notation, there is a natural isomor-
phism of M ∪N-categories

HomM∪N

(
A×B, C

)
−→∼ HomM

(
A,HomN (B,C)

)

The proof, left to the reader, requires very little imagination, but a
good deal of patience.

For any positive integer n, let △n be the set {1, 2, . . . , n}. From
now on, we deal with ∆-categories, always considered to be △1-categories
via their translation functors. If C1, . . . ,Cn are ∆-categories, then the
product category C = C1 × C2 × · · · × Cn becomes a △n-category by
the product construction used in (2.6.3). A ∆-category E can also be
made into an △n-category by sending each i ∈ △n to the translation
functor of E. With these understandings, we see that the △n-functors
from C1×C2×· · ·×Cn to E are just the ∆-functors of (2.4.3) (categories
of which we denote by Hom∆). For example, one checks that the source
and target of the isomorphism in (2.6.1) are both △3-functors.

Now for 1 ≤ i ≤ n fix abelian categories Ai , and let Li be a
∆-subcategory of K(Ai), with corresponding derived category Di and
canonical functor Qi : Li → Di . Let E be any ∆-category. We can gener-
alize (1.5.1) as follows:

Proposition (2.6.4). The canonical functor

L1× · · · × Ln −−−−−−−→
Q1×···×Qn

D1× · · · ×Dn

induces an isomorphism from the category Hom∆(D1 ×D2× · · · ×Dn, E)
onto the full subcategory of Hom∆(L1 × L2 × · · · × Ln, E) whose objects
are the ∆-functors F such that for any quasi-isomorphisms α1, . . . , αn
in L1, . . . ,Ln respectively, F (α1, . . . , αn) is an isomorphism in E .

Proof. The case n = 1 is contained in (1.5.1). We can then proceed
by induction on n, using the natural isomorphism

Hom△n

(
C1 ×C2 × · · · ×Cn, E

)

−→∼ Hom△1

(
C1, Hom△n−1

(C2 × · · · ×Cn, E)
)

provided by (2.6.3) (with Ci := Di or Li ). Q.E.D.

Suppose next that we have pairs of ∆-subcategories L′
i ⊂ L′′

i

in K(Ai), with respective derived categories D′
i , D′′

i , and canonical func-
tors Q′

i : L′
i → D′

i, Q
′′
i : L′′

i → D′′
i (1 ≤ i ≤ n). Suppose further that every
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complex A ∈ L′′
i admits a quasi-isomorphism into a complex IA ∈ L′

i .
Then as in (1.7.2) the natural ∆-functors ̃i : D′

i → D′′
i are ∆-equivalences,

having quasi-inverses ρi satisfying ρi(A) = IA (A ∈ L′′
i ). There result

functors

̃∗ : Hom∆(D′′
1 × · · · ×D′′

n, E) −→ Hom∆(D′
1 × · · · ×D′

n, E)

ρ∗ : Hom∆(D′
1 × · · · ×D′

n, E) −→ Hom∆(D′′
1 × · · · ×D′′

n, E)

together with functorial isomorphisms

̃∗ρ∗ −→∼ identity, ρ∗̃∗ −→∼ identity,

i.e., ̃∗ and ρ∗ are quasi-inverse equivalences of categories.
We deduce the following variation on the theme of (2.2.3), thereby

arriving at a general method for specifying maps between ∆-functors on
products of derived categories:22

Corollary (2.6.5). With above notation let H : L′
1 × · · · × L′

n → E,
F : D′′

1 × · · · ×D′′
n → E, and G : D′′

1 × · · · ×D′′
n → E be ∆-functors. Let

ζ : H −→∼ F ◦ (̃1Q
′
1 × · · · × ̃nQ

′
n),

β : H −→ G ◦ (̃1Q
′
1 × · · · × ̃nQ

′
n)

be ∆-functorial maps, with ζ an isomorphism. Then :

(i) There exists a unique ∆-functorial map β̄ : F → G such that for

all A1 ∈ L′
1, . . . , An ∈ L′

n, β(A1, . . . , An) factors as

(2.6.5.1) H(A1, . . . , An)
ζ
−→ F (A1, . . . , An)

β̄
−→ G(A1, . . . , An).

Moreover, if β is an isomorphism then so is β̄.

(ii) If H in (i) extends to a ∆-functor H : L′′
1 × · · · × L′′

n → E, and
ζ (resp. β) to a ∆-functorial map ζ : H → F ◦ (̃1Q

′′
1 × · · · × ̃nQ

′′
n)

(resp. β : H → G ◦ (̃1Q
′′
1 × · · ·× ̃nQ

′′
n)), then the factorization (2.6.5.1) of

β(A1, . . . , An) holds for all A1 ∈ L′′
1, . . . , An ∈ L′′

n .

Proof. (i) The assertion just means that β̄ is the unique map
(resp. isomorphism) F → G in the category Hom∆(D′′

1 × · · · ×D′′
n, E)

corresponding via the above equivalence ̃∗ and (2.6.4) to the map
(resp. isomorphism) βζ−1 in the category Hom∆(L′

1 × · · · × L′
n, E).

(ii) Use quasi-isomorphisms Ai → IAi to map (2.6.5.1) into the cor-
responding diagram with IAi ∈ L′

i in place of Ai . To this latter diagram
(i) applies; and as the resulting map G(A1, . . . , An) → G(IA1

, . . . , IAn) is
an isomorphism, the rest is clear. Q.E.D.

22 This is no more (or less) than a careful formulation of the method used, e.g.,

throughout [H, Chapter II].
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We can now derive (2.6.1) as follows. Take n = 3, and set

L′
1 := K

L′
2 :=

{
∆-subcategory of K whose objects are

the q-flat complexes (2.5.3).

L′
3 :=

{
∆-subcategory of K whose objects are

the q-injective complexes (2.3.2.2).

Let D′
1 , D′

2 , D′
3 be the corresponding derived categories, and set

L′′
i := K, D′′

i := D (i = 1, 2, 3),

so that the natural maps ji : Di
′ → D′′

i are ∆-equivalences, with quasi-
inverses obtained for i = 2 and i = 3 from q-flat (resp. q-injective)
resolutions, i.e., from families of quasi-isomorphisms

PB → B (B ∈ K, PB ∈ L′
2),

C → IC (C ∈ K, IC ∈ L′
3).

In Corollary (2.6.5)(ii), let H : L′′
1 × L′′

2 × L′′
3 → D be the ∆-functor

H(A,B,C) := Hom
•(A⊗B, C),

let ζ be the natural composed ∆-functorial map

Hom
•(A⊗B, C)→ RHom

•(A⊗B,C)→ RHom
•(A⊗

=
B,C),

and let β be the natural composed ∆-functorial map

Hom
•(A⊗B, C) −→∼

(2.6.2)
Hom

•(A, Hom
•(B, C))

−→ RHom
•(A, Hom

•(B, C))

−→ RHom
•(A, RHom

•(B, C)).

(Meticulous readers may wish to insert the missing Q’s).

We saw earlier, near the beginning of the proof of (2.6.1), that for
(B,C) ∈ L′

2 × L′
3, the complex Hom

•(B, C) is q-injective, and hence
for such (B,C), ζ and β are isomorphisms. Modifying (2.6.5) in the
obvious way to take contravariance into account, we deduce the following
elaboration of (2.6.1):
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Proposition (2.6.1)* . There is a unique ∆-functorial isomorphism

α : RHom
•(A⊗

=
B, C) −→∼ RHom

•(A, RHom
•(B, C))

such that for all A,B,C ∈ D, the following natural diagram (in which
H• stands for Hom

• ) commutes :

H•(A⊗B,C) −−−→ RH•(A⊗B,C) −−−→ RH•(A⊗
=
B,C)

via

y(2.6.2) ≃

yα

H•(A, H•(B,C)) −−−→ RH•(A, H•(B,C)) −−−→ RH•(A, RH•(B,C))

This ∆-functorial isomorphism is the same as the one described—non-
canonically, via PB and IC—near the beginning of this section. See also
exercise (3.5.3)(e) below.

From (2.5.7.1) and (3.3.8) below (dualized), we deduce:

Corollary (2.6.7). For fixed A the ∆-functor FA(−) := Hom•(A,−)
of §2.4 has a right-derived ∆-functor of the form (RFA , identity).

Exercise (2.6.7) (see [De, §1.2]). Define derived functors of several variables,

and generalize the relevant results from §§2.2–2.3.

2.7. Acyclic objects; finite-dimensional derived functors

This section contains additional results about acyclicity, used to get
some more ways to construct derived functors, further illustrating (2.2.6).
It can be skipped on first reading.

Let A, A′ be abelian categories, and let φ : A → A′ be an additive
functor. We also denote by φ the composed ∆-functor

K(A)
K(φ)
−−−→ K(A′)

Q
−−−→ D(A′)

where K(φ) is the natural extension of the original φ to a ∆-functor.
We say then that an object in A is right-(or left-)φ-acyclic if it is so
when viewed as a complex vanishing outside degree zero (see (2.2.5) with
J := K(A)). In this section we deal mainly with the “left” context, and so
we abbreviate “left-φ-acyclic” to “φ-acyclic.” (The corresponding—dual—
results in the “right” context are left to the reader. They are perhaps
marginally less important because of the abundance of injectives in situa-
tions that we will deal with.)

If X ∈ A and Z → X is a quasi-isomorphism in K(A), then the
natural map τ

≤0Z → Z of §1.10 is a quasi-isomorphism. If furthermore
the induced map φ(Z) → φ(X) is a quasi-isomorphism and the functor φ
is either right exact or left exact, then, one checks, the natural composition
φ(τ

≤0Z) → φ(Z) → φ(X) is also a quasi-isomorphism. One deduces the
following characterization of φ-acyclicity:
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Lemma (2.7.1). If X ∈ A is such that every exact sequence

· · · −−−−→ Y2 −−−−→ Y1 −−−−→ Y0 −−−−→ X −−−−→ 0

embeds into a commutative diagram in A

· · · −−−−→ Z2 −−−−→ Z1 −−−−→ Z0 −−−−→ X −−−−→ 0
y

y
y

∥∥∥

· · · −−−−→ Y2 −−−−→ Y1 −−−−→ Y0 −−−−→ X −−−−→ 0

with the top row and its image under φ both exact, then X is φ-acyclic;
and the converse holds whenever φ is either right exact or left exact.

Proposition (2.7.2). With preceding notation, let P be a class of
objects in A such that

(i) every object in A is a quotient of (i.e., target of an epimorphism
from) one in P;

(ii) if A and B are in P then so is A⊕B ; and
(iii) for every exact sequence 0 → A → B → C → 0 in A, if B

and C are in P, then A ∈ P and the corresponding sequence
0→ φA→ φB → φC → 0 in A′ is also exact.

Then every bounded-above P-complex (i.e., complex with all components
in P)—in particular every object in P—is φ-acyclic ; the restriction φ−

of φ to K−(A) has a left-derived functor Lφ− : D−(A) → D(A′); and
if φ 6∼= 0 then dim+Lφ− = 0 (see (1.11.1)).

Proof. Since P is nonempty—by (i)—therefore (iii) with B = C ∈ P
shows that 0 ∈ P. Then (ii) implies that the P-complexes in K−(A) are
the objects of a ∆-subcategory, see (1.6). Starting from (i), an induc-
tive argument ([H, p. 42, 4.6, 1)], dualized—and with assistance, if desired,
from [Iv, p. 34, Prop. 5.2]) shows that every complex in K−(A)—and so, via
(1.8.1)−, in K−(A)—is the target of a quasi-isomorphism from a bounded-
above P-complex. Hence, for the first assertion it suffices to show that
φ transforms quasi-isomorphisms between bounded-above P-complexes
into isomorphisms, i.e., that for any bounded-above exact P-complex X•,
φ(X•) ∼= 0 (see (1.5.1)).

Using (iii), we find by descending induction (starting with i0 such that
Xj = 0 for all j > i0 ) that for every i, the kernel Ki of X i → X i+1 lies
in P and the obvious sequence

0→ φ(Ki)→ φ(X i)→ φ(Ki+1)→ 0

is exact. Consequently, the complex obtained by applying φ to X• is exact,
i.e., φ(X•) ∼= 0 in D(A′).

Now by (2.2.4) (dualized) we see that Lφ− exists and dim+Lφ− ≤ 0,
with equality if φ(A) 6∼= 0 for some A ∈ A , because there is a natural
epimorphism H0

Lφ−A ։ φ(A) . Q.E.D.
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Exercise (2.7.2.1). Let φ : A → A′ be as above. Let (Λi)0≤i<∞ be a “homo-

logical functor” [Gr, p. 140], with Λ0 = φ. Let P consist of all objects B in A such

that Λi(B) = 0 for all i > 0, and suppose that every object A ∈ A is a quotient of one

in P. Then Lφ− exists, and the homological functors (Λi) and (Λ′
i) := (H−iLφ−) are

coeffaceable, hence universal [Gr, p. 141, Prop. 2.2.1], hence isomorphic to each other.

Examples (2.7.3). A ringed space is a pair (X,OX) with X a topo-
logical space and OX a sheaf of commutative rings on X ; and a morphism
of ringed spaces (f, θ) : (X,OX)→ (Y,OY ) is a continuous map f : X → Y
together with a map θ : OY → f∗OX of sheaves of rings. Any such (f, θ)
gives rise to a (left-exact) direct image functor

f∗ : {OX -modules} → {OY -modules}

such that [f∗M ](U) = M(f−1U) for any OX -module M and any open
set U ⊂ Y , the OY -module structure on f∗M arising via θ; and also to a
(right-exact) inverse image functor

f∗ : {OY -modules} → {OX -modules}

defined up to isomorphism as being left-adjoint to f∗ [GD, Chap. 0, §4].
For every OY -module N , the stalk (f∗N)x at x ∈ X is OX,x⊗OY,f(x)Nf(x) .

An OY -module F is flat if the stalk Fy is a flat OY,y -module for all
y ∈ Y . The class P of flat OY -modules satisfies the hypotheses of (2.7.2)
when φ = f∗ : (i) is given by [H, p. 86, Prop. 1.2], (ii) is easy, and for (iii)
see [B′, Chap. 1, §2, no. 5]. Thus the restriction f∗

−
of f∗ to K−(Y ) has a

left-derived functor
Lf∗

−
: D−(Y )→ D(X)

(D(X) being the derived category of the category of OX -modules, etc.),
defined via resolutions (on the left) by complexes of flat OY -modules.

Using the family of quasi-isomorphisms ψA : PA → A (A ∈ D(Y ))
with PA q-flat (see (2.5.5)), we can, in view of (2.5.2) and (2.5.3), show as
in (2.5.7) that Lf∗

−
extends to a derived ∆-functor

(2.7.3.1) (Lf∗, identity) : D(Y )→ D(X)

satisfying Lf∗(A) = f∗(PA).
For any OY -module N , the stalk of the homology

Lif
∗(N) := H−i

Lf∗(N) (i ≥ 0)

at any x ∈ X is Tor
OY,f(x)

i (OX,x , Nf(x)). So by the last assertion in (2.2.6)

(dualized), or in (2.7.4), N is f∗-acyclic iff Tor
OY,f(x)

i (OX,x , Nf(x)) = 0
for all x ∈ X and i > 0. (Note here that since f∗ is right exact, the natural
map is an isomorphism L0f

∗(N) −→∼ f∗(N) .) Thus—or by (2.7.2)—any
flat OY -module is f∗-acyclic.
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Recall that an OX -module M is flasque (or flabby) if the restric-
tion map M(X) → M(U) is surjective for every open subset U of X.
For example, injective OX -modules are flasque [G, p. 264, 7.3.2] (with
L = OX ). The class of flasque OX-modules satisfies the hypotheses
of (2.7.2) (dual version) when φ = f∗ : for (i) see [G, p. 147], (ii) is easy,
and (iii) follows from the fact that if

0→ F → G→ H → 0

is an exact sequence of OX -modules, with F flasque, then for all open
sets V ⊂ X the sequence

0→ F (V )→ G(V )→ H(V )→ 0

is still exact [G, p. 148, Thm. 3.1.2]. So the restriction f+

∗ of f∗ to K+(X)
has a right-derived functor

Rf
+

∗ : D+(X)→ D(Y )

defined via resolutions (on the right) by complexes of flasque OX -modules.

Of course we already know from (2.3.4), via (somewhat less elemen-
tary) injective resolutions, that Rf+

∗ exists, and by (2.3.5) it extends to a
derived functor Rf∗ : D(X) → D(Y ). (See also (2.3.7).) In fact, in view
of (2.7.3.1), it follows from (3.2.1) and (3.3.8) (dualized) that:

(2.7.3.2). The ∆-functor (f∗, identity) has a derived ∆-functor of the
form (Rf∗, identity).

An OX -module M is f∗-acyclic iff the “higher direct image” sheaves

Rif∗(M) := Hi
Rf∗(M) (i ≥ 0)

vanish for all i > 0, see last assertion in (2.2.6) or in (2.7.4) (dualized).
(Since f∗ is left-exact, the natural map is an isomorphism f∗ −→

∼ R0f∗ .)
Flasque sheaves are f∗-acyclic.

For more examples involving flasque sheaves see [H, p. 225, Variations
6 and 7] (“cohomology with supports”).

Proposition (2.7.4). Let A and A′ be abelian categories, and let
φ : A → A′ be a right-exact additive functor. If C is φ-acyclic, then for
every exact sequence 0 → A → B → C → 0 in A the corresponding
sequence 0 → φA → φB → φC → 0 is also exact, and A is φ-acyclic iff
B is. So if every object in A is a quotient of a φ-acyclic one, then the
conclusions of (2.7.2) hold with P the class of φ-acyclic objects; and then
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D ∈ A is φ-acyclic iff the natural map Lφ−(D)→ φ(D) is an isomorphism
in D(A′), i.e., iff H−i

Lφ−(D) = 0 for all i > 0.

Proof. For the first assertion, note that by (2.7.1) there exists a
commutative diagram

C2
δ

−−−−→ C1
γ

−−−−→ C0 −−−−→ C −−−−→ 0
y

y
yβ

∥∥∥

0 −−−−→ A −−−−→ B −−−−→
α

C −−−−→ 0

such that the top row is exact and remains so after application of φ.
There results a commutative diagram

C2 C2

δ

y
yδ

0 −−−−→ 0 −−−−→ C1 C1 −−−−→ 0
y γ′

y
yγ

0 −−−−→ A −−−−→ C0 ×C B −−−−→
π

C0 −−−−→ 0
∥∥∥

y
y

A −−−−→ B −−−−→ C −−−−→ 0
y

y
y

0 0 0

with exact columns, in which the middle row is split exact, a right inverse for
the projection π being given by the graph of the map β.23 (The coordinates
of γ′ are γ and 0.) Applying φ preserves split-exactness; and then, since
φ is right-exact, so that e.g., φC = coker(φγ), the “snake lemma” yields
an exact sequence

0→ ker(φγ′)→ ker(φγ)→ φA→ φB → φC → 0 .

Since
ker(φγ) = im(φδ) ⊂ ker(φγ′)

we conclude that 0→ φA→ φB → φC → 0 is exact, as asserted in (2.7.4).
In other words, if Z is the complex which looks like A → B in de-

grees −1 and 0 and which vanishes elsewhere, then the quasi-isomorphism

23 Recall that C0 ×C B is the kernel of the map C0⊕B → C whose restriction to

C0 is αβ and to B is −α.



70 Chapter 2. Derived Functors

Z → C given by the exact sequence 0 → A → B → C → 0 becomes,
upon application of φ, an isomorphism in D(A′); and hence, by (2.2.5.2)
(dualized), Z is a φ-acyclic complex.

The natural semi-split sequence 0 → B → Z → A[1]→ 0 leads, as in
(1.4.3), to a triangle

B −→ Z −→ A[1] −→ B[1] ;

and since the φ-acyclic complexes are the objects of a ∆-subcategory,
see (2.2.5.1), it follows that A is φ-acyclic iff B is.

Since ∆-subcategories are closed under direct sum, it is clear now that
(ii) and (iii) in (2.7.2) hold when P is the class of φ-acyclic objects, whence
the second-last assertion in (2.7.4). In view of (2.7.2) and its proof, the last
assertion of (2.7.4) is contained in (2.2.6). Q.E.D.

The derived functor Lφ− of (2.7.4) satisfies dim+
Lφ− = 0 (unless

φ ∼= 0, see (2.7.2)). When its lower dimension satisfies dim−Lφ− < ∞,
more can be said.

Proposition (2.7.5). Let φ : A → A′ be a right-exact functor such
that every object in A is a quotient of a φ-acyclic one, and let Lφ− be a
left-derived functor of φ|K−(A), see (2.7.4). Then the following conditions
on an integer d ≥ 0 are equivalent:

(i) dim−
Lφ− ≤ d.

(ii) For any F ∈ A we have

Ljφ(F ) := H−j
Lφ−(F ) = 0 for all j > d.

(iii) In any exact sequence in A

0→ 0→ Bd → Bd−1 → · · · → B0 ,

if B0, B1, . . . , Bd−1 are all φ-acyclic then so is Bd .
24

(iv) For any F ∈ A there is an exact sequence

0→ Bd → Bd−1 → · · · → B0 → F → 0

in which every Bi is φ-acyclic.
(v) For any complex F • ∈ K(A) and integers m ≤ n, if F j = 0 for

all j /∈ [m,n] then there exists a quasi-isomorphism B• → F •

where Bj is φ-acyclic for all j and Bj = 0 for j /∈ [m− d, n].
(vi) For any complex F • ∈ K(A) and any integer m, if F j = 0

for all j < m then there exists a quasi-isomorphism B• → F •

where Bj is φ-acyclic for all j and Bj = 0 for all j < m− d.

24 For d = 0 this means that every B ∈ A is φ-acyclic, i.e., φ is an exact functor,

see (2.7.4) (and then every F • ∈ K(A) is φ-acyclic, see (2.2.8(a)).
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When there exists an integer d ≥ 0 for which these conditions hold, then:

(a) Every complex of φ-acyclic objects is a φ-acyclic complex.
(b) Every complex in A is the target of a quasi-isomorphism from a

φ-acyclic complex.
(c) A left-derived functor Lφ : D(A) → D(A′) exists, dim+

Lφ = 0
(unless φ ∼= 0) and dim−Lφ ≤ d.

(d) The restriction Lφ|
D*(A) is a left-derived functor of φ|

K*(A) , and

Lφ(D*(A)) ⊂D*(A′) (∗ = +, −, or b).

Proof. (i)⇔(ii). This is given by (iii) and (iv) in (1.11.2).
(iii)⇒(v)⇒(iv). Let F • and m ≤ n be as in (v). As in the proof

of (2.7.2), there is a quasi-isomorphism P • → F • with P j φ-acyclic for all j
and P j = 0 for j > n. Let Bm−d be the cokernel of Pm−d−1 → Pm−d.
If (iii) holds, then Bm−d is φ-acyclic: this is trivial if d = 0, and otherwise
follows from the exact sequence

0→ Bm−d → Pm−d+1 → · · · → Pm−1 → Pm.

So all components of the complex B• = τ≥m−dP
• (see (1.10)) are φ-acyclic,

and clearly P • → F • factors naturally as P • → B• → F • = τ≥m−dF
•

where both arrows represent quasi-isomorphisms. Thus (iii)⇒(v); and
(v)⇒(iv) is obvious.

Recalling from (2.7.4) that B ∈ A is φ-acyclic iff Liφ(B) = 0 for
all i > 0, we easily deduce the implications (iv)⇒(ii)⇒(iii) from:

Lemma (2.7.5.1). Let

0 = Bd+1 → Bd → Bd−1 → · · · → B0 → F → 0

be an exact sequence in A with B0, B1, . . . , Bd−1 all φ-acyclic, and let Kj

be the cokernel of Bj+1 → Bj (0 ≤ j ≤ d). Then for any i > 0, there
results a natural sequence of isomorphisms

Li+dφ(F ) = Li+dφ(K0) −→
∼ Li+d−1φ(K1) −→

∼ · · ·

· · · −→∼ Li+2φ(Kd−2) −→
∼ Li+1φ(Kd−1) −→

∼ Liφ(Kd) = Liφ(Bd) .

Proof. When d = 0, it’s obvious. If d > 0, apply (2.1.4)H (dualized)
to the natural exact sequences

0→ Kj → Bj−1 → Kj−1 → 0 (0 < j ≤ d)

to obtain exact sequences

0 = Li+d−j+1φ(Bj−1)→ Li+d−j+1φ(Kj−1)

→ Li+d−jφ(Kj)→ Li+d−jφ(Bj−1) = 0. Q.E.D.
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(iii)⇒(vi). Condition (iii) coincides with condition (iii) of [H, p. 42,
Lemma 4.6, 2)] (dualized, and with P the set of φ-acyclics in A). Con-
dition (i) of loc. cit. holds by assumption, and condition (ii) of loc. cit. is
contained in (2.7.4). So if (iii) holds, loc. cit. gives the existence of a quasi-
isomorphism B• → F • with Bj φ-acyclic for all j; and the recipe at
the bottom of [H, p. 43] for constructing B• allows us, when F j = 0 for
all j < m, to do so in such a way that Bj = 0 for all j < m− d.

(vi)⇒(ii). Assuming (vi), we can find for each object F ∈ A a quasi-
isomorphism B• → F with all Bj φ-acyclic and Bj = 0 for j < −d. If K
is the cokernel of B−1 → B0 then the natural composition

H0(B•) −→ K −→ F

is an isomorphism, whence so are the functorially induced compositions

(2.7.5.2) Ljφ(H0(B•)) −→ Ljφ(K) −→ Ljφ(F ) (j ∈ Z).

But for every j > d, (2.7.5.1) with K in place of F yields Ljφ(K) = 0, so
that the isomorphism (2.7.5.2) is the zero-map. Thus (ii) holds.

Now suppose that (i)–(vi) hold for some d ≥ 0. We have just seen,
in proving that (iii)⇒(vi), that then every complex in A receives a quasi-
isomorphism from a complex B• of φ-acyclics; and so, as in the proof
of (2.7.2), assertion (2.7.5)(a)—and hence (b)—will result if we can show
that whenever such a B• is exact, then so is φ(B•). But condition (iii)
guarantees that when B• is exact, the kernel Ki of Bi → Bi+1 is φ-acyclic
for all i, whence by (2.7.4) we have exact sequences

0→ φ(Ki−1)→ φ(Bi−1)→ φ(Ki)→ 0 (i ∈ Z)

which together show that φ(B•) is indeed exact.
The existence of Lφ, via resolutions by complexes of φ-acyclic ob-

jects, follows now from (2.2.6); and the dimension statements follow, after
application of (1.8.1)+ or (1.8.1)−, from (v) with m = −∞ (obvious in-
terpretation, see beginning of above proof that (iii)⇒(v)) and from (vi).
Similar considerations yield (d). Q.E.D.

Examples (2.7.6). The dimension dim f of a map f : X → Y of
ringed spaces is defined to be the upper dimension (see (1.11)) of the functor
Rf+

∗ : D+(X)→ D(Y ) of (2.7.3):

dim f := dim+
Rf

+

∗ ,

a nonnegative integer unless f∗OX ∼= 0, in which case dim f = −∞. When
f has finite dimension, (2.7.5)(c) (dualized) gives the existence of a derived
functor Rf∗ : D(X)→ D(Y ) via resolutions (on the right) by complexes of
f∗-acyclic objects, and we have ∞ > dim f = dim+Rf∗.
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The tor-dimension (or flat dimension) tor-dim f of a map f : X → Y
of ringed spaces is defined to be the lower dimension (see (1.11)) of the
functor Lf∗

−
: D−(Y )→ D(X) of (2.7.3):

tor-dim f := dim−
Lf∗

−
,

a nonnegative integer unless OX ∼= 0, in which case tor-dim f = −∞.
When f has finite tor-dimension, (2.7.5)(c) gives the existence of a derived
functor Lf∗ : D(X) → D(Y ) via resolutions (on the left) by complexes of
f∗-acyclic objects, and we have ∞ > tor-dim f = dim−

Lf∗.

Following [I, p. 241, Définition 3.1] one says that an OX -complex E
has flat f-amplitude in [m,n] if for any OY -module F ,

Hi(E⊗
=

Lf∗F ) = 0 for all i /∈ [m,n],

or equivalently, for the functor LE(F ) := E⊗
=

Lf∗F of OY -module F ,

dim+L ≤ m and dim−L ≤ −n.

This means that the stalk Ex at each x ∈ X is D(OY,f(x))-isomorphic to a
flat complex vanishing in degrees outside [m,n], see [I, p. 242, 3.3], or argue
as in (2.7.6.4) below. E has finite flat f-amplitude if such m and n exist.

It follows from (2.7.6.4) below and [I, p. 131, 5.1] that f has finite
tor-dimension ⇐⇒ OX has finite flat f-amplitude.

(2.7.6.1). If X is a compact Hausdorff space of dimension ≤ d (in the
sense that each point has a neighborhood homeomorphic to a locally closed
subspace of the Euclidean space Rd ), and OX is the constant sheaf Z, then
dim f ≤ d.

Indeed, if I• is a flasque resolution of the abelian sheaf F , then for any
open U ⊂ Y the restriction I•|f−1(U) is a flasque resolution of F |f−1(U),
and Rjf∗(F ) is, up to isomorphism, the sheaf associated to the presheaf
taking any such U to the group Hj(Γ(f−1(U), I•|f−1(U)) , a group iso-
morphic to Hj(f−1(U), F |f−1(U)) [G, p. 181, Thm. 4.7.1(a)], and hence
vanishing for j > d, see [Iv, Chap. III, §9].

More generally, if X is locally compact and we assume only that the
fibers f−1y (y ∈ Y ) are compact and have dimension ≤ d, then dim f ≤ d
(because the stalk (Rjf∗F )y is the cohomology Hj(f−1y, F |f−1y), see [Iv,
p. 315, Thm. 1.4], whose proof does not require any assumption on Y ).

(2.7.6.2). (Grothendieck, see [H, p. 87]). If (X,OX) is a noetherian
scheme of finite Krull dimension d, then dim f ≤ d.

(2.7.6.3). For a ringed-space map f : X → Y with OX ≇ 0, the
following conditions are equivalent:

(i) tor-dim f = 0.
(i)′ Every OY -module is f∗-acyclic.
(i)′′ The functor f∗ of OY -modules is exact.
(ii) f is flat (i.e., OX,x is a flat OY,f(x)-module for all x ∈ X ).
Proof. Since every OX -module is a quotient of a flat one, which is f∗ -acyclic

(see (2.7.3)), the equivalence of (i), (i)′, and (i)′′ is given, e.g., by that of (i) and (iii)
in (2.7.5) (for d = 0). The equivalence of (i) and (ii) is the case d = 0 of:
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(2.7.6.4). Let f : X → Y be a ringed-space map and d ≥ 0 an integer. Then
tor-dim f ≤ d ⇐⇒ for each x ∈ X there exists an exact sequence of OY,f(x)-modules

(∗) 0→ Pd → Pd−1 → · · · → P1 → P0 → OX,x → 0

with Pi flat over OY,f(x) (0 ≤ i ≤ d).

Proof. (“if ”) Let F be an OY -module and let Q• → F be a quasi-isomorphism

with Q• a flat complex (1.8.3). Then for j ≥ 0, the homology

Ljf
∗(F ) ∼= H−j(f∗Q•) (see (2.7.3))

vanishes iff for each x ∈ X, with y = f(x), R = OY,y , and S = OX,x we have

0 = H−j((f∗Q•)x) = H−j(S ⊗R Q
•
y) = TorRj (S,Fy)

(where the last equality holds since Q•
y → Fy is an R-flat resolution of Fy), whence the

assertion.

(“only if ”) Suppose only that Ld+1f
∗(F ) = 0 for all F , so that (see above)

TorR
d+1(S,Fy) = 0; and let

· · · → P ′
2 → P ′

1 → P ′
0 → S → 0

be an R-flat resolution of S. Then, I claim, the module

Pd := coker(P ′
d+1 → P ′

d)

is R-flat, whence we have (∗) with Pi = P ′
i for 0 ≤ i < d.

Indeed, the flatness of Pd is equivalent to the vanishing of TorR1 (Pd, R/I) for all

R-ideals I [B ′, §4, Prop. 1]. But any such I is Iy where I⊂ OY is the OY -ideal such
that for any open U ⊂ Y ,

I(U) = { r ∈ OY (U) | ry ∈ I } if y ∈ U

= 0 if y /∈ U ;

so that if F = OY /I, then R/I = Fy ; and from the flat resolution

· · · → P ′
d+2 → P ′

d+1 → P ′
d → Pd → 0

of Pd , we get the desired vanishing:

TorR1 (Pd, R/I) = TorR1 (Pd, Fy) = TorRd+1(S,Fy) = 0.

Exercise (2.7.6.5). (For amusement only.) If Y is a quasi-separated scheme,
then f : X → Y satisfies tor-dim f ≤ d if (and only if) for every quasi-coherent OY -

ideal I, we have

Ld+1f
∗(OY /I) = 0.

If in addition Y is quasi-compact or locally noetherian, then we need only consider

finite-type quasi-coherent OY -ideals.
[The following facts in [GD] can be of use here: p. 111, (5.2.8); p. 313, (6.7.1);

p. 294, (6.1.9) (i); p. 295, (6.1.10)(iii); p. 318, (6.9.7).]



Chapter 3

Derived Direct and Inverse Image

A ringed space is a pair (X,OX) with X a topological space and OX a
sheaf of commutative rings on X ; and a morphism (or map) of ringed spaces
(f, θ) : (X,OX) → (Y,OY ) is a continuous map f : X → Y together with
a map θ : OY → f∗OX of sheaves of rings. (Usually we will just denote
such a morphism by f : X → Y , the accompanying θ understood to be
standing by.) Associated with (f, θ) are the adjoint functors

AX := {OX -modules}
f∗

←→
f∗
{OY -modules} =: AY

and their respective derived functors Rf∗ , Lf∗, which are also adjoint—as
∆-functors, (3.2), (3.3). In this chapter we first review the definitions and
basic formal (i.e., category-theoretic) properties of these adjoint derived
functors, their interactions with ⊗

=
and RHom

•, and their “pseudofunc-
torial” behavior with respect to composition of ringed-space maps (3.6),
many of the main results being packaged in (3.6.10).

A basic objective, in the spirit of Grothendieck’s philosophy of the “six
operations,” is the categorical formalization of relations among functorial
maps involving the four operations Rf∗ , Lf∗, ⊗

=
and RHom

•.25

More explicitly (details in §§3.4, 3.5), if f : X → Y is a map of ringed
spaces, then the derived categories D(AX), D(AY ) have natural struc-
tures of symmetric monoidal closed categories, given by ⊗

=
and RHom

• ;
and the adjoint ∆-functors Rf∗ and Lf∗ respect these structures, as
do the conjugate isomorphisms, arising from a second map g : Y → Z ,
R(gf)∗ −→

∼
Rg∗Rf∗ , Lf∗

Lg∗ −→∼ L(gf)∗ . We express all this by saying
that R−∗ and L−∗ are adjoint monoidal ∆-pseudofunctors.

Thus, relations among the four operations can be worked with as in-
stances of category-theoretic relations involving adjoint monoidal functors
between closed categories. This eliminates excess baggage of resolutions of
complexes, which would otherwise cause intolerable tedium later on, where
proofs of major results depend heavily on involved manipulations of such re-
lations.26 Even so, the situation is far from ideal—see the introductory

25 A fifth operation, “twisted inverse image,” is brought into play in Chapter 4,

at least for schemes. The sixth, “direct image with proper supports” [De ′, no 3] will not
appear here, except for proper scheme-maps, where it coincides with derived direct image.

26 Cf. in this vein Hartshorne’s remarks on “compatibilities” [H, pp. 117–119]. Note
however that the formalization became fully feasible only after Spaltenstein’s extension

of the theory of derived functors in [H] to unbounded complexes [Sp].
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remarks in §3.4, and, for example, the proof of Proposition (3.7.3), which
addresses the interaction between the projection morphisms of (3.4.6) and
“base change.”

By way of illustration, consider the following basic functorial maps,
with A,B ∈ D(AY ) and E, F ∈ D(AX) :27

Rf∗RHom
•
X(Lf∗B, E)→ RHom

•
Y (B, Rf∗E) ,(3.2.3.2)

Lf∗A⊗
=

Lf∗B ← Lf∗(A⊗
=
B) ,(3.2.4)

Rf∗(E)⊗
=

Rf∗(F )→ Rf∗(E ⊗
=
F ) ,(3.2.4.2)

Rf∗E ⊗
=
B → Rf∗(E ⊗

=
Lf∗B) .(3.4.6)

The first two can be defined at the level of complexes, after replacing the
arguments by appropriate resolutions. (The reduction is straightforward
for the second, but not quite so for the first.) At that level, one sees that
they are both isomorphisms. For fixed B, the source and target of the first
are left-adjoint, respectively, to the target and source of the second; and
it turns out that the two maps are conjugate (3.3.5). This is shown by
reduction to the analogous statement for the ordinary direct and inverse
image functors for sheaves, which can be treated concretely (3.1.10) or
formally (3.5.5). So each one of these isomorphisms determines the other
from a purely categorical point of view.

The second and third maps determine each other via Lf∗–Rf∗ ad-
junction (3.4.5), as do the third and fourth (3.4.6). When the first map is
given, the second and third maps also determine each other via RHom

• –⊗
=

adjunction. (This is not obvious, see Proposition (3.2.4).)
Thus, any three of the four maps can be deduced category-theoretically

from the remaining one.

In (3.9) we consider the case when our ringed spaces are schemes.
Under mild assumptions, we note that then Rf∗ and Lf∗ “respect quasi-
coherence” (3.9.1), (3.9.2). We also show that some previously intro-
duced functorial morphisms become isomorphisms: (3.9.4) treats variants
of the projection morphisms, while (3.9.5) signifies that Rf∗ behaves well—
even for unbounded complexes—with respect to flat base change.28 More
generally, in (3.10) we see that such good behavior of Rf∗ characterizes
tor-independent base changes, as does a certain Künneth map’s being an
isomorphism; the precise statement is given in (3.10.3), a culminating result
for the chapter.

27 The first is a sheafified version of Lf∗–Rf∗ adjunction (3.2.5)(f), the second and
third underly monoidality of Lf∗ and Rf∗, and the fourth is “projection.”

28 cf. [I, III, 3.7 and IV, 3.1].
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3.1. Preliminaries

For any ringed space (X,OX), let AX be the category of (sheaves of)
OX -modules—which is abelian, see e.g., [G, Chap. II, §2.2, §2.4, and §2.6],
C(X) the category of AX-complexes, K(X) the category of AX-complexes
with homotopy equivalence classes of maps of complexes as morphisms, and
D(X) the derived category gotten by “localizing” K(X) with respect to
quasi-isomorphisms (see §§(1.1), (1.2)).

To any ringed-space map (f, θ) : (X,OX)→ (Y,OY ) one can associate
the additive direct image functor

f∗ : AX → AY

such that [f∗M ](U) = M(f−1U) for any OX -module M and any open
set U ⊂ Y , the OY -module structure on f∗M arising via θ; and also an
inverse image functor

f∗ : AY → AX

defined up to isomorphism as a left-adjoint of f∗ , see [GD, p. 100, (4.4.3.1)]
(where Ψ∗(F) should be Ψ∗(F)). Such an adjoint exists with, e.g.,

f∗A := f−1A⊗f−1OY OX (A ∈ AY )

where f−1A is the sheaf associated to the presheaf taking an open V ⊂ X
to lim
−→

A(U) with U running through all the open neighborhoods of f(V )

in Y . In particular, if X is an open subset of Y , OX is the restriction
of OY , f is the inclusion, and θ is the obvious map, then the functor “re-
striction to X” is left-adjoint to f∗ , so it is the natural choice for f∗. Being
adjoint to an additive functor, f∗ is also additive.29 From adjointness, or
directly, one sees that f∗ is left-exact and f∗ is right-exact. (The stalk
(f∗N)x at x ∈ X is functorially isomorphic to OX,x ⊗OY,f(x) Nf(x) .)

Derived functors (see (2.1.1) and its complement)

Rf∗ : D(X)→ D(Y ), Lf∗ : D(Y )→ D(X)

can be constructed by means of q-injective and q-flat resolutions, respec-
tively, as follows.

Assume chosen once and for all, for each ringed space X , two families
of quasi-isomorphisms

(3.1.1) A→ IA , PA → A (A ∈ K(X))

with each IA a q-injective complex and each PA q-flat, see (2.3.5), (2.5.5),
with A → IA the identity map when A is itself q-injective, and PA → A
the identity when A is q-flat.

29 Additivity of f∗ means that for any two maps A
α
→
→
β
B in AY and any E ∈ AX ,

the sum of the induced maps Hom(f∗B,E)→→Hom(f∗A,E) is the map induced by α+β ,

a condition which follows from the additivity of f∗ via the adjunction isomorphisms (of
abelian groups) Hom(f∗−, E)→ Hom(f∗f

∗−, f∗E)→ Hom(−, f∗E) .
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Then set

(3.1.2) Rf∗(B) := f∗(IB)
(
B ∈ D(X)

)
,

and for a map α in D(X) define Rf∗(α) as indicated in (2.3.2.3) (with
J := K(X)). The ∆-structure on Rf∗ is specified at the end of (2.2.4).
Similar considerations apply to Lf∗, once one verifies that f∗ takes exact
q-flat complexes to exact complexes (for which argue as in (2.5.7), keeping
in mind (2.5.2)). Proceeding as in (2.2.4) (dualized, with J′ ⊂ K(Y ) the
∆-subcategory whose objects are the q-flat complexes, and J′′ := K(Y )),
set

(3.1.3) Lf∗(A) := f∗(PA)
(
A ∈ D(Y )

)
,

etc. [See also (2.7.3).]
Proposition (3.2.1) below says in particular that these derived functors

are also adjoint. Before getting into that we review some elementary func-
torial sheaf maps, and their interconnections.

For OX -modules E and F , there is a natural map of OY -modules

(3.1.4) φE,F : f∗HomX(E, F )→ HomY (f∗E, f∗F )

taking a section of f∗HomX(E, F ) over an open subset U of Y— i.e.,
a map α : E|f−1U → F |f−1U—to the section αφ of HomY (f∗E, f∗F ) given
by the family of maps αφ(V ) : (f∗E)(V )→ (f∗F )(V ) (V open ⊂ U) with

αφ(V ) := α(f−1V ) : E(f−1V )→ F (f−1V ) .

Here is another description of φE,F (U) : given the commutative diagram

f−1U
j

−−−−→ X

g

y
yf

U −−−−→
i

Y

where i and j are inclusions and g is the restriction f |f−1U , and recalling
that i∗ and j∗ are restriction functors, one verifies the functorial equalities

f∗j∗j
∗ = i∗g∗j

∗ = i∗i
∗f∗

and checks then that φE,F (U) is the natural composition

f∗HomX(E, F )(U)
def

Hom(j∗E, j∗F )

−→∼ Hom(E, j∗j
∗F )

−→ Hom(f∗E, f∗j∗j
∗F )

Hom(f∗E, i∗i
∗f∗F )

−→∼ Hom(i∗f∗E, i
∗f∗F )

def
HomY (f∗E, f∗F )(U) .
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Lemma (3.1.5). Let f : X → Y be a ringed-space map, A ∈ AY ,
B ∈ AX , φ := φf∗A,B (see (3.1.4)). Let ηA : A→ f∗f

∗A be the map corres-
ponding by adjunction to the identity map of f∗A. Then the composition

f∗HomX(f∗A, B)
φ
−→ HomY (f∗f

∗A, f∗B)
via ηA−−−−→ HomY (A, f∗B)

is an isomorphism of additive bifunctors.

Proof. The preceding description of φ identifies (up to isomorphism)
the sections over an open U ⊂ Y of the composite map in (3.1.5) with the
natural composition

Hom(f∗A, j∗j
∗B) −→ Hom(f∗f

∗A, f∗j∗j
∗B)

via ηA−−−−→ Hom(A, f∗j∗j
∗B)

which is, by adjointness of f∗ and f∗ , an isomorphism. Additive bifunc-
toriality of this isomorphism is easily verified. Q.E.D.

(3.1.6). We leave it to the reader to elaborate the foregoing to get
isomorphisms of complexes, functorial in A• ∈ C(Y ), B• ∈ C(X),

Hom•
X(f∗A•, B•) −→∼ Hom•

Y (A•, f∗B
•) ,

f∗Hom
•
X(f∗A•, B•) −→∼ Hom

•
Y (A•, f∗B

•) .

(See (1.5.3) and (2.4.5) for the definitions of Hom• and Hom
•.)

Ditto for the maps in (3.1.7)–(3.1.9) below.

For any two OX -modules E, F , the tensor product E ⊗X F is by
definition the sheaf associated to the presheaf U 7→ E(U) ⊗OX(U) F (U)
(U open ⊂ X), so there exist canonical maps

E(U)⊗OX (U) F (U)→ (E ⊗X F )(U)

from which, taking U = f−1V (V open ⊂ Y ), one gets a canonical map

(3.1.7) f∗E ⊗Y f∗F → f∗(E ⊗X F ) .

(3.1.8). We will abbreviate by omitting the subscripts attached to ⊗,
and by writing HZ(−,−) for HomOZ (−,−).

The maps (3.1.4) and (3.1.7) are related via Hom-⊗ adjunction (2.6.2)
as follows. After taking global sections of (2.6.2) (with F,G replaced
by E, F respectively) one finds, corresponding to the identity map of E⊗F ,
a canonical map

(3.1.8.1) E →HX(F, E ⊗ F ) .

Similarly, corresponding to the identity map of HX(E, F ) one has a map

(3.1.8.2) HX(E, F )⊗ E → F .
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Verification of the following two assertions is left to the reader.

—The map (3.1.7) is Hom-⊗ adjoint to the composition

f∗E
(3.1.8.1)
−−−−−→ f∗HX(F, E ⊗ F )

(3.1.4)
−−−−→ HY (f∗F, f∗(E ⊗ F )) .

—The map (3.1.4) is Hom-⊗ adjoint to the composition

f∗HX(E, F )⊗ f∗E
(3.1.7)
−−−−→ f∗(HX(E, F )⊗ E)

(3.1.8.2)
−−−−−→ f∗F .

(3.1.9) Define the functorial map

f∗(A⊗B)
α
−→ f∗A⊗ f∗B (A,B ∈ AY )

to be the adjoint of the composition

A⊗B
natural
−−−−→ f∗f

∗A⊗ f∗f
∗B

(3.1.7)
−−−−→ f∗(f

∗A⊗ f∗B).

Let x ∈ X , y = f(x), so that f induces a map of local rings Oy → OX ,
where OX is the stalk OX,x , and similarly for Oy . One checks that the
stalk map αx is just the natural map

(Ay ⊗Oy By)⊗Oy OX −→ (Ay ⊗Oy OX)⊗OX (By ⊗Oy OX) ,

whence α coincides with the standard isomorphism defined, e.g., in [GD,
p. 97, (4.3.3.1)].

Exercise (3.1.10). Show that the source and target of the map α in (3.1.9)

are, as functors in the variable A, left-adjoint to the target and source (respectively) of
the composed isomorphism—call it β—in (3.1.5), considered as functors in B ; and that

α and β are conjugate, see (3.3.5). (See also (3.5.5).) Work out the analog for complexes.

3.2. Adjointness of derived direct and inverse image

We begin with a direct proof of adjointness of the derived direct
and inverse image functors Rf∗ and Lf∗ associated to a ringed-space
map f : X → Y. 30 A more elaborate localized formulation is given
in (3.2.3). Proposition (3.2.4) introduces the basic maps connecting Rf∗
and Lf∗ to ⊗

=
. It includes derived-category versions of part of (3.1.8) and of

(3.1.10), as an illustration of the basic strategy for understanding relations
among maps of derived functors through purely formal considerations (see
3.5.4).

30 An ultra-generalization of this “trivial duality formula” is given in [De, p. 298,

Thm. 2.3.7].
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Proposition (3.2.1). For any ringed-space map f : X → Y, there is
a natural bifunctorial isomorphism,

HomD(X)(Lf
∗A, B) −→∼ HomD(Y )(A, Rf∗B)

(
A ∈ D(Y ), B ∈ D(X)

)
.

Proof. There is a simple equivalence between giving the adjunction
isomorphism (3.2.1) and giving functorial morphisms

(3.2.1.0) η : 1→ Rf∗Lf
∗, ǫ : Lf∗

Rf∗ → 1

(1:= identity) such that the corresponding compositions

(3.2.1.1)

Rf∗
via η
−−−−→ Rf∗Lf

∗
Rf∗

via ǫ
−−−−→ Rf∗

Lf∗ −−−−→
via η

Lf∗
Rf∗Lf

∗ −−−−→
via ǫ

Lf∗

are identity morphisms [M, p. 83, Thm. 2]. Indeed, η(A) (resp. ǫ(B)) cor-
responds under (3.2.1) to the identity map of Lf∗A (resp. Rf∗B ); and con-
versely, (3.2.1) can be recovered from η and ǫ thus: to a map α : Lf∗A→ B
associate the composed map

A
η(A)
−−−→ Rf∗Lf

∗A
Rf∗α−−−→ Rf∗B ,

and inversely, to a map β : A→ Rf∗B associate the composed map

Lf∗A
Lf∗β
−−−→ Lf∗

Rf∗B
ǫ(B)
−−−→ B.

Define ǫ to be the unique ∆-functorial map such that the following
natural diagram in D(X) commutes for all B ∈ K(X):31

(3.2.1.2)

Lf∗f∗B −−−−→ Lf∗
Rf∗By
yǫ(B)

f∗f∗B −−−−→ B

Such an ǫ exists because Lf∗
Rf∗ is a right-derived functor of Lf∗QY f∗

(where QY : K(Y ) → D(Y ) is the canonical functor), and the natu-
ral composition Lf∗QY f∗ → QXf

∗f∗ → QX is ∆-functorial, see (2.1.1)
and (2.2.6.1). (Alternatively, use (2.6.5), with n = 1, L′′ = K(X), L′ ⊂ L′′

the ∆-subcategory whose objects are the q-injective complexes, and β the
preceding ∆-functorial composition.)

31 Here, and elsewhere, we lighten notation by omitting Q s, so that, e.g., B some-
times denotes the (physically identical) image QB of B in D(X) . This should not

cause confusion.
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Dually, define η to be the unique ∆-functorial map such that the
following natural diagram commutes for all A ∈ K(Y ):

(3.2.1.3)

Rf∗f
∗A ←−−−− Rf∗Lf

∗A
x

xη(A)

f∗f
∗A ←−−−− A

To see then that the first row in (3.2.1.1) is the identity, i.e., that its
composition with the canonical map ζ : f∗ → Rf∗ is just ζ itself, consider
the diagram (with obvious maps)

f∗ −−−−−−−−−−−−−−−−−−−→ Rf∗∥∥∥
y

f∗ −−−−→

©1

Rf∗Lf
∗f∗ −−−−→

©2

Rf∗Lf
∗
Rf∗

y
y

y

f∗f
∗f∗ −−−−→ Rf∗f

∗f∗ −−−−→ Rf∗y
∥∥∥

f∗ −−−−−−−−−−−−−−−−−−−→ Rf∗
Subdiagrams ©1 and ©2 commute by the definitions of η and ǫ. The top
and bottom rectangles clearly commute. Thus the whole diagram com-
mutes, giving the desired conclusion.

A similar argument applies to the second row in (3.2.1.1). Q.E.D.

Corollary (3.2.2). The adjunction isomorphism (3.2.1) is the unique
functorial map ρ making the following natural diagram commute for all
A ∈ K(Y ), B ∈ K(X) :

(3.2.2.1)

HomK(X)(f
∗A, B) −−−→ HomD(X)(f

∗A, B) −−−→ HomD(X)(Lf
∗A, B)

H0(3.1.6)

y≃

yρ

HomK(Y )(A, f∗B)
ν
−−−→ HomD(Y )(A, f∗B) −−−→ HomD(Y )(A, Rf∗B)

Moreover, ν is an isomorphism whenever A is left-f∗-acyclic (e.g., q-flat)
and B is q-injective.

Proof. Suppose ρ is the adjunction isomorphism. To show (3.2.2.1)
commutes, chase a K(X)-map φ : f∗A→ B around it in both directions to
reduce to showing that the following natural diagram commutes:

Rf∗Lf
∗A −−−−→ Rf∗f

∗A
via φ
−−−−→ Rf∗B

η

x
x

x

A −−−−→ f∗f
∗A

via φ
−−−−→ f∗B

Here the left square commutes by the definition of η, and the right square
commutes by functoriality of the natural map f∗ → Rf∗.
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If, furthermore, A is left-f∗-acyclic (i.e., Lf∗A → f∗A is an isomor-
phism (2.2.6)) and B is q-injective, then all the maps in (3.2.2.1) other
than ν are isomorphisms (see (2.3.8)(v)), so ν is an isomorphism too.

Finally, to prove the uniqueness of a functorial map ρ(A,B) mak-
ing (3.2.2.1) commute, use the canonical maps PA → A and B → IB to
map (3.2.2.1) to the corresponding diagram with PA in place of A and
IB in place of B. As we have just seen, all the maps in this last diagram
other than ρ(PA, IB) are isomorphisms, so that ρ(PA, IB) is uniquely deter-
mined by the commutativity condition; and since the sources and targets of
ρ(PA, IB) and ρ(A,B) are isomorphic, it follows that ρ(A,B) is uniquely
determined. Q.E.D.

Exercise. With ψ
A

: PA → A (resp. ϕ
B

: B → IB) the canonical isomorphism

in D(Y ) (resp. D(X) ), see (3.1.1), η(A) and ǫ(B) are the respective compositions

A
ψ

−1
A
−−−→ PA

natural
−−−−−→ f∗(f

∗PA)
f∗(ϕ

f∗PA
)

−−−−−−−→ f∗(If∗PA ) = Rf∗Lf
∗A ,

B ←−−−
ϕ
−1
B

IB ←−−−−−
natural

f∗(f∗IB)←−−−−−−−
f∗(ψ

f∗IB
)
f∗(Pf∗IB ) = Lf∗Rf∗B .

Recall from §2.4 the derived functors RHom• and RHom
•. We

write RHom•
X and RHom

•
X to specify that we are working on the ringed

space X . For E, F ∈ K(X), and IF as in (3.1.1), we have then, in D(X),

RHom•
X(E, F ) = Hom•(E, IF ),

RHom
•
X(E, F ) = Hom

•(E, IF ).

Proposition (3.2.3) (see [Sp, p. 147]). Let f : X → Y be a ringed-
space map.

(i) There is a unique ∆-functorial isomorphism

(3.2.3.1) α : RHom•
X(Lf∗A,B) −→∼ RHom•

Y (A,Rf∗B)
(
A ∈ K(Y ), B ∈ K(X)

)

such that the following natural diagram in D(X) 32 commutes:

Hom•
X(f∗A, B) −−−−→ RHom•

X(f∗A, B) −−−−→ RHom•
X(Lf∗A, B)

(3.1.6)

y≃ ≃

yα

Hom•
Y (A, f∗B) −−−−→ RHom•

Y (A, f∗B) −−−−→ RHom•
Y (A, Rf∗B).

Moreover, the induced homology map

H0(α) : HomD(X)(Lf
∗A, B) −→∼ HomD(Y )(A, Rf∗B)

(see (2.4.2)) is just the adjunction isomorphism in (3.2.1).

32 with missing Q’s left to the reader
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(ii) There is a unique ∆-functorial isomorphism

(3.2.3.2) β : Rf∗RHom
•
X(Lf∗A, B) −→∼ RHom

•
Y (A, Rf∗B)

(
A ∈ K(Y ), B ∈ K(X)

)

such that the following natural diagram commutes

f∗Hom
•
X(f∗A,B) −−→ Rf∗RHom

•
X(f∗A,B) −−→ Rf∗RHom

•
X(Lf∗A,B)

(3.1.6)

y≃ ≃

yβ

Hom
•
Y (A, f∗B) −−→ RHom

•
Y (A, f∗B) −−→ RHom

•
Y (A, Rf∗B)

Proof. (i) For the first assertion it suffices, as in (2.6.5), that in the
derived category of abelian groups the natural compositions

Hom•
X(f∗A, B)

a
−−→ RHom•

X(f∗A, B)
b
−−→ RHom•

X(Lf∗A, B)

Hom•
Y (A, f∗B)

c
−−→ RHom•

Y (A, f∗B)
d
−−→ RHom•

Y (A, Rf∗B)

be isomorphisms whenever A is q-flat and B is q-injective. But in this case
we have A = PA and B = IB, so that a, b, and d are identity maps. As
for c, we need only note that by the last assertion of (3.2.2), the induced
homology maps

Hi(c) : HomK(Y )(A[−i], f∗B)→ HomD(Y )(A[−i], f∗B)

are isomorphisms, see (1.2.2) and (2.4.2).
Now apply the functor H0 to the diagram and conclude by the unique-

ness of ρ in (3.2.2) that H0(α) is as asserted.
(ii) As above, it comes down to showing that the natural maps

f∗Hom
•
X(f∗A, B)

a′
−→ Rf∗Hom

•
X(f∗A, B)

Hom
•
Y (A, f∗B)

c′
−→ RHom

•
Y (A, f∗B) = Hom

•
Y (A, If∗B)

are isomorphisms (in D(X), D(Y ) respectively) whenever A is q-flat
and B is q-injective. The stalk (f∗A)x (x ∈ X) being isomorphic to
OX,x ⊗OY,f(x) Af(x) , (2.5.2) shows that f∗A is q-flat, and then (2.3.8)(iv)

shows (via (2.6.2)) that H := Hom
•
X(f∗A, B) is q-injective; so H = IH

and a′ : f∗H → f∗IH is in fact an identity map.
For c′, it is enough to check that we get an isomorphism after applying

the functor ΓU (sections over U ) for arbitrary open U ⊂ Y , since then
c′ induces isomorphisms of the homology presheaves—and hence of the
homology sheaves—of its source and target (see (1.2.2)). Let i : U → Y ,
j : f−1U → X be the inclusion maps, and let g : f−1U → U be the map
induced by f .
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We have then by (2.3.1) a commutative diagram of quasi-isomorphisms

i∗f∗B −−−−→ i∗If∗B∥∥∥
yγ

i∗f∗B −−−−→ Ii∗f∗B

Since i∗If∗B is q-injective (2.4.5.2), γ is an isomorphism in K(U) (2.3.2.2).
Keeping in mind that i∗f∗ = g∗j

∗, consider the commutative diagram

ΓUHom
•
Y (A, f∗B)

ΓU (c′)
−−−−→ ΓUHom

•
Y (A, If∗B)

∥∥∥
∥∥∥

Hom•
U (i∗A, i∗f∗B) −−−−→ Hom•

U (i∗A, i∗If∗B)
∥∥∥ ≃

yvia γ

Hom•
U (i∗A, i∗f∗B) −−−−→ Hom•

U (i∗A, Ii∗f∗B)
∥∥∥

∥∥∥

Hom•
U (i∗A, g∗j

∗B) −−−−→
cU

RHom•
U (i∗A, g∗j

∗B)

As in the proof of (i), since j∗B is q-injective and i∗A is q-flat (see above),
therefore cU is an isomorphism; and hence so is ΓU (c′). Q.E.D.

Corollary (3.2.3.3). Let U ⊂ Y be open and let ΓU : AY → Ab be
the abelian functor “sections over U.” Then for any q-injective B ∈ K(X),
f∗B is right-ΓU -acyclic. Consequently, by (2.2.7) or (2.6.5), there is a
unique ∆-functorial isomorphism RΓf−1U −→

∼
RΓURf∗ making the fol-

lowing natural diagram commute for all B ∈ K(X) :

Γf−1UB −−−−−−−−−−−−−−−−−−→ RΓf−1UB∥∥∥
y≃

ΓUf∗B −−−−→ RΓUf∗B −−−−→ RΓURf∗B

Proof. Let O′
U ∈ AY be the “extension by zero” of OU ∈ AU ,

i.e., the sheaf associated to the presheaf taking an open V ⊂ Y to OU (V )
if V ⊂ U , and to 0 otherwise. Then there is a natural functorial identifi-
cation ΓU (−) = HomY (O′

U ,−). Since O′
U is flat, we have as in the proof

of (3.2.3)(i) that the map c : Hom•(O′
U , f∗B) → RHom•(O′

U , f∗B) is an
isomorphism, i.e., ΓU (f∗B) → RΓU (f∗B) is an isomorphism, whence the
conclusion (see last assertion in (2.2.6)). Q.E.D.
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Proposition (3.2.4). (i) For any ringed-space map f : X → Y, there
is a unique ∆-bifunctorial isomorphism

Lf∗(A⊗
=
YB) −→∼ Lf∗A⊗

=
X Lf∗B

(
A,B ∈ D(Y )

)

making the following natural diagram commute for all A,B :

(3.2.4.1)

Lf∗(A⊗
=
Y B) ˜−−−−→ Lf∗A⊗

=
X Lf∗B

y
y

f∗(A⊗Y B) ˜−−−−→
(3.1.9)

f∗A⊗X f
∗B

This isomorphism is conjugate (3.3.5) to the isomorphism β in (3.2.3.2).

(ii) With η′ : E → RHom
•
X(F, E ⊗

=
F ) corresponding via (2.6.1)∗ to

the identity map of E ⊗
=
F, and ǫ : Lf∗

Rf∗ → 1 as in (3.2.1.0), the
(∆-functorial) map

(3.2.4.2) γ : Rf∗(E)⊗
=

Rf∗(F ) −→ Rf∗(E ⊗
=
F )

(
E, F ∈ D(X)

)

adjoint to the composed map

(3.2.4.3) Lf∗
(
Rf∗E ⊗

=
Rf∗F

)
−→∼ Lf∗

Rf∗E ⊗
=

Lf∗
Rf∗F −→

ǫ⊗
=
ǫ
E ⊗

=
F

corresponds via (2.6.1)∗ to the composed map

(3.2.4.4)

Rf∗E
Rf∗η

′

−−−−→ Rf∗RHom
•
X(F, E ⊗

=
F )

via ǫ
−−−−→ Rf∗RHom

•
X(Lf∗

Rf∗F, E ⊗
=
F )

β
−−−−→
(3.2.3.2)

RHom
•
X

(
Rf∗F, Rf∗(E ⊗

=
F )

)
.

Proof. (i) For x ∈ X , the stalk (f∗A)x is OX,x⊗OY,f(x) Af(x) , and so

(2.5.2) shows that f∗A is q-flat whenever A is. Hence if A and B are both
q-flat (whence so, clearly, is A⊗Y B ), then the vertical arrows in (3.2.4.1)
are isomorphisms, and the first assertion follows from (2.6.5) (dualized).

The second assertion amounts to commutativity, for any complexes
E, F,G ∈ D(X), of the following diagram of natural isomorphisms:
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(3.2.4.5)

HomD(X)

(
Lf∗E, RHom

•
X(Lf∗F,G)

) (2.6.1)∗

−−−→ HomD(X)

(
Lf∗E ⊗

=
Lf∗F, G

)

(3.2.1)

y
y≃

HomD(Y )

(
E, Rf∗RHom

•
X(Lf∗F,G)

)
HomD(X)

(
Lf∗(E ⊗

=
F ), G

)

via β

y
y(3.2.1)

HomD(Y )

(
E, RHom

•
Y (F,Rf∗G)

)
(2.6.1)∗
−−−→ HomD(Y )

(
E ⊗

=
F, Rf∗G)

)

in proving which, we may replace E by PE , F by pf , and G by IG ,
i.e., we may assume E and F to be q-flat and G to be q-injective. Using
the commutativity in (2.6.1)∗ (after applying homology H0 ), (3.2.2.1),
(3.2.3.2), and (3.2.4.1), we find that (3.2.4.5) is the target of a natural map,
in the category of diagrams of abelian groups, coming from the diagram of
isomorphisms (see (3.1.6), and recall that H0Hom•

X = HomK(X) ):

(3.2.4.6)

HomK(X)

(
f∗E, Hom

•
X(f∗F,G)

)
−−→ HomK(X)

(
f∗E ⊗f∗F, G

)
y

y

HomK(Y )

(
E, f∗Hom

•
X(f∗F,G)

)
HomK(X)

(
f∗(E ⊗ F ), G

)
y

y

HomK(Y )

(
E, Hom

•
Y (F, f∗G)

)
−−→ HomK(X)

(
E ⊗ F, f∗G

)

Also, E and F are q-flat (so that Lf∗E ⊗
=

Lf∗F −→∼ f∗E ⊗ f∗F ) and

G is q-injective, so any D(X)-map Lf∗E ⊗
=

Lf∗F → G is represented by

a map of complexes f∗E ⊗ f∗F → G , see (2.3.8)(v). Hence one need only
show (3.2.4.6) commutative. This is exercise (3.1.10), left to the reader.

(ii) With η : 1 → Rf∗Lf
∗ as in (3.2.1.0), the map (3.2.4.2) is the

composition

Rf∗(E)⊗
=

Rf∗(F )
η
−→ Rf∗Lf

∗(Rf∗(E)⊗
=

Rf∗(F ))
Rf∗(3.2.4.3)
−−−−−−−→ Rf∗(E ⊗

=
F )

which is clearly ∆-functorial. The rest of the statement is best under-
stood in the formal context of closed categories, see (3.5.4). In the present
instance of that context—see (3.5.2)(d) and (3.4.4)(b)—the map (3.4.2.1)
is just γ , and hence the adjoint (3.5.4.1) of (3.4.2.1) is the map in (i)
above. Commutativity of (3.5.5.1) says that (3.4.5.1) is conjugate to the
map (3.5.4.2), which must then, by (i), be β . Hence (ii) follows from the
sentence preceding (3.5.4.2) and the description of (3.5.4.1) immediately
following (3.5.4.2). Q.E.D.

Remark. Commutativity of (3.2.4.5) yields another proof that β is an
isomorphism, since the maps labeled (3.2.1) and (2.6.1)∗ are isomorphisms.
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Exercises (3.2.5). f : X → Y is a ringed-space map, A ∈ D(A) , B ∈ D(X) .
(a) Show that the following two natural composed maps correspond under the

adjunction isomorphism (3.2.1):

Lf∗OY → f∗OY → OX , OY → f∗OX → Rf∗OX .

(b) Write τn for the truncation functor τ≥n of §1.10. Also, write f∗ (resp. f∗ )

for Rf∗ (resp. Lf∗). Define the functorial map

ψ : f∗τn −→ τnf
∗

to be the adjoint of the natural composed map

τn −→ τnf∗f
∗ −→ τnf∗τnf

∗ −→∼ f∗τnf
∗.

(The isomorphism obtains because f∗D≥n(X) ⊂ D≥n(Y ), see (2.3.4).) Show that the
following natural diagram commutes:

f∗ −−−→ f∗τn f∗τny ψ

y
y

τnf∗ τnf∗ −−−→ τnf∗τn

(One way is to check commutativity of the diagram whose columns are adjoint to those

of the one in question. For this, (1.10.1.2) may be found useful.)

(c) The natural map Hom•
Y (A, f∗B) → RHom•

Y (A,Rf∗B) is an isomorphism for

all q-injective B ∈ K(X) iff Lf∗A→ f∗A is an isomorphism.

(d) Formulate and prove a statement to the effect that the map β in (3.2.3.2) is
compatible with open immersions U →֒ Y .

(e) With Γ
Y

as in (3.2.3.3), show that the natural map

ΓY f∗Hom
•
X(f∗A,B)→ RΓY Rf∗RHom

•
X(Lf∗A,B)

is an isomorphism if A is q-flat and B is q-injective.

(f) Show that there is a natural diagram of isomorphisms

RΓ
Y

Rf∗RHom
•
X(Lf∗A,B) ˜−−−−−−→

(3.2.3.2)
RΓ
Y

RHom
•
Y (A,Rf∗B)

≃

y
y≃

RHom•
X

(Lf∗A, B) ˜−−−−−−→
(3.2.3.1)

RHom•
Y (A, Rf∗B)

see (2.5.10)(b) and (3.2.3.3).

(First show the same with all R’s and L’s dropped; then apply (e) and (2.6.5).)

3.3. ∆-adjoint functors

We now run through the sorites related to adjointness of ∆-functors.
Later, we will be constructing numerous functorial maps between multivari-
ate ∆-functors by purely formal (category-theoretic) methods. The results
in this section, together with the Proposition in §1.5, will guarantee that
the so-constructed maps are in fact ∆-functorial.

Let K1 and K2 be ∆-categories with respective translation functors
T1 and T2 , and let (f∗, θ∗) : K1 → K2 and (f∗, θ∗) : K2 → K1 be
∆-functors such that f∗ is left-adjoint to f∗ . (Recall from §1.5 that
θ∗ : f∗T1 −→

∼ T2f∗ , and similarly θ∗ : f∗T2 −→
∼ T1f

∗.) Let η : 1 → f∗f
∗,

ǫ : f∗f∗ → 1 be the functorial maps corresponding by adjunction to the
identity maps of f∗, f∗ respectively.
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Lemma-Definition (3.3.1). In the above circumstances, the follow-
ing conditions are equivalent:

(i) η is ∆-functorial.
(i)′ ǫ is ∆-functorial.
(ii) For all A ∈ K2 and B ∈ K1, the following natural diagram

commutes:

HomK1
(f∗A, B) −−→ HomK1

(T1f
∗A, T1B)

θ∗
−−→ HomK1

(f∗T2A, T1B)

≃

y
y≃

HomK2
(A, f∗B) −−→ HomK2

(T2A, T2f∗B) −−→
θ∗

HomK2
(T2A, f∗T1B)

When these conditions hold, we say that (f∗, θ∗) and (f∗, θ∗) are ∆-adjoint,
or—leaving θ∗ and θ∗ to the reader—that (f∗, f∗) is a ∆-adjoint pair.

Proof. Suppose (i) holds. To prove (ii), chase a map ξ : f∗A → B
around the diagram in both directions to reduce to showing that the fol-
lowing diagram commutes:

(3.3.1.1)

T2A
T2η(A)
−−−−−→ T2f∗f

∗A
T2f∗ξ−−−−→ T2f∗B

η(T2A)

y
yθ−1

∗ (f∗A)

yθ−1
∗ (B)

f∗f
∗T2A −−−−−→

f∗θ
∗(A)

f∗T1f
∗A −−−−→

f∗T1ξ
f∗T1B

The first square commutes by (i), and the second by functoriality of θ∗ .
Conversely, (i) is just commutativity of (3.3.1.1) when B := f∗A and

ξ is the identity map.
Thus (i)⇔ (ii); and a similar proof (starting with a map ξ′ : A→ f∗B)

yields (i)′ ⇔ (ii). Q.E.D.

Example (3.3.2). Quasi-inverse ∆-equivalences of categories (1.7.2)
are ∆-adjoint pairs.

Example (3.3.3). The pair (Lf∗,Rf∗) in (3.2.1) is ∆-adjoint. In-
deed, in the proof of (3.2.1) the associated η and ǫ were defined to be
certain ∆-functorial maps.

Example (3.3.4). With reference to (2.6.1)∗, let K1 := D(A) =: K2 ,
fix F ∈ D(A), and for any A,B ∈ D(A) set

f∗A := A⊗
=
F, f∗B := RHom

•(F, B) .

Then this pair (f∗, f∗) is ∆-adjoint. To verify condition (ii) in (3.3.1),
consider the following diagram of natural isomorphisms, where H• stands
for RHom• and H• stands for RHom

• :
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H•(A⊗
=
F,B)

(2.6.1)∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−→

©1

H•(A,H•(F,B))y
y

H•(A⊗
=
F,B[1])[−1] −−→ H•(A,H•(F,B[1]))[−1]

©2

y

©3

←−− H•(A,H•(F,B)[1])[−1]y

y
H•((A⊗

=
F )[1],B[1])y

H•(A[1]⊗
=
F,B[1]) −−→ H•(A[1],H•(F,B[1])) ←−− H•(A[1],H•(F,B)[1])

Subdiagram ©1 commutes because (2.6.1)∗ is ∆-functorial in the last vari-
able; ©2 commutes because (2.6.1)∗ is ∆-functorial in the first variable;
and ©3 commutes for obvious reasons. One checks that application of the
functor H0 to this big commutative diagram gives (ii) in (3.3.1). Q.E.D.

In particular, we have the canonical ∆-functorial maps

(3.3.4.1)
η′ : A→ RHom

•(F, A⊗
=
F ) ,

ǫ′ : RHom
•(F,B)⊗

=
F → B .

Lemma-Definition (3.3.5). If f∗ : X → Y, g∗ : X → Y are func-
tors with respective left adjoints f∗ : Y → X, g∗ : Y → X, then with
“Hom” denoting “ functorial morphisms,” the following natural composi-
tions are inverse isomorphisms:

Hom(f∗, g∗) −→ Hom(f∗f
∗, g∗f

∗) −→ Hom(1, g∗f
∗) −→∼ Hom(g∗, f∗) ,

Hom(f∗, g∗) ←−
∼ Hom(g∗f∗, 1)←− Hom(g∗f∗, f

∗f∗)←− Hom(g∗, f∗) .

Functorial morphisms f∗ → g∗ and g∗ → f∗ which correspond under
these isomorphisms will be said to be conjugate (the first right-conjugate
to the second, the second left-conjugate to the first).

Proof. Exercise, or see [M, p. 100, Theorem 2].

Corollary (3.3.6). Let (f∗, f∗) and (g∗, g∗) be ∆-adjoint pairs of
∆-functors between K1 and K2 . Then a functorial morphism α : f∗ → g∗
is ∆-functorial if and only if so is its conjugate β : g∗ → f∗. In particular,
f∗ and g∗ are isomorphic ∆-functors ⇔ so are f∗ and g∗.

The first assertion follows from (3.3.1) since, for example, α is the
composition

f∗
η
−→ g∗g

∗f∗
via β
−−−→ g∗f

∗f∗
ǫ
−→ g∗ .

That the conjugate of a functorial isomorphism is an isomorphism follows
from Exercise (3.3.7)(c) below.
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Exercises (3.3.7). (a) Maps α : f∗ → g∗ and β : g∗ → f∗ are conjugate ⇔
(either one of) the following diagrams commute:

1
η

−−−−→ g∗g∗

η

y
yvia β

f∗f
∗ −−−−→

via α
g∗f∗

1
ǫ

←−−−− g∗g∗

ǫ

x
xvia α

f∗f∗ ←−−−−
via β

g∗f∗

(b) The conditions in (a) are equivalent to commutativity, for all X ∈ X , Y ∈ Y

of the diagram

Hom(Y, f∗X)
via α
−−−−−→ Hom(Y, g∗X)

≃

y
y≃

Hom(f∗Y,X) −−−−−→
via β

Hom(g∗Y,X)

(c) Denoting the conjugate of a functorial map α by α′ we have (with the obvious

interpretation) 1′ = 1 and (α2α1)′ = α′
1α

′
2 .

(d) The conditions in (3.3.1) are equivalent to either one of:

(iii) The functorial map θ∗ : f∗T2 −→∼ T1f∗ is left-conjugate to

f∗T
−1
1 = T−1

2 T2f∗T
−1
1

θ
−1
∗
−−−→ T−1

2 f∗T1T
−1
1 = T−1

2 f∗ .

(iii)′ The functorial map θ∗ : f∗T1 −→
∼ T2f∗ is right-conjugate to

f∗T−1
2 = T−1

1 T1f
∗T−1

2

θ∗−1

−−−−→ T−1
1 f∗T2T

−1
2 = T−1

1 f∗.

The next Proposition, generalizing some of (1.7.2), says that a left adjoint of a

∆-functor can be made into a left ∆-adjoint, in a unique way.
Let K1 , K2 be ∆-categories with respective translation functors T1 , T2 , and

let (f∗, θ∗) : K1 → K2 be a ∆-functor such that f∗ has a left adjoint f∗ : K2 → K1

(automatically additive, see first footnote in §3.1) .

Proposition (3.3.8). There exists a unique functorial isomorphism

θ∗ : f∗T2 −→
∼ T1f

∗

such that

(i) (f∗, θ∗) is a ∆-functor, and
(ii) the ∆-functors (f∗, θ∗) and (f∗, θ∗) are ∆-adjoint.

Proof. The functors f∗T2 and T1f
∗ are left-adjoint to T−1

2 f∗ and f∗T
−1
1 re-

spectively; and since the latter two are isomorphic (in the obvious way via θ∗), so are the

former two, and one checks that the conjugate isomorphism θ∗ between them is adjoint
to the composite map

T2
η
−→ T2f∗f

∗ θ
−1
∗
−−−→ f∗T1f

∗, 33

i.e., θ∗ is the unique map making the following diagram commute:

(3.3.8.1)

T2 T2

η

y
yη

f∗f
∗T2 −−−−−→

f∗θ
∗

f∗T1f
∗ −−−−−→

θ∗

T2f∗f
∗

33 whence, dually, θ−1
∗ is adjoint to T1

ǫ
←− T1f∗f∗

θ∗

←−− f∗T2f∗ .
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If (i) holds, then commutativity of (3.3.8.1) also expresses the condition that η : 1→ f∗f
∗

be ∆-functorial, i.e., that (ii) hold. Thus no other θ∗ can satisfy (i) and (ii). (So far,

the argument is just a variation on (3.3.7)(d).)

We still have to show that (i) holds for the θ∗ we have specified. So let

A
u
−→ B

v
−→ C

w
−→ T2A be a triangle in K2 . Apply (∆3)′ in (1.4) to embed f∗u into a

triangle f∗A
f∗u
−−−→ f∗B

p
−→ C∗ q

−→ T1f
∗A. I claim that

(a) there is a map γ : f∗C → C∗ making the following diagram commute:

f∗A
f∗u

−−−−−→ f∗B
f∗v

−−−−−→ f∗C
θ∗◦f∗w
−−−−−→ T1f∗A∥∥∥

∥∥∥ γ

y
∥∥∥

f∗A −−−−−→
f∗u

f∗B −−−−−→
p

C∗ −−−−−→
q

T1f∗A

and that (b) any such γ must be an isomorphism.

Given (a) and (b), condition (∆1)′′ in (1.4) ensures that the top row in the pre-

ceding diagram is a triangle, so that (f∗, θ∗) is indeed a ∆-functor.

Assertion (a) results by adjunction from the map of triangles

A
u

−−−−−→ B
v

−−−−−→ C
w

−−−−−→ T2A

η

y η

y
yγ′

yT2η

f∗f
∗A −−−−−→

f∗f
∗u

f∗f
∗B −−−−−→

f∗p
f∗C

∗ −−−−−→
θ∗◦f∗q

T2f∗f
∗A

where γ′ is given by (∆3)′′ in (1.4).

For (b), consider the commutative diagram (with D ∈ K1 , and obvious maps):

Hom(T1f∗B, D) Hom(T1f∗B, D) ˜−−−−−→ Hom(T2B, f∗D)
y

y
y

Hom(T1f
∗A, D) Hom(T1f

∗A, D) ˜−−−−−→ Hom(T2A, f∗D)
y

y
y

Hom(C∗, D)
via γ
−−−−−→ Hom(f∗C, D) ˜−−−−−→ Hom(C, f∗D)

y
y

y

Hom(f∗B, D) Hom(f∗B, D) ˜−−−−−→ Hom(B, f∗D)
y

y
y

Hom(f∗A, D) Hom(f∗A, D) ˜−−−−−→ Hom(A, f∗D)

The left and right columns are exact [H, p. 23, Prop. 1.1, b], hence the map “via γ ” is

an isomorphism for all D, i.e., γ is an isomorphism. Q.E.D.
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3.4. Adjoint functors between monoidal categories

This section and the following one introduce some of the formalism
arising from a pair of adjoint monoidal functors between closed categories.
A simple example of such a pair occurs with respect to a map R → S
of commutative rings, namely extension and restriction of scalars on the
appropriate module categories. The module functors f∗ and f∗ associ-
ated with a map f : X → Y of ringed spaces form another such pair.
The example which mosts interests us is that of the pair (Lf∗, Rf∗) of §3.2.
The point is to develop by purely categorical methods a host of relations,
expressed by commutative functorial diagrams, among the four operations
⊗
=

, RHom
•, Lf∗ and Rf∗ .

But even the purified categorical approach leads quickly to stultify-
ing complexity—at which the exercises (3.5.6) merely hint. Ideally, we
would like to have an implementable algorithm for deciding when a func-
torial diagram built up from the data given in the relevant categorical
definitions (see (3.4.1), (3.4.2), (3.5.1)) commutes; or in other words, to
prove a “constructive coherence theorem” for the generic context “monoidal
functor between closed categories, together with left adjoint.” (Lewis [Lw]
does this, to some extent, without the left adjoint.) Though there exists
a substantial body of results on “coherence in categories,” see e.g., [K ′ ],
[Sv], and their references, it does not yet suffice; we will have to be content
with subduing individual diagrams as needs dictate.

We treat symmetric monoidal categories in this section, leaving the
additional “closed” structure to the next.

Definition (3.4.1). A symmetric monoidal category

M = (M0,⊗,OM , α, λ, ρ, γ)

consists of a category M0 , a “product” functor ⊗ : M0 ×M0 → M0 , an
object OM of M0 , and functorial isomorphisms

α : (A⊗B)⊗ C −→∼ A⊗ (B ⊗ C)(associativity)

λ : OM ⊗ A −→
∼ A ρ : A⊗OM −→

∼ A(units)

γ : A⊗B −→∼ B ⊗A(symmetry)

(where A,B,C are objects in M0 ) such that γ ◦γ = 1 and the following
diagrams (3.4.1.1) commute.

(A⊗OM )⊗B
α

−−−−−−−−−→

ρ⊗1 1⊗λ

A⊗ (OM ⊗B)

A⊗B



94 Chapter 3. Derived Direct and Inverse Image

((A⊗B)⊗ C)⊗D
α

−−−→ (A⊗B)⊗ (C ⊗D)
α

−−−→ A⊗ (B ⊗ (C ⊗D))

α⊗1

y
y1⊗α

(A⊗ (B ⊗ C))⊗D −−−−−−−−−−−−−−−−−−−−−−−−−−→
α

A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ C
α

−−−→ A⊗ (B ⊗ C)
γ

−−−→ (B ⊗ C)⊗A

γ⊗1

y
yα

(B ⊗A)⊗ C −−−→
α

B ⊗ (A⊗ C) −−−→
1⊗γ

B ⊗ (C ⊗ A)

OM ⊗ A

λ

γ
−−−−−−−→ A

ρ

⊗OM

A

(3.4.1.1)

Definition (3.4.2). A symmetric monoidal functor f∗ : X → Y be-
tween symmetric monoidal categories X,Y is a functor f∗0 : X0 → Y0

together with two functorial maps

(3.4.2.1)
f∗A⊗ f∗B −→ f∗(A⊗B)

OY −→ f∗OX

(where we have abused notation, as we will henceforth, by omitting the
subscript “0” and by not distinguishing notationally between ⊗ in X and
⊗ in Y), such that the following natural diagrams (3.4.2.2) commute.

f∗OX ⊗ f∗A −−→ f∗(OX ⊗ A) f∗A⊗ f∗B −−→ f∗(A⊗B)
x

yf∗(λX ) γY

y
yf∗(γX)

OY ⊗ f∗A −−→
λ
Y

f∗A f∗B ⊗ f∗A −−→ f∗(B ⊗ A)

(f∗A⊗ f∗B)⊗ f∗C −−−−→ f∗(A⊗B)⊗ f∗C −−−−→ f∗((A⊗B)⊗ C)

α

y
yf∗(α)

f∗A⊗ (f∗B ⊗ f∗C) −−−−→ f∗A⊗ f∗(B ⊗ C) −−−−→ f∗(A⊗ (B ⊗ C))

(3.4.2.2)
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(3.4.3). We assume further that the symmetric monoidal functor f∗
has a left adjoint f∗ : Y → X. In other words we have functorial maps

η : 1→ f∗f
∗ ǫ : f∗f∗ → 1

such that the composites

f∗
via η
−−−−→ f∗f

∗f∗
via ǫ
−−−−→ f∗ f∗ via η

−−−−→ f∗f∗f
∗ via ǫ
−−−−→ f∗

are identities, giving rise to a bifunctorial isomorphism

(3.4.3.1) HomX(f∗F, G) −→∼ HomY(F, f∗G) (F ∈ Y, G ∈ X).

Examples (3.4.4). (a) Let f : X → Y be a map of ringed spaces,
X (resp. Y) the category of OX - (resp. OY -)modules with its standard
structure of symmetric monoidal category (⊗ having its usual meaning,
etc. etc.), f∗ and f∗ the usual direct and inverse image functors, see (3.1.7).

(b) Let f : X → Y be a ringed-space map, X := D(X), Y := D(Y ),
⊗ := ⊗

=
, f∗ := Rf∗ , f∗ := Lf∗ (see (3.2.1)). To establish symmetric

monoidality of, e.g., D(X), one need only work with q-flat complexes, . . . .
For (3.4.2.1), use the map γ from (3.2.4.2) and the natural composition
OY → f∗OX → Rf∗OX . One can then deduce via adjointness that Rf∗ is
symmetric monoidal from the fact that Lf∗ is symmetric monoidal when
considered as a functor from Yop to Xop, see (3.2.4). For this property
of Lf∗, one can check the requisite commutativity in (3.4.2.2) after replac-
ing each object A in X by an isomorphic q-flat complex, and recalling that
if A is q-flat, then so is f∗A (see proof of (3.2.3)(ii)); in view of (3.1.3), the
checking is thereby reduced to the context of (a) above, where one can use
adjointness (see (3.1.9)) to deduce what needs to be known about f∗ after
showing directly that f∗ is symmetric monoidal!

For example, to show commutativity of

Rf∗(OX)⊗
=

Rf∗(A)
γ

−−−−→ Rf∗(OX ⊗
=
A)

x
yλX

OY ⊗
=

Rf∗(A) −−−−→
λY

Rf∗(A)

consider the following natural diagram, in which we have written f∗, f∗ , ⊗
for Lf∗, Rf∗ , ⊗

=
respectively:

f∗f∗OX ⊗ f
∗f∗A −−→

©1

OX ⊗A
x

x

f∗(f∗OX ⊗ f∗A) f∗OY ⊗ f
∗f∗A −−→

©2

OX ⊗ f
∗f∗A A

x
y

f∗(OY ⊗ f∗A) −−→ f∗f∗A
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It will be enough to show that the outer border commutes, because it is
“adjoint” to the preceding diagram, see (3.4.5.2). Subdiagram ©1 com-
mutes by exercise (3.2.5)(a). For commutativity of ©2 replace f∗A by an
isomorphic q-flat complex to reduce to showing commutativity of the cor-
responding diagram in context (a); then reduce via adjointness to checking
(easily) that in that context the following natural diagram commutes:

f∗(OX)⊗
=
f∗(A)

(3.1.7)
−−−−→ f∗(OX ⊗= A)

x
y

OY ⊗
=
f∗(A) −−−−→ f∗(A)

The rest is evident.

Exercise (3.4.4.1). Let R be a commutative ring, Z := Spec(R) , T an indeter-
minate, X := Spec(R[T ]) with its obvious Z -scheme structure, δ : X → Y := X ×Z X

the diagonal map, and σ : Y −→∼ Y the symmetry isomorphism, i.e., π1σ = π2 and
π2σ = π1 where π1 and π2 are the canonical projections from Y to X.

Show that in the context of (3.4.4)(a) the natural composite OX -module map

δ∗δ∗F = (σδ)∗(σδ)∗F −→
∼ δ∗σ∗σ∗δ∗F → δ∗δ∗F

is the identity map for all OX -modules F ; but that in the context of (3.4.4)(b) the
natural composite D(X)-map

Lδ∗δ∗OX = L(σδ)∗(σδ)∗OX −→
∼ Lδ∗σ∗σ∗δ∗OX → Lδ∗δ∗OX

is not the identity map unless 2 = 0 in R .

(More challenging.) Show: if ι : Z → X is the closed immersion corresponding to

the R -homomorphism R[T ] ։R taking T to 0 , then the natural composite D(X)-map

Lδ∗δ∗ι∗OZ = L(σδ)∗(σδ)∗ι∗OZ −→
∼ Lδ∗σ∗σ∗δ∗ι∗OZ → Lδ∗δ∗ι∗OZ

is an automorphism of order 2, inducing the identity map on homology.

(3.4.5) (Duality principle). From (3.4.2.1) we get, by adjunction,
functorial maps

(3.4.5.1)
f∗C ⊗ f∗D ←− f∗(C ⊗D) ,

OX ←− f
∗OY .

Specifically, the second of these maps is defined to be adjoint to the map
OY → f∗OX in (3.4.2.1) (i.e., the two maps correspond under the isomor-
phism (3.4.3.1)); and the first is defined to be adjoint to the composition

C ⊗D
η⊗η
−−−−→ f∗f

∗C ⊗ f∗f
∗D

(3.4.2.1)
−−−−−→ f∗(f

∗C ⊗ f∗D) .
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It follows that “dually,”

(3.4.5.2): f∗A⊗ f∗B
(3.4.2.1)
−−−−−→ f∗(A⊗B) is adjoint to the composition

A⊗B ←−−−−
ǫ⊗ǫ

f∗f∗A⊗ f
∗f∗B ←−−−−−

(3.4.5.1)
f∗(f∗A⊗ f∗B) .

To see this, it suffices to note that the following diagram, whose top row
composes to the identity, commutes:

f∗A⊗ f∗B
ǫ⊗ǫ
←−−−−

©1

f∗f
∗f∗A⊗ f∗f

∗f∗B
η⊗η
←−−−−

©2

f∗A⊗ f∗B

(3.4.2.1)

y
y(3.4.2.1)

yη

f∗(A⊗B) ←−−−−
ǫ⊗ǫ

f∗(f
∗f∗A⊗ f

∗f∗B) ←−−−−−
(3.4.5.1)

f∗f
∗(f∗A⊗ f∗B)

(Subdiagram ©1 commutes by functoriality of (3.4.2.1), and ©2 commutes
by the above definition of (3.4.5.1).)

The maps (3.4.5.1) satisfy compatibility conditions with the associativ-
ity, unit, and symmetry isomorphisms in the symmetric monoidal categories
X , Y, conditions which are dual to those expressed by the commutativity
of the diagrams (3.4.2.2) (i.e., in (3.4.2.2) replace f∗ by f∗, interchange
OX and OY , and reverse all arrows). Proofs are left to the reader.

The maps (3.4.5.1) do not make f∗ monoidal, since they point in the
wrong direction (and we do not assume in general that they are isomor-
phisms, as happens to be the case in (3.4.4(a)) and (3.4.4(b)), so we cannot
use their inverses).

However, to any symmetric monoidal category

M = (M0,⊗,OM , α, λ, ρ, γ)

we can associate the dual symmetric monoidal category

Mop = (Mop
0 ,⊗op,OM , α, λ, ρ, γ)

where M
op
0 is the dual category of M0 (same objects; arrows reversed),

⊗op is the functor

M
op
0 ×M

op
0 = (M0 ×M0)

op ⊗
op

−−−−→ M
op
0

(so that A⊗op B = A⊗B for all objects A,B ∈M0 ),

α = (αop)−1 = (α−1)op : (A⊗B)⊗ C −→∼ A⊗ (B ⊗ C) (in M
op
0 )

and similarly for λ, ρ, γ.
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Then one checks that the functor

(f∗)op : Yop → Xop

together with the maps (3.4.5.1) is indeed symmetric monoidal;34 and it
has a left adjoint

(f∗)
op : Xop → Yop

(which need no longer be monoidal, because, for example, there may be no
good map OY → f∗OX in Yop). Thus to every pair f∗, f

∗ as in (3.4.3),
we can associate a “dual” such pair (f∗)op, (f∗)

op.
This gives rise to a duality principle, which we now state rather im-

precisely, but whose meaning should be clarified by the illustrations which
follow (in connection with projection morphisms). We will be considering
numerous diagrams whose vertices are functors build up from the constant
functors OX and OY (on X, Y respectively), identity functors, f∗ , f∗,
and ⊗, and whose arrows are morphisms of functors built up from those
which express the “monoidality” of f∗ , and from the adjunction isomor-
phism (3.4.3.1). (For example the above-mentioned “compatibility condi-
tions” state that certain such diagrams commute.) By interpreting any such
diagram in the dual context, we get another such diagram: specifically, in
the original diagram, interchange

- OX and OY
- the identity functors of X and Y
- the adjunction maps η and ǫ
- the functors f∗ and f∗
- the maps in (3.4.2.1) and (3.4.5.1).

If the original diagram commutes solely by virtue of the fact that f∗ is a
monoidal functor with left adjoint f∗, then the second diagram must also
commute (because (f∗)op is a monoidal functor with left adjoint (f∗)

op ).

Example (3.4.6) (Projection morphisms). With preceding notation,
and F ∈ X, G ∈ Y, the bifunctorial projection morphisms

p1 = p1(F,G) : f∗F ⊗G −→ f∗(F ⊗ f
∗G)

p2 = p2(G,F ) : G⊗ f∗F −→ f∗(f
∗G⊗ F )

are the respective compositions

f∗F ⊗G
1⊗η
−−−−→ f∗F ⊗ f∗f

∗G
(3.4.2.1)
−−−−−→ f∗(F ⊗ f

∗G)

G⊗ f∗F
η⊗1
−−−−→ f∗f

∗G⊗ f∗F
(3.4.2.1)
−−−−−→ f∗(f

∗G⊗ F ) .

34 f∗ may then be said to be “op-monoidal” or “co-monoidal.”



3.4. Adjoint functors between monoidal categories 99

Remarks (3.4.6.1). p1 and p2 determine each other via the follow-
ing commutative diagram, in which γX , γY are the respective symmetry
isomorphisms in X, Y :

f∗F ⊗G
p1−−−−→ f∗(F ⊗ f

∗G)

γY

y
yf∗(γX)

G⊗ f∗F −−−−→p2
f∗(f

∗G⊗ F )

The commutativity of this diagram follows from that of

f∗F ⊗ f∗f
∗G

(3.4.2.1)
−−−−−→ f∗(F ⊗ f

∗G)

γY

y
yf∗(γX )

f∗f
∗G⊗ f∗F −−−−−→

(3.4.2.1)
f∗(f

∗G⊗ F )

which holds as part of the definition of “symmetric monoidal functor”
(see (3.4.2.2)).

(3.4.6.2). The map p1(F,G) is adjoint to the composed map

f∗(f∗F ⊗G)
(3.4.5.1)
−−−−−→ f∗f∗F ⊗ f

∗G
ǫ⊗1
−−−−→ F ⊗ f∗G

(a map which is dual (3.4.5) to p2(F,G)): this follows from commutativity
of the natural diagram

f∗(f∗F ⊗G)
via η
−−−−→

©1

f∗(f∗F ⊗ f∗f
∗G)

(3.4.2.1)
−−−−−→

©2

f∗f∗(F ⊗ f
∗G)

(3.4.5.1)

y (3.4.5.1)

y
yǫ

f∗f∗F ⊗ f
∗G −−−−→

via η
f∗f∗F ⊗ f

∗f∗f
∗G −−−−→

ǫ⊗ǫ
F ⊗ f∗G.

(Here commutativity of ©1 is clear, and that of ©2 results from (3.4.5.2).)
Similarly p2(G,F ) is adjoint to the dual of p1(G,F ).

Lemma (3.4.7). The following diagrams commute:

(i)

A⊗ B
η

−−−−−→ f∗f
∗(A⊗B)

1⊗η

y
y(3.4.5.1)

A⊗ f∗f
∗B −−−−−→

p2
f∗(f

∗A⊗ f∗B)

(ii)

A⊗OY
(3.4.2.1)
−−−−−−→ A⊗ f∗OX

p2
−−−−−−→ f∗(f∗A⊗OX)

ρ

y
yf∗(ρ)

A −−−−−−−−−−−−−−−−−−−−−−−→−−
η

f∗f
∗A
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(iii)

f∗B ⊗OY
p1

−−−−−→ f∗(B ⊗ f
∗OY )

ρ

y
y(3.4.5.1)

f∗B ←−−−−−
f∗(ρ)

f∗(B ⊗OX)

(iv)

(A⊗ B)⊗ f∗C
α
−−−→ A⊗ (B ⊗ f∗C)

1⊗p2
−−−→ A⊗ f∗(f

∗B ⊗ C)

p2

y
yp2

f∗(f
∗(A⊗ B)⊗ C) −−−−−→

(3.4.5.1)
f∗((f∗A⊗ f∗B)⊗ C) −−−→

α
f∗(f

∗A⊗ (f∗B ⊗ C))

Proof. (i) The commutativity of this diagram simply states that the
first map in (3.4.5.1) is adjoint to the composition

A⊗B
1⊗η
−−→ A⊗ f∗f

∗B
η⊗1
−−→ f∗f

∗A⊗ f∗f
∗B

(3.4.2.1)
−−−−−→ f∗(f

∗A⊗ f∗B)

which is so by definition (see beginning of (3.4.5)).

(ii) We expand the diagram in question as follows:

A⊗ f∗OX
η⊗1
−−−−→

©1

f∗f
∗A⊗ f∗OX

(3.4.2.1)
−−−−−→

©2

f∗(f
∗A⊗OX)

(3.4.2.1)

x
x

yf∗(ρ)

A⊗OY −−−−→
η⊗1

f∗f
∗A⊗OY

©3

−−−−−→
ρ

f∗f
∗A

ρ

y
∥∥∥

A −−−−−−−−−−−−−−−−−−−−−−−−→
η

f∗f
∗A

Subdiagrams ©1 and ©3 clearly commute; and so does ©2 because of the
compatibility of (3.4.2.1) and ρ, which can be deduced from the two top dia-
grams in (3.4.2.2) (the first of which expresses the compatibility of (3.4.2.1)
and λ) and the bottom diagram in (3.4.1.1).

(iii) The diagram expands as

f∗B ⊗OY

ρ

y

1⊗η
−−−−−−−−−−−−−−−−−−−−−−−−→

©1

f∗B ⊗ f∗f
∗OY

y
(3.4.2.1)©2 f∗B ⊗ f∗OX ©3

(3.4.2.1)

y

f∗B ←−−−−−
f∗(ρ)

f∗(B ⊗OX) ←−−−−−
(3.4.5.1)

f∗(B ⊗ f
∗OY )

Subdiagram ©1 commutes by the definition of the map f∗OY → OX
in (3.4.5.1), ©2 by the compatibility of (3.4.2.1) and ρ (see preceding proof
of (ii)), and ©3 by functoriality of (3.4.2.1).
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(iv) An expanded version of this diagram can be obtained by fitting
together the following two diagrams (whose maps are the obvious ones):

(A⊗ B)⊗ f∗C −−−→ A⊗ (B ⊗ f∗C)

©1

−−−→ A⊗ (f∗f
∗B ⊗ f∗C)

∥∥∥
ya

(A⊗ B)⊗ f∗C −−−→

©2

(f∗f
∗A⊗ f∗f

∗B)⊗ f∗C −−−→
b

f∗f
∗A⊗ (f∗f

∗B ⊗ f∗C)

y
yc

f∗f
∗(A⊗ B)⊗ f∗C −−−→

©3

f∗(f∗A⊗ f∗B)⊗ f∗C

y
yd

f∗(f
∗(A⊗ B)⊗ C) −−−→ f∗((f∗A⊗ f∗B)⊗ C)

A⊗ (f∗f
∗B ⊗ f∗C) −−−→

©5

A⊗ f∗(f∗B ⊗ C)

a

y
y

(f∗f
∗A⊗ f∗f

∗B)⊗ f∗C
b

−−−→ f∗f
∗A⊗ (f∗f

∗B ⊗ f∗C) −−−→ f∗f
∗A⊗ f∗(f∗B ⊗ C)

y

c

y
f∗(f∗A⊗ f∗B)⊗ f∗C ©4

d

y
f∗((f

∗A⊗ f∗B)⊗ C) −−−−−−−−−−−−−−−−−−−−−−−−−−−−→ f∗(f∗A⊗ (f∗B ⊗ C))

Subdiagram ©1 commutes by functoriality of a; ©2 by the definition
of (3.4.5.1); ©3 by functoriality of (3.4.2.1); ©4 by commutativity of the
bottom diagram in (3.4.2.2); and ©5 for obvious reasons. Q.E.D.

Remark (3.4.7.1). By duality (3.4.5) we get four other commutative
diagrams out of (3.4.7). For example, the dual of (ii) is

A⊗OX
(3.4.5.1)
←−−−−− A⊗ f∗OY

(3.4.6.2)
←−−−−− f∗(f∗A⊗OY )

ρ

y
yf∗(ρ)

A ←−−−−−−−−−−−−−−−−−−−−−
ǫ

f∗f∗A

Using the symmetry isomorphism γ, Remark (3.4.6.1), the bottom
diagram in (3.4.1.1), etc., we can also transform the commutative diagrams
in (3.4.7) into similar ones with p2 (resp. p1) replaced by p1 (resp. p2),
and with ρ replaced by λ.
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3.5. Adjoint functors between closed categories

The adjoint symmetric functors f∗ , f∗, remain as in (3.4.3). Addi-
tional structure comes into play when the monoidal categories X and Y
are closed, in the following sense.

Definition (3.5.1). A symmetric monoidal closed category (briefly, a
closed category) is a symmetric monoidal category

M = (M0,⊗,OM , α, λ, ρ, γ)

as in (3.4.1), together with a functor, called “internal hom,”

(3.5.1.1) [−,−] : Mop
0 ×M0 →M0

(where M
op
0 is the dual category of M0) and a functorial isomorphism

(3.5.1.2) π : Hom(A⊗B, C) −→∼ Hom(A, [B,C ]) .

The notion of closed category reduces myriad relations among, and
maps involving, “tensor” and “hom” to the few basic ones appearing in the
definition. (See, e.g., the following exercises (3.5.3).)35 The original treatise
on closed categories is [EK], in particular Chap. III, (p. 512 ff ). Some more
recent theory can be found starting with [Sv] and its references.

Examples (3.5.2).

(a) M0 is the category of modules over a given commutative ring R.
Let ⊗ be the usual tensor product, OM := R, and [B,C ] := HomR(B, C).
Fill in the rest.

(b) M0 is the category of OX -modules on a ringed space X . Let ⊗ be
the usual tensor product, OM := OX , and [B,C ] := HomX(B, C) . . . .

(c) M′
0 := K(X) is the homotopy category of complexes in the cate-

gory M0 of (b). Let ⊗ be the tensor product in (1.5.4), set OM ′ := OX
(considered as a complex vanishing in all nonzero degrees), and set
[B,C ] := Hom

•
X(B, C), see (2.4.5), (2.6.7), . . . .

(d) M′′
0 := D(X), the derived category of M0 in (b), ⊗ := ⊗

=
(2.5.7),

OM ′′ := OX , [B,C ] := RHom
•
X(B, C), see (2.6.1)′, (3.4.4)(b), . . . .

35 When M0 has direct sums, π gives rise to a distributivity isomorphism

(A′ ⊕ A′′)⊗ B −→∼ (A′ ⊗B)⊕ (A′′ ⊗B)

whose consequences we will not follow up here—but see [L], [L′ ], [K′ ].
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Exercises (3.5.3). Let (M, [−,−], π) as above be a closed category. Write (A,B)
for HomM0

(A,B).

(a) Define the set-valued functor Γ on M0 to be the usual functor (OM , −).
Establish a bifunctorial isomorphism

Γ[A,B ] −→∼ (A,B).

(b) Let tAB : [A,B ]⊗ A → B correspond under π to the identity map of [A,B ].

Use tAB and π to obtain a natural map [A,B ]→ [A⊗ C,B ⊗ C ].

(c) Use π, tCA , and tAB (see (b)) to get a natural “internal composition” map

c : [A,B ]⊗ [C,A]→ [C,B ].

Prove associativity (up to canonical isomorphism) for this c.

(d) Show that the map

ℓ = ℓA,B,C : [A,B ]→ [[C,A], [C,B ]]

corresponding under π to internal composition (see (c)) is compatible with ordinary

composition in M0 in that the following natural diagram (with Γ as in (a) and “Hom”
meaning “set maps”) commutes:

Γ[A,B ] ˜−−−−−→ (A,B)
composition
−−−−−−−−→ Hom((C,A), (C,B))

Γ(ℓ)

y functoriality

yof [C,−]

y≃

Γ[[C,A], [C,B ]] ˜−−−−−→ ([C,A], [C,B ])
functoriality
−−−−−−−−→

of Γ
Hom(Γ[C,A], Γ[C,B ])

(e) From the sequence of functorial isomorphisms

(D, [A⊗B, C ])
π
−→ (D ⊗ (A⊗ B), C)

α
−→ ((D ⊗A)⊗ B, C)
π
−→ (D ⊗A, [B,C ])

π
−→ (D, [A, [B,C ]])

deduce a functorial isomorphism

p = pA,B,C : [A⊗ B, C ] −→∼ [A, [B,C ]] .

(Take D := [A⊗ B, C ].) Referring to (a), show that Γ(p) = π . In example (3.5.2)(d),

does this p coincide with the isomorphism in (2.6.1)∗ ?

(f) Let uAB : A→ [B, A⊗ B ] correspond under π to the identity map of A⊗ B.

Show that the map pA,B,C in (e) factors as

[A⊗B, C ]
ℓA⊗B,C,B
−−−−−−−→ [[B,A⊗ B ], [B,C ]]

via uAB
−−−−−−→ [A, [B,C ]].

with ℓ as in (d).
Let tAB : [A,B ] ⊗ A → B correspond under π to the identity map of [A,B ].

Show that ℓA,B,C factors as

[A,B ]
via tAC
−−−−−→ [[C,A]⊗ C, B]

p[C,A],C,B
−−−−−−−→ [[C,A], [C,B ]] .

(g) The preceding exercises make no use of the symmetry isomorphism γ, but this

one does. Construct functorial maps

[A,B ]⊗ [C,D]→ [[B,C ], [A,D]] ,

[A,B ]⊗ [C,D]→ [A⊗ C, B ⊗D] .

using π, c and γ for the first (see (c)), π, t and γ for the second (see (b)).
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(h) Let α : B → A be an M-map. Show that the following diagrams—in which
unlabeled maps correspond under π to identity maps—commute for any C :

[A,C ]⊗ B
via α
−−−−−→ [A,C]⊗ A

via α

y
y

[B,C ]⊗ B −−−−−→ C

[B,C ⊗ A]
via α
←−−−−− [A,C ⊗A]

via α

x
x

[B,C ⊗B] ←−−−−− C

Hint. For the first diagram, consider the adjoint (via π ) diagram, with D arbitrary,

Hom([A,C]⊗B,D) ←−−−−− Hom([A,C]⊗A,D)x
x

Hom([B,C]⊗ B,D) ←−−−−− Hom(C,D)

Commutativity of the second diagram can be deduced from that of the first (and

vice-versa), or proved independently.

(3.5.4). Now let us see how f∗ and f∗ interact with closed structures
(assumed given) on X and Y.

First we have a functorial map, with A, B ∈ X,

(3.5.4.1) f∗[A,B ] −→ [f∗A, f∗B ]

corresponding under π (3.5.1.2) to the composed map

f∗[A,B ]⊗ f∗A −−−−−→
(3.4.2.1)

f∗
(
[A,B ]⊗ A

) f∗tAB−−−−−−→
(3.5.3)(b)

f∗B .

Conversely (verify!), the functorial map

f∗(A⊗B)←− f∗A⊗ f∗B

in (3.4.2.1) corresponds to the composition

[
f∗B, f∗(A⊗B)

]
←−−−−−
(3.5.4.1)

f∗[B, A⊗B ]
f∗uAB←−−−−−−

(3.5.3)(f)
f∗A .

There results a functorial composition

(3.5.4.2) f∗[f
∗A,B ] −−−−−→

(3.5.4.1)
[f∗f

∗A, f∗B ]
via η
−−−−→
(3.4.3)

[A, f∗B ] ,

from which (verify!) (3.5.4.1) can be recovered as the composition

f∗[A,B ]
via ǫ
−−−−→
(3.4.3)

f∗[f
∗f∗A,B ] −−−−−→

(3.5.4.2)
[f∗A, f∗B ] .

The functors C 7→ f∗(C ⊗ A) and C 7→ f∗C ⊗ f∗A (from Y to X)
both have right adjoints, namely B 7→ [A, f∗B ] and B 7→ f∗[f

∗A,B ].
Hence there is a functorial map

(3.5.4.3) [A, f∗B ]←− f∗[f
∗A,B ]

right-conjugate (see (3.3.5)) to the functorial map f∗(C⊗A)→ f∗C⊗f∗A
in (3.4.5.1).
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Similarly, there is a functorial map

(3.5.4.4) f∗[B,A] −→ [f∗B, f∗A]

right-conjugate to the adjoint f∗C⊗B ← f∗(C⊗f∗B) of p2(C,B) (3.4.6).
If f∗(C ⊗ A) → f∗C ⊗ f∗A—and hence its conjugate (3.5.4.3)—is a

functorial isomorphism, then we have the functorial map

(3.5.4.5) f∗[A,B ] −→ [f∗A, f∗B ]

which is adjoint to the composition

[A,B ]
η

−−−−→ [A, f∗f
∗B ]

(3.5.4.3)−1

−−−−−−−→ f∗[f
∗A, f∗B ] ;

and (verify!) (3.5.4.3)−1 is the map adjoint to the composition

f∗[A, f∗B ]
(3.5.4.5)
−−−−−→ [f∗A, f∗f∗B ]

via ǫ
−−−→ [f∗A, B ] ,

from which (3.5.4.5) can be recovered as the composition

f∗[A,B ]
via η
−−−→ f∗[A, f∗f

∗B ] −−−−→ [f∗A, f∗B ] .

This all holds in the most relevant (for us) cases, see e.g., (3.4.4)(a), (b),
and (3.5.2).

Does the map in (3.5.4.3) (resp. (3.5.4.4)) coincide with that in (3.5.4.2)
(resp. (3.5.4.1))? Of course, but it’s not entirely obvious: it amounts to
commutativity of the respective diagrams in (3.5.5) below. (Cf. (3.2.4)(i),
but recall that in proving (3.2.4)(i), we used (3.1.10), for whose last asser-
tion, given (3.1.8), (3.5.5) provides a formal proof.)36

Proposition (3.5.5). The following functorial diagrams—in which
A,B,G ∈ X0, E, F, C ∈ Y0, HX , HY stand for HomX0

, HomY0
respec-

tively, and with maps arising naturally from those defined above—commute:

(3.5.5.1)

HX
(
f∗E, [f∗F, G]

)
˜−−−−→ HX

(
f∗E ⊗ f∗F, G

)

≃

y
y(3.4.5.1)

HY

(
E, f∗[f

∗F, G]
)

HX
(
f∗(E ⊗ F ), G

)

(3.5.4.2)

y
y≃

HY

(
E, [F, f∗G]

)
˜−−−−→ HY

(
E ⊗ F, f∗G

)

36 Diagram (3.2.4.6) is, in view of (3.1.8), an instance of (3.5.5.1). So is (3.2.4.5);

but we don’t know that a priori, because we don’t know that the maps in (3.2.3.2)
and (3.5.4.2) coincide until after proving either (3.2.4)(i) or the derived-category analog

of (3.1.8), viz. (3.2.4)(ii)—in whose proof (3.5.5) was used.
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(3.5.5.2)

HY

(
C ⊗ f∗B, f∗A

)
˜←−−−− HY

(
C, [f∗B, f∗A]

)

≃

x
x(3.5.4.1)

HX
(
f∗(C ⊗ f∗B), A

)
HY

(
C, f∗[B,A]

)

(3.4.6.2)

x
x≃

HX
(
f∗C ⊗B, A

)
˜←−−−− HX

(
f∗C, [B,A]

)

The proof will be based on:

Lemma (3.5.5.3). The following diagram (with preceding notation)
commutes:

HX(A, [B, G])
natural
−−−−−→ HY (f∗A, f∗[B, G])

(3.5.4.1)
−−−−−−→ HY (f∗A, [f∗B, f∗G])

≃

y
y≃

HX(A⊗B, G) −−−−−→
natural

HY (f∗(A⊗B), f∗G) −−−−−−→
(3.4.2.1)

HY (f∗A⊗ f∗B, f∗G)

Proof. Chasing a map ϕ : A → [B,G] around the diagram both
clockwise and counterclockwise from upper left to lower right, one comes
down to showing commutativity of the following diagram (with t as
in (3.5.3(b)):

f∗A⊗ f∗B
f∗ϕ⊗ 1f∗B−−−−−−−→ f∗[B, G] ⊗ f∗B

(3.5.4.1)
−−−−−→ [f∗B, f∗G] ⊗ f∗B

(3.4.2.1)

y (3.4.2.1)

y
ytf∗B,f∗G

f∗(A⊗B) −−−−−−−→
f∗(ϕ⊗ 1B)

f∗
(
[B, G] ⊗B

)
−−−−−→
f∗(tBG)

f∗G

The left square commutes by functoriality, and the right one by the defini-
tion of (3.5.4.1). Q.E.D.

Proof of (3.5.5). Expand (3.5.5.1) to (3.5.5.1.)∗, shown on the next
page, where the map ξ is induced by the map ξ′ : E⊗F → f∗(f

∗E⊗ f∗F )
adjoint to f∗(E⊗F )→ f∗E⊗f∗F , see (3.4.5.1); and the other maps are the
obvious ones. The outer border of (3.5.5.1)∗ commutes, by (3.5.5.3) (with
A := f∗E, B := f∗F ). Hence if all the subdiagrams other than (3.5.5.1)
commute, then so does (3.5.5.1), as desired.

Commutativity of ©1 follows from adjointness of f∗ and f∗.
Commutativity of ©2 follows from the definition (3.5.4.2) of the map

f∗[f
∗F, G]→ [F, f∗G].
Commutativity of ©3 follows from functoriality of π (3.5.1.2).
Commutativity of ©4 and of ©5 result respectively from the following

two factorizations of the map ξ′ :

E ⊗ F
η
−→ f∗f

∗(E ⊗ F )
(3.4.5.1)
−−−−−→ f∗(f

∗E ⊗ f∗F ) ,

E ⊗ F
η⊗η
−−→ f∗f

∗E ⊗ f∗f
∗F

(3.4.2.1)
−−−−−→ f∗(f

∗E ⊗ f∗F ) .

Thus (3.5.5.1) does commute.
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H
X

(f
∗E
,
[f

∗F
,
G

] )
−
−
→

©1

H
Y (f

∗ f
∗E
,
f
∗ [f

∗F
,
G

] )
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
→

©2

H
Y (f

∗ f
∗E
,
[f

∗ f
∗F
,
f
∗ G

] )

∥∥∥
y

∥∥∥

H
X

(f
∗E
,
[f

∗F
,
G

] )
−
−
→

H
Y (E

,
f
∗ [f

∗F
,
G

] )
−
−
→

H
Y (E

,
[F
,
f
∗ G

] )
←
−
−

©3

H
Y (f

∗ f
∗E
,
[f

∗ f
∗F
,
f
∗ G

] )

≃ y
≃ y

y
≃

H
X

(f
∗E
⊗
f
∗F
,
G

)
−
−
→

H
X

(f
∗(E
⊗
F

),
G

)
−
−
→

H
Y (E

⊗
F
,
f
∗ G

)
←
−
−
H
Y (f

∗ f
∗E
⊗
f
∗ f

∗F
,
f
∗ G

)
∥∥∥

ξ x
∥∥∥

H
X

(f
∗E
⊗
f
∗F
,
G

)

(3
.5

.5
.1

)

©5

−−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−→

H
Y (f

∗ (f
∗E
⊗
f
∗F

),
f
∗ G

)
©4

−
−
→

H
Y (f

∗ f
∗E
⊗
f
∗ f

∗F
,
f
∗ G

)

(3
.5

.5
.1

)
*

H
X

(f
∗C
,
[B
,
A

] )
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
→

©1

H
Y (C

,
f
∗ [B

,
A

] )
H
Y (C

,
f
∗ [B

,
A

] )
∥∥∥

y
y

H
X

(f
∗C
,
[B
,
A

] )
−
−
→

©3

H
X

(f
∗C
,
[f

∗f
∗ B
,
A

] )
−
−
→

H
Y (C

,
f
∗ [f

∗f
∗ B
,
A

] )

©4

©2

−
−
→

H
Y (C

,
[f

∗ B
,
f
∗ A

] )

≃ y
≃ y

≃ y

H
X

(f
∗C
⊗
B
,
A

)
−
−
→

H
X

(f
∗C
⊗
f
∗f

∗ B
,
A

)
−
−
→

H
X

(f
∗(C
⊗
f
∗ B

),
A

)
−
−
→

H
Y (C

⊗
f
∗ B
,
f
∗ A

)

(3
.5

.5
.2

)
*
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Now look at (3.5.5.2)∗, whose outer border is identical with (3.5.5.2).
Subdiagrams ©1 and ©3 commute by functoriality. Commutativity of ©2
comes from the statement immediately following (3.5.4.2). Subdiagram ©4
is just (3.5.5.1) with E := C, F := f∗B, G := A; so it commutes too. Thus
(3.5.5.2)∗ commutes. Q.E.D.

Exercises (3.5.6). (a) Show that if the natural map f∗(C ⊗A)→ f∗C ⊗ f∗A is

an isomorphism for all C and A, then (3.5.4.5) corresponds under π (see (3.5.1.2)) to
the natural composite map f∗[A,B ]⊗ f∗A −→∼ f∗([A,B ]⊗ A) −→ f∗B .

(b) Given a fixed map e : B′ → B, show that the functorial maps

f∗[B,A]
via e
−−−→ f∗[B

′, A] and f∗C ⊗ B
via e
←−−− f∗C ⊗B′

are conjugate; and then deduce the equality of the maps (3.5.4.1) and (3.5.4.4) from that
of (3.5.4.2) and (3.5.4.3).

(c) In (3.5.5.i) (i = 1, 2, 3), replace HX(−, −) by f∗[−, −], and HY (−, −)

by [−, −]. Show that the resulting diagrams commute. (For example, reduce to com-
mutativity of (3.5.5.i) , by applying the functor HY (D,−) to the diagram in question.)

Show that (3.5.5.i) can be recovered from “the resulting diagram” by application

of the functor Γ
Y

:= HY (OY ,−) of (3.5.3)(a).

(d) By Yoneda’s principle, commutativity of (3.5.5.1) can be proved by taking
E = f∗[f

∗F, G] and chasing the identity map of f∗[f
∗F, G] around the diagram in both

directions. Deduce that commutativity of (3.5.5.1) is equivalent to that of the diagram

f∗(f∗[f
∗F, G]⊗ F ) −−−−−−→

(3.5.4.2)
f∗([F, f∗G]⊗ F )

tF,f∗G
−−−−−−→
(3.5.3)(b)

f∗f∗G

(3.4.5.1)

y
yǫ

f∗f∗[f
∗F, G]⊗ f∗F

(3.4.3)
−−−−−→

via ǫ
[f∗F, G]⊗ f∗F −−−−−→

tf∗F,G
G

(e) In a closed category X the natural composite functorial map

Hom(F,G) −→∼ Hom(F ⊗OX , G) −→∼ Hom(F, [OX , G]),

being an isomorphism, takes (when F = G ) the identity map of G to an isomorphism
G −→∼ [OX , G]. Let Y be another closed category, and (f∗, f∗) be as in (3.4.3). Show

that for G ∈ X and E ∈ Y the following natural diagrams commute:

f∗[OX , G] −−−−−→ [f∗OX , f∗G]

≃

y
y

f∗G ˜−−−−−→ [OY , f∗G]

f∗[OY , E ] −−−−−→ [f∗OY , f
∗E ]

≃

y
y≃

f∗E ˜−−−−−→ [OX , f
∗E ]

Hint. The first diagram is right-conjugate to the dual (3.4.5) of (3.4.7)(iii). For the

second diagram, use, e.g., (a) above.

(f) With notation as in (e), and π
X

, π
Y

as in (3.5.1.2), and assuming the functorial
map f∗(C⊗D)→ f∗C⊗f∗D in (3.4.5.1) to be a functorial isomorphism, show that π

X

takes the inverse of the isomorphism f∗(G⊗ B)→ f∗G⊗ f∗B to the composite map

f∗G
natural
−−−−−→ f∗[B, G⊗ B]

(3.5.4.5)
−−−−−−→ [f∗B, f∗(G⊗ B)],



3.6. Adjoint monoidal ∆-pseudofunctors 109

or, equivalently, that the following diagram commutes.

[f∗B, f∗(G⊗ B)]
(3.4.5.1)−1

←−−−−−−−− [f∗B, f∗G⊗ f∗B]

(3.5.4.5)

x
xvia π

X

f∗[B,G⊗B] ←−−−−−−−−
via π

Y

f∗G

(g) With assumptions as in (f), and using the commutative diagram in (f)—or
otherwise—show that for any Y-map α : C ⊗D → E, and αf the composite map

f∗C ⊗ f∗D
(3.4.5.1)−1

−−−−−−−−→ f∗(C ⊗D)
f∗α
−−→ f∗E,

it holds that π
X

(αf ) is the composite map

f∗C
f∗(π

Y
α)

−−−−−−→ f∗[D,E ]
(3.5.4.5)
−−−−−−→ [f∗D, f∗E ].

3.6. Adjoint monoidal ∆-pseudofunctors

We review next the behavior of derived direct and inverse image func-

tors vis-à-vis a pair of ringed-space maps X
f
−→ Y

g
−→ Z.

First, relative to the categories of OX - (OY - , OZ -) modules we have
the functorial isomorphism (in fact equality)

(3.6.1)∗ (gf)∗ −→
∼ g∗f∗

and hence, since f∗g∗ is left-adjoint to g∗f∗ and (fg)∗ is left-adjoint
to (gf)∗ there is a unique functorial isomorphism

(3.6.1)∗ f∗g∗ −→∼ (gf)∗

such that the following natural diagram of functors commutes:

(3.6.2)

1 −−−−→ g∗g
∗ −−−−→ g∗(f∗f

∗g∗)
y

∥∥∥

(gf)∗(gf)∗ ˜−−−−→ g∗f∗(gf)∗ ˜←−−−− g∗f∗f
∗g∗

or, equivalently, such that the “dual” diagram

(3.6.2)op

1 ←−−−− f∗f∗ ←−−−− f∗(g∗g∗f∗)x
∥∥∥

(gf)∗(gf)∗ ˜←−−−− f∗g∗(gf)∗ ˜−−−−→ f∗g∗g∗f∗

commutes. (This statement follows from (3.3.5), see also (3.3.7)(a)).
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Given a third map Z
h
−→ W , we have the commutative diagram of

functorial isomorphisms (actually equalities)

(3.6.3)∗

(hgf)∗ −−−−→ (hg)∗f∗y
y

h∗(gf)∗ −−−−→ h∗g∗f∗

from which we deduce formally, via adjunction, a commutative diagram of
functorial isomorphisms

(3.6.3)∗

(hgf)∗ ←−−−− f∗(hg)∗
x

x

(gf)∗h∗ ←−−−− f∗g∗h∗

From these observations we can derive similar ones involving the cor-
responding derived functors.

Indeed, taking U := g−1V (V open ⊂ Z) in (3.2.3.3), we find that
f∗B is g∗-acyclic for any q-injective B ∈ K(X), whence, by (2.2.7), there
is a unique ∆-functorial isomorphism

(3.6.4)∗ R(gf)∗ −→
∼

Rg∗Rf∗

making the following natural diagram commute:

(3.6.4.1)

(gf)∗ ˜−−−−→ g∗f∗ −−−−→ (Rg∗)f∗y
y

R(gf)∗ ˜−−−−−−−−−−−−−−−→ Rg∗Rf∗

This allows us to build a diagram analogous to (3.6.3)∗ , with Re∗ in place
of e∗ for each map e involved. The resulting derived functor diagram still
commutes, as can be seen by reduction (via suitable quasi-isomorphisms)
to the case of q-injective complexes in D(X), for which the diagram in
question is essentially (3.6.3)∗ .

In a parallel fashion, using q-flat instead of q-injective complexes,
and recalling that f∗ transforms q-flat complexes into q-flat complexes
(see proof of (3.2.4)(i)), etc., we get a natural ∆-functorial isomorphism

(3.6.4)∗ Lf∗
Lg∗ −→∼ L(gf)∗,

and a commutative diagram analogous to (3.6.3)∗, with Le∗ in place of e∗.
By (3.3.5), we also have commutative diagrams like (3.6.2) and (3.6.2)op,
with f∗ , f∗ etc. replaced by their respective derived functors.
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It is helpful to conceptualize some of the foregoing, as follows, leading
up to (3.6.10). We begin with some standard terminology.37

(3.6.5). Let S be a category. A covariant pseudofunctor #

on S assigns to each object X ∈ S a category X# , to each map

f : X → Y in S a functor f# : X# → Y# , with f# the identity functor

if X = Y and f = 1X , and to each pair of maps X
f
−→ Y

g
−→ Z in S an

isomorphism of functors

cf,g : (gf)# −→
∼ g#f#

such that

1) c1,g = cf,1 = identity, and

2) for any triple of maps X
f
−→ Y

g
−→ Z

h
−→ W the following

diagram commutes:

(3.6.5.1)

(hgf)#

cf,hg
−−−−→ (hg)#f#

cgf,h

y
ycg,h

h#(gf)# −−−−→
cf,g

h#g#f#

Similarly, a contravariant pseudofunctor on S assigns to each X ∈ S
a category X#, to each map f : X → Y a functor f# : Y# → X# (with

1# = 1), and to each map-pair X
f
−→ Y

g
−→ Z a functorial isomorphism

df,g : f#g# → (gf)#

satisfying d1,g = dg,1 = identity, and such that for each triple of maps

X
f
−→ Y

g
−→ Z

h
−→W the following diagram commutes:

(3.6.5.2)

(hgf)#
df,hg
←−−−− f#(hg)#

dgf,h

x
xdg,h

(gf)#h# ←−−−−
df,g

f#g#h#

There is an obvious way of identifying contravariant pseudofunctors
on S with pseudofunctors on the dual category Sop.

37 Pseudofunctors can also be interpreted as 2-functors.
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(3.6.6). Given covariant pseudofunctors * and # with X* = X# for
all X ∈ S, a morphism of pseudofunctors * → # is a family of morphisms
of functors

αf : f∗ → f#

(one for each map f in S) such that for any pair of maps X
f
−→ Y

g
−→ Z

the following diagram commutes:

(gf)∗
αgf

−−−−−−−−−−−−−−→ (gf)#

cf,g

y
ycf,g

g∗f∗ −−−−→g∗αf
g∗f# −−−−→αg

g#f#

and such that for all X ∈ S, with identity map 1X , α1X : (1X)∗ → (1X)#
is the identity automorphism of X* = X# . Morphisms of contravariant
pseudofunctors are defined analogously.

Suppose we are given a pseudofunctor * , and a family of functors
f# : X* → Y*, one for each S-morphism f : X → Y , such that f# is an
identity functor whenever f is an identity map, and a family of functorial
isomorphisms αf : f∗ → f# . It is left as an exercise to show that then

there is a unique family of isomorphisms of functors cf,g : (gf)# −→
∼ g# f#

which together with the family (f#) constitute a pseudofunctor such that
the family (αf ) is an isomorphism of pseudofunctors.

(3.6.7). Various refinements of these notions can be made.

(a). Assume that each category X# is a ∆-category, that each f#
(resp. f#) is a ∆-functor, and that each cf,g (resp. df,g ) is an isomorphism
of ∆-functors. We say then that # is a covariant (resp. contravariant)
∆-pseudofunctor.

A morphism of ∆-pseudofunctors is then a family αf as in (3.6.6),
with each αf a morphism of ∆-functors.

(b). Assume that each category X# is a symmetric monoidal category,
see (3.4.1), that each f# is a symmetric monoidal functor (3.4.2), and that
each cf,g is a morphism of symmetric monoidal functors [EK, p. 474], i.e.,
that the following natural diagrams commute (where ⊗ denotes the appro-
priate product functor, and O the unit; and A,B ∈ X# ):

(3.6.7.1)

OZ −−−−→ (gf)#OXy
y

g#OY −−−−→ g#f#OX

(3.6.7.2)

(gf)#A⊗ (gf)#B −−−−−−−−−−−−−−−−−−−−−→ (gf)#(A⊗B)
y

y

g#f#A⊗ g#f#B −−−→ g#(f#A⊗ f#B) −−−→ g#f#(A⊗B)

We say then that # is a monoidal pseudofunctor.
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We say that a contravariant pseudofunctor # is monoidal if for each
map f : X → Y in S, the opposite functor (f#)op : (Y#)op → (X#)op is
monoidal. In other words, we have functorial maps

f#(A⊗B)→ f#A⊗ f#B

and a map

f#OY → OX

satisfying the obvious conditions.

A morphism of monoidal pseudofunctors is a family αf as in (3.6.6)
such that each αf is a morphism of symmetric monoidal functors (i.e., αf is
compatible, in an obvious sense, with the maps (3.4.2.1).

(c). If every X# is both a ∆-category and a symmetric monoidal cat-
egory, and if the multiplication X#×X# → X# is a ∆-functor (see (2.4.3)),
then we say that X# is a monoidal ∆-category; and we speak correspond-
ingly of monoidal ∆-pseudofunctors and their morphisms.

(d). A pair (*, *) with * a pseudofunctor and * a contravariant
pseudofunctor on S are said to be adjoint if the following conditions hold:

(i) X* = X* for all objects X in S.

(ii) For every f : X → Y in S there are bifunctorial isomorphisms

HomX*(f∗C, D) −→∼ HomY*
(C, f∗D) (C ∈ Y*, D ∈ X*),

i.e., the functor f∗ : X* → Y* is right adjoint to f∗ : Y* → X*.

(iii) The resulting functorial diagrams (3.6.2) (or (3.6.2)op) commute.

In the monoidal case, we also require:

(iv) The natural maps

f∗(A)⊗ f∗(B)→ f∗(A⊗B),

f∗(f∗A⊗ f∗B)→ f∗f∗A⊗ f
∗f∗B → A⊗B

correspond under the adjunction isomorphism of (ii) above, as do
the natural maps f∗OY → OX , OY → f∗OX .

In the ∆-case, we also require thatf∗ and f∗ be ∆-adjoint (3.3.1), i.e.,

(v) The natural functorial morphisms

1→ f∗f
∗ and f∗f∗ → 1

are both morphisms of ∆-functors.
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(3.6.8). We add some remarks on existence and uniqueness, some of
which are relevant to the subsequent construction and understanding of
specific adjoint pairs of pseudofunctors.

(3.6.8.1). If * is a monoidal pseudofunctor on S, and if for each
map f : X → Y in S the functor f∗ : X* → Y* has a left adjoint f∗,
then there is a unique contravariant monoidal pseudofunctor * on S such
that X* = X* for all objects X ∈ S, f∗ is the said left adjoint for each
f : X → Y, and the pair (*, *) is adjoint.

Indeed, condition (iii) in (d) above forces df,g : f∗g∗ → (gf)∗ to be
the left conjugate of the given cf,g : (gf)∗ → g∗f∗ (see beginning of this
section, up to (3.6.3)∗ ). Similarly, (iv) imposes a unique monoidal structure
on (f∗)op : given (ii), we see as in (3.4.5) that (iv) is equivalent to the
following dual statement:

(iv) ′ The natural maps

f∗(A)⊗ f∗(B)← f∗(A⊗B),

f∗(f
∗A⊗ f∗B)← f∗f

∗A⊗ f∗f
∗B ← A⊗B

correspond under the above adjunction isomorphism (ii), as do the
natural maps

f∗OX ← OY , OX ← f∗OY .

The rest of the proof is left to the reader.

(3.6.8.2). If * is a ∆-pseudofunctor on S, and if for each map
f : X → Y in S the functor f∗ : X* → Y* has a left adjoint f∗, then there
is a unique contravariant ∆-pseudofunctor * on S such that X* = X*

for all objects X ∈ S, f∗ is the said left adjoint for each f : X → Y, and
the pair (*, *) is adjoint.

Indeed, by (3.3.8), each f∗ carries a unique structure of ∆-functor

such that (v) above holds; and for every X
f
−→ Y

g
−→ Z in S, the isomor-

phism df,g—forced by (iii) to be the conjugate of the given ∆-functorial
isomorphism cf,g—is ∆-functorial, by (3.3.6).

(3.6.8.3). Here is another form of uniqueness:

If (*, *) and (#, *) are adjoint pairs of monoidal (or ∆-)pseudo-
functors, and if for each f : X → Y we define the morphism αf : f∗ → f#

to be adjoint to the natural morphism 1→ f∗f
#, then the family αf is an

isomorphism of monoidal (or ∆-)pseudofunctors.

Remark (3.6.9) (Duality principle II). To each adjoint pair of
monoidal pseudofunctors (*, *) on S, (3.6.7)(d), associate a dual pair (#, #)
of monoidal pseudofunctors on the dual category Sop as follows:
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X# := (X*)op, X# := (X*)op

for objects X ∈ Sop, and

f# := (f∗)
op : (X*)op → (Y*)op, f# := (f∗)op : (Y*)op → (X*)op

for each map f : Y → X in Sop (i.e., for each map f : X → Y in S),
the isomorphisms f#g# −→∼ (gf)# and (gf)# −→

∼ g#f# being the obvious

ones. The monoidal structure on the category X# = X# is defined to be

dual to that on X* = X* see (3.4.5), and then each functor f# is monoidal,
with left adjoint f# . It follows that:

Each diagram built up from the basic data defining adjoint monoidal
pairs can be interpreted in the dual context, giving rise to a “dual” diagram,
obtained by interchanging * and * and reversing arrows, etc., etc.

This somewhat imprecise statement will be illustrated in Ex. (3.7.1.1)
and in the proof of Prop. (3.7.2) below.

(3.6.10). With the terminology of (3.6.7), and with (3.5.2)(d) in mind,
we can formally summarize many preceding results as follows.

Scholium. Let S be the category of ringed spaces. For each object
X ∈ S, set X* = X* := D(X) (the derived category of the category of
OX-modules), a closed ∆-category with product ⊗

=
, unit OX , and internal

hom RHom. For X
f
−→ Y

g
−→ Z in S, write

f∗ for Lf∗ : Y* → X*, df,g for the map (3.6.4)∗ ,

f∗ for Rf∗ : X* → Y* , cf,g for the map (3.6.4)∗ .

This defines an adjoint pair (*, *) of monoidal ∆-pseudofunctors on S.

Proof. Essentially everything has already been proved, in (3.4.4)(b)
and at the beginning of this §3.6, except for the commutativity of (3.6.7.1)
and (3.6.7.2) (with ∗ in place of # ).

Commutativity of (3.6.7.1) is left to the reader.
To show that (3.6.7.2) commutes, first do it in the context of sheaves

of modules—with the ordinary direct image functors see (3.1.7)—where
it follows easily from definitions. A formal argument, using (iv) or (iv) ′

above (details left to the reader), then yields the commutativity of the
corresponding (dual) sheaf diagram with ∗ in place of ∗ , and all arrows
reversed. In this latter diagram, we can then replace f∗ etc. by Lf∗ , etc.,
and commutativity is preserved since the resulting derived functor diagram
need only be checked when A and B are q-flat complexes, in which case it
does not differ essentially from the original sheaf diagram.

Finally, the preceding formal (adjunction) argument, applied this time
to derived functors, gives us commutativity in (3.6.7.2).
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3.7. More formal consequences: projection, base change

We give some additional consequences, to be used later, of the formal-
ism in §3.6. Again, the introductory remarks in §3.4, suitably modified, are
relevant.

We consider an adjoint monoidal pair (*, *) as in (d) of (3.6.7).

Condition (ii) there means that for f : X → Y in S, we have functorial
maps

η : 1→ f∗f
∗, ǫ : f∗f∗ → 1

such that the resulting compositions

f∗ η
−→ f∗f∗f

∗ ǫ
−→ f∗, f∗

η
−→ f∗f

∗f∗
ǫ
−→ f∗

are both identities.

For X ∈ S, the product functor on the monoidal category X* = X*

will be denoted by ⊗ .

For a map f : X → Y in S, the functorial “projection” map

pf : G⊗ f∗F → f∗(f
∗G⊗ F ) (G ∈ Y*, F ∈ X*)

is defined as in (3.4.6). It is compatible with pseudofunctoriality, in the
following sense.

Proposition (3.7.1). For any X
f
−→ Y

g
−→ Z in S, the following

diagram, with F ∈ X*, G ∈ Z*, commutes.

G⊗ g∗f∗F
pg

−−−−→ g∗(g
∗G⊗ f∗F )

g∗(pf)
−−−−→ g∗f∗(f

∗g∗G⊗ F )

via cf,g

x≃

yvia df,g

G⊗ (gf)∗F −−−−→pgf
(gf)∗((gf)∗G⊗ F ) ˜−−−−→cf,g

g∗f∗((gf)∗G⊗ F )

Proof. An expanded form of the diagram is obtained by pasting the
first of the following diagrams, along its right edge, to the second, along its
left edge. (All the arrows have an obvious interpretation.)



3.7. More formal consequences: projection, base change 117

G⊗ g∗f∗F −→ g∗g
∗G⊗ g∗f∗F g∗g

∗G⊗ g∗f∗F

y

x
x

G⊗ (gf)∗F
y

−→ g∗g
∗G⊗ (gf)∗F

y

©1 g∗f∗f
∗g∗G⊗ (gf)∗F −→ g∗f∗f

∗g∗G⊗ g∗f∗Fy
y

(gf)∗(gf)∗G⊗ (gf)∗F
y

−→ g∗f∗(gf)∗G⊗ (gf)∗F −→ g∗f∗(gf)∗G⊗ g∗f∗F

y

©2 g∗(f∗(gf)∗G⊗ f∗F )
y

(gf)∗((gf)∗G⊗ F ) −−−−−−−−−−−−−−−−−−−−−→ g∗f∗((gf)∗G⊗ F )

g∗g
∗G⊗ g∗f∗F −−−−→ g∗(g

∗G⊗ f∗F )
y

y

g∗f∗f
∗g∗G⊗ g∗f∗F −−−−→ g∗(f∗f

∗g∗G⊗ f∗F )∥∥∥∥∥∥∥∥∥∥

y

g∗f∗(gf)∗G⊗ g∗f∗Fy

g∗(f∗(gf)∗G⊗ f∗F ) ←−−−− g∗(f∗f
∗g∗G⊗ f∗F )

y
y

g∗f∗((gf)∗G⊗ F ) ←−−−− g∗f∗(f
∗g∗G⊗ F )

Subdiagram ©1 commutes because of commutativity of (3.6.2) (see
condition (iii) in (3.6.7)(d)), Subdiagram ©2 commutes because of the
commutativity of (3.6.7.2) (which is part of the definition of monoidal
pseudofunctor); and commutativity of the remaining subdiagrams is clear.
The conclusion follows.

Exercise (3.7.1.1). The preceding Proposition expresses the compatibility of the
projection map with the structure “adjoint pair of monoidal pseudofunctors.” One can

ask about similar compatibilities for any of the maps introduced in §3.5. Here are some
examples which will be needed later.

(Challenge: Establish metaresults of which such examples would be instances.)
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With notation as in (3.7.1), ̺ as in (3.5.4.1), and βf : f∗[f∗−,−]→ [−, f∗−] as in
(3.5.4.2) or (3.5.4.3), show that the following diagrams commute:

(gf)∗[(gf)∗G, F ]
βgf

−−−−−−−−−−−−−−−−−−−−−−−→ [G, (gf)∗F ]

via c
f,g

yand d
f,g

yvia c
f,g

g∗f∗[f∗g∗G, F ] −−−−−→
g∗βf

g∗[g∗G, f∗F ] −−−−−→
βg

[G, g∗f∗F ]

f∗g∗[F, F ′ ]
f∗̺g
−−−−−→ f∗[g∗F, g∗F ′ ]

f̺
−−−−−→ [f∗g∗F, f∗g∗F ′ ]

c
−1
f,g

y
yvia c−1

f,g

(gf)∗[F, F ′ ] −−−−−→
̺gf

[(gf)∗F, (gf)∗F ′ ] −−−−−→
via c−1

f,g

[f∗g∗F, (gf)∗F ′ ]

Deduce from the first diagram that with ρ
f

: f∗[−,−]→ [f∗−, f∗−] as in (3.5.4.5), the
next diagram commutes:

f∗g∗[G, G′ ]
f∗ρg
−−−−−→ f∗[g∗G, g∗G′ ]

ρf
−−−−−→ [f∗g∗G, f∗g∗G′ ]

d
f,g

y≃ ≃

yvia d
f,g

(gf)∗[G, G′ ] −−−−−→
ρgf

[(gf)∗G, (gf)∗G′ ] ˜−−−−−→
via d

f,g

[f∗g∗G, (gf)∗G′ ]

Hints. Apply (3.6.9) to the diagram in (3.6.7.2), resp. Prop. (3.7.1), and compare
the result with the diagram left-conjugate to the first, resp. second, one above. The third

diagram expands naturally as follows.

f∗g∗[G,G′ ]∥∥∥∥∥∥

−→ f∗g∗[G, g∗g
∗G′ ]y

−→ f∗g∗g∗[g∗G, g∗G′ ]y
−→ f∗[g∗G, g∗G′ ]y

f∗g∗[G, g∗f∗f
∗g∗G′ ]y

→ f∗g∗g∗[g∗G, f∗f
∗g∗G′ ]y

→ f∗[g∗G, f∗f
∗g∗G′ ]y

f∗g∗[G,G′ ]
y

→f∗g∗[G, (gf)∗(gf)∗G′ ]
y

f∗g∗g∗f∗[f∗g∗G, f∗g∗G′ ]y
→f∗f∗[f∗g∗G, f∗g∗G′ ]y

(gf)∗(gf)∗[f∗g∗G, f∗g∗G′ ]y
→ [f∗g∗G, f∗g∗G′ ]y

(gf)∗[G,G′]→ (gf)∗[G,(gf)∗(gf)∗G′]→ (gf)∗(gf)∗[(gf)∗G,(gf)∗G′]→ [(gf)∗G,(gf)∗G′]

In this diagram, all but three subdiagrams clearly commute, and those three are taken

care of by (3.6.2), (3.6.2)op, and the first diagram above.

Next, we introduce an oft-to-be-encountered “base change” morphism.

Proposition (3.7.2). (i) To each commutative square σ in S :

X ′ g′

−−−−→ X

f ′

y
yf

Y ′ −−−−→
g

Y

there is associated a natural map of functors

θ = θσ : g∗f∗ −→ f ′
∗g

′∗ ,

equal to each of the following four compositions (with h = fg′ = gf ′) :
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g∗f∗
η
−→ g∗f∗g

′
∗g

′∗
(cf′,g)(c

−1

g′,f
)

−−−−−−−−→ g∗g∗f
′
∗g

′∗ ǫ
−→ f ′

∗g
′∗(a)

g∗f∗
η( )η
−−−→ f ′

∗f
′∗g∗f∗g

′
∗g

′∗
(df′,g)(c

−1

g′,f
)

−−−−−−−−→ f ′
∗h

∗h∗g
′∗ ǫ
−→ f ′

∗g
′∗(b)

g∗f∗
η
−→ f ′

∗f
′∗g∗f∗

(d−1

g′,f
)(df′,g)

−−−−−−−−→ f ′
∗g

′∗f∗f∗
ǫ
−→ f ′

∗g
′∗(c)

g∗f∗
η
−→ g∗h∗h

∗f∗
(cf′,g)(d

−1

g′,f
)

−−−−−−−−→ g∗g∗f
′
∗g

′∗f∗f∗
ǫ( )ǫ
−−−→ f ′

∗g
′∗(d)

(ii) Given a pair of commutative squares

X ′ g′

−−−−→ X

f ′

y
yf

Y ′ −−−−→
g

Y

h′

y
yh

Z ′ −−−−→
g′′

Z

the following resulting diagram commutes:

g′′∗(hf)∗
θ

−−−−−−−−−−−−−−−−−→ (h′f ′)∗g
′∗

cf,h

y
ycf′,h′

g′′∗h∗f∗ −−−−→
θ

h′∗g
∗f∗ −−−−→

θ
h′∗f

′
∗g

′∗

(iii) Given a pair of commutative squares

X ′′ h
−−−−→ X ′ f

−−−−→ X

g′′
y

yg
yg′

Y ′′ −−−−→
h′

Y ′ −−−−→
f ′

Y

the following resulting diagram commutes:

g′′∗ (fh)∗
θ

←−−−−−−−−−−−−−−−−− (f ′h′)∗g′∗

dh,f

x
xdh′,f′

g′′∗h
∗f∗ ←−−−−

θ
h′∗g∗f

∗ ←−−−−
θ

h′∗f ′∗g′∗

Proof. (i) To get convinced that (a), (b) and (c) are the same, con-
template the following commutative diagram, noting that ǫ ◦η on the right
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(resp. bottom) edge is the identity map, and recalling for subdiagrams ©1
and ©2 the condition (iii) in the definition (3.6.7)(d) of “adjoint pair.”

g∗f∗ −−→ g∗f∗g
′
∗g

′∗ −−→ g∗g∗f
′
∗g

′∗ −−→ f ′
∗g

′∗

η

y η

y η

y
yη

f ′
∗f

′∗g∗f∗ −−→ f ′
∗f

′∗g∗f∗g
′
∗g

′∗ −−→ f ′
∗f

′∗g∗g∗f
′
∗g

′∗ −−→

©1

f ′
∗f

′∗f ′
∗g

′∗

y

ǫ

y
y

y

f ′
∗g

′∗f∗f∗ −−→ f ′
∗g

′∗f∗f∗g
′
∗g

′∗ −−→

©2

f ′
∗h

∗h∗g
′∗

y
y ǫ

f ′
∗g

′∗ −−→
η

f ′
∗g

′∗g′∗g
′∗ −−−−−−−−−−−−−−−−−−→

ǫ
f ′
∗g

′∗

The equality (c) = (d) is obtained from (a) = (b) by duality (3.6.9).

(ii) Consider the expanded diagram (3.7.2.2) on the following page.
Recall that the composition ǫ ◦η of the adjacent arrows in the middle

is the identity. Commutativity of subdiagram ©1 is an easy consequence of
the commutativity of (3.6.5.1) (axiom for pseudofunctors). Commutativity
of the other subdiagrams is straightforward, and the conclusion follows.

(iii) is simply the dual of (ii) (see (3.6.9)). Q.E.D.

Proposition (3.7.3) (Base change and projection). Let

X ′ g′

−−−−→ X

f ′

y
yf

Y ′ −−−−→
g

Y

be a commutative S-diagram, P ∈ Y*, Q ∈ X*. Then with θ as in (3.7.2),
h = fg′ = gf ′, and p the projection map, the following diagram commutes:

g∗P ⊗ g∗f∗Q
(3.4.5.1)
←−−−−− g∗(P ⊗ f∗Q)

g∗(pf )
−−−−→ g∗f∗(f

∗P ⊗Q)

1⊗θ

y
yθ

g∗P ⊗ f ′
∗g

′∗Q f ′
∗g

′∗(f∗P ⊗Q)

pf′

y
y(3.4.5.1)

f ′
∗(f

′∗g∗P ⊗ g′∗Q) −−−−→
df′,g

f ′
∗(h

∗P ⊗ g′∗Q) ←−−−−
dg′,f

f ′
∗(g

′∗f∗P ⊗ g′∗Q)

Proof. Consider the expanded diagram (3.7.3.1) on the following
page (a diagram in which the arrows are self-explanatory). With a bit
of patience, one checks that it suffices to show its commutativity.
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(3
.7

.2
.2

)

g
′′∗

(h
f
)
∗
−
−
−
→

g
′′∗

(h
f
)
∗
g
′∗
g
′∗

−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
→

©1

g
′′∗
g
′′∗
(h

′f
′)
∗
g
′∗
−
−
−
→

(h
′f

′)
∗
g
′∗

y
y

y
y

g
′′∗
h
∗
f
∗

−
−
−
→

g
′′∗
h
∗
f
∗
g
′∗
g
′∗

−
−
−
→

g
′′∗
h
∗
g
∗
f
′∗
g
′∗

η y x
ǫ

−
−
−
→

g
′′∗
g
′′∗
h
′∗
f
′∗
g
′∗

−
−
−
→

h
′∗
f
′∗
g
′∗

η y
η y

x
ǫ

x
ǫ

g
′′∗
h
∗
g
∗
g
∗f

∗
−
−
−
→

g
′′∗
h
∗
g
∗
g
∗f

∗
g
′∗
g
′∗
−
−
−
→

g
′′∗
h
∗
g
∗
g
∗
g
∗
f
′∗
g
′∗
−
−
−
→

g
′′∗
g
′′∗
h
′∗
g
∗
g
∗
f
′∗
g
′∗
−
−
−
→

h
′∗
g
∗
g
∗
f
′∗
g
′∗

y
x

g
′′∗
g
′′∗
h
′∗
g
∗f

∗
−−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−→

ǫ
−
−

h
′∗
g
∗f

∗
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
→

η

−
−

h
′∗
g
∗f

∗
g
′∗
g
′∗

(3
.7

.3
.1

)

g
∗P
⊗
g
∗f

∗
Q

←
−−

g
∗(P
⊗
f
∗
Q

)
−−→

g
∗f

∗
(f

∗P
⊗
Q

)
−
−
→

©1

g
∗f

∗
g
′∗
g
′∗(f

∗P
⊗
Q

)
−−→

g
∗
g
∗
f
′∗
g
′∗(f

∗P
⊗
Q

)
y

y
y

y
y

g
∗P
⊗
g
∗f

∗
g
′∗
g
′∗
Q
←
−−

g
∗
(P
⊗
f
∗
g
′∗
g
′∗
Q

)
−−→

g
∗f

∗
(f

∗P
⊗
g
′∗
g
′∗
Q

)

©2

−−→
g
∗f

∗
g
′∗
(g

′∗f
∗P
⊗
g
′∗
Q

)
y

y
y

g
∗P
⊗
g
∗
h
∗
g
′∗
Q
←
−−

g
∗
(P
⊗
h
∗
g
′∗
Q

)
−−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−→

g
∗
h
∗
(h

∗P
⊗
g
′∗
Q

)
y

f
′∗
g
′∗

(f
∗P
⊗
Q

)
y

y
y

g
∗P
⊗
g
∗
g
∗
f
′∗
g
′∗
Q
←
−
−

©4

g
∗
(P
⊗
g
∗
f
′∗
g
′∗
Q

)
©3

y
y

g
∗P
⊗
f
′∗
g
′∗
Q

←
−−

g
∗
g
∗
(g

∗P
⊗
f
′∗
g
′∗
Q

)
−−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−→

g
∗
g
∗
f
′∗
(f

′∗
g
∗P
⊗
g
′∗
Q

)
f
′∗
(g

′∗f
∗P
⊗
g
′∗
Q

)
∥∥∥

y
y

y
g
∗P
⊗
f
′∗
g
′∗
Q

g
∗P
⊗
f
′∗
g
′∗
Q

−−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−→

f
′∗
(f

′∗
g
∗P
⊗
g
′∗
Q

)
−−→

f
′∗
(h

∗P
⊗
g
′∗
Q

)
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Subdiagram ©1 commutes by (3.4.7)(i), subdiagrams ©2 and ©3
by (3.7.1), and ©4 by the last sentence in (3.4.6.2). Commutativity of
the other subdiagrams is straightforward to check.

Remark (3.7.3.1). In the case of ringed spaces (3.6.10), the unla-
beled arrows in the preceding diagram represent isomorphisms. So if θ is
an isomorphism too, then the maps g∗(pf ) and pf ′ are isomorphic. For such
diagrams we can say then that “projection commutes with base change.”

For example, when g is an open immersion, then θ is an isomorphism.
That amounts to compatibility of Rf∗ with open immersions, which is also
an immediate consequence of (2.4.5.2).

For other situations in which θ is an isomorphism, see (3.9.5) and its
generalization (3.10.3).

3.8. Direct Sums

Proposition (3.8.1). Let X be a ringed space. Then arbitrary
(small) direct sums exist in K(X) and in D(X); and the canonical func-
tor Q : K(X)→ D(X) preserves them. In both K(X) and D(X), natural
maps of the type ⊕α∈A

(
Cα[1]

)
→

(
⊕α∈ACα

)
[1] are always isomorphisms—

direct sums commute with translation; and any direct sum of triangles is a
triangle.

Proof. Let (Cα)α∈A (A small) be a family of complexes of OX -
modules. The usual direct sum C of the family (Cα)—together with the
homotopy classes of the canonical maps Cα → C—is also a direct sum
in the category K(X). Since any complex in D(X) is isomorphic to a
q-injective one, and since HomD(X)(−, I ) = HomK(X)(−, I ) for any q-

injective I, see (2.3.8(v)), it follows that C is also a direct sum in D(X).38

The remaining assertions are easily checked for K(X) , where we need only
consider standard triangles, see (1.4.3); and they follow for D(X) upon
application of Q , see (1.4.4). Q.E.D.

Proposition (3.8.2). Let Y be a ringed space, and let (Cα)α∈A be
a small family of complexes of OY -modules. Then:

(i) For any D ∈ D(Y ), the canonical map is an isomorphism

⊕α(Cα ⊗
=
D) −→∼ (⊕αCα)⊗

=
D.

(ii) For any ringed-space map f : X → Y, the canonical map is an
isomorphism

⊕αLf∗Cα −→
∼

Lf∗(⊕αCα).

38 A more elementary proof, not using q-injective resolutions, is given in [BN, §1].
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Proof. Each Cα is isomorphic to a q-flat complex; and any direct
sum of q-flat complexes is still q-flat, see §2.5. Hence the assertions reduce
to the corresponding ones for ordinary complexes, with ⊗ in place of ⊗

=

and f∗ in place of Lf∗.
Alternatively, in view of (2.6.1)∗ and (3.2.1) one can use the fact that

any functor having a right adjoint respects direct sums. Q.E.D.

Proposition (3.8.3) (See [N ′ , p. 38, Remark 1.2.2].) Let Y be a
ringed space and

C′
α −→ Cα −→ C′′

α −→ TC′
α (α ∈ A)

a small family of D(Y )-triangles. Then the naturally resulting sequence

⊕αC
′
α −→ ⊕α Cα −→ ⊕α C

′′
α −→ ⊕α TC

′
α
∼= T (⊕αC

′
α) (α ∈ A)

is also a D(Y )-triangle.

Exercise. Deduce (3.8.2)(i) from (2.5.10)(c). Using, e.g., (2.5.5), prove an analo-
gous generalization of (3.8.2)(ii), i.e., show that if (Cα) is a (small, directed) inductive

system of complexes of OY -modules, then there are natural isomorphisms

lim
−→
α

Hn
Lf∗Cα −→

∼ Hn
Lf∗(lim

−→
α

Cα) (n ∈ Z).

3.9. Concentrated scheme-maps

This section contains some refinements of preceding considerations as
applied to a map f : X → Y of schemes, see (3.4.4)(b). Except in (3.9.1),
which does not involve Rf∗ , we need f to be concentrated (= quasi-
compact and quasi-separated). The main result (3.9.4) asserts that under
mild restrictions on f or on the OX -complex F, the projection map

p : Rf∗F ⊗
=
G→ Rf∗(F ⊗

=
Lf∗G)

(
see (3.4.6)

)

is an isomorphism for any OY -complex G having quasi-coherent homology.
The results of (3.9.1) and (3.9.2) on good behavior, vis-à-vis quasi-
coherence, of the derived direct and inverse image functors of a concen-
trated map allow “way-out” reasoning to reduce (3.9.4) essentially to the
trivial case G = OY , provided that F and G are bounded above; homo-
logical compatibility of Rf∗ and lim

−→
(proved in (3.9.3)) then gets rid of

the boundedness.
Another Proposition, (3.9.5), says that for concentrated f the map θ

associated as in (3.7.2) to certain flat base changes is an isomorphism.
A stronger result will be given in Theorem (3.10.3), which contains (3.9.4)
as well. (But (3.9.4) is used in the proof of (3.10.3)).

Proposition (3.9.6) takes note of, among other things, the fact that on a
quasi-compact separated scheme, complexes with quasi-coherent homology
are D-isomorphic to quasi-coherent complexes.
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We begin with some notation and terminology relative to any ringed
space X, with K(X) and D(X) as in §3.1.

As in (1.6)–(1.8), we have various triangulated (i.e., ∆-)subcategories
of K(X), denoted K*(X), K*(X) (with “* ” indicating a boundedness
condition—below (* = +), above (* = −), or both above and below
(* = b)—and “ ” indicating application of the boundedness condition
to the homology of a complex rather than to the complex itself); and
we have the corresponding derived categories D*(X), D*(X), which are
∆-subcategories of D(X). For example, K+(X) is the full subcategory
of K(X) whose objects are complexes A• of OX -modules such that An = 0
for all n ≤ n0(A

•) (where n0(A
•) is some integer depending on A•) ; and

D−(X) is the full subcategory of D(X) whose objects are complexes A•

such that Hn(A•) = 0 for all n ≥ n1(A
•).

The subscript “qc” indicates collections of OX -complexes whose ho-
mology sheaves are all quasi-coherent (see (1.9), with A# the category of
quasi-coherent OX -modules, which is a plump subcategory of the category
of all OX -modules [GD, p. 217, (2.2.2) (iii)]). For example D+

qc(X) is the

∆-subcategory of D(X) whose objects are complexes A• such that Hn(A•)
is quasi-coherent for all n ∈ Z, and Hn(A•) = 0 for n ≤ n0(A

•).

Proposition (3.9.1). For any scheme-map f : X → Y we have

Lf∗
(
Dqc(Y )

)
⊂ Dqc(X).

Proof. For C ∈ Dqc(Y ) and Cm := τ
≤mC (1.10), there exists a

q-flat resolution

lim
−→

Qm = Q→ C = lim
−→

Cm (m ≥ 0)

where for each i, Qm is a bounded-above flat resolution of Cm, see (2.5.5).
The resulting maps

lim
−→

f∗Qm −→ f∗Q←− Lf∗Q −→ Lf∗C

are all isomorphisms in D(X) (recall that, as indicated just before (3.1.3),
q-flat ⇒ left-f∗-acyclic, and dualize the last assertion in (2.2.6)); and it
follows that

Hn(Lf∗C) ∼= lim
−→

Hn(f∗Qm) ∼= lim
−→

Hn(Lf∗Cm) (n ∈ Z).

Since lim
−→

preserves quasi-coherence, we need only deal with the case where

C = Cm ∈ D−
qc(Y ); and then way-out reasoning [H, p. 73, (ii) (dualized)]

reduces us further to showing that for any quasi-coherent OY -module F
and any i ∈ Z, the OX-modules Lif

∗(F ) := H−i
Lf∗(F ) (i ≥ 0) are also

quasi-coherent.
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For this, note that the restriction of a flat resolution of F to an open
subset U ⊂ Y is a flat resolution of the restriction F |U , whence forma-
tion of Lif

∗(F ) “commutes” (in an obvious sense) with open immersions
on Y ; so we can assume X and Y to be affine, say X = Spec(B),

Y = Spec(A), and F = G̃, the quasi-coherent OY -module associated
to some A-module G ; and then if G• → G is an A-free resolution of G,

it is easily seen (since M 7→ M̃ is an exact functor of A-modules M [GD,

p. 198, (1.3.5)], and since f∗M̃ = (B ⊗AM)˜ [ibid., p. 213, (1.7.7)]) that

Lif
∗(F ) is the quasi-coherent OX -module H̃i , where Hi is the homology

Hi := Hi(B ⊗A G•) = TorAi (B,G). Q.E.D.

We will use the adjective concentrated as a less cumbersome syn-
onym for quasi-compact and quasi-separated. Elementary properties of
concentrated schemes and scheme-maps can be found in [GD, pp. 290ff ].
In particular, if f : X → Y is a scheme-map with Y concentrated, then
X is concentrated iff f is a concentrated map [ibid., p. 295, (6.1.10)].

Proposition (3.9.2). Let f : X → Y be a concentrated map of
schemes. Then

(3.9.2.1) Rf∗
(
Dqc(X)

)
⊂ Dqc(Y ).

Moreover, with notation as in §1.10, for all n ∈ Z it holds that

(3.9.2.2) Rf∗
(
Dqc(X)≥n

)
⊂ Dqc(Y )≥n ;

and if Y is quasi-compact, then there exists an integer d such that for
every n ∈ Z,

(3.9.2.3) Rf∗
(
Dqc(X)≤n

)
⊂ Dqc(Y )≤n+d .

Proof. That Rf∗(D(X)≥n) ⊂ D(Y )≥n is, implicitly, in (2.7.3): any
F ∈ D(X)≥n admits the natural quasi-isomorphism (1.8.1)+ : F → τ +F ,
and there is a quasi-isomorphism τ +F → I where I is a flasque complex
with Im = 0 for all m < n, so that Rf∗F ∼= f∗I ∈ D(Y )≥n .

To finish proving (3.9.2.2), i.e., to show that if I has quasi-coherent
homology then so does f∗I, use the standard spectral sequence

Rpf∗
(
Hq(I)

)
⇒ H•

(
f∗I

)
(Rpf∗ := Hp

Rf∗)

and the fact (proved in [AHK, p. 33, Thm. (5.6)] or [Kf, p. 643, Cor. 11])
that Rpf∗ preserves quasi-coherence of sheaves. Or, reduce to this fact by
“way-out” reasoning, see [H, p. 88, Prop. 2.1].
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For the rest, we need:

Lemma (3.9.2.4). If Y is quasi-compact then there is an integer d
such that for any quasi-coherent OX-module F and any i > d, Rif∗F = 0.

Proof. Since Y is covered by finitely many affine open subschemes Yk
and since for each k the restriction Rif∗F |Yk is the quasi-coherent sheaf
associated to the Γ(Yk,OY)-module Hi(f−1(Yk), F) [Kf, p. 643, Cor. 11],
we need only show that if Y is affine then there is an integer d such that
Hi(X,F) = 0 for all i > d.

Note that X is now a concentrated scheme. We proceed by induc-
tion on the unique integer n = n(X) such that X can be covered by
n quasi-compact separated open subschemes, but not by any n − 1 such
subschemes. (This integer exists because X is quasi-compact and its affine
open subschemes are quasi-compact and separated.)

If n = 1, i.e., X is separated, then Hi(X,F) is the Čech cohomology
with respect to a finite cover X = ∪dj=0Xj by affine open subschemes, so
it vanishes for i > d .

Suppose next that

X = X1 ∪X2 ∪ · · · ∪Xn (n = n(X) > 1)

with each Xj a quasi-compact separated open subscheme of X . Since
X is quasi-separated therefore Xj ∩X1 is quasi-compact and separated,39

so setting

X0 := X2 ∪ · · · ∪Xn

we have n(X0) < n and n(X0 ∩X1) < n . The desired conclusion follows
then from the inductive hypothesis and from the long exact sequence

· · · → Hi−1(X0 ∩X1,F)→ Hi(X,F)→ Hi(X0,F)⊕Hi(X1,F)→ . . .

associated to the obvious short exact sequence of complexes

0→ Γ(X, I•)→ Γ(X0, I
•)⊕ Γ(X1, I

•)→ Γ(X0 ∩X1, I
•)→ 0

where I• is a flasque resolution of F . Q.E.D.

39 Quasi-compactness holds by [GD, p. 296, (6.1.12)], where (Uα) should be a base

of the topology.
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Now let F ∈ Dqc(X) and N ∈ Z. Starting with an injective resolution
τ
≥NF → IN , and using (3.9.2.5)(ii) below (with J the category of bounded-

below injective complexes), we build inductively a commutative ladder

. . . −−→ τ
≥nF

αn−−→ τ
≥n+1F −−→ . . . −−→ τ

≥NF

βn

y
yβn+1

y

. . . −−→ In −−→
γn

In+1 −−→ . . . −−→ IN

where for −∞ < n < N , αn is the natural map, βn is a quasi-isomorphism,
In+1 is a bounded-below injective (hence, by (2.3.4), q-injective) complex,

and γn is split-surjective in each degree. Then I := lim
←−

In is q-injective

[Sp, p. 130, 2.5]; and the natural map lim
←−

τ
≥nF = F → I is a quasi-

isomorphism [Sp, p. 134, 3.13]. So we have an isomorphism Rf∗F −→
∼ f∗I .

It follows from (2.4.5.2) that Rf∗ is compatible with open immer-
sions on Y , and hence if (3.9.2.1) holds whenever Y is quasi-compact
(indeed, affine) then it holds always. Assuming Y to be quasi-compact,
we argue further as in loc. cit. Since γn is split surjective in each de-
gree m, its kernel Cn is a bounded-below injective complex, and for any
affine open U ⊂ Y , γn induces a surjection Γ(f−1U, Imn ) ։ Γ(f−1U, Imn+1)

with kernel Γ(f−1U, Cmn ). The five-lemma yields that βn induces a quasi-
isomorphism to Cn from the kernel An of the surjection αn ; and in D(X),
An ∼= Hn(F )[−n]. Thus Cn[n] is an injective resolution of Hn(F ), and so
if d is the integer in (3.9.2.4) then for any m > n+ d,

Hm
(
Γ(f−1U, Cn)

)
∼= Hm−n

(
f−1U, Hn(F )

)
∼= Γ

(
U, Rm−nf∗H

n(F )
)

= 0,

so that the sequence

Γ(f−1U, Cm−1
n )→ Γ(f−1U, Cmn )→ Γ(f−1U, Cm+1

n )→ Γ(f−1U, Cm+2
n )

is exact. A Mittag-Leffler-like diagram chase ([Sp, p. 126, Lemma], ap-
plied to the inverse system of diagrams

Γ(f−1U, Im−1
n )→ Γ(f−1U, Imn )→ Γ(f−1U, Im+1

n )→ Γ(f−1U, Im+2
n )

where n runs through Z and In := IN for all n > N) shows then that
if m ≥ N + d then the natural map

Hm
(
Γ(U, f∗I)

)
=Hm

(
lim
←−

Γ(f−1U, In)
)

→Hm
(
Γ(f−1U, IN )

)
= Hm

(
Γ(U, f∗IN )

)

is an isomorphism. Sheafifying on Y , we get that for any m ≥ N + d,
the natural composition

Rmf∗F = Hm(Rf∗F ) −→∼ Hm(f∗I) −→ Hm(f∗IN ) −→∼ Rmf∗(τ≥NF )

is an isomorphism. From (3.9.2.2) we conclude then that Rmf∗F is quasi-
coherent, which gives (3.9.2.1) (since N is arbitrary); and furthermore
if τ

≥NF
∼= 0, then τ

≥N+dRf∗F
∼= 0, proving (3.9.2.3). Q.E.D.
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Lemma (3.9.2.5). Let A be an abelian category, and let J be a full
subcategory of the category C of A-complexes such that (1): a complex B
is in J iff B[1] is, and (2): for any map f in J, the cone Cf (§1.3) is in J.

(i) Let u : P → C be a map in C with P ∈ J and such that there
exists a quasi-isomorphism h : Q → Cu with Q ∈ J. Then u factors as

P
v
−→ P1

u1−→ C where P1 ∈ J, u1 is a quasi-isomorphism, and in each
degree m, vm : Pm → Pm1 is a split monomorphism, i.e., has a left inverse.

(ii) Let s : C → I be a map in C with I ∈ J and such that there
exists a quasi-isomorphism Cs → J with J ∈ J. Then s factors as

C
s1−→ I1

t
−→ I where I1 ∈ J, s1 is a quasi-isomorphism, and in each

degree m, tm : Im1 → Im is a split epimorphism, i.e., has a right inverse.

Proof. (i) We have a diagram in C

P
v

−−−−→ Cwh[−1] −−−−→ Q
wh
−−−−→ P [1]

∥∥∥ g

y
yh

∥∥∥

P −−−−→ Cw[−1] −−−−→ Cu −−−−→
w

P [1]
∥∥∥ ϕ

y ©1
∥∥∥

∥∥∥

P −−−−→
u

C −−−−→ Cu −−−−→
w

P [1]

where the bottom row is the standard triangle associated to u, the top two
rows are made up of natural maps, ϕ is as in (1.4.3.1), and g is given in
degree m by the map

gm = 1⊕ hm : Cwh[−1]m = Pm ⊕Qm → Pm ⊕ Cmu = Cw[−1]m .

Here all the subdiagrams other than ©1 commute, and ©1 is homotopy-
commutative (see (1.4.3.1)). By (∆2) in §1.4, the rows of the diagram
become triangles in K(A). Since h is a quasi-isomorphism, we see, using
the exact homology sequences (1.4.5)H of these triangles, that the com-
posed map ϕ ◦g is also a quasi-isomorphism. Since P and Q are in J, so
is Cwh[−1]. Thus we can take P1 := Cwh[−1] and u1 := ϕ ◦g.

(ii) A proof resembling that of (i) (with arrows reversed) is left to the
reader. See also the following exercise (a), or [Sp, p. 132, proof of 3.3].
Q.E.D.

Exercises (3.9.2.6). (a) Convince yourself that (i) and (ii) in (3.9.2.5) are dual,

i.e., (ii) is essentially the statement about A obtained by replacing A in (i) by its

opposite category Aop.
(b) (Cf. (1.11.2)(iv).) Let X be a scheme and let AX (resp. Aqc

X
) be the category

of all OX -modules (resp. quasi-coherent OX -modules). Let φ : AX → Ab be an additive
functor satisfying φ(lim

←−
In) = lim

←−
φ(In) for any inverse system (In)n<0 of AX -injectives

in which all the maps In → In+1 are split surjective. Then

dim+(Rφ|Dqc(X)) = dim+(Rφ|Aqc

X
) .

(c) Show: for any proper map f : X → Y of noetherian schemes, Rf∗Dc(X) ⊂ Dc(Y ).

Hint. (3.9.2), [H, p. 74, (iii)], [EGA, III, (3.2.1)].
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(3.9.3). Henceforth, index sets A for inductive systems are assumed
to be (small and) filtered: α, β ∈ A ⇒ ∃γ ∈ A with γ ≥ α and γ ≥ β.
(More generally, the results will be valid for limits over filtered—or even
pseudo-filtered—categories [GV, pp. 14–15], [M, p. 211].)

Lemma (3.9.3.1). Let f : X → Y be a concentrated scheme-map.
Fix n ∈ Z, let (Cα , ϕβα)α,β∈A be an inductive system of OX-complexes
all of whose homology vanishes in degree < n, and set C := lim

−→α
Cα . Then

we have natural isomorphisms

lim
−→α

R
if∗(Cα) −→∼ R

if∗(C) (Rif∗ := Hi
Rf∗ , i ∈ Z).

Proof.40 In the category of bounded-below OX -complexes D, we can
choose flasque resolutions D → F functorially, as follows: for each q ∈ Z,
let 0 → Dq → F 0q → F 1q → F 2q → . . . be the (flasque) Godement
resolution of Dq [G, p. 167, 4.3], set F pq := 0 if p < 0, and let F be the
complex coming from the double complex F pq, i.e., Fm := ⊕p+q=mF

pq, etc;
then Fm is flasque, and diagram chasing, or a simple spectral sequence
argument, shows that the family of natural maps Dm → F 0m ⊂ Fm gives
a quasi-isomorphism gD : D → F . We will refer to this gD (or simply F )
as the Godement resolution of D.

With Cα and n as above, the truncation operator τ
≥n as in §1.10,

and Fα the Godement resolution of τ
≥nCα , we have an inductive system

of quasi-isomorphisms Cα → τ
≥nCα → Fα , and hence a quasi-isomorphism

C → F := lim
−→

Fα . Each Fα is flasque, hence f∗-acyclic (2.7.3). By [Kf,

p. 641, Cor. 5 and 7], F is a complex of f∗-acyclic sheaves, and so, being
bounded below, F itself is f∗-acyclic, see (2.7.4) (dualized). The last asser-
tion in (2.2.6) shows then that the (obvious) map in (3.9.3.1) is isomorphic
to the natural map

lim
−→

Hi(f∗Fα) = Hi(lim
−→

f∗Fα)→ Hi(f∗ lim
−→

Fα) = Hi(f∗F ),

which is an isomorphism since f∗ commutes with lim
−→

[Kf, p. 641, Prop. 6].
Q.E.D.

Corollary (3.9.3.2). Let f : X → Y be a concentrated scheme-map.
With notation as in §1.9, let A# be a plump subcategory of the category AX
of OX-modules, such that any lim

−→
of objects in A# is itself in A# and

such that the restriction of Rf∗ to D#(X) is bounded above (§1.11). Let

(Cα , ϕβα)α,β∈A be an inductive system of complexes all of whose homology

lies in A#, and set C := lim
−→α

Cα . Then we have natural isomorphisms

lim
−→α

R
if∗(Cα) −→∼ R

if∗(C) (Rif∗ := Hi
Rf∗ , i ∈ Z).

40 cf. [EGA, III, Chap. 0, p. 36, (11.5.1)].
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Remarks. (a) If the map f is finite-dimensional (2.7.6), (e.g., if X is
noetherian, of finite Krull dimension (2.7.6.2)), then all the hypotheses
in (3.9.3.2) are satisfied when A# = AX .

(b) By (3.9.2.3), if Y is quasi-compact then all the hypotheses
in (3.9.3.2) are satisfied when A# = Aqc, the category of quasi-coherent
OX -modules. Even if Y is not quasi-compact, the conclusion of (3.9.3.2)
still holds, because Rf∗ and lim

−→
“commute” with open immersions on Y

(see (2.4.5.2)), so it suffices to check over affine open subsets of Y .

Proof of (3.9.3.2). By (1.11.2)(ii) we have natural isomorphisms

R
if∗(D) −→∼ R

if∗(τ≥i−dD)
(
D ∈ D#(X), d := dim+(Rf∗|D

#
(X))

)
.

Note that C ∈ D#(X) since homology commutes with lim
−→

; and clearly

τ
≥i−dC = lim

−→
τ
≥i−dCα. Fixing i, we conclude by applying (3.9.3.1) to the

inductive system τ
≥i−dCα . Q.E.D.

Corollary (3.9.3.3). Let (Cβ)β∈B be a small family of complexes
in D≥n (n fixed, see (1.10)) or in D#(X) (A# as in (3.9.3.2)). Then the
natural map ⊕β Rf∗Cβ → Rf∗

(
⊕β Cβ

)
(see (3.8.1)) is an isomorphism.

Proof. We need only check that the induced homology maps are
isomorphisms, which follows from (3.9.3.1) or (3.9.3.2), a direct sum over B
being lim

−→
of the family of direct sums over finite subsets of B. Q.E.D.

Corollary (3.9.3.4). Under the hypotheses of (3.9.3.1) or (3.9.3.2),
if each Cα is f∗-acyclic then so is C.

Proof. The assertion is that the natural map f∗C → Rf∗C is an
isomorphism in D(Y ), i.e., that the induced maps Hi(f∗C) → Hi(Rf∗C)
are all isomorphisms. By assumption, this holds with Cα in place of C;
and since Hi and f∗ commute with lim

−→
[Kf, p. 641, Prop. 6], it also holds,

by (3.9.3.1) or (3.9.3.2), for C. Q.E.D.

Corollary (3.9.3.5). With A# as in (3.9.3.2), any complex C of
f∗-acyclic A

#-objects is itself f∗-acyclic.

Proof. The complexes · · · → 0→ 0→ C−n → C−n+1 → · · · (n ∈ Z)
form an inductive system of f∗-acyclic complexes (see (2.7.2), dualized),
whose lim

−→
is C . Conclude by (3.9.3.4). Q.E.D.

Proposition (3.9.4). Let f : X → Y be a concentrated scheme-
map, and let F ∈ D(X), G ∈ Dqc(Y ). If f is finite-dimensional (2.7.6),
or if F ∈ Dqc(X), then the projection maps

p1 : (Rf∗F )⊗
=
G→ Rf∗(F ⊗= Lf∗G) , p2 : G⊗

=
Rf∗F → Rf∗(Lf

∗G⊗
=
F )

(see (3.4.6)) are isomorphisms.

Proof. We treat only p1 (p2 can be handled similarly; or (3.4.6.1)
can be applied). The question is local on Y (check directly, or see (3.7.3.1)),
so we may assume Y affine.
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Suppose first that both F and G are bounded-above complexes. Then
the source and target of p1 are, for fixed F , bounded-above functors of G:
this is clear when f is finite-dimensional, and if F ∈ Dqc(X) then it
follows from (3.9.2.3) since F ⊗

=
Lf∗G ∈ Dqc(X), see (3.9.1) and (2.5.8).

By (1.11.3.1), with A# the category of quasi-coherent OY -modules on the
affine scheme Y , we reduce the question to where G is a single free OY -
module G0, whence Lf∗G is isomorphic to the free OX -module f∗G0.
After verifying via (3.8.2) and (3.9.3.3) that everything in sight commutes
with direct sums, we have a further reduction to the case G = OY .
We check then, via (3.2.5)(a) and commutativity of the upper diagrams
in (3.4.2.2), that p1 is isomorphic to the identity map of Rf∗F .

Next, drop the assumption that F is bounded above. For any in-
teger i and any triangle in D(X) based on the natural map F → τ

≥iF ,

the vertex Ci (depending, up to isomorphism, only on F ) lies in D<i(X),
see §§1.4, 1.10. We are still assuming that G ∈ D≤e(Y ) for some e, so that
Ci⊗

=
Lf∗G ∈ D<i+e(X) (as one sees upon replacing Ci and G, via (1.8.1)−,

by quasi-isomorphic flat complexes vanishing in degrees above i − 1 and e
respectively). As above, C ∈ Dqc(X)⇒ C ⊗

=
Lf∗G ∈ Dqc(X). The finite

dimensionality of Rf∗|Dqc(X) (3.9.2.3), or of Rf∗ itself when f is finite-

dimensional, then gives Rf∗(Ci⊗
=

Lf∗G) ∈ D<i+e+d(Y ) for some integer d
depending only on f , and so from the homology sequence (1.4.5)H of the
triangle

Rf∗(F ⊗
=

Lf∗G)→ Rf∗(τ≥iF ⊗= Lf∗G)→ Rf∗(Ci ⊗= Lf∗G)→ Rf∗(F ⊗
=

Lf∗G)[1]

we get isomorphisms

Hj
(
Rf∗(F ⊗

=
Lf∗G)

)
−→∼ Hj

(
Rf∗(τ≥iF ⊗= Lf∗G)

)

for all j > i+ e+ d. Similarly, we have natural isomorphisms

Hj
(
Rf∗F ⊗

=
G

)
−→∼ Hj

(
Rf∗τ≥iF ⊗= G

)
.

Therefore, to show for any given j that the homology map Hj(p1) is an
isomorphism—which suffices, by (1.2.2)—we can replace F by τ

≥j−1−e−dF .
Thus we may assume that F is bounded below. Also, as above, we may
assume that G is flat, whence so is f∗G ∼= Lf∗G.

Let Fm be the Godement resolution of τ
≤mF (m ∈ Z), see proof

of (3.9.3.1), so that the canonical map

F = lim
−→m

τ
≤mF → lim

−→m
Fm

is the Godement resolution of F .
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By the first part of this proof, there is a natural isomorphism

Hj
(
f∗Fm ⊗G

)
∼= Hj

(
Rf∗τ≤mF ⊗= G

)

−→∼ Hj
(
Rf∗(τ≤mF ⊗= Lf∗G)

)
∼= Hj

(
Rf∗(Fm ⊗ f

∗G)
)
.

As before, if F ∈ Dqc(X) then (Fm ⊗ f
∗G) ∼= (τ

≤mF ⊗= Lf∗G) ∈ Dqc(X).
Using (3.9.3.2) and—as in the proof of (3.9.3.1)—commutativity of lim

−→
with f∗ , ⊗ , and Hj , we find then that Hj(p1) factors as the composition
of the natural isomorphisms

Hj
(
Rf∗F ⊗

=
G

)
−→∼ Hj

(
f∗ lim
−→

Fm ⊗G
)

−→∼ lim
−→

Hj
(
f∗Fm ⊗G

)

−→∼ lim
−→

Hj
(
Rf∗(Fm ⊗ f

∗G)
)

−→∼ Hj
(
Rf∗ lim
−→

(Fm ⊗ f
∗G)

)
−→∼ Hj

(
Rf∗(F ⊗

=
Lf∗G)

)
,

proving (3.9.3) whenever G is bounded above.
Finally, to extend the assertion to any G ∈ Dqc(Y ), use a quasi-

isomorphism Q → G where Q = lim
−→

Qm with Qm ∈ D−
qc(Y ) bounded-

above and flat, so that Lf∗G ∼= f∗Q, see proof of (3.9.1). As in (3.1.2),
Rf∗F = f∗IF ; and, again, if F ∈ Dqc(X) then IF ⊗ f∗Qm ∈ Dqc(X).
Applying lim

−→m
to the system of natural maps

Hj
(
f∗IF ⊗Qm

)
∼= Hj

(
Rf∗F ⊗= Qm

)

−→ Hj
(
Rf∗(F ⊗= Lf∗Qm)

)
∼= Hj

(
Rf∗(IF ⊗ f

∗Qm)
)
,

maps which we have already seen to be isomorphisms, we find, via (3.9.3.2)
and commutativity of lim

−→
with Hj , with ⊗ , and with f∗, that the maps

Hj(p1) : Hj
(
Rf∗F ⊗= Q

)
−→ Hj

(
Rf∗(F ⊗= Lf∗Q)

)
(j ∈ Z)

are all isomorphisms, whence the conclusion. Q.E.D.

Remark (3.9.4.1). The projection map p1 need not be an isomor-
phism for non-quasi-coherent OY -modules G. For example, let R be a two-
dimensional noetherian local ring with maximal ideal m, Y = Spec(R),
X = Spec(R) − {m} , f : X → Y the inclusion, F = OY , and G = OX
extended by 0 (so that G is a flat OY -module). Then the stalk of
R1f∗(F )⊗G at m is 0, whereas the stalk of R1f∗(F ⊗f

∗G) = R1f∗(OX) is
H1(X,OX) = H2

m(R) 6= 0 (where Hm denotes local cohomology supported
at m).
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Exercises (3.9.4.2). Let X be a ringed space.
(a) Show that an OX -module F is flat iff Tori(F,G) := H−i(F ⊗

=
G) = 0 for all

OX -modules G and all i 6= 0. (One need only consider i = 1, see proof of (2.7.6.4).)

(b) [I, p. 131]. A complex F of OX -modules has finite flat amplitude (or finite

tor-dimension) if for some integers d1 ≤ d2 , Tori(F,G) = 0 for all OX -modules G

and all i outside the interval [d1, d2]. Show that this condition is equivalent to there
being a D(X)-isomorphism F −→∼ P with P flat and P i = 0 for all i /∈ [−d2,−d1].

(See (2.7.6), with f the identity map of X.)

(c) [I, p. 249]. Suppose further in (3.9.4) that f has finite tor-dimension (2.7.6)
and that F has finite flat amplitude (b). Show that then Rf∗F also has finite flat

amplitude.

(d) Show: if X is an affine scheme and if F ∈ Dqc(X) has finite flat amplitude,

then the complex P in (b) may be assumed to be quasi-coherent. (Use (3.9.6) below.)

(e) Let f : X → Y be a concentrated scheme-map. Let F ∈ D+(X) and let

G ∈ Dqc(Y ) have finite flat amplitude. Then the projection map p1 in (3.9.4) is an

isomorphism.
Hint. We may assume Y to be affine. Induction on the number of non-zero terms

of a bounded flat quasi-coherent complex P ∼= G (see (d)) reduces the question to where
G is a single flat quasi-coherent OY -module. Then by a theorem of Lazard [GD, p. 163,

Prop. (6.6.24)], G is a direct limit of finite-rank free OY -modules, and so (3.9.3.1) gives

a reduction to the trivial case G = OY .

(f) Let Y be a ringed space. Show that the following conditions on a complex G

of OY -modules are equivalent:

(i) For some d ∈ Z, Tori(F,G) = 0 for all OY -modules F and all i > d.

(ii) The functor E 7→ E ⊗
=
G (E ∈ D(Y ) is bounded below (1.11.1).

(iii) In D(Y ), G ∼= P with P bounded-below and q-flat.
(iv) In D(Y ), G ∼= P with P bounded-below, flat, and q-flat.

When these conditions hold we say that G has bounded-below flat amplitude.

(g) Do exercise (e) assuming only that G has bounded-below flat amplitude.

Hint. Assuming G to be bounded-below, flat, and q-flat, show that it suffices to

apply (e) to each of the complexes · · · → Gn−1 → Gn → 0→ 0→ . . . (n ∈ Z).

The following result will be generalized in (3.10.3).

Proposition (3.9.5). Given a commutative square σ of scheme-maps

X ′ v
−−−−→ X

g

y
yf

Y ′ −−−−→
u

Y

suppose that f is concentrated, that u is flat, and that σ is a fiber square
(i.e., that the associated map X ′ → X ×Y Y ′ is an isomorphism). Then
for any F ∈ Dqc(X), the natural composed map (see (3.7.2)(a))

θσ(F ) : u∗Rf∗F
η
−→ u∗Rf∗Rv∗v

∗F

−→∼ u∗Ru∗Rg∗v
∗F

ǫ
−→ Rg∗v

∗F

is an isomorphism.
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Proof. It should be noted that since u, and hence v, is flat, we have functorial
isomorphisms Lu∗ −→∼ u∗ and Lv∗ −→∼ v∗. (This follows from (2.2.6)(dualized), since

the exactness of (e.g.) u∗ implies at once that every OX -complex is u∗-acyclic.)

In view of (3.9.2.2) and (3.9.2.3), (1.11.3)(iv) allows us to assume that F is a
single quasi-coherent OX -module. It will suffice then, by (1.2.2), to show that applica-

tion of the homology functors Hn to θσ(F ) produces (what else?) the “base change”
isomorphisms αn(F ) of [AHK, p. 35, Theorem (6.7)].

For this purpose, we need to express θσ in terms of canonical flasque (Godement)

resolutions—which we denote by C•. In [AHK, p. 28, §3] there is defined a map

ϕ : C•(F )→ v∗C
•(v∗F )

(denoted there by θ•v(F ) ) which, as easily checked, makes the following natural diagram
commute:

F −−−−−→ v∗v∗Fy
y

C•(F ) −−−−−→
ϕ

v∗C•(v∗F )

With the definitions of ǫ and η in §3.2, and the fact that the direct image of a flasque

sheaf is still flasque, it is a straightforward exercise to verify that the map θσ(F ) is
isomorphic to the derived category map given by the natural composition

u∗f∗C
•(F )

ϕ
−→ u∗f∗v∗C

•(v∗F ) −→∼ u∗u∗g∗C
•(v∗F ) −→ g∗C

•(v∗F ) .

Now applying Hn, and recalling that u is flat, we get a composed map

α′n : u∗Hn(f∗C
•(F ))

ϕ
−→ u∗Hn(f∗v∗C

•(v∗F )) −→∼ u∗Hn(u∗g∗C•(v∗F ))
γ
−→ Hn(g∗C•(v∗F )) .

Let’s look more closely at γ . Setting g∗C•(v∗F ) = E•, let Kn be the kernel of the

differential En → En+1 , and let δ : En−1 → Kn be the obvious map. Then γ can be
identified with the map

coker(u∗u∗δ) = u∗ coker(u∗δ)→ u∗u∗ coker(δ)→ coker(δ)

which is adjoint to the natural map

γ′ : Hn(u∗E
•) = coker(u∗δ)→ u∗ coker(δ) = u∗H

n(E•) .

Note that coker(u∗δ) is the sheaf associated to the presheaf

U 7→ coker(δ(u−1U)) = Hn(E•(u−1U)) (U open in Y )

and that γ′ is the sheafification of the natural presheaf map

Hn(E•(u−1U))→ Γ(u−1U, Hn(E•)) .

It is then readily verified that the adjoint of α′n, viz. the composed map

Hn(f∗C
•(F ))

ϕ
−→ Hn(f∗v∗C

•(v∗F )) −→∼ Hn(u∗g∗C•(v∗F ))

γ′

−→ u∗H
n(g∗C•(v∗F )),

is the map βn(f, g, u, v, F ) near the top of p. 34 of [AHK]. But by definition the adjoint
of this βn is αn(F ) ; thus α′n = αn(F ), and we are done. Q.E.D.
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Here are two important results about quasi-coherence on quasi-
compact separated schemes. Proofs can be found in the indicated references.

Proposition (3.9.6). Let X be a quasi-compact separated scheme
and Aqc

X the category of quasi-coherent OX-modules. Then :

(a) [BN, p. 230, Corollary 5.5.] The natural functor D(Aqc

X)→Dqc(X)
is an equivalence of categories.

(b) [AJL, p. 10, Proposition 1.1.] Every complex in Dqc(X) is D(X)-
isomorphic to a quasi-coherent q-flat complex.

3.10. Independent squares; Künneth isomorphism

Throughout this section, (*, *) will be the adjoint monoidal pair
in (3.6.10), but with S restricted to be the category of quasi-separated
schemes and concentrated (= quasi-compact and quasi-separated) maps
between them [GD, p. 291, (6.1.5) and p. 294, (6.1.9)], and with the fur-
ther restriction X* = X* = Dqc(X) for all X ∈ S (see (3.9.1), (3.9.2)).
Note that any subscheme of a quasi-separated scheme is quasi-separated;
and that the category S is closed under fiber product. Note also that if
X and Y are quasi-separated then any scheme-map f : X → Y is quasi-
separated, and further, quasi-compact if X is [GD, p. 295, (6.1.10)].

Accordingly (except in (3.10.1) and the proof of (3.10.2.2), where we
need to distinguish between ordinary and derived functors), for any scheme-
map α we write α∗ for Rα∗, and α∗ for Lα∗. We also write ⊗ for ⊗

=
.

These abbreviations should not be allowed to obscure the fact that we are
working throughout with derived categories and derived functors.

After discussing some basic maps we define, in (3.10.2), various notions
of independence of commutative S-squares. The main result, (3.10.3), is
that all these independence conditions are equivalent.41 This implies, e.g.,
that the isomorphism in (3.9.5) holds for any tor-independent S-square,
as does a certain Künneth isomorphism, which subsumes the projection
isomorphisms of (3.9.4).

Independent squares are important in Grothendieck duality theory,
where they support base-change maps (Remark (3.10.2.1)(c)).

An orientation of a commutative S-square σ

X ′ v
−−−−→ X

g

y
yf

Y ′

σ

−−−−→
u

Y

is an ordering of the pair (u, f).

41 The knowledgeable reader might wish to place this result in the context of the

Künneth spectral sequences of [EGA, III, (6.7.5)].



136 Chapter 3. Derived Direct and Inverse Image

In this section, unless otherwise indicated, all commutative S-squares
will be understood to be equipped with the orientation for which the bottom
arrow precedes the right vertical one.

To such an oriented σ associate the functorial maps

θ = θσ : u∗f∗ → g∗v
∗ (see Proposition (3.7.2))

and

θ′ = θ′σ := θσ′ : f∗u∗ → v∗g
∗

where σ′ is σ with its orientation reversed.

Setting h := fv = ug, define the functorial Künneth map

η = ησ : u∗E ⊗ f∗F → h∗(g
∗E ⊗ v∗F )

(
E ∈ Y′*, F ∈ X*

)

to be the natural composition

u∗E ⊗ f∗F → h∗h
∗(u∗E ⊗ f∗F )

(3.4.5.1)
−−−−→
(3.6.1)∗

h∗(g
∗u∗u∗E ⊗ v

∗f∗f∗F )→ h∗(g
∗E ⊗ v∗F ).

The map η generalizes (3.4.2.1): let X ′ = Y ′ = X, let v = g be the
identity map, let u = f , so that h = f , and see (3.4.5.2) and 1) in (3.6.5).

The map η also generalizes the projection maps p1 and p2 in (3.4.6):
for p1 , let f be the identity map of X = Y , let g be the identity map of
X ′ = Y ′, so that h = v = u, and see (3.4.6.2); and similarly for p2 let u
and v be identity maps, . . .

Examples (3.10.1). Let us see what the above θσ and ησ look like
in a concrete situation, when σ is a diagram of affine schemes. The results
are hardly surprising, but do need proof.

(a) We deal first with θ. On S there is a second adjoint pair (⋆, ⋆)
such that for each ringed space X, X⋆ = X⋆ := K(X) , the homotopy
category of OX -complexes, with monoidal structure given by the ordinary
tensor product, and such that for each S-map f : X → Y the associated
adjoint functors are the standard (sheaf-theoretic) inverse- and direct-image
functors, f⋆ := f∗ and f⋆ := f∗ . So, as above, for each commutative S -
square σ one gets functorial maps

(3.10.1.0)
θ = θσ : Lu∗Rf∗ → Rg∗Lv

∗,

θ = θσ : u∗f∗ → g∗v
∗,

related as follows.
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Lemma (3.10.1.1). With Q : K→ D as usual, the following natural
diagram of functors from K(X) to D(Y ′) commutes.

Lu∗Rf∗Q
α

←−−−− Lu∗Qf∗ −−−−→ Qu∗f∗

θ

y
yQθ

Rg∗Lv
∗Q −−−−→

β
Rg∗Qv

∗ ←−−−−
γ

Qg∗v
∗

Proof. Expand the diagram (all maps being the obvious ones):

Lu∗Rf∗Qy

←−−− Lu∗Qf∗ −−−→ Qu∗f∗ Qu∗f∗y

y
y

Rg∗Lg∗Lu∗Qf∗ −−−→ Rg∗Lg∗Qu∗f∗∥∥∥
y

Rg∗Lg∗Lu∗Rf∗Q ←−−− Rg∗Lg∗Lu∗Qf∗ −−−→ Rg∗Qg∗u∗f∗ ←−−− Qg∗g∗u∗f∗

≃

y ≃

y
y≃

y≃

Rg∗Lv∗Lf∗Rf∗Qy

←−−− Rg∗Lv∗Lf∗Qf∗ −−−→ Rg∗Qv∗f∗f∗ ←−−− Qg∗v∗f∗f∗y

y
∥∥∥

Rg∗Lv∗Qf∗f∗ −−−→ Rg∗Qv∗f∗f∗y
y

Rg∗Lv∗Q Rg∗Lv∗Q −−−→ Rg∗Qv∗ ←−−− Qg∗v∗

The upper right (resp. lower left) subdiagram commutes by (3.2.1.3)
(resp. (3.2.1.2)). Commutativity of the rest is easy to verify. Q.E.D.

Next, we make the map θ in (3.10.1.0) more explicit, at least locally.

Lemma (3.10.1.2). Let

V ←−−−− S
x

x

U ←−−−− R

be a commutative diagram of commutative-ring homomorphisms, let σ as
above be the corresponding diagram of affine schemes (Y := Spec(R), etc.) ,
and let θ = θσ : u∗f∗ → g∗v

∗ be as in (3.10.1.0). For any S-complex E, let
θ0(E) be the natural composition U ⊗R E → V ⊗R E → V ⊗S E, i.e., the
U-homomorphism taking 1⊗R e to 1⊗S e for all e ∈ En (n ∈ Z) .

Then there is a natural commutative diagram of OY ′-modules

u∗f∗Ẽ ˜−−−−→ (U ⊗R E)˜

θ(Ẽ )

y
yθ̃0(E)

g∗v
∗Ẽ ˜−−−−→ (V ⊗S E)˜
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where ˜ denotes the usual functor from modules to quasi-coherent sheaves
[GD, p. 197ff, §1.3], and where the horizontal arrows are isomorphisms.

Proof. The horizontal isomorphisms come from [GD, p. 213, (1.7.7)].
To check commutativity, expand the diagram as follows, where in the
right hand column, the complexes to which ˜ is applied are all regarded
as U-complexes, and the maps are sheafifications of natural U-complex
homomorphisms:

u∗f∗Ẽ ˜−−−−−−−−−−−−−−−−−−−−−−−→ (U ⊗R E)˜
y ©1

y

g∗g
∗u∗f∗Ẽ ˜−−−−−−−−−−−−−−−−−−−−−−−→

(
V ⊗U (U ⊗R E)

)
˜

≃

y
y≃

g∗v
∗f∗f∗Ẽ −−−−→

©2

g∗v
∗(S ⊗R E)˜ −−−−→

(
V ⊗S (S ⊗R E)

)
˜

y
y

y

g∗v
∗Ẽ g∗v

∗Ẽ −−−−→ (V ⊗S E)˜

Commutativity of subdiagrams ©1 and ©2 is given by [GD, p. 214, (1.7.9)].
The rest is straightforward. Q.E.D.

Under the hypotheses of (3.10.1.2), for any G ∈ Dqc(X) the map
θ(G) : Lu∗Rf∗G→ Rg∗Lv

∗G can now be described as follows.

By (3.9.6)(a), G is D-isomorphic to a quasi-coherent complex, which

is Ẽ for some S-complex E . Arguing as in (2.5.5)—using that any S -
module F is naturally a homomorphic image of the free S -module P0(F )

with basis F—one sees that there exists a quasi-isomorphism P → E with
P a lim

−→
of bounded-above complexes of free S -modules. There results a

quasi-isomorphism P̃ → Ẽ ; and P̃ , being a lim
−→

of bounded-above com-

plexes of free OX -modules, is q-flat, as is v∗P̃ . One can replace Ẽ by P̃ ,

i.e., one may assume that there exists a D-isomorphism λ : G −→∼ Ẽ such

that both Ẽ and v∗Ẽ are q-flat as well as quasi-coherent.

Since f∗ is an exact functor on the category of quasi-coherent OX -

modules [GD, p. 214, (1.7.8)], therefore the natural map f∗Ẽ → Rf∗Ẽ is

a D(Y )-isomorphism. Also, the natural map Lv∗Ẽ → v∗Ẽ is a D(Y ′)-

isomorphism. So the maps α(Ẽ) and β(Ẽ) in (3.10.1.1) are isomorphisms.

Moreover, the map θ(Ẽ) can be identified as in (3.10.1.2) with θ̃0(E). The

map θ(Ẽ) is thereby determined by (3.10.1.1) and (3.10.1.2); and via λ
(a “quasi-coherent q-flat resolution”), so is the map θ(G).
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(b) We turn now to η . With σ , (*, *) and (⋆, ⋆) as in (a), and
h = fv = gu , one has for OY ′-complexes E and OX -complexes F the
functorial maps

η = ησ(E, F ) : Ru∗E ⊗
=

Rf∗F → Rh∗(Lg
∗E ⊗

=
Lv∗F ),

η = ησ(E, F ) : u∗E ⊗ f∗F → h∗(g
∗E ⊗ v∗F ),

related as follows.

Lemma (3.10.1.3). For all E and F as above, the following natural
bifunctorial diagram—where appropriate insertions of “Q” are left to the
reader—commutes.

Ru∗E ⊗
=

Rf∗F
α′

←−−−− u∗E ⊗
=
f∗F −−−−→ u∗E ⊗ f∗F

η

y
yη

Rh∗(Lg
∗E ⊗

=
Lv∗F )

β′

−−−−→ Rh∗(g
∗E ⊗ v∗F ) ←−−−− h∗(g

∗E ⊗ v∗F )

Proof. Paste the following two diagrams along their common edge:

Ru∗E ⊗
=

Rf∗F
α′

←−−− u∗E ⊗
=
f∗Fy

y
Rh∗Lh∗(Ru∗E ⊗

=
Rf∗F ) ←−−− Rh∗Lh∗(u∗E ⊗

=
f∗F )

≃

y
y≃

Rh∗(Lh∗Ru∗E ⊗
=

Lh∗Rf∗F ) ←−−− Rh∗(Lh∗u∗E ⊗
=

Lh∗f∗F )

≃

y
y≃

Rh∗(L(g∗u∗)Ru∗E ⊗
=

L(v∗f∗)Rf∗F ) ←−−− Rh∗(L(g∗u∗)u∗E ⊗
=

L(v∗f∗)f∗F )

≃

y
y≃

Rh∗(Lg∗Lu∗Ru∗E ⊗
=

Lv∗Lf∗Rf∗F )y
©3

←−−− Rh∗(Lg∗Lu∗u∗E ⊗
=

Lv∗Lf∗f∗F )y
Rh∗(Lg∗u∗u∗E ⊗

=
Lv∗f∗f∗F )y

Rh∗(Lg∗E ⊗
=

Lv∗F ) Rh∗(Lg∗E ⊗
=

Lv∗F )
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u∗E ⊗
=
f∗F −−→ u∗E ⊗ f∗F u∗E ⊗ f∗F

©4

y

y
y

Rh∗Lh∗(u∗E ⊗
=
f∗F )

≃

y
©5

−−→ Rh∗Lh∗(u∗E ⊗ f∗F )y
Rh∗h∗(u∗E ⊗ f∗F ) ←−− h∗h∗(u∗E ⊗ f∗F )y

y≃

Rh∗(Lh∗u∗E ⊗
=

Lh∗f∗F ) −−→ Rh∗(h∗u∗E ⊗ h∗f∗F )

©6

y
≃

←−− h∗(h∗u∗E ⊗ h∗f∗F )y
≃

≃

y
Rh∗(Lg∗Lu∗u∗E ⊗

=
Lv∗Lf∗f∗F )y

Rh∗(Lg∗u∗u∗E ⊗
=

Lv∗f∗f∗F ) −−→ Rh∗(g∗u∗u∗E ⊗
=
v∗f∗f∗F ) ←−− h∗(g∗u∗u∗E ⊗

=
v∗f∗f∗F )y

y
y

Rh∗(Lg∗E ⊗
=

Lv∗F ) −−→
β′

Rh∗(g∗E ⊗ v∗F ) ←−− h∗(g∗E ⊗ v∗F )

Commutativity of the unlabeled subdiagrams of the preceding diagrams is
pretty clear.

Commutativity of subdiagram ©3 follows from that of (3.2.1.2), of ©4
from (3.2.1.3), of ©5 from (3.2.4.1), and of ©6 from the dual of the com-
mutative diagram (3.6.4.1) (see the remarks surrounding (3.6.4)∗ ).

Lemma (3.10.1.3) results. Q.E.D.

Lemma (3.10.1.4). With notation as in (3.10.1.2), for any U-

complex E and any S-complex F let η = ησ(Ẽ, F̃ ) be as above, and let

η0 = η0(E, F ) be the natural composition

E⊗RF → V⊗R(E⊗RF ) −→∼ (V⊗RE)⊗V (V⊗RF )→ (V⊗UE)⊗V (V⊗SF ).

Then there is a natural commutative diagram of OY -modules

u∗Ẽ ⊗ f∗F̃ ˜−−−−→ (E ⊗R F )˜
η

y
yη̃0

h∗(g
∗Ẽ ⊗ v∗F̃ ) ˜−−−−→

(
(V ⊗U E)⊗V (V ⊗S F )

)
˜

in which the horizontal arrows are isomorphisms.

Proof. The horizontal isomorphisms in the diagram are given by
[GD, p. 213, (1.7.7) and p. 202, (1.3.12)(i)].
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For commutativity, expand the diagram naturally as follows:

u∗Ẽ ⊗ f∗F̃ −−−−→
(
E ⊗R F

)
˜

y
y

h∗h
∗(u∗Ẽ ⊗ f∗F̃ ) −−−−→

(
V ⊗R (E ⊗R F )

)
˜

y
y

h∗(h
∗u∗Ẽ ⊗ h

∗f∗F̃ ) −−−−→
(
(V ⊗R E)⊗V (V ⊗R F )

)
˜

y
y

h∗(g
∗u∗u∗Ẽ ⊗ v

∗f∗f∗F̃ ) −−−−→
(
(V ⊗U U ⊗R E)⊗V (V ⊗S S ⊗R F )

)
˜

y
y

h∗(g
∗Ẽ ⊗ v∗F̃ ) −−−−→ (V ⊗U E)⊗V (V ⊗S F )

)
˜

Verification of commutativity of the subdiagrams is left as an exercise.
(Suggestion: recall (3.1.9), and use [GD, p. 214, (1.7.9)(ii)].) Q.E.D.

As in (a), Lemmas (3.10.1.3) and (3.10.1.4) determine (via quasi-
coherent q-flat resolutions) the map η(G1, G2) for any G1 ∈ Dqc(Y ′) and
G2 ∈ Dqc(X), in terms of the concrete functorial map η0 .

Definition (3.10.2). A commutative oriented S -square

X ′ v
−−−−→ X

g

y
yf

Y ′

σ

−−−−→
u

Y

is said to be
• independent if θσ is a functorial isomorphism;
• ′ -independent if θ′σ is a functorial isomorphism;
• Künneth-independent if ησ is a bifunctorial isomorphism;
• tor-independent if σ is a fiber square (i.e., the map X ′ → X ×Y Y

′

associated to σ is an isomorphism) and if the following equivalent condi-
tions hold for all pairs of points y′ ∈ Y ′, x ∈ X such that y := u(y′) = f(x) :

(i) Tor
OY,y
i (OY ′,y′ ,OX,x) = 0 for all i > 0.

(ii) There exist an affine open neighborhood Spec(A) of y and affine open
sets Spec(A′) ⊂ u−1Spec(A), Spec(B) ⊂ f−1Spec(A) such that

TorAi (A′, B) = 0 for all i > 0.
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(ii) ′ For any affine open neighborhood Spec(A) of y and affine open sets
Spec(A′) ⊂ u−1Spec(A), Spec(B) ⊂ f−1Spec(A),

TorAi (A′, B) = 0 for all i > 0.

Remarks (3.10.2.1). (a) The conditions of Künneth-independence
and tor-independence do not depend on an orientation of σ.

(b) Condition (ii) ′ in (3.10.2) implies condition (ii); and (ii) implies (i)
because if p ⊂ A, q ⊂ A′, and r ⊂ B are the prime ideals corresponding
to y, y′ and x respectively, then there are natural isomorphisms

Tor
Ap
i (A′

q, Br)
∼= TorAi (A′

q, Br)
∼= A′

q ⊗A′ TorAi (A′, Br)

∼= A′
q ⊗A′ TorAi (A′, B)⊗B Br .

These isomorphisms also show that, conversely, (i) implies (ii ′ ): for

if m ⊂ A′ ⊗A B were a prime ideal in the support of TorAi (A′, B) and
p, q and r were its inverse images in A, A′ and B respectively, then

0 6= TorAi (A′, B)m would be a localization of Tor
Ap
i (A′

q, Br) = 0.

(c) Let σ, as above, be an independent square; and suppose that the
functors f∗ and g∗ have right adjoints f× and g× respectively. Then one
can associate to σ a functorial base-change map (for f× rather than f∗ ):

βσ : v∗f× → g×u∗,

adjoint to the natural composition g∗v
∗f× θ−1

−→ u∗f∗f
× → u∗.

This map plays a crucial role in Grothendieck duality theory on, say,
the full subcategory of S whose objects are all the concentrated schemes,
in which situation the right adjoints f× and g× exist, see (4.1.1) below.

(d) We call an S-map f : X → Y isofaithful if any X*-map α such
that f∗α is a Y*-isomorphism is itself an isomorphism.

For example, if f is an open immersion then f is isofaithful because
of the natural functorial isomorphism G −→∼ Lf∗

Rf∗G (G ∈ D(Y )) .

Lemma (3.10.2.2). If the S-map f : X → Y is affine
(
[GD, p. 357,

(9.1.10)]: for each affine open U ⊂ Y, f−1U is affine
)

then f is isofaithful.

Proof. In this proof only, f∗ : K(X) → K(Y ) will be the ordinary
direct-image functor, and Rf∗ : D(X)→ D(Y ) its derived functor.

From (2.4.5.2) it follows that Rf∗ “commutes” with open immersions,
so the question is local, and we may assume that X and Y are affine, say
X = Spec(B), Y = Spec(A) .

By (3.9.6)(a), every complex in Dqc(X) is D-isomorphic to a quasi-
coherent complex. Therefore—and since a D-map α is an isomorphism iff
the vertex of a triangle based on α is exact—we need only show: if C is a
quasi-coherent OX-complex such that Rf∗(C) is exact then C is exact.
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Since the functor f∗ of quasi-coherent OX -modules is exact, therefore,
by (3.9.2.3) and the dual of (2.7.4), C is f∗-acyclic, so that f∗C ∼= Rf∗C
is exact, and for all i, f∗H

iC ∼= Hif∗C = 0.

Finally, C = Ẽ for some B-complex E, so HiC = (HiE)˜ , and when
HiE is regarded as an A-module, f∗H

iC = (HiE)˜ (see [GD, p. 214,
(1.7.7.2)]), whence HiE = 0. The desired conclusion results. Q.E.D.

The following assertions result at once from commutativity (to be
shown) of diagram (3.10.2.3) below, for any E ∈ Y′* and F ∈ X*.

• Independence or ′ -independence of σ implies Künneth independence.
• If u (resp. f ) is isofaithful then Künneth independence of σ im-

plies independence (resp. ′ -independence). (Take E (resp. F ) to be OY ′

(resp. OX).) Thus:

• If u and f are isofaithful then independence, ′ -independence and
Künneth independence are equivalent conditions on σ.

This applies, for instance, if the schemes Y ′, Y and X are affine.

(3.10.2.3)

u∗(E ⊗ u
∗f∗F ) ˜←−−−−

(3.9.4)
u∗E ⊗ f∗Fy

η

˜−−−−→
(3.9.4)

f∗(f
∗u∗E ⊗ F )

via θ

y
yvia θ′

u∗(E ⊗ g∗v
∗F ) f∗(v∗g

∗E ⊗ F )

≃

y(3.9.4) (3.9.4)

y≃

u∗g∗(g
∗E ⊗ v∗F ) ˜−−−−−→

(3.6.4)∗
h∗(g

∗E ⊗ v∗F ) ˜←−−−−−
(3.6.4)∗

f∗v∗(g
∗E ⊗ v∗F )

Proving commutativity of (3.10.2.3) is a formal exercise on adjoint
monoidal pseudofunctors. For example, in view of the definition of θσ(F )
in (3.7.2)(c), commutativity of the left half follows from commutativity of
the natural diagram

u∗E ⊗ f∗F −−→ u∗u∗(u∗E ⊗ f∗F ) −−→ u∗g∗g∗u∗(u∗E ⊗ f∗F )

(3.9.4)

y≃ ©1

y
y

u∗(E ⊗ u∗f∗F ) ←−− u∗(u∗u∗E ⊗ u∗f∗F ) −−→ u∗g∗g∗(u∗u∗E ⊗ u∗f∗F )y
y ©2

y
u∗(E ⊗ g∗g∗u∗f∗U) ←−− u∗(u∗u∗E ⊗ g∗g∗u∗f∗F ) −̃−−→

(3.9.4)
u∗g∗(g∗u∗u∗E ⊗ g∗u∗f∗F )y≃

y≃ ≃

y
u∗(E ⊗ g∗v∗f∗f∗U) ←−− u∗(u∗u∗E ⊗ g∗v∗f∗f∗F ) −̃−−→

(3.9.4)
u∗g∗(g∗u∗u∗E ⊗ v∗f∗f∗F )y

y
y

u∗(E ⊗ g∗v∗F ) u∗(E ⊗ g∗v∗F ) −̃−−→
(3.9.4)

u∗g∗(g∗E ⊗ v∗F )

Commutativity of subsquare ©1 is given by 3.4.6.2, and of ©2 by (3.4.7)(i).
Commutativity of the other subsquares is straightforward to check.

Commutativity of the right half of (3.10.3.2) is shown similarly.
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Theorem (3.10.3). For any fiber square of concentrated maps of
quasi-separated schemes

X ′ v
−−−−→ X

g

y
yf

Y ′

σ

−−−−→
u

Y

(σ commutes and the associated map X ′ → Y ′ ×Y X is an isomorphism),
the four independence conditions in Definition (3.10.2) are equivalent.

Proof. We first prove a special case.

Lemma (3.10.3.1). Theorem (3.10.3) holds when all the schemes
appearing in σ are affine.

Proof. We saw above (just before (3.10.2.3)) that the first three
independence conditions are equivalent. From (3.10.2.2) and (3.10.2.3)
with F = OX , it follows that if θ(OX) is an isomorphism then θ′(E) is
an isomorphism for all E, i.e., σ is ′ -independent. Thus it will suffice
to show that θ(OX) is an isomorphism iff σ is tor-independent.

From (3.10.1.2) with E = S, and the assumption that σ is a fiber
square, one sees that when applied to OX the right column in (3.10.1.1)
becomes an isomorphism. As OX is flat and quasi-coherent, the maps
α(OX), β(OX) and γ(OX) in (3.10.1.1) are isomorphisms, and hence the
left column—which is what we are now denoting by θ(OX)—is an isomor-
phism iff so is the canonical map ψ : Lu∗f∗OX → u∗f∗OX . Since sheafifi-
cation is exact and preserves flatness (flatness of a sheaf being guaranteed
by flatness of its stalks), using [GD, p. 214, (1.7.7.2)] one finds that ψ is

D(Y ′)-isomorphic to the sheafification φ̃ of the natural U -homomorphism
φ : U⊗RP

• → U⊗RS , where U, R and S are as in (3.10.1.2) and P • → S
is an R-flat resolution of S. Since φ is a quasi-isomorphism precisely when
TorRi (U, S) = 0 for all i > 0, that is, when σ is tor-independent, the desired
conclusion results. Q.E.D.

The strategy now is to show that:
(A) Independence is a local condition, i.e., it holds for σ iff it holds

for every induced fiber square

X ′
0

v
−−−−→ X0

g

y
yf

Y ′
0

σ0

−−−−→
u

Y0

such that Y0 is an affine open subscheme of Y , and Y ′
0 , X0 are affine open

subschemes of u−1Y0 , f−1Y0 respectively. (See first paragraph of §3.10.)
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It follows then from (3.10.3.1) that tor-independence for σ in (3.10.3)
implies independence and, by symmetry, ′ -independence.

It has already been noted (before (3.10.2.3)) that independence or
′ -independence implies Künneth independence. To finish proving (3.10.3)
it will therefore suffice to show that:

(B) Künneth independence for σ implies the same for any σ0 as above.

For then it will follow from (3.10.3.1) that Künneth-independence
implies tor-independence.

Finally, (A) and (B) result at once from the first assertion in (3.10.3.3)
and the last assertion in (3.10.3.4) below.

Lemma (3.10.3.2) (Independence and concatenation). For each
one of the following S-diagrams, assumed commutative,

X ′′
v1−−−−→ X ′ v

−−−−→ X

h

y g

y
yf

Y ′′

σ1

−−−−→
u1

Y ′

σ

−−−−→
u

Y

Z ′ w
−−−−→ Z

g1

y
yf1

X ′ v
−−−−→

σ1

X

g

y
yf

Y ′

σ

−−−−→
u

Y

if σ and σ1 are independent (resp. ′ -independent, Künneth-independent)
then so is the rectangle σ0 := σσ1 enclosed by the outer border.

Proof. As in (3.7.2)(iii), the following natural diagram commutes for
any G ∈ X*:

(3.10.3.2.1)

(uu1)
∗f∗G

θσ0
(G)

−−−−−−−−−−−−−−−−−−−−→ h∗(vv1)
∗G

≃

y
y≃

u∗1u
∗f∗G −−−−−→

u∗
1θσ(G)

u∗1g∗v
∗G −−−−−→

θσ1
(v∗G)

h∗v
∗
1v

∗G

whence the independence assertion for the first of the diagrams in (3.10.3.2).
The second is dealt with similarly via (3.7.2)(ii).

The assertion for ′ -independence follows by symmetry. (Reflection in
the appropriate diagonal interchanges independence and ′ -independence.)

Künneth independence for the first diagram in (3.10.3.2)—and hence,
since Künneth independence does not depend on orientation, for the second
diagram too—is treated via commutativity of the following natural diagram
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(with E ∈ Y′′* and F ∈ X*):

(3.10.3.2.2)

(uu1)∗E ⊗ f∗F
ησ0

(E,F )
−−−−−−−−−−−−−−−−−−−−−−−−−−→ (uu1h)∗(h∗E ⊗ (vv1)∗F )

≃

y
y≃

u∗(u1∗E)⊗ f∗F u∗(u1h)∗(h∗E ⊗ v∗1v
∗F )

ησ(u1∗E,F )

y
xu∗ησ1

(E,v∗F )

(ug)∗(g∗u1∗E ⊗ v
∗F ) ˜−−−→ u∗g∗(g∗u1∗E ⊗ v

∗F ) ˜−−−→
(3.9.4)

u∗(u1∗E ⊗ g∗v
∗F )

Commutativity can be verified, e.g., by using the left half of the com-
mutative diagram (3.10.2.3) to reduce the question to commutativity of
the natural diagram:

(uu1)∗E ⊗ f∗F ˜−−−−→
(3.9.4)

(uu1)∗(E ⊗ (uu1)∗f∗F )
θσ0

−−−→ (uu1)∗(E ⊗ h∗(vv1)∗F )y≃

y≃ ≃

y(3.9.4) etc.

u∗(u1∗E)⊗ f∗F ©1 u∗u1∗(E ⊗ (uu1)∗f∗F ) u∗u1∗h∗(h∗E ⊗ v∗1v
∗F )

(3.9.4)

y≃

y≃ ≃

x(3.9.4)

u∗(u1∗E ⊗ u∗f∗F ) ˜−−−−→
(3.9.4)

u∗u1∗(E ⊗ u∗1u
∗f∗F )

θσ0

−−−→

©2

u∗u1∗(E ⊗ h∗v∗1v
∗F )

θσ

y
yθσ

∥∥∥
u∗(u1∗E ⊗ g∗v

∗F ) ˜−−−−→
(3.9.4)

u∗u1∗(E ⊗ u∗1g∗v
∗F ) −−−→

θσ1

u∗u1∗(E ⊗ h∗v∗1v
∗F )

Commutativity of subdiagram ©1 follows from (3.7.1), and of subdia-
gram ©2 from (3.7.2)(iii). The rest is straightforward. Q.E.D.

Corollary (3.10.3.3). For σ as in (3.10.3):

(i) σ is independent if and only if for every diagram as in (3.10.3.2)
with Y ′′ affine, u1 : Y ′′ → Y ′ an open immersion and σ1 a fiber square,
σ0 := σ ◦ σ1 is independent.

(i) ′ σ is ′-independent if and only if for every diagram as in (3.10.3.2)
with Z affine, f1 : Z → X1 an open immersion and σ1 a fiber square,
σ0 := σ ◦ σ1 is ′-independent.

Proof. It follows from (1.2.2) that θσ is an isomorphism iff so is u∗1θσ
for all open immersions u1 : Y ′′ → Y ′ with Y ′′ affine. For such a u1 the
fiber square σ1 is independent (as follows readily from (2.4.5.2)), so the
commutative diagram (3.10.3.2.1) shows that u∗1θσ is isomorphic to θσ0 ,
and (i) results.

Up to reversal of orientation, (i) ′ is the same statement as (i). Q.E.D.
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Lemma (3.10.3.4) (Independence and base change). Given σ as
in (3.10.3) let i : U → Y be an open immersion, let i∗σ be the fiber square

U ×Y X
′ =: V ′ v1−−−−→ V := U ×Y X

g1

y
yf1

U ×Y Y
′ =: U ′ −−−−→

u1
U

(with obvious maps) and let j : V → X and i′ : U ′ → Y ′ be the projections.
Then i∗σ is an S-square, and for any G ∈ Dqc(X) the map

θi∗σ(j
∗G) : u∗1f1∗j

∗G→ g1∗v
∗
1j

∗G

is isomorphic to the map

i′∗θσ(G) : i′∗u∗f∗G→ i′∗g∗v
∗G .

Moreover, for any E ∈ Dqc(U
′) and F ∈ Dqc(X) the map

i∗ηi∗σ(E, j
∗F ) : i∗(u1∗E ⊗ f1∗j

∗F )→ i∗(u1g1)∗(g
∗
1E ⊗ v

∗
1j

∗F )

is isomorphic to the map

ησ(i
′
∗E, F ) : u∗(i

′
∗E)⊗ f∗F → (ug)∗(g

∗i′∗E ⊗ v
∗F ).

Consequently, σ is independent if and only if i∗σ is independent for
every open immersion i : U →֒ Y with U affine; and if σ is Künneth-
independent then so is i∗σ for all such i .

Proof. That U , U ′, V and V ′ are quasi-separated is given by [GD,
p. 294, (6.1.9)(i) and (ii)]; and that u1 , f1 , g1 and v1 are quasi-compact
by [GD, p. 291, (6.1.5)(iii)]. By (3.7.2)(iii), the diagrams

V ′ v1−−−−→ V
j

−−−−→ X

g1

y
yf1

yf

U ′

i∗σ

−−−−→
u1

U

σ′

−−−−→
i

Y

V ′ j′

−−−−→ X ′ v
−−−−→ X

g1

y
yg

yf

U ′

σ′′

−−−−→
i′

Y ′

σ

−−−−→
u

Y

which are two decompositions of the same square—call it τ—give rise to a
commutative diagram of functorial maps (cf. (3.10.3.2.1)):

u∗1i
∗f∗G

u∗
1θσ′ (G)
−−−−−−→ u∗1f1∗j

∗G
θi∗σ(j∗G)
−−−−−−→ g1∗v

∗
1j

∗G

≃

y
y≃

(iu1)
∗f∗G

θτ (G)
−−−−−−−−−−−−−−−−−−−−−−→ g1∗(jv1)

∗G
∥∥∥

∥∥∥

(ui′)∗f∗G −−−−−−−−−−−−−−−−−−−−−−→
θτ (G)

g1∗(vj
′)∗G

≃

y
y≃

i′∗u∗f∗G −−−−−→
i′∗θσ(G)

i′∗g∗v
∗G −−−−−−→

θσ′′ (v∗G)
g1∗j

′∗v∗G
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Since i and i′ are open immersions, the maps θσ′ and θσ′′ are iso-
morphisms (see proof of (3.10.3.3)), and the first isomorphism assertion in
the Lemma results.

A similar argument using (3.10.3.2.2) proves the second isomorphism
assertion.

The independence consequence for θ then follows from (1.2.2) and the
fact that since j is an open immersion therefore F ∼= j∗j∗F for every
F ∈ D(V ).

The Künneth-independence consequence is proved similarly, with the
additional observation that i is isofaithful (see (3.10.2.1)(d)). Q.E.D.

Exercise (3.10.4) (Conjugate base change). Let σ be a fiber square as
in (3.10.3), and assume the schemes in σ are concentrated, so that by (4.1.1) below,

f∗ and g∗ have right adjoints f× and g× respectively.

(a) Show that the map

φσ : v∗g
× → f×u∗

(between functors from Dqc(Y ′) to Dqc(X) ) corresponding by adjunction to the natural

composition f∗v∗g× −→∼ u∗g∗g× → u∗ is right-conjugate to θσ .
Deduce that σ is independent iff φσ (or φσ′ ) is an isomorphism.

Hint. The first assertion is that φσ(E) is the image of the identity map under the

sequence of natural isomorphisms

Hom(v∗g
×E, v∗g

×E) −→∼ Hom(v∗v∗g
×E, g×E) −→∼ Hom(g∗v

∗v∗g
×E, E)

−→∼ Hom(u∗f∗v∗g
×E, E) −→∼ Hom(f∗v∗g

×E, u∗E)

−→∼ Hom(v∗g
×E, f×u∗E).

(b) Show that when σ is independent the map φ−1
σ —right-conjugate to θ−1

σ ,

see (a)—corresponds to the composition

v∗f×u∗
via βσ
−−−−→ g×u∗u∗

natural
−−−−→ g×

with βσ as in (3.10.2.1)(c).

(b)′ Show that when σ is independent the map βσ corresponds to the composition

f×
natural
−−−−→ f×u∗u

∗ via φ−1
σ

−−−−→ v∗g
×u∗.

Hint. To deduce (b)′ from (b), use the natural diagram (whose bottom row and

right column both compose to the identity):

f× −−−−−→ f×u∗u∗
φ
−1
σ

−−−−−→ v∗g×u∗y
y

y
v∗v∗f× −−−−−→ v∗v∗f×u∗u∗

φ
−1
σ

−−−−−→ v∗v∗v∗g×u∗

v∗βσ

y
yv∗βσ

y
v∗g×u∗ −−−−−→ v∗g×u∗u∗u∗ −−−−−→ v∗g×u∗

Similarly, (b)′ ⇒ (b).

(c) Show that φσ corresponds to the natural composition

g× −→ g×u×u∗ −→
∼ v×f×u∗.



Chapter 4

Abstract Grothendieck Duality for schemes

In this chapter we review and elaborate on—with proofs and/or
references—some basic abstract features of Grothendieck Duality for
schemes with Zariski topology, a theory initially developed by Grothendieck
[Gr′ ], [H], [C], Deligne [De′ ], and Verdier [V′ ].42 The principal actor in
this Chapter is the twisted inverse image pseudofunctor, described in the
Introduction. The basic facts about this pseudofunctor—which may be
seen as the main results in these Notes—are existence and flat base change,
Theorems (4.8.1) and (4.8.3).

The abstract theory begins with Theorem (4.1) (Global Duality), asser-
ting for any map f : X → Y of concentrated schemes the existence of a
right adjoint f× for the functor Rf∗ : Dqc(X) → Dqc(Y ) . In order to
sheafify this result, or, more generally, to prove tor-independent base change
for f×—see (4.4.2) and (4.4.3), we need f to be quasi-proper, a condition
which coincides with properness when the schemes involved are noetherian.
This condition is discussed in section 4.3. The proofs of (4.4.2) and (4.4.3)
are given in sections (4.5) and (4.6). That prepares the ground for the
above main results.

Section (4.7) is concerned with quasi-perfect ( = quasi-proper plus finite
tor-dimension) maps of concentrated schemes. These maps have a number
of especially nice properties with respect to f× .

Analogously, section (4.9) deals with perfect ( = finite tor-dimension)
finite-type separated maps of noetherian schemes. These maps behave
nicely with respect to the twisted inverse image. For example, if f : X → Y
is a finite-type separated map of noetherian schemes, and f ! is the asso-
ciated twisted inverse image functor, perfectness of f is characterized by
boundedness of f !OY plus the existence of a functorial isomorphism

f !OY ⊗
=

Lf∗F −→∼ f !F
(
F ∈D+

qc(Y )
)
.

This, and other characterizations, are in Theorem (4.9.4). Theorem (4.7.1)
contains the corresponding result for the functor f× associated to a quasi-
perfect map f .

42 As regards these Notes, see the Introduction for some comments on “abstract”

vis-à-vis “concrete” duality. Exercise (4.8.12)(b) is an example of the latter.
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In an appendix, section (4.10), we say something about the role of
dualizing complexes in duality theory. This is an important topic, but not
a central one in these Notes.

Throughout, all schemes are assumed to be concentrated, i.e., quasi-
separated and quasi-compact.

4.1. Global Duality

Fix once and for all a universe U [M, p. 22]. Henceforth, any category
is understood to have all its arrows and objects in U . Call a set small if it is
a member of U . A small category is one whose arrows—and hence objects—
form a small set. Every topological space X is understood to be small; and
any sheaf E on X is understood to be such that for every open U ⊂ X,
Γ(U,E) is a small set.

For any scheme (X,OX), AX is, as before, the abelian category of OX -
modules and their homomorphisms, and A

qc
X is the full abelian subcategory

whose objects are all the quasi-coherent OX -modules. Though these two
categories are not small, they are well-powered, i.e., for each object E there
is a small set JE such that every subobject (or every quotient) of E is
isomorphic to a member of JE ; and they have small hom-sets, i.e., for any
objects E, F , the set Hom(E, F ) is small.

“Global Duality” means:

Theorem (4.1). Let X be a concentrated (= quasi-compact, quasi-
separated) scheme and f : X → Y a concentrated scheme-map. Then the
∆-functor Rf∗:Dqc(X)→ D(Y ) has a bounded-below right ∆-adjoint.

By (1.2.2), (2.4.2), and the description of θ∗ in (3.3.8) (where it may
be assumed that θ∗ is the identity, see (2.7.3.2)), the following statement
is equivalent to (4.1).

Theorem (4.1.1). Let X be a concentrated (= quasi-compact, quasi-
separated) scheme and f : X → Y a concentrated scheme-map. Then
there is a bounded-below ∆-functor (f×, identity): D(Y )→ Dqc(X) and a
map of ∆-functors τ : Rf∗f

× → 1 such that for all F ∈ Dqc(X) and
G ∈ D(Y ), the composite ∆-functorial map (in the derived category of
abelian groups)

RHom•
X(F, f×G)

(3.2.1.0)
−−−−−→ RHom•

X(Lf∗
Rf∗F, f

×G)

(3.2.3.1)
−−−−−→ RHom•

Y (Rf∗F, Rf∗f
×G)

via τ
−−−−−→ RHom•

Y (Rf∗F, G)

is a ∆-functorial isomorphism.
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Corollary (4.1.2). When restricted to concentrated schemes, the
Dqc-valued pseudofunctor “derived direct image” (see (3.9.2)) has a
pseudofunctorial right ∆-adjoint ××× (see (3.6.7)(d)).

Proofs. To get (4.1.2) from (4.1.1), recalling that a map f : X → Y
of concentrated schemes is itself concentrated [GD, §6.1, pp. 290ff ], choose
for each such f a functor f× right-∆-adjoint to Rf∗ : Dqc(X)→ Dqc(Y ) ,
with f× the identity functor whenever f is an identity map. For another
such g : Y → Z , define df,g : f×g× → (gf)× to be the functorial map
adjoint to the natural composition

R(gf)∗f
×g× −→∼ Rg∗Rf∗f

×g× → Rg∗g
× → 1.43

This df,g is an isomorphism, its inverse (gf)× → f×g× being the map
adjoint to the natural composition

Rg∗Rf∗(gf)× −→∼ R(gf)∗(gf)× → 1.

The verification of (4.1.2) is then straightforward (see (3.6.5)).

As for (4.1), the classical abstract method was introduced by Verdier
in his treatment of duality for locally compact spaces, then adapted to
schemes by Deligne [De′ ] to show that with j : D(Aqc

X )→ Dqc(X) the
natural functor, Rf∗ ◦j has a right adjoint. This suffices only when f is
separated, see (3.9.6). The proof given below (for historical reasons, because
of the compactness of Deligne’s original presentation) is just an elaboration
of Deligne’s arguments.

The reader may prefer to look up in [N] the more modern, lucidly
exposed, approach of Neeman, who uses Brown Representability instead
of, as below, the Special Adjoint Functor Theorem applied via injective
resolutions. This is conceptually more elegant in that it gives a direct crite-
rion for the existence of a right adjoint for a triangulated functor F on any
compactly generated triangulated category, such as Dqc(X). In analogy
with the “cocontinuity” used in Deligne’s method (see below), the condi-
tion on F is that it commute with small direct sums, a condition which
follows for F = Rf∗ from (3.9.3.3). The (nontrivial) proof in [N] that
Dqc(X) is compactly generated ostensibly requires X to be separated; but
essentially the same proof shows that Dqc(X) is compactly generated for
any concentrated X, see [BB, §3], and this gives Theorem (4.1) in full
generality.44

Proof of (4.1) (when X is separated, see above).

1. First, we review some terminology and basic results about abelian
categories. Let A be an abelian category with small direct sums (i.e., every

43 This definition makes the property TRA 1 in [H, p. 207] tautologous.
44 Arguments much like Deligne’s or Neeman’s apply also to noetherian formal

schemes, see [AJL ′, §4, pp. 42–46] resp. [AJL ′, p. 41, 3.5.2] and [AJS, p. 245, Cor. 5.9].



152 Chapter 4. Abstract Grothendieck Duality for schemes

family of objects in A indexed by a small set has a direct sum). Any two
arrows in A with the same source and target have a coequalizer, namely
the cokernel of their difference [M, p. 70]. Hence A is small-cocomplete,
i.e., any functor from a small category into A has a colimit, see [M, p. 113,
Cor. 2] (dualized). An additive functor F from A to an abelian category A′

is cocontinuous if F commutes with small colimits, in the sense that if G is
any functor from a small category C into A and

(
G, (gc : Gc → G)c∈C

)
is

a colimit of G then
(
FG, (Fgc)c∈C

)
is a colimit of FG. It follows from [M,

p. 113, Thm. 2] that F is cocontinuous iff it is right-exact and transforms
small direct sums in A into small direct sums in A′.

We reserve the symbol lim
−→

for denoting direct limits of small directed

systems in A, i.e., colimits of functors G : C → A where C is the category
associated to a small preordered set in which any two elements have an up-
per bound [M, p. 11, p. 211]. All such lim

−→
’s exist in an abelian category A

iff A is small-cocomplete [M, p. 212, Theorem 1]. Similarly, an additive
functor F : A → A′ is cocontinuous iff it is right-exact and commutes with
all lim
−→

’s.

2. An essential ingredient of the proof of Theorem (4.1) is the following
consequence of the Special Adjoint Functor Theorem [M, p. 130, Corollary].
(See also [De′, p. 408, Cor. 1]).

Proposition (4.1.3). For a concentrated scheme X, an additive

functor F from Aqc
X to an abelian category A′ with small hom-sets has

a right adjoint if and (clearly) only if it is cocontinuous.

(4.1.3.1). For the Special Adjoint Functor Theorem to be applicable
here, the category A

qc
X —which, as above, is well-powered and has small

hom-sets, and which is also small-cocomplete [GD, p. 217, (2.2.2)(iv)]—
must have a small set of generators. Recall that an OX -module E on a
ringed space X is locally finitely presentable (lfp for short) if X is covered
by open subsets U such that for each U the restriction E|U is isomorphic
to the cokernel of a map OmU → O

n
U with finite m and n. Since every

quasi-coherent OX -module is the lim
−→

of its lfp submodules [GD, p. 319,

(6.9.9)], the small-generated property follows from the fact that for any
scheme X there exists a small set S of lfp OX-modules such that every lfp
OX-module is isomorphic to a member of S.

Proof. With U ranging over the small set of affine open subschemes
of X, and iU : U →֒ X the inclusion, any OX -module E is isomorphic to
a submodule of

∏
U iU∗i

∗
UE. If E is lfp then so is the OU -module i∗UE, so

that i∗UE is a quotient of OnU for some finite n [GD, p. 207, (1.4.3)]. Thus
every lfp E is isomorphic to a subsheaf of a sheaf of the form

∏
U iU∗EU

where for each U , EU ranges over a fixed small set of OU -modules, whence
the conclusion. Q.E.D.

(For another argument see [Kn, pp. 43–44, proof of Thm. 4.])
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3. The basic idea for proving (4.1) is to show that there is a functorial
exact AX-sequence (i.e., a finite resolution of the inclusion A

qc
X →֒ AX)

(4.1.4)

0→M
δ(M)
−−−→ D

0(M)
δ0(M)
−−−−→ D

1(M)
δ1(M)
−−−−→ · · ·

δd−1(M)
−−−−−→ D

d(M)→ 0(
M ∈ A

qc
X

)

such that the functors Di : A
qc
X → AX (0 ≤ i ≤ d) are additive and co-

continuous, such that for all M, Di(M) is f∗-acyclic, and such that the
functors f∗D

i are right-exact.

Here is one way to do this. Recall the Godement resolution

0→M → G0(M)→ G1(M)→ · · ·

where, with G−2(M) := 0, G−1(M) := M , and Ki(M) (i ≥ 0) the cokernel
of Gi−2(M)→ Gi−1(M) , the sheaf Gi(M) is defined inductively by

Gi(M)
(
U

)
:=

∏

x∈U

K
i(M)x (U open in X).

One shows by induction on i that all the functors Gi and Ki (from AX to
itself) are exact. Moreover, for i ≥ 0, Gi(M) is flasque, hence f∗-acyclic.
With d as in (3.9.2.4), the dual version of (2.7.5)(iii) shows that Kd(M) is
f∗-acyclic. So, setting

D
i(M) :=





Gi(M) (0 ≤ i < d)

Kd(M) (i = d)

0 (i > d)

we get a finite resolution (4.1.4) having all the desired properties except for
commutativity of the Di with lim

−→
.

To get commutativity with lim
−→

we use the next Lemma, proved below.

Lemma (4.1.5). Let A′ be a small-cocomplete abelian category in

which lim
−→

preserves exactness of sequences. Then with F the category of

additive functors from A
qc
X to A′, there is a functor (−)cts : F→ F and a

functorial map iD : Dcts → D (D ∈ F) such that:

(i) For all lfp M ∈A
qc
X , iD(M) is an isomorphism Dcts(M)−→∼ D(M).

(ii) For any D ∈ F, Dcts commutes with lim
−→

.

(iii) If D commutes with lim
−→

then iD is a functorial isomorphism.

(iv) If D is right-exact then so is Dcts .

(v) For any exact sequence D′ → D→ D′′ in F (i.e., the A′-sequence

D′(M) → D(M) → D′′(M) is exact for all M ∈ Aqc
X ), the corresponding

sequence D′
cts
→ Dcts → D′′

cts
is exact.

(vi) When A′ = AX , if D(M) is f∗-acyclic for all M ∈ A
qc
X then

Dcts(M) is f∗-acyclic for all M ∈ A
qc
X ; and if, further, D is exact, then

the functor f∗Dcts : A
qc
X → AY is right-exact.
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Indeed, one can apply any such (−)cts for A′ = AX to the just-
constructed truncated Godement resolution, to produce a resolution with
all the desired properties. (For this, condition (4.1.5)(iii) is needed only
when D = identity functor.)

From (4.1.4) there results a ∆-functor

(D, Identity) : K(A
qc
X )→ K(AX) =: K(X)

taking each A
qc
X -complex (M, d) to the f∗-acyclic AX-complex D(M) with

D(M)m := ⊕p+q=mD
q(Mp) (m ∈ Z, 0 ≤ q ≤ d)

and with differential D(M)m → D(M)m+1 defined on Dq(Mp) (p+q = m)
to be Dq(dp)+(−1)pδq(Mp). One checks by elementary diagram chasing—
or spectral sequences—that the natural K(X)-map δ(M) : M → D(M) is
a quasi-isomorphism.

It follows that the the natural maps are D(Y )-isomorphisms

(4.1.6) f∗D(M) −→∼ Rf∗D(M) ←−∼
Rf∗δ(M)

Rf∗jM,
(
M ∈ K(Aqc

X )
)

the first, in view of (3.9.2.4), by the dual version of (2.7.5)(a). Thus we
have realized Rf∗◦ j (up to isomorphism) at the homotopy level, as the
functor C• := f∗D . Let us find a right adjoint at this level.

4. Each functor Cq := f∗D
q:A

qc
X → AY (0 ≤ q ≤ d) is right-exact.

Also, Cq commutes with lim
−→

since both Dq and f∗ do. (For f∗ see [Kf,

p. 641, Prop. 6], or imitate the proof on p. 163 of [G]). Thus Cq is cocon-
tinuous, and so by (4.1.3), Cq has a right adjoint Cq:AY → A

qc
X .

There are then functorial maps δs: Cs+1 → Cs right-conjugate to
f∗(δ

s): Cs → Cs+1, see (3.3.5).

For each AY -complex (F, d′), let C•F be the Aqc
X -complex with

(C•F )m :=
∏

p−q=m

CqF
p (m ∈ Z, 0 ≤ q ≤ d),

and whose differential (C•F )m → (C•F )m+1 is the unique map making the
following diagram (with vertical arrows coming from projections) commute
for all r, s with r−s = m+1 :

∏
p−q=m

CqF
p = (C•F )m −−−→ (C•F )m+1 =

∏
p−q=m+1

CqF
p

y
y

CsF
r−1 ⊕ Cs+1F

r −−−−−−−−−−−−−−−→
Csd

r−1
′ +(−1)r+sδs(F r)

CsF
r

There results naturally a ∆-functor (C• , Identity):K(Y )→ K(A
qc
X ) .
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One checks that, applied componentwise, the adjunction isomorphism

HomA
qc
X

(M,CpN ) −→∼ HomA
Y
(CpM, N )

(
M ∈ Aqc

X , N ∈ AY
)

produces an isomorphism of complexes of abelian groups

(4.1.7) Hom•

A
qc
X

(G, C•F ) −→∼ Hom•
A
Y
(C•G, F )

for all A
qc
X -complexes G and AY -complexes F .

5. The isomorphism (4.1.7) suggests using C• to construct f×, as

follows. Recall that a complex J ∈ K(A
qc
X ) is K-injective iff for each

exact G ∈ K(A
qc
X ), the complex Hom•

A
qc
X

(G, J) is exact too. The isomor-

phisms (4.1.6) show that C
•G is exact if G is; so it follows from (4.1.7) that

if F is K-injective in K(Y ) then C•F is K-injective in K(A
qc
X ) . Thus if

KI(−) ⊂ K(−) is the full subcategory whose objects are all the K-injective

complexes, then we have a ∆-functor (C• , Id):KI(Y )→ KI(A
qc
X ) .

Associating a K-injective resolution to each complex in AY leads to
a ∆-functor (ρ, θ):D(Y )→ KI(Y ) . In fact (ρ, θ) is an equivalence of ∆-
categories, see §1.7. This ρ is bounded below : an AY -complex E such
that Hi(E) = 0 for all i < n is quasi-isomorphic to its truncation τ

≥nE,
which is quasi-isomorphic to an injective complex F vanishing in all degrees
below n; and such an F is K-injective.

Finally, one defines f× to be the composition of the functors

D(Y )
ρ
−→ KI(Y )

C•−→ KI(A
qc
X )

natural
−−−−−→ D(A

qc
X ),

and checks, via (4.1.6), (4.1.7), (2.3.8.1) and (2.3.8)(v), that (f×, identity)
is indeed a bounded-below right ∆-adjoint of Rf∗ ◦ j . (Checking the ∆-
details can be tedious. Note that by (2.7.3.2) and (3.3.8), we can at least
assume that f× commutes with translation of complexes.)

That f× is bounded below results from (3.9.2.3) and the following
general fact.

Lemma (4.1.8). Let A#, B# be plump subcategories of the abelian
categories A, B respectively, let E = D#(A), D*

#
(A), or D*

#
(A), see (1.9),

and let E′ = D#(B), D*
#
(B), or D*

#
(B) . If the functor F : E → E′ has

a right adjoint G, then for any n, d ∈ Z :

F (E≤n) ⊂ E′
≤n+d ⇐⇒ G(E′

≥n) ⊂ E≥n−d .

Proof. Let B ∈ E′
≥n . For A = τ≤n−d−1G(B) , the natural map

α : A → G(B) induces homology isomorphisms in all degrees < n − d ,
see (1.10). But since F (A) ∈ E′

≤n−1 and τ≤n−1B ∼= 0, we have by adjoint-
ness and by (1.10.1.1):

α ∈ HomE

(
A, G(B)

)
∼= HomE′

(
F (A), B

)
∼= HomE′

(
F (A), τ≤n−1B

)
= 0.

Hence HjG(B) = 0 for all j < n− d , i.e., G(B) ∈ E≥n−d .
A dual argument gives the opposite implication. Q.E.D.

This completes the proof of Theorem (4.1), except for Lemma (4.1.5).
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Proof of (4.1.5). For constructing (−)cts let S be a small set of lfp OX -modules
such that every lfp OX -module is isomophic to a member of S, see (4.1.3.1). For any

M ∈ A
qc

X
let S↓M be the small category whose objects are all the maps s→M (s ∈ S),

a morphism from α : s→M to β : s′ →M being an A
qc

X
-map µ : s→ s′ with βµ = α .

Sending each α : s→M in S↓M to its source sα := s, we get a functor s
M

: S↓M → A
qc

X
.

For any D∈ F , the additive functor Dcts ∈ F is defined as follows:

Dcts(M) := colim
S↓M

D◦sM (M ∈ A
qc

X );

and for any A
qc

X
-map φ : M →M ′, Dcts(φ) is the A′-map induced by the functorial map

s
M
→ s

M′ given by composition with φ .45 The functorial map iD : Dcts(M)→ D(M)

is the one whose composition with the canonical map D(sα) = DsM(α) → Dcts(M) is
D(α) : D(sα)→D(M) for each object α : sα →M in S↓M .

Condition (4.1.5)(i) follows easily from the observation that when M is lfp, the

identity map of M is a final object in the category S↓M .
To prove (ii) we need:

(∗) : For any lfp E and directed system Nσ of quasi-coherent OX -modules the natural
map is an isomorphism

lim
−→σ

HomOX(E,Nσ) −→∼ HomOX(E, lim
−→σ

Nσ).

(Proof : Since X is concentrated, therefore Γ(X,−) commutes with lim
−→

[Kf, p. 641,

Prop. 6], so it suffices to prove the statement with Hom in place of Hom. Thus the

statement is local, and so equivalent to the analogous well-known—and easily verifiable—
one for modules over rings.)

Given a small directed system (Mγ , (φδγ : Mγ →Mδ)δ≥γ) in A
qc

X
, (∗) shows that

each map s → M := lim
−→

Mγ with s ∈ S is determined by a unique equivalence class of
maps s→Mγ (s fixed, γ variable), where [s→Mγ′ ] ≡ [s→Mγ′′ ] if and only if there

exists a commutative diagram
s −−−−−→ Mγ′y

yφγγ′
Mγ′′ −−−−−→

φγγ′′
Mγ

This is the least equivalence relation such that [s → Mγ ] ≡ [s → Mγ

φδγ
−−→ Mδ ] for

all δ ≥ γ. Moreover, A′-maps f : Dcts(M)→ A correspond naturally to families of maps
(fα : D(sα) → A)

α∈S↓M
such that for any OX -homomorphism µ : s′ → sα (s′ ∈ S),

fα◦µ = fα ◦D(µ). Hence an A′-map g : Dcts(M) → A corresponds to a family of maps
gα : D(sα)→ A indexed by OX -homomorphisms α : s→Mγ with variable s ∈ S and γ,

such that for any φ = φδγ (δ ≥ γ),
g
s→Mγ−→

φ
Mδ

= gs→Mγ

and such that for any OX -homomorphism µ : s′ → sα with s′ ∈ S,

gα◦µ = gα ◦D(µ).

One checks that an A′-map lim
−→

Dcts (Mγ) → A is specified by a family gα subject to

exactly the same conditions, whence the natural map is an isomorphism

lim
−→

Dcts(Mγ ) −→∼ Dcts(M) = Dcts(lim−→
Mγ),

proving (ii).

Then (iii) results by application of lim
−→

to (i), since by [GD, p. 320, (6.9.12)] every

M ∈ A
qc

X
is a lim
−→

of lfp OX -modules.

45 For example, if X is noetherian then Dcts(M) ∼= lim
−→

D(N) where N runs

through all finite-type OX -submodules of M .
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Again, [GD, p. 320, (6.9.12)] allows each M ∈ A
qc

X
to be represented in the form

M = lim
−→

(Mλ) with each Mλ lfp. From (∗) above we get a natural isomorphism

Dcts(M) ∼= lim
−→

D(Mλ).

Since lim
−→

preserves both exactness and f∗-acyclicity in A
qc

X
(see [Kf, p. 641, Thm. 8]

for acyclicity), assertion (v) and the first part of (vi) follow.

As for (iv), for any exact A
qc

X
-sequence (♯) : 0 → M ′ → M

ρ
−→ M ′′ → 0 we must

show exactness of the resulting sequence Dcts(M ′)→Dcts(M)→ Dcts(M ′′)→ 0. As in

the preceding paragraph, write M = lim
−→

(Mλ) with each Mλ lfp, and let φλ : Mλ →M

be the natural maps. Then (♯) is the lim
−→

of the exact A
qc

X
-sequences

(♯)λ : 0→ ker(ρφλ)→Mλ → im(ρφλ)→ 0.

Since Dcts commutes with lim
−→

and lim
−→

preserves exactness, we can replace (♯) by (♯)λ,

i.e., we may assume that M is lfp.

Now write M ′ = lim
−→

(M ′
µ) with lfp M ′

µ , so that as above, Dcts(M ′) ∼= lim
−→

D(M ′
µ).

If M ′′
µ is the cokernel of the natural composition M ′

µ →M ′ →M, then, M ′′
µ is lfp; and

since lim
−→

preserves exactness, M ′′ ∼= lim
−→

M ′′
µ and Dcts(M ′′) ∼= lim

−→
D(M ′′

µ ). Applying

lim
−→

to the exact sequences D(M ′
µ) → D(M) → D(M ′′

µ ) → 0, we conclude that Dcts is

right-exact.

Finally, for the last part of (vi), note that if D is exact then since R1f∗D(M) = 0

for all M ∈ A
qc

X
(because D(M) is f∗-acyclic), therefore f∗D is exact, and hence by (iv),

(f∗D)cts is right-exact. But since, as above, f∗ commutes with lim
−→

, there are functorial

isomorphisms

(f∗D)cts(M) ∼= lim
−→

f∗D(Mλ) ∼= f∗lim
−→

D(Mλ) ∼= f∗Dcts(M),

and so f∗Dcts is right-exact, as asserted. Q.E.D.

Exercises (4.1.9). (a) In (4.1.1), suppose only that X is noetherian as a topo-

logical space (resp. that both X and Y are concentrated). Then the conclusion is valid
for any scheme-map f : X → Y .

Hint. See the remarks just before the proof of (4.1), resp. [GD, p. 295, (6.1.10(i)

and (iii))]).

(b) If f : X → Y is a concentrated scheme-map and Y is a finite union of open

subschemes Yi with f−1Yi concentrated, then the conclusion of Theorem (4.1.1) holds.

Hint. Arguing as in [AJL ′, p. 60, 6.1.1], by induction on the least possible number

of Yi, one reduces via [GD, p. 296, (6.1.12), a)⇒c)] to where X itself is concentrated;
and then the remarks just before the proof of (4.1) apply.

(c) Let f : X →֒ Y be an open-and-closed immersion of concentrated schemes

(i.e., an isomorphism of X onto a union of connected components of Y ). Then the
sheaf-functors f∗ and f∗ are exact, so may also be regarded as derived functors.

Establish, for E ∈ D(Y ), F ∈ D(X), natural bifunctorial isomorphisms

HomD(X)(f∗E, F ) −→∼ HomD(X)(f
∗f∗E, f

∗f) ←−∼ HomD(Y )(E, f
∗F ),

whence, with f× as in (b), for F ∈ Dqc(Y ) there is a functorial isomorphism

ξ(F ) : f×F −→∼ f∗F,

corresponding under the preceding isomorphism (with E = f×F ) to the natural map
f∗f×F → F , and with inverse adjoint to the natural map f∗f∗F → F = f∗f∗F ⊕ g∗g∗F

where g is the inclusion (Y \X) →֒ Y .
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Verify that for the independent square

X
1

−−−−−→ X

1

y τ

yf
X −−−−−→

f
Y

the associated map θτ : f∗f∗ → 1∗1∗ = 1 is the identity, and hence the functorial
base-change map from (3.10.2.1)(c)

βτ : 1∗f× = f× → f∗ = 1×f∗

is just the above isomorphism ξ.

Deduce (or prove directly) that ξ is a pseudofunctorial isomorphism. (Cf. (4.6.8),
(4.8.1) and (4.8.7) below.)

(d) (Cf. [Kn, p. 43, Thm. 4].) Let f : X → Y be as in Theorem (4.1.1), with Y

quasi-compact, and let d be an integer as in (3.9.2.3). Deduce from (4.1.1) a natural

bifunctorial isomorphism

HomX(A, H−df×(B)) −→∼ HomY (Rdf∗(A), B)

for all quasi-coherent OX -modules A and all OY -modules B.

For the smallest such d , i.e., dim+
Rf∗|Dqc(X)

, the quasi-coherent OX -module

Df := H−df×OY is the lowest-degree nonvanishing homology of f×OY . When f
is proper, Df is often called a relative dualizing sheaf for f . (But certain features of the

duality theory for sheaves do not just come out of the abstract theory—see [Kn], [S].)

(e) Show that the inclusion A
qc

X
→֒ AX has a right inverse. Deduce that every

M ∈ A
qc

X
admits a monomorphism into an A

qc

X
-injective OX -module.

(f) Show that the functor (−)cts : F → F constructed in the proof of (4.1.5) is

right-adjoint to the inclusion into F of the full subcategory of functors that commute

with filtered colimits (see [M, p. 212]). Also, the restriction of (−)cts to the full subcat-
egory of right-exact functors is right adjoint to the inclusion of the full subcategory of

cocontinuous functors.

4.2. Sheafified Duality—preliminary form

Theorem (4.2). Let f : X → Y, f× and τ be as in Theorem (4.1.1).
Then with Hom := HomD(Y ), for any E ∈ Dqc(Y ), F ∈ Dqc(X) and
G ∈ D(Y ), the composite map

Hom
(
E, Rf∗RHom

•
X(F, f×G)

)

(3.2.1.0)
−−−−−→ Hom

(
E, Rf∗RHom

•
X(Lf∗

Rf∗F, f
×G)

)

(3.2.3.2)
−−−−−→ Hom

(
E, RHom

•
Y (Rf∗F, Rf∗f

×G)
)

via τ
−−−−−→ Hom

(
E, RHom

•
Y (Rf∗F, G)

)

is an isomorphism.
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Proof.46 Using (2.6.2)∗ and (3.2.3), and checking all the requisite
commutativities, one shows for fixed F ∈ Dqc(Y ) that the composite
duality map

(4.2.1)

Rf∗RHom
•
X(F, f×G)

(3.2.1.0)
−−−−−→ Rf∗RHom

•
X(Lf∗

Rf∗F, f
×G)

(3.2.3.2)
−−−−−→ RHom

•
Y (Rf∗F, Rf∗f

×G)

via τ
−−−−−→ RHom

•
Y (Rf∗F, G)

(functorial in G) is right-conjugate (see (3.3.5)) to the functorial (in E )
projection map p2 : E⊗

=
Rf∗F → Rf∗(Lf

∗E⊗
=
F ), which, by (3.9.4), is an

isomorphism when E ∈ Dqc(Y ). Now apply Exercise (3.3.7)(b) (with
Y = E and X = G). Q.E.D.

For proper maps f : X → Y one writes f ! instead of f×. When Y
is noetherian and f is proper, it holds that Rf∗D

−
c (X) ⊂ D−

c (Y ) (where
the subscript c indicates “coherent homology”)—see [H, p. 89, Prop. 2.2]
in which, owing to (3.9.2.3) above, it is not necessary to assume that X
has finite Krull dimension. So if F ∈ D−

c (X) and G ∈ D+
qc(Y ), then

Rf∗F ∈ D−
c (Y ) and f !G ∈ D+

qc(X), whence both Rf∗RHom
•
X(F, f !G)

and RHom
•
Y (Rf∗F, G) are in D+

qc(X), see [H, p. 92, 3.3] or [AJL ′, p. 35,

3.2.4]. One concludes that:

Corollary (4.2.2). If f : X → Y is a proper map of noetherian
schemes then for all F ∈D−

c (X) and G ∈D+
qc(Y ), the duality map (4.2.1)

is an isomorphism

Rf∗RHom
•
X(F, f !G) −→∼ RHom

•
Y (Rf∗F, G).

One of our goals is to prove this Corollary under considerably weaker
hypotheses—see (4.4.2) below. For this purpose we need some facts about
pseudo-coherence, reviewed in the following section.

Exercises (4.2.3). Let X be a concentrated scheme. Ex. (4.1.9)(e) says that the

inclusion A
qc

X
→֒ A

X
has a right adjoint Q

X
, the “quasi-coherator.” (Cf. [I, p. 186, §3].)

(a) Show that RQ
X

is right-adjoint to the natural functor j : D(A
qc

X
) → D(A

X
);

in other words, RQ
X

= (1X)×. (Cf. [AJL ′, p. 49, 5.2.2], where “let” in the second line

should be “let j be the”.)

In the rest of these exercises, assume all schemes to be quasi-compact and separated ,
so that by (3.9.6), j induces an equivalence jqc : D(A

qc
) ≈→ Dqc. Also, Q denotes the

functor jqc ◦RQ, right-adjoint (from (a)) to the inclusion Dqc →֒D ; and [−,−] denotes

the functor Q◦RHom
•(−,−) : D×D→ Dqc.

(b) Redo 3.6.10 with S the category of quasi-compact separated schemes and with
X* = X* := Dqc(X). (Recall (2.5.8.1), (3.9.1), (3.9.2); and use the preceding [−,−].)

(c) For any scheme-map f : X → Y there are natural functorial isomorphisms

RΓ(X,QX−) −→∼ RΓ(X,−), Rf∗QX −→
∼ QY Rf∗, f×QY −→

∼ f×.

46 Cf. [V, p. 404, Proof of Prop. 3].
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(d) Deduce from Theorem (4.2) a functorial isomorphism

Rf∗[F, f×G]X −→
∼ [Rf∗F, G]Y

to which application of the functor H0RΓ(Y,−) produces the adjunction isomorphism

HomDqc(X)(F, f
×G) −→∼ HomD(Y )(Rf∗F,G).

In particular, if f is an open immersion then there is a functorial isomorphism

f×G −→∼ f∗[Rf∗OX , G]Y (G ∈ D(Y )).

(e) Under the conditions of Theorem (4.1.1), show that the map right-conjugate

to p1 : Rf∗E⊗
=
F → Rf∗(E⊗

=
Lf∗F ) (where F ∈ Dqc(Y ) is fixed, and both functors of

E ∈ Dqc(X) take values in D(Y ) ) is a functorial isomorphism

[Lf∗F, f×G]X −→
∼ f×[F, G]Y (G ∈ D(Y )),

adjoint to the natural composition Rf∗[Lf∗F, f×G]X
(d)
−−→ [Rf∗Lf∗F, G]Y → [F, G]Y .

(f) Establish a natural commutative diagram, for F ∈ Dqc(Y ), G ∈ D(Y ):

Rf∗[Lf∗F, f×G]X ˜−−−−−→
(d)

[Rf∗Lf∗F, G]Yy
y

Rf∗RHom
•
X

(Lf∗F, f×G) −−−−−→ RHom
•
Y

(Rf∗Lf∗F, G)

(3.2.3.2)

y≃

y
RHom

•
Y

(F, Rf∗f×G) −−−−−→
via τ

RHom
•
Y

(F, G),

and show that the isomorphism in (e) is adjoint to the map obtained by going from the

upper left to the lower right corner of this diagram.

(g) Show, via the lower square in (f), or via (3.5.6)(e), or otherwise, that the

following natural diagram commutes:

Rf∗f×G
(4.2.1)
−−−−−→ RHom

•
Y

(Rf∗OX , G)

τ

y
y

G ˜−−−−−−→ RHom
•
Y

(OY , G)

In the next three exercises, for a scheme-map h we use the abbreviations h∗ := Rh∗
and h∗ := Lh∗.

(h) Let X
f
−→ Y

g
−→ Z be maps of concentrated schemes. Referring to (e), show

that for any E, F ∈ Dqc(Z), the following diagram of natural isomorphisms commutes.

[(gf)∗E, (gf)×F ]X −−−−−→ [f∗g∗E, g×f×F ]X −−−−−→ f×[g∗E, g×F ]Yy
y

(gf)×[E,F ]Z −−−−−−−−−−−−−−−−−−−−−−−−−−−−→ f×g×[E,F ]Z

(i) Let βσ : v∗g× → f×u∗ be as in (3.10.2.1)(c). Taking into account (3.9.1), show

that for any E, F ∈ Dqc(Z) the following diagram commutes.

v∗f×[E,F ]Y
(e)

←−−−−− v∗[f∗E, f×F ]X
(3.2.4)
−−−−−→ [v∗f∗E, v∗f×F ]X′

βσ

y via (3.6.4)∗

yand βσ

g×u∗[E,F ]Y −−−−−→
(3.2.4)

g×[u∗E, u∗F ]Y ′ ←−−−−−
(e)

[g∗u∗E, g×u∗F ]X′
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(j) Let φσ : v∗g× → f×u∗ be as in (3.10.4). Taking into account (3.9.2.1), show
that for any E, F ∈ Dqc(Z) the following diagram, with θ′ as near the beginning of §3.10,

commutes.

v∗g×[E,F ]Y ′
(e)

←−−−−− v∗[g∗E, g×F ]X′
(3.5.4.1)
−−−−−−→ [v∗g∗E, v∗g×F ]X

φσ

y via θ′σ

yand φσ

f×u∗[E,F ]Y ′ −−−−−−→
(3.5.4.1)

f×[u∗E, u∗F ]Y ←−−−−−
(e)

[f∗u∗E, f×u∗F ]X

4.3. Pseudo-coherence and quasi-properness

(4.3.1). Let us recall briefly some relevant definitions and results
concerning pseudo-coherence. Details can be found in [I], as indicated, or,
perhaps more accessibly, in [TT, pp. 283ff, §2].47

Let X be a scheme. A complex F ∈Db(X) is pseudo-coherent if each
x ∈ X has a neighborhood in which F is D-isomorphic to a bounded-
above complex of finite-rank free OX -modules [I, p. 175, 2.2.10]. If X
is divisorial, and either separated or noetherian, such an F is (globally)
D(X)-isomorphic to a bounded-above complex of finite-rank locally free
OX -modules [ibid., p. 174, Cor. 2.2.9]. If OX is coherent, pseudo-coherence
of F means simply that F has coherent homology [ibid., p. 115, Cor. 3.5 b)].
If X is noetherian, pseudo-coherence means that F is D(X)-isomorphic
to a bounded complex of coherent OX -modules [ibid., p. 168, Cor. 2.2.2.1].

A scheme-map f : X → Y is pseudo-coherent if it factors locally as
f = p ◦ i where i : U → Z (U open in X ) is a closed immersion such that
i∗OU is pseudo-coherent on Z, and p : Z → Y is smooth [ibid., p. 228,
Déf. 1.2]. Pseudo-coherent maps are locally finitely-presentable (smooth
maps being so by definition).

For example, any smooth map is pseudo-coherent, any regular immer-
sion (= closed immersion corresponding to a quasi-coherent ideal generated
locally by a regular sequence) is pseudo-coherent, and any composition of
pseudo-coherent maps is still pseudo-coherent [ibid., p. 236, Cor. 1.14].48

If f : X → Y is a proper map, and L is an f -ample invertible sheaf,
then f is pseudo-coherent if and only if the OY -complex Rf∗(L

⊗−n) is
pseudo-coherent for all n ≫ 0. (The proof is indicated below, in (4.3.8)).
In particular, a finite map f : X → Y is pseudo-coherent if and only if
f∗OX is a pseudo-coherent OY -module.

For noetherian Y , any finite-type map f : X → Y is pseudo-coherent.
Pseudo-coherence persists under tor-independent base change [I, p. 233,
Cor. 1.10]. Hence, by descent to the noetherian case [EGA, IV, (11.2.7)
and its proof], any flat finitely-presentable scheme-map is pseudo-coherent.

47 Though [I] is written in the language of ringed topoi, the reader who, like me, is
uncomfortable with that level of generality, ought with sufficient patience to be able to
translate whatever’s needed into the language of ringed spaces. A good starting point is
2.2.1 on p. 167 of loc. cit., with examples b) on p. 88 and 2.15 on p. 108 kept in mind.

48 In the triangle at the top of [ibid., p. 234], the map X → Z should be labeled h.
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Kiehl’s Finiteness Theorem [Kl, p. 315, Thm. 2.9′ ] (due to Illusie for
projective maps [I, p. 236, Thm. 2.2]) generalizes preservation of coherence
by higher direct images under proper maps of noetherian schemes:

If f : X → Y is a proper pseudo-coherent map of quasi-compact schemes,
and if F ∈Db(X) is pseudo-coherent, then so is Rf∗F ∈Db(Y ).49

(4.3.2). For simplicity, we introduced pseudo-coherence only for com-

plexes in Db, but that won’t be enough. So let us recall [I, p. 98, Déf. 2.3]:
Let X be a ringed space, and let n ∈ Z. A complex F ∈ D(X) is said

to be n-pseudo-coherent if locally it is D-isomorphic to a bounded-above
complex E such that Ei is free of finite rank for all i ≥ n. It is equivalent
to say that each x ∈ X has a neighborhood U over which there exists such
an E = EU together with a quasi-isomorphism EU → F |U .

If OX is coherent, then F ∈D−(X) is n-pseudo-coherent ⇔ Hi(F ) is
coherent for all i > n and Hn(F ) is of finite type [I, p. 115, Cor. 3.5 b)].

F is called pseudo-coherent if F is n-pseudo-coherent for all n ∈ Z.
For F ∈ Db(X), this defining condition is equivalent to the one given
in (4.3.1). Moreover, when X is a quasi-compact separated scheme, then in
view of (3.9.6)(a), [I, p. 173, 2.2.8] shows the same for any F ∈ D(X) .

(4.3.3). Now the above Finiteness Theorem can be put more precisely
(as can be seen from the statement of [Kl, p. 308, Satz 2.8] and the proof
of [ibid., p. 310, Thm. 2.9]):

For any proper pseudo-coherent map f : X → Y of quasi-compact schemes,
there is an integer k such that for any n ∈ Z and any n-pseudo-coherent
complex F ∈Db(X), the complex Rf∗F is (n+ k)-pseudo-coherent.

Definition (4.3.3.1). A map f :X → Y is quasi-proper if Rf∗ takes
pseudo-coherent OX -complexes to pseudo-coherent OY -complexes.

Corollary (4.3.3.2). Proper pseudo-coherent maps are quasi-proper.
In particular, flat finitely-presentable proper maps are quasi-proper.

Proof. The question is easily seen to be local on Y , so we may assume
that both X and Y are quasi-compact. Let F be a pseudo-coherent OX -
complex. It follows from [I, p. 96, Prop. 2.2, b)(ii ′ )] that for each n, the

truncation τ
≥nF ∈ Db(X) (see §1.10) is n-pseudo-coherent, and so there

exists an integer k depending only on f such that Rf∗τ≥nF is (n + k)-
pseudo-coherent.

Let C ∈ (Dqc)≤n−1 be the summit of a triangle whose base is the
natural map F → τ

≥nF . With d be as in (3.9.2), application of Rf∗
to this triangle shows that Rf∗(C) is exact in all degrees ≥ n+ d− 1,
so the natural map is an isomorphism τ

≥n+dRf∗F −→
∼ τ

≥n+dRf∗τ≥nF

49 The theorem actually involves a notion of pseudo-coherence of a complex relative
to a map f ; but when f itself is pseudo-coherent, relative pseudo-coherence coincides
with pseudo-coherence [I, p. 236, Cor. 1.12].
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(see (1.4.5), (1.2.2)). Hence by [I, p. 96, Prop. 2.2, b)(ii ′ )], τ
≥n+dRf∗F is

(n+ d+ k)-pseudo-coherent for all n, whence Rf∗F is pseudo-coherent.
Q.E.D.

Remark. A projective map is quasi-proper iff it is pseudo-coherent, see
the Remark following (4.7.3.3) below. See also Example (4.3.8).

As noted above, finite-type maps of noetherian schemes are pseudo-
coherent. Using Exercise (4.3.9) below, one concludes that:

Corollary (4.3.3.3). If Y is noetherian then a map f :X → Y is
proper iff it is finite-type, separated and quasi-proper.

The next two Lemmas are elementary.

Lemma (4.3.4). For any scheme-map f : X → Y , if G ∈ D(Y ) is
n-pseudo-coherent then so is Lf∗G.

This is proved by reduction to the simple case where G is a bounded-
above complex of finite-rank free OY -modules, vanishing in all degrees < n ,
cf. [I, p. 106, proof of 2.13 and p. 130, 4.19.2].

Lemma (4.3.5). If F ∈ D(X) is n-pseudo-coherent and if the

complex G ∈ Dqc(X) is such that Hm(G) = 0 for all m < r then
Hj

RHom
•
X(F, G) is quasi-coherent for all j < r − n.

Thus if F is pseudo-coherent then RHom
•
X(F, G) ∈ Dqc(X).

Proof. Replacing G by τ +G (1.8.1), we may assume that Gm = 0
for m < r. Also, the question being local, we may assume that F is
bounded above and that F i is free of finite rank for i ≥ n. If F ′ ⊂ F
is the bounded free complex which vanishes in degree < n and agrees
with F in degree ≥ n, then by (1.4.4) and (1.5.3) we have a triangle (with
HX = RHom

•
X ):

HX(F/F ′, G)→HX(F, G)→HX(F ′, G)→HX(F/F ′, G)[1] .

The complex HX(F/F ′, G) vanishes in degree ≤ r − n ; and so from the
exact homology sequence associated (as in (1.4.5)) to the triangle, we get
isomorphisms

HjHX(F, G) −→∼ HjHX(F ′, G) (j < r − n).

A simple induction on the number of degrees in which F ′ doesn’t vanish
(using [H, p. 70, (1)] to pass from n to n+1) yields HX(F ′, G) ∈ Dqc(X),
whence the assertion. Q.E.D.

There results a generalization of (4.2.2), with a similar proof (given
(4.3.3.2) and (4.3.5)):
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Corollary (4.3.6). If f : X → Y is a quasi-proper concentrated
scheme-map, with X concentrated, then for all pseudo-coherent F ∈ D(X)
and all G ∈D+

qc(Y ), the duality map (4.2.1) is an isomorphism

Rf∗RHom
•
X(F, f×G) −→∼ RHom

•
Y (Rf∗F, G).

Here is a fact needed in the proof of Theorem (4.4.1), and elsewhere.

Lemma (4.3.7). Let f : X → Y be a finitely-presentable scheme-
map, and let ϕ : A1 → A2 be a map in D+

qc(X). Suppose that for every

pseudo-coherent F ∈ D(X), the resulting map

(4.3.7.1) Rf∗RHom
•
X(F, A1)→ Rf∗RHom

•
X(F, A2)

is an isomorphism. Then ϕ is an isomorphism.

Proof. There are functorial isomorphisms (see (3.2.3.3), (2.5.10)(b)):

RΓY Rf∗RHom
•
X −→

∼
RΓXRHom

•
X −→

∼
RHom•

X .

Application of the functor H0
RΓY to (4.3.7.1) gives then, via (2.4.2), an

isomorphism

(4.3.7.2) HomD(X)(F, A1) −→
∼ HomD(X)(F, A2) .

Let C ∈D+
qc(X) be the summit of a triangle with base ϕ. The exact

homology sequence (1.4.5)H of this triangle shows, in view of (1.2.2), that
ϕ is an isomorphism iff Hn(C) = 0 for all n ∈ Z.

Let us suppose that Hn(C) = 0 for all n < m while Hm(C) 6= 0,
and derive a contradiction. The whole question being local on Y , we
may assume that Y is affine. Since Hm(C) is quasi-coherent, there ex-
ists then a finitely-presentable OX -module E together with a non-zero
map E → Hm(C) [GD, p. 320, (6.9.12)].50 By [EGA, IV, (8.9.1)],
there exists a noetherian ring R, a map Y → Spec(R), a finite-type map
X0 → Spec(R), and a coherent OX0

-module E0, such that, up to iso-
morphism, X = X0 ⊗R Y and, with w : X → X0 the resulting map,
E = w∗E0 = H0(Lw∗E0). It will be convenient to set F := Lw∗E0[−m],
so that τ

≥mF
∼= E[−m] (see §1.10). Since X0 is noetherian, therefore E0

is pseudo-coherent, and hence, by (4.3.4), so is F .
Now by (1.4.2.1) there is an exact sequence (with Hom := HomD(X)):

Hom(F,A1)
ϕ
−→ Hom(F,A2) −→ Hom(F,C) −→ Hom(F,A1[1]) −→ Hom(F,A2[1])∥∥∥

∥∥∥
Hom(F [−1],A1) −→

ϕ
Hom(F [−1],A2)

50 Recall that finitely-presentable maps are quasi-compact and quasi-separated, by

definition [GD, p. 305, (6.3.7)], so that X is quasi-compact and quasi-separated.
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where, F and F [−1] being pseudo-coherent, the maps labeled ϕ are iso-
morphisms, see (4.3.7.2). Thus,

0 = Hom
(
F, C

)

∼= Hom
(
τ
≥mF, C

)
see (1.10.1.2)

∼= Hom
(
E[−m], C

)

∼= Hom
(
E[−m], τ

≤mC
)

see (1.10.1.1)

∼= Hom
(
E[−m], (Hm(C))[−m]

)
see (1.2.3)

6= 0,

a contradiction. Q.E.D.

Example (4.3.8). Let f : X → Y be a proper map of schemes, and let L be an
f -ample invertible sheaf [EGA, II, p. 89, Déf. (4.6.1)]. Then f is pseudo-coherent if

and only if the OY -complex Rf∗(L⊗−n) is pseudo-coherent for all n≫ 0.

Proof. If f is pseudo-coherent then Rf∗(L⊗−n) is pseudo-coherent, by the

Finiteness Theorem (4.3.3) (in fact—since f is projective locally on Y [EGA, II, p. 104,
Thm. (5.5.3)]—by [I, p. 236, Thm. 2.2 and Cor. 1.12]).

We first illustrate the converse by treating the special case where f is finite and
f∗OX is a pseudo-coherent OY -module. To check that f is pseudo-coherent, we may

assume that Y—and hence X—is affine, so that for some r > 0, f factors as f = pi

with p : Ar
Y
→ Y the (smooth) projection and i : X →֒ Ar

Y
a closed immersion; and we

need to show that i∗OX is pseudo-coherent.

In algebraic terms, we have a finite ring-homomorphism A → B = A[t1, . . . , tr],

such that the A-module B is resolvable by a complex E• of finite-type free A-modules
[I, p. 160, Prop. 1.1]. Let T := (T1, . . . , Tr) be a sequence of indeterminates, and

let ϕ : B[T ] = B[T1, . . . , Tr ] → B be the unique B-homomorphism such that
ϕ(Tk) = tk (1 ≤ k ≤ r). Then B is resolved as a B[T ]-module by the Koszul com-

plex K• on (T1−t1, . . . , Tr−tr). Since the A[T ]-module B[T ] is resolved by E•⊗AA[T ],

therefore the free B[T ]-modules Kj can be resolved by finite-type free A[T ]-modules,
whence so can B, giving the desired pseudo-coherence of i∗OX .

Now let us treat (sketchily) the general case. Assuming, as we may, that Y is

affine, we have for some r > 0, a factorization f = pi where p : Pr
Y
→ Y is the (smooth)

projection and i : X →֒ Pr
Y

is a closed immersion [EGA, II, p. 104, (5.5.4)(ii)]. With

γ : X → X ×Y Pr
Y

= Pr
X

the graph of i, there is a natural diagram

X
γ

−−−−−→ Pr
X

F
−−−−−→ Pr

Y

q

y
yp

X −−−−−→
f

Y

and it needs to be shown that i∗OX = RF∗(γ∗OX) is pseudo-coherent. Note that since

γ is a regular immersion [Bt, p. 429, Prop. 1.10], therefore γ∗OX is pseudo-coherent. So

it’s enough to show that F is quasi-proper.
By [EGA, II, p. 91, (4.6.13)(iii)], L := q∗L is F -ample; and for n≫ 0, say n ≥ m,

RF∗(L⊗−n) = RF∗(q∗(L⊗−n)) ∼=
(3.9.5)

p∗Rf∗(L⊗−n)

is pseudo-coherent (4.3.4).
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Imitating the proof of [I, p. 238, Thm. 2.2.2], we can then reduce the problem
to showing that RF∗(E′) is pseudo-coherent for any bounded OX -complex E′ whose

component in each degree is a finite direct sum of sheaves of the form L⊗−n ; and this

is easily done by induction on the number of nonzero components of E′. Q.E.D.

Exercises (4.3.9). (a) (Curve selection.) Let Z be a noetherian scheme, Z ⊂ Z

a dense open subset, and W := Z \Z. Show that for each closed point w ∈W there is an

integral one-dimensional subscheme C ⊂ Z such that w is an isolated point of C ∩W .

Hint. Use the local nullstellensatz : in any noetherian local ring A with dimA ≥ 1,

the intersection of all those prime ideals p such that dimA/p = 1 is the nilradical of A .

(For this, note that the maximal ideal is contained in the union of all the height one
primes, so that when dimA > 1 there must be infinitely many height one primes; and

deduce that if q ⊂ A is a prime ideal with dimA/q > 1 and a /∈ q then there exists a
prime ideal q′ 6= m such that q′ ) q and a /∈ q′.)

(b) Prove that if f : X → Y is a finite-type separated map of noetherian schemes

such that f∗(OX/I) is coherent for every coherent OX -ideal I, then f is proper. In
particular, if f is quasi-proper then f is proper.

Outline. If not, let Z ⊂ X be a closed subscheme of Z minimal among those
for which the restriction of f is not proper. Then Z is integral [EGA, II, p. 101, 5.4.5].

Let f̄ : Z → Y be a compactification of f |Z , see [C′ ], [Lt], [Vj], that is, f = f̄v with f̄

proper and v : Z →֒ Z an open immersion. If dimZ > 1 then by (a) there is a curve on

Z for which the restriction of f is not proper, contradiction. So the problem is reduced
to where X is integral, of dimension 1. Then if dimY = 0, and f is not proper, we may

assume that Y = Spec(k), k a field, whence X is affine, and f∗OX is not coherent.

If dim(Y ) = 1 and f̄ : X → Y is a compactification of f , then the map f̄ is finite;

and if u : X →֒ X is the inclusion, u∗OX is coherent, whence, by [EGA, IV, p. 117,

(5.10.10)(ii)], X = X.

4.4. Sheafified Duality, Base Change

Unless otherwise indicated, all schemes—and hence all scheme-maps—
are assumed henceforth to be concentrated. All proper and quasi-proper
maps are assumed to be finitely presentable.

As in §4.3, a scheme-map f : X → Y is called quasi-proper if Rf∗ takes
pseudo-coherent OX -complexes to pseudo-coherent OY -complexes. For ex-
ample, when Y is noetherian and f is of finite type and separated then
f is quasi-proper iff it is proper, see (4.3.3.3). We will need the nontrivial
fact that quasi-properness of maps is preserved under tor-independent base
change [LN, Prop. 4.4].

The following abbreviations will be used, for a scheme-map h or a
scheme Z :

h∗ := Rh∗ , h∗ := Lh∗,

HZ := RHom
•
Z , HZ := RHom•

Z ,

⊗Z := ⊗
=
Z , ΓZ(−) := RΓ(Z,−).

Recall the characterizations of independent fiber square (3.10.3), of
finite tor-dimension map (2.7.6), and of the “dualizing pair” (f×, τ)
in (4.1.1). We write f ! for f× when f is quasi-proper.



4.4. Sheafified Duality, Base Change 167

Recall also the natural map (3.5.4.1)= (3.5.4.4) (see (3.5.2)(d)) asso-
ciated to any ringed-space map f : X → Y ,

(4.4.0) ν : f∗HX(F,H)→HY (f∗F, f∗H)
(
F,H ∈ D(X)

)
.

The composition (3.2.3.2) ◦(3.2.1.0) in (4.2.1) is an instance of this map.
(See the line immediately following (3.5.4.2).)

Theorem (4.4.1). Suppose one has an independent fiber square

X ′ v
−−−−→ X

g

y
yf

Y ′

σ

−−−−→
u

Y

with f (hence g) quasi-proper and u of finite tor-dimension.

Then for any F ′ ∈ Dqc(X ′) and G ∈D+
qc(Y ), the composition

g∗HX′(F ′, v∗f !G)
ν

−−−−−→ HY ′(g∗F
′, g∗v

∗f !G)

˜−−−−−→
(3.10.3)

HY ′(g∗F
′, u∗f∗f

!G) −−−→
τ
HY ′(g∗F

′, u∗G)

is an isomorphism.

If u and v are identity maps then so is the map labeled (3.10.3), and
the resulting composition (with F := F ′ )

δ(F,G) : f∗HX(F, f !G)
ν
−→ HY (f∗F, f∗f

!G)
τ
−→ HY (f∗F,G)

is just the duality map (4.2.1), whence the following generalization
of (4.3.6):

Corollary (4.4.2) (Duality). Let f : X → Y be quasi-proper. Then
for any F ∈ Dqc(X) and G ∈ D+

qc(Y ), the duality map δ(F,G) is an
isomorphism.

Moreover:

Corollary (4.4.3) (Base Change). In (4.4.1), the functorial map ad-
joint to the composition

g∗v
∗f !G ˜−−−−−→

(3.10.3)
u∗f∗f

!G −−→
u∗τ

u∗G,

is an isomorphism

β(G) = βσ(G) : v∗f !G −→∼ g!u∗G
(
G ∈D+

qc(Y )
)
.
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To deduce (4.4.3) from (4.4.1), let F ′ ∈ Dqc(X
′) and consider the next

diagram, whose commutativity follows from the definition of β = β(G) :

(4.4.3.1)

g∗HX′(F ′, v∗f !G)
β

−−−−→ g∗HX′(F ′, g!u∗G)

ν

y
yν

HY ′(g∗F
′, g∗v

∗f !G)
β

−−−−→ HY ′(g∗F
′, g∗g

!u∗G)

(3.10.3)

y≃

yτ

HY ′(g∗F
′, u∗f∗f

!G) −−−−→
τ

HY ′(g∗F
′, u∗G)

By (4.4.1), τ ◦ (3.10.3) ◦ν is an isomorphism; and by (4.4.2) (a special case
of (4.4.1)), the right column is an isomorphism too. (Note that by (2.7.5)(d)
and (3.9.1), u∗G ∈D+

qc(Y
′).) It follows that the top row is an isomorphism,

and applying the functor H0ΓY ′ we get as in (4.3.7.2) an isomorphism

HomD(X′)(F
′, v∗f !G)

via β
−−−→ HomD(X′)(F

′, g!u∗G);

and since this holds for any F ′ ∈ Dqc(X
′) , in particular for F ′ = v∗f !G

and F ′ = g!u∗G, it follows that β itself is an isomorphism. Q.E.D.

Remarks (4.4.4). (a) Conversely, the commutativity of (4.4.3.1)
shows that (4.4.2) and (4.4.3) together imply (4.4.1).

(b) An example of Neeman [N, p. 233, 6.5], with f the unique map
Spec(Z[T ]/(T 2)) → Spec(Z) (T an indeterminate), shows that (4.4.2)
and (4.4.3) can fail when G is not bounded below.

(c) In (4.4.1), tordim v ≤ tordim u <∞ .
To see this, let x′ ∈ X ′, x = v(x′), y′ = g(x′), y = u(y′) = f(x),

A = OY,y , A′ = OY ′,y′ , B = OX,x , and B′ = OX′,x′ . By (2.7.6.4),
the A-module A′ has a flat resolution P• of length d := tordim u < ∞ ;
and so by (i) in (3.10.2), P• ⊗A B is a flat resolution of the B-module
B∗ = A′ ⊗A B. Since B′ is a localization of B∗, it holds for any B-
module M that

TorBj (B′,M) = B′ ⊗B∗ TorBj (B∗,M) = 0 (j > d);

and it follows then from (2.7.6.4) that tordim v ≤ d .

(d) By definition, β is the unique functorial map making the following
diagram commute:

g∗v
∗f ! g∗β
−−−−→ g∗g

!u∗

(3.10.3)

y≃

yτg

u∗f∗f
! −−−−→

u∗τf
u∗

This diagram generalizes [H, p. 207, TRA 4.]
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4.5. Proof of Duality and Base Change: outline

In describing the organization of the proof of (4.4.1), we will attach
symbols to labels of the form (4.4.x) to refer to special cases of (4.4.x):

(4.4.1)∗pc := (4.4.1) with F ′ = v∗F , where F ∈ D(X) is pseudo-
coherent.

(4.4.2)pc := Corollary (4.3.6) := (4.4.1)∗pc with u = v = identity.
(4.4.3)o := (4.4.3) with the map u an open immersion.

(4.4.3)af := (4.4.3) with the map u affine.

Having already proved (4.4.2)pc , our strategy is to prove the chain of
implications

(4.4.2)pc⇔ (4.4.1)∗pc⇒
(
(4.4.3)o+(4.4.3)af

)
⇒ (4.4.3)⇒ (4.4.3)o⇔ (4.4.2).

By (4.4.4)(a), then, (4.4.1) results.

Remark (4.5.1). For arbitrary finitely-presentable f , the assertions
(4.4.1)–(4.4.3) are meaningful—though not necessarily true—with (f×, g×)
in place of (f !, g!) . As will be apparent from the following proofs, the
equivalence (4.4.1) ⇔ (4.4.2) + (4.4.3) holds in this generality, as do the
preceding implications except for (4.4.2)pc⇒ (4.4.1)∗pc.

4.6. Steps in the proof

I. Proof of (4.4.2)pc

This has already been done (Corollary (4.3.6)).

II. (4.4.2)pc⇔⇔⇔ (4.4.1)∗pc

The implication ⇐ is trivial.
The implication ⇒ follows at once from:

Lemma (4.6.4). With the assumptions of (4.4.1)∗pc , and δ the duality
map in (4.4.2), there is a natural commutative D(Y ′)-diagram

u∗f∗HX(F, f !G)
u∗δ

−−−−−→ u∗HY (f∗F, G)

≃

y
y≃

g∗HX′(v∗F, v∗f !G) −−−−−→
(4.4.1)∗pc

HY ′(g∗v
∗F, u∗G)

in which the vertical arrows are isomorphisms.

Commutativity in (4.6.4) is derived from the following relation—to be
proved below—among the canonical maps ν, θ (3.7.2), and ρ (3.5.4.5):
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Lemma (4.6.5). For any commutative diagram of ringed-space maps

(4.6.5.1)

X ′ v
−−−−→ X

g

y
yf

Y ′ −−−−→
u

Y

and F ∈ Dqc(X), H ∈ D(X), the following diagram commutes:

u∗f∗HX(F, H)
ν

−−−−−−−−−−−−−−−−−−−−−−−−→ u∗HY (f∗F, f∗H)

θ

y
yρ

g∗v
∗HX(F, H) HY ′(u∗f∗F, u

∗f∗H)

ρ

y
y(1,θ)

g∗HX′(v∗F, v∗H) −−→
ν
HY ′(g∗v

∗F, g∗v
∗H) −−−→

(θ,1)
HY ′(u∗f∗F, g∗v

∗H)

Indeed, if (4.6.5.1) is an independent fiber square of scheme-maps, so that
by (3.10.3), θ(F ) : u∗f∗F → g∗v

∗F is an isomorphism, and if G ∈ D(Y ),
H := f×G , so that there is a natural map f∗H → G (see (4.1.1)), then
we get (a generalization of) commutativity in (4.6.4) by gluing the D(X ′)-
diagram in (4.6.5) and the following natural commutative diagram along
the common column:

u∗HY (f∗F, f∗H) −−−−−−−−−−−−−−−−−−−−−−−−−−→ u∗HY (f∗F, G)

ρ

y
yρ

HY ′(u∗f∗F, u
∗f∗H) HY ′(u∗f∗F, u

∗f∗H) −→ HY ′(u∗f∗F, u
∗G)

(1,θ)

y (θ−1,1)

y≃ ≃

y(θ−1,1)

HY ′(u∗f∗F, g∗v
∗H) ˜−−−−−→

(θ−1, θ−1)
HY ′(g∗v

∗F, u∗f∗H) −→ HY ′(g∗v
∗F, u∗G)

Here is where we need f to be quasi-proper: since F is, by assumption,
pseudo-coherent, therefore f∗F is pseudo-coherent. In view of (4.4.4)(c),
the following Proposition gives then the isomorphism assertion in (4.6.4).

Proposition (4.6.6). Let u : Y ′ → Y be any scheme-map of finite
tor-dimension, and let H ∈ D+(Y ) . Then there is an integer e such that
for all m ∈ Z and all m-pseudo-coherent C ∈ D(Y ), the map

ρu : u∗HY (C, H)→HY ′(u∗C, u∗H)
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induces homology isomorphisms in all degrees ≤ e − m . In particular,
if C is pseudo-coherent then ρu is an isomorphism.

Proof. The question is local on Y , because if i : U → Y is an open
immersion, U ′ := U×Y Y

′, and w : U ′ → U , j : U ′ → Y ′ are the projections
(so that j is an open immersion), then j∗ρu ∼= ρw—more precisely, the
following natural diagram commutes for any F,G ∈ D(Y ) :

j∗u∗HY (F,G)
j∗ρu
−−−−→ j∗HY ′(u∗f, u∗G)y≃ ≃

yρj

w∗i∗HY (F,G) HU ′(j∗u∗f, j∗u∗G)

w∗ρi

y≃ ≃

y

w∗HU (i∗F, i∗G) −−−−→
ρw

HU ′(w∗i∗F, w∗i∗G)

Here ρi and ρj are isomorphisms by the last assertion in (4.6.7) (whose
proof does not depend on (4.6.6)); and commutativity follows from (3.7.1.1).

So by [I, p. 98, 2.3] we may assume there is a D(Y )-map E → C
with E strictly perfect (i.e., E is a bounded complex of finite-rank
locally free OY -modules), such that the induced map is an isomorphism
τ
≥m+1E −→

∼ τ
≥m+1C. The contravariant ∆-functors

Φ1(C) := u∗HY (C, H), Φ2(C) := HY ′(u∗C, u∗H)

are both bounded below (1.11.1), and so arguing as in the proof of (4.3.3.2)
we find that there is an integer e such that for i = 1, 2, the natural maps

τ
≤e−mΦi(E)← τ

≤e−mΦi(τm+1E) −→∼ τ
≤e−mΦi(τm+1C)→ τ

≤e−mΦi(C)

are isomorphisms.
Thus it will be more than enough to prove:

Proposition (4.6.7). Let u : Y ′ → Y be a scheme-map, let E be
a bounded-above complex of finite-rank locally free OY -modules, and let
H ∈ D+(Y ). If E is strictly perfect or if u has finite tor-dimension then
the map

ρ : u∗HY (E, H)→HY ′(u∗E, u∗H)

is an isomorphism.
The same holds for any E,H ∈ D(Y ) if u is an open immersion.

Except for the proofs of (4.6.5) and (4.6.7), which are postponed to the
end of this section 4.6, the proof of (4.6.4)—and hence of the the implication
(4.4.2)pc ⇒ (4.4.1)∗pc—is now complete.
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III. (4.4.1)∗pc⇒⇒⇒
(((
(4.4.3)o + (4.4.3)af

)))

Let β = β(G) be as in (4.4.3). When u, hence v, is an open immersion
or affine, then v is isofaithful ((3.10.2.1)(d) or (3.10.2.2)), so that for β to
be an isomorphism it suffices that v∗β be an isomorphism.

Let F ∈ D(X) be pseudo-coherent. From (4.4.3.1) with F ′ = v∗F
and with ! replaced by ×, one derives the following commutative diagram:

f∗HX(F, v∗v
∗f×G)

via v∗β
−−−−−−→ f∗HX(F, v∗g

×u∗G)

(3.2.3.2)−1

y≃ ≃

y(3.2.3.2)−1

f∗v∗HX′(v∗F, v∗f×G)
via β

−−−−−−→ f∗v∗HX′(v∗F, g×u∗G)
y≃ ≃

y

u∗g∗HX′(v∗F, v∗f×G) −−−−−−→
via β

u∗g∗HX′(v∗F, g×u∗G)
∥∥∥ ≃

yu∗δ

u∗g∗HX′(v∗F, v∗f×G) ˜−−−−−−→
u∗(4.4.1)∗pc

u∗HY ′(g∗v
∗F, u∗G)

The bottom row is an isomorphism by assumption, as is the right column, by
the special case (4.4.2)pc of (4.4.1)∗pc . Thus the top row is an isomorphism,
and hence, by (4.3.7), so is v∗β .

IV.
(((
(4.4.3)o + (4.4.3)af

)))
⇒⇒⇒ (4.4.3)

The essence of what follows is contained in the four lines preceding
“CASE 1” on p. 401 of [V].

Denote the independent square in (4.4.1) by σ, and the corresponding
functorial map v∗f× → g×u∗ by βσ (cf. (4.4.3), without assuming f and g
to be quasi-proper). Let us first record the following elementary transitivity
properties of βσ .

Proposition (4.6.8). For any commutative diagram

X ′′ v1−−−−→ X ′ v
−−−−→ X

h

y g

y
yf

Y ′′

σ1

−−−−→
u1

Y ′

σ

−−−−→
u

Y

or

Z ′ w
−−−−→ Z

g1

y
yf1

X ′ v
−−−−→

σ1

X

g

y
yf

Y ′

σ

−−−−→
u

Y

where both σ and σ1 are independent squares—whence so is the composed
square σ0 := σσ1 see (3.10.3.2)—the following resulting diagrams of func-
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torial maps commute :

(vv1)
∗f×

βσ0

−−−−−−−−−−−−−−−−→ h×(uu1)
∗

≃

y
y≃

v∗1v
∗f× −−−−→

v∗1βσ
v∗1g

×u∗ −−−−→
βσ1

h×u∗1u
∗

w∗(ff1)
×

βσ0

−−−−−−−−−−−−−−−−→ (gg1)
×u∗

≃

y
y≃

w∗f×
1 f

× −−−−→
βσ1

g×1 v
∗f× −−−−→

g×
1
βσ

g×1 g
×u∗

Proof. (Sketch.) Using the definition of β, one reduces mechanically
to proving the transitivity properties for θ in (3.7.2), (ii) and (iii). Q.E.D.

Assuming (4.4.3)o, we first reduce (4.4.3) to the case where Y is affine.
Let (µi : Yi → Y )i∈I be an open covering of Y with each Yi affine. Consider
the diagrams, with σ as in (4.4.1),

X ′
i

vi−−−−→ Xi
νi−−−−→ X

gi

y fi

y
yf

Y ′
i

σi

−−−−→
ui

Yi

τi

−−−−→
µi

Y

X ′
i

ν′
i−−−−→ X ′ v

−−−−→ X

gi

y g

y
yf

Y ′
i

τ ′i

−−−−→
µ′
i

Y ′

σ

−−−−→
u

Y

where Y ′
i := Y ′ ×Y Yi , ui and µ′

i are the projections, and all the squares
are fiber squares. The composed squares τiσi and στ ′i are identical.
The squares τi and τ ′i are independent because µi and µ′

i are open im-
mersions; and by (4.4.3)o, βτi and βτ ′

i
are isomorphisms.

Furthermore, since f is quasi-proper therefore so are the maps fi .
The map ui , which agrees over Yi with u , has finite tor-dimension.
By (3.10.3.4), the square σi ∼= µ∗

iσ is independent. Thus if (4.4.3) holds
whenever Y is affine, then βσi is an isomorphism, and (4.6.8) shows that so

are βστ ′
i

(= βτiσi) and ν′i
∗
βσ. Since (ν′i : X

′
i → X ′)i∈I is an open covering

of X ′, and since isomorphism can be checked locally (see (1.2.2)), it follows
that βσ is an isomorphism, whence the asserted reduction.
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Next, again assuming (4.4.3)o, we reduce (4.4.3) with affine Y to where
Y ′ too is affine. That will complete the proof, since when both Y and Y ′

are affine then so is u , and (4.4.3)af applies.

Let (νj : Y
′
j → Y ′)j∈J be an open covering of Y ′ with each Y ′

j affine.
Consider the diagram, with affine Y and σ as in (4.4.1),

X ′
j

vj
−−−−→ X ′ v

−−−−→ X

gj

y g

y
yf

Y ′
j

σj

−−−−→
νj

Y ′

σ

−−−−→
u

Y

where σj is a fiber square, hence independent. By (4.4.3)o, βσj is an
isomorphism. If (4.4.3) holds for independent squares whose bottom corners
are affine, then βσσj is an isomorphism; and so by (4.6.8), v∗j βσ is also an

isomorphism. As before, then, βσ is an isomorphism, and we have the
desired reduction. Q.E.D.

V. (4.4.3)⇒⇒⇒ (4.4.3)o⇔⇔⇔ (4.4.2)

The first implication is trivial. The implication (4.4.2) ⇒ (4.4.3)o is
contained in what we have already done, but it’s more direct than that,
as we’ll see. Incidentally, the following argument does not need f to be
quasi-proper.

Let us first deduce (4.4.2) from (4.4.3)o. As in (4.6.4), via (4.6.5),
there is for any F ∈ D(X), G ∈ D(Y ) a commutative diagram

(4.6.9)

u∗f∗HX(F, f×G)
u∗δ
−−−−→ u∗HY (f∗F, G)

y
y

g∗HX′(v∗F, v∗f×G) −−−−→
(4.4.1)

HY ′(g∗v
∗F, u∗G)

When u (hence v ) is an open immersion, then the vertical arrows in
this diagram are isomorphisms. Indeed, these arrows are combinations
of ρ and θ, ρ being an isomorphism by (4.6.7), and θ(L) : u∗f∗L→ g∗v

∗L
being an isomorphism for any L ∈ D(X), as follows easily from (2.4.5.2)
after L is replaced by a q-injective resolution. Furthermore, the functor
ΓY ′ := RΓ(Y ′,−) transforms the bottom row of (4.6.9) into an isomorphism.
This follows from commutativity of the next diagram, obtained via Exer-
cise (3.2.5)(f) by application of ΓY ′ to the commutative diagram (4.4.3.1),
and where, under the present assumption of (4.4.3)o, β is an isomorphism:
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(4.6.10)

HX′(F ′, v∗f×G)

HY ′(g∗F
′, u∗G) HX′(F ′, g×u∗G)

Γ
Y ′(4.4.1) via β

˜
(4.1.1)

We conclude that ΓY ′u∗δ is an isomorphism whenever u : Y ′ → Y is
an open immersion; and then (4.4.2) results from:

Lemma (4.6.11). Let φ : G1 → G2 be a map in D(Y ). Then φ is
an isomorphism iff for every open immersion u : Y ′ →֒ Y with Y ′ affine,
the map

ΓY ′u∗(φ) : ΓY ′u∗(G1)→ ΓY ′u∗(G2)

is an isomorphism.

Proof. Write ΓY ′ for the sheaf-functor Γ(Y ′,−) . We may assume
that G1 and G2 are q-injective and that φ is actually a map of complexes,
see (2.3.8)(v), so that ΓY ′u∗(φ) is the map ΓY ′(φ) : ΓY ′(G1)→ ΓY ′(G2) . If
ΓY ′u∗(φ) is an isomorphism, then the homology maps

HpΓY ′(φ) : HpΓY ′(G1)→ HpΓY ′(G2) (p ∈ Z)

are all isomorphisms; and since Hp(Gi) is the sheaf associated to the
presheaf Y ′ 7→ HpΓY ′(Gi) (i = 1, 2), it follows for every p ∈ Z that the
map Hp(φ) : Hp(G1)→ Hp(G2) is an isomorphism, so that by (1.2.2), φ is
an isomorphism. The converse is obvious. Q.E.D.

Conversely, if (4.4.2) holds, then the top row—and hence the bottom
row—in (4.6.9) is an isomorphism. We deduce from (4.6.10) that

HX′(F ′, v∗f×G)
via β
−−−→ HX′(F ′, g×u∗G)

is an isomorphism for all F ′, whence (taking homology, see (2.4.2)) that

HomD(X′)(F
′, v∗f×G)

via β
−−−→ HomD(X′)(F

′, g×u∗G)

is an isomorphism for all F ′, so that β itself is an isomorphism. Q.E.D.

It remains to prove (4.6.5) and (4.6.7).

Proof of (4.6.5). One verifies, using the definitions of ν, of θ
(via (3.7.2)(a)) and of ρ, and the line following (3.5.4.2), that in the
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big diagram on the following page—with natural maps, and in which
α denotes the map (3.5.4.2)= (3.5.4.3) (of which the isomorphism (3.2.3.2)
is an instance, see (3.2.4)(i))—the outer border is adjoint to the diagram
in (4.6.5). Therefore it will suffice to show that all the subdiagrams in the
big diagram commute.

For the unnumbered subdiagrams commutativity is clear. Commuta-
tivity of ©1 follows from the definition of ρ ; of ©2 from the definition of θ
via (3.7.2)(a); of ©3 from (3.7.1.1) (with β replaced by α , etc.); and of ©4
from the definition of θ via (3.7.2)(c). Q.E.D.

Proof of (4.6.7). For this proof, we drop the abbreviations intro-
duced at the beginning of §4.4. Thus u∗ and u∗ will now denote the usual
sheaf-functors, and Ru∗ , Lu∗ their respective derived functors. Similarly,
H will denote the functor Hom

• of complexes, and RHom
• its derived

functor.

We need to understand ρ more concretely, and to that end we will
establish commutativity of the following diagram of natural maps, for any
complexes E,H of OY -modules:

(4.6.7.1)

Lu∗HY (E, H)
b

−−−−→ u∗HY (E, H)

a

y
yρ0

Lu∗RHY (E, H)

ρ

y

HY ′(u∗E, u∗H)
yc

RHY ′(u∗E, u∗H)
yd

RHY ′(Lu∗E, Lu∗H) −−−−→
e

RHY ′(Lu∗E, u∗H)

Here ρ0 is adjoint to the natural composite map of complexes

ξ : HY (E, H)→HY (E, u∗u
∗H) ˜−−−→

(3.1.6)
u∗HY ′(u∗E, u∗H).

This ξ is such that for any open U ⊂ Y , Γ(U, ξ) is the map

∏

i∈Z

HomU (Ei, Hi+n)→
∏

i∈Z

Homf−1U (u∗Ei, u∗Hi+n)

arising from the functoriality of u∗.
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f
∗
H
X

(E
,
H

)
y

−−→
f
∗
H
X

(f
∗f

∗
E
,
H

)
y

© 1

f
∗
H
X

(f
∗f

∗
E
,
H

)
α
−−→

H
Y

(f
∗
E
,
f
∗
H

)
H
Y

(f
∗
E
,
f
∗
H

)

© 2

y

y
y

f
∗
H
X

(f
∗f

∗
E
,
v
∗
v
∗H

)
−−→α

H
Y

(f
∗
E
,
f
∗
v
∗
v
∗H

)
y

≃

α x
≃

f
∗
v
∗
v
∗
H
X

(E
,
H

)
−−→

f
∗
v
∗
v
∗
H
X

(f
∗f

∗
E
,
H

)
ρ
−−→

f
∗
v
∗
H
X

′(v
∗f

∗f
∗
E
,
v
∗H

)

≃ y
≃ y

y
≃

u
∗
g
∗
v
∗
H
X

(E
,
H

)
−−→

u
∗
g
∗
v
∗
H
X

(f
∗f

∗
E
,
H

)
−−→ρ

u
∗
g
∗
H
X

′(v
∗f

∗f
∗
E
,
v
∗H

)
H
Y

(f
∗
E
,
u
∗
g
∗
v
∗H

)

α
−

1 y

≃

(1
,θ

)
←
−
−
H
Y

(f
∗
E
,
u
∗
u
∗f

∗
H

)

≃ y

α
−

1

ρ y
∥∥∥

u
∗
g
∗
H
X

′(v
∗
E
,
v
∗H

)
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
→

©4

u
∗
g
∗
H
X

′(v
∗f

∗f
∗
E
,
v
∗H

)
y

y
≃

u
∗
g
∗
H
X

′(g
∗
g
∗
v
∗
E
,
v
∗H

)
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
→

(
θ
,1

)
u
∗
g
∗
H
X

′(g
∗
u
∗f

∗
E
,
v
∗H

)

© 3

−−→
u
∗
H
Y

′(u
∗f

∗
E
,
g
∗
v
∗H

)
←
−
−

(1
,θ

)
u
∗
H
Y

′(u
∗f

∗
E
,
u
∗f

∗
H

)
∥∥∥

x
(
θ
,1

)

u
∗
g
∗
H
X

′(g
∗
g
∗
v
∗
E
,
v
∗H

)
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
→

u
∗
H
Y

′(g
∗
v
∗
E
,
g
∗
v
∗H

)
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Commutativity of (4.6.7.1) is equivalent to commutativity of the fol-
lowing “adjoint” diagram:51

HY (E, H) −−−−→ Ru∗u
∗HY (E, H)

y
yRu∗(ρ0)

RHY (E, H) Ru∗HY ′(u∗E, u∗H)
y

y

RHY (E, Ru∗Lu
∗H) Ru∗RHY ′(u∗E, u∗H)

(3.2.3.2)−1

y
y

Ru∗RHY ′(Lu∗E, Lu∗H) −−−−→ Ru∗RHY ′(Lu∗E, u∗H)

But in this diagram the two maps obtained by going around from the top
left to the bottom right clockwise and counterclockwise respectively, are
both equal to the natural composition

HY (E, H) −→ HY (E, u∗u
∗H)

(3.1.5)−1

−−−−→ u∗HY ′(u∗E, u∗H)

−→ Ru∗HY ′(u∗E, u∗H) −→ Ru∗RHY ′(u∗E, u∗H)

−→ Ru∗RHY ′(Lu∗E, u∗H),

as shown by the commutativity of the following two diagrams. (In the first,
the top three horizontal arrows come from the natural functorial composi-
tion 1→ u∗u

∗ → Ru∗u
∗ ; and the right column is Ru∗(ρ0).)

HY (E, H) −−−−→ Ru∗u
∗HY (E, H)

y
y

HY (E, u∗u
∗H) −−−−→ Ru∗u

∗HY (E, u∗u
∗H)

y
y

u∗HY ′(u∗E, u∗H) −−−−→ Ru∗u
∗u∗HY ′(u∗E, u∗H)

∥∥∥
y

u∗HY ′(u∗E, u∗H)

©1

−−−−→ Ru∗HY ′(u∗E, u∗H)

51 Recall that by (3.2.4)(i), the map (3.2.3.2) is an instance of the map (3.5.4.3).
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HY (E, H) −−−→ HY (E, u∗u∗H) ˜−−−→ u∗HY ′ (u∗E, u∗H)y
y

y
RHY (E, H) −−−→ RHY (E, u∗u∗H) Ru∗HY ′(u∗E, u∗H)

y

y
y ©3

RHY (E, Ru∗Lu∗H)

©2

−−−→ RHY (E, Ru∗u∗H)y
y

Ru∗RHY ′ (Lu∗E, Lu∗H) −−−→ Ru∗RHY ′ (Lu∗E, u∗H) ←−−− Ru∗RHY ′ (u∗E, u∗H)

Commutativity of subdiagram ©1 follows from the natural functorial
composition u∗ → u∗u

∗u∗ → u∗ being the identity. Commutativity of ©2
follows from that of (3.2.1.3). Commutativity of ©3 follows from that of
the diagram immediately following (3.2.3.2).

Thus (4.6.7.1) does indeed commute.

Proceeding now with the proof of (4.6.7), suppose that E is a bounded-
above complex of finite-rank locally freeOY -modules, and that H ∈D+(Y ).
To show that ρ is an isomorphism, we may assume that H is a complex
of u∗-acyclic OY -modules, bounded below if u has finite tor-dimension,
see (2.7.5)(vi). Then in (4.6.7.1), d and e are isomorphisms; and HY (E,H)
is also a complex of u∗-acyclic OY -modules (the question being local on Y ),
so that b too is an isomorphism, see (2.7.5)(a). That ρ0 is an isomorphism
follows from the fact that (exercise) its stalk at y′ ∈ Y ′ is—with y := u(y′),
R′ := OY ′,y′ and R := OY,y—the natural map

R′ ⊗R HomR(Ey, Hy)→ HomR′(R′ ⊗R Ey, R
′ ⊗R Hy).

It remains to be shown that a and c are isomorphisms. For a, it suffices
that if H → I is a quasi-isomorphism with I injective and bounded-below,
then the resulting map HY (E, H)→ HY (E, I) be an isomorphism. Since
HY is a ∆-functor, and by the footnote under (1.5.1), it is equivalent to
show that if C is the summit of a triangle whose base is H → I (so
that C is exact), then HY (E, C) is exact. For any n ∈ Z , to show that
HnHY (E, C) = 0 we may assume that E 6= 0, let m0 = m0(E) be the
least integer such that Em = 0 for all m > m0 , and argue by induction
on m0, as follows.

If m0 ≪ 0, then HY (E, C) vanishes in degree n, so the assertion is
obvious. Proceeding inductively, set i = m0(E) , and let E<i be the com-
plex which agrees with E in all degrees < i, and vanishes in all degrees ≥ i,
so that we have a natural semi-split exact sequence

0→ Ei[−i]→ E → E<i → 0 ,
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and a corresponding triangle, cf. (1.4.3.3). There results an exact homology
sequence, see (1.4.5)H :

HnHY (E<i , C)→ HnHY (E, C)→ Hn+iHY (Ei, C)

in which the first term vanishes by the inductive hypothesis, and the last
term vanishes because Ei is locally free of finite rank and C is exact. Hence
HnHY (E, C) also vanishes, as desired. Thus a is indeed an isomorphism.
Similarly c is an isomorphism. Hence, finally, so is ρ.

For the last assertion in (4.6.7), suppose u is an open immersion. It is
left as an exercise to show that now ρ0 is just the obvious restriction map.
To show that ρ is an isomorphism we may assume that H—and hence
u∗H—is q-injective, see (2.4.5.2). Clearly, then, all the maps in (4.6.7.1)
other than ρ are isomorphisms, whence so is ρ . Q.E.D.

4.7. Quasi-perfect maps

Again, all schemes are assumed to be concentrated.
In this section, for a scheme-map f : X → Y the functor f× will be

as in (4.1.1), but restricted to Dqc(Y ) ; in other words, f× is always to be
regarded as a functor from Dqc(Y ) to Dqc(X) .

Quasi-perfect maps are scheme-maps f : X → Y characterized by any
one of several nice properties preserved by tor-independent base change
(see (4.7.3.1)). Among those properties are the following, the first two
by (4.7.1), and the next two by (4.7.4) and (4.7.6)(d):

• f× commutes with small direct sum in Dqc (i.e., direct sum of any
family indexed by a small set, see §4.1).

• For all F ∈ Dqc(Y ) the natural map is an isomorphism

χF : f×OY ⊗
=

Lf∗F −→∼ f×F .

• f× is a bounded functor, and it satisfies universal tor-independent
base change, that is, for any independent square as in (4.4.1), and any
G ∈ Dqc(Y )—not necessarily in D+

qc(Y )—the base-change map β(G)
in (4.4.3) is an isomorphism.

• f× is a bounded functor, and these two conditions hold:

(i) For all F ∈ Dqc(X) the duality map (4.2.1) is an isomorphism

Rf∗RHom
•(F, f×OY ) −→∼ RHom

•
Y (Rf∗F,OY ).

(ii) If (Fα) is a small directed system of flat quasi-coherent OY -modules
then for any n ∈ Z the natural map is an isomorphism

lim
−→α

Hn(f×Fα) −→∼ Hn(f×lim
−→α

Fα).
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It follows that quasi-perfection of f implies the following; and in fact
when Y is separated the converse is true, see (4.7.4):

• f× is a bounded functor, and the above natural map χF is an
isomorphism whenever F is a flat quasi-coherent OY -module.

Further, though we won’t prove it here, the main result Theorem 1.2
in [LN] is the equivalence of the following conditions:

(i) f is quasi-perfect.

(ii) f is quasi-proper (4.3.3.1) and has finite tor-dimension.

(iii) f is quasi-proper and the functor f× is bounded.

We call a scheme-map f perfect if f is pseudo-coherent and of finite
tor-dimension. (For pseudo-coherent f, being of finite tor-dimension is
equivalent to boundedness of f×, see [LN, Thm. 1.2]).

For example, since finite-type maps of noetherian schemes are always
pseudo-coherent, the foregoing and (4.3.9) show that a separated such map
is quasi-perfect if and only if it is proper and perfect.

Perfect maps of noetherian schemes will be treated in §4.9.

Before proceeding, we review a few basic facts about perfect complexes.
A complex in E ∈ D(X) (X a scheme) is said to be perfect if it is locally-
D-isomorphic to a strictly perfect complex, i.e., a bounded complex of
finite-rank free OX -modules. More precisely, E is said to have perfect
amplitude in [a, b] (a ≤ b ∈ Z) if locally on X, E is D-isomorphic to
a strictly perfect complex vanishing in all degrees which are < a or > b.
Thus E is perfect iff it has perfect amplitude in some interval [a, b]. By
[I, p. 134, 5.8], this condition is equivalent to E being pseudo-coherent and
also having flat amplitude in [a, b] (i.e., being globally D-isomorphic to a
flat complex vanishing in all degrees < a and > b). So E is perfect iff it
is pseudo-coherent and of finite tor-dimension (that is, D-isomorphic to a
bounded flat complex, see (3.9.4.2)(b)).

Proposition (4.7.1) (Neeman). For any scheme-map f : X → Y ,
the following conditions, with f× as in (4.1.1), are equivalent :

(i) f× respects direct sums (see (3.8.1)) in Dqc , i.e., for any small
Dqc(Y )-family (Fα) the natural map is an isomorphism

⊕
α
f×Fα −→

∼ f×(⊕
α
Fα).

(ii) The functor Rf∗ takes perfect complexes to perfect complexes.
(iii) The functor f× has a right adjoint.
(iv) For all F ∈ Dqc(Y ), the map adjoint to

Rf∗(f
×OY ⊗

=
Lf∗F ) −→∼

(3.9.4)
Rf∗f

×OY ⊗
=
F −−→

via τ
F

is an isomorphism
f×OY ⊗

=
Lf∗F −→∼ f×F.
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Proof. (i) ⇔ (ii): [N, p. 215, Prop. 2.5 and Cor. 2.3; and p. 224,
Thm. 5.1 (where every s ∈ S is implicitly assumed to be compact)].

(i) ⇒ (iii): [N, p. 215, Prop. 2.5; p. 207, lines 12–13; and p. 223,
Thm. 4.1].

(iii) ⇒ (i): simple.
(i) ⇒ (iv) ⇒ (i): For the first ⇒ see [N, p. 226, Thm. 5.4]. The second

implication follows from (3.8.2).
Strictly speaking, the referenced results in [N] are proved for separated

schemes; but in view of [BB, p. 9, Thm. 3.1.1] one readily verifies that
the proofs are valid for any concentrated scheme. Q.E.D.

Definition (4.7.2). A map f : X → Y is quasi-perfect if it satisfies
the conditions in (4.7.1).

Remark. The fact, mentioned above, that quasi-perfect maps are quasi-
proper results from (4.7.1)(ii) and [LN, Cor. 4.3.2], which says that f is
quasi-proper if and (clearly) only if Rf∗ takes perfect complexes to pseudo-
coherent complexes.

Examples (4.7.3). (a) Any quasi-proper scheme-map f of finite tor-
dimension—so by (4.3.3.2), any proper perfect map, in particular, any flat
finitely-presentable proper map—is quasi-perfect.

Indeed Rf∗ preserves both pseudo-coherence of complexes and—by [I,
p. 250, 3.7.2] (a consequence of (3.9.4) above)—finite tor-dimensionality of
complexes; so (4.7.1)(ii) holds.

(b) Let f :X → Y be a scheme-map with X divisorial, i.e., X has an
ample family (Li)i∈I of invertible OX -modules [I, p. 171, Défn. 2.2.5].

Then [N, p. 211, Example 1.11 and p. 224, Theorem 5.1] imply that

f is quasi-perfect ⇔ for each i ∈ I, there is an integer ni such that the
OY -complex Rf∗(L

⊗−n
i ) is perfect for all n ≥ ni .

(c) (Cf. (4.3.8).) Let f be quasi-projective and let L be an f -ample
invertible OX -module. Then:
f is quasi-perfect ⇔ the OY -complex Rf∗(L

⊗−n) is perfect for all n≫ 0
⇒ f is perfect.

Indeed, condition (4.7.1)(ii), together with the compatibility of Rf∗ and
open base change, implies that quasi-perfection is a property of f which is
local on Y , and the same holds for perfection of Rf∗(L

⊗−n) ; so for the ⇔
we may assume Y affine, and apply (b). The ⇒ is given by (4.7.3.3) below.

(d) For a finite map f :X → Y the following are equivalent:
(i) f is quasi-perfect.
(ii) f is perfect.
(iii) The complex f∗OX ∼= Rf∗OX is perfect.

Indeed, the implication (i) ⇒ (iii) is given by (4.7.1)(ii). If (iii) holds then
f has finite tor-dimension (see (2.7.6.4)), and as in the first part of the
proof of (4.3.8), f is pseudo-coherent; thus f is perfect. The implication
(ii) ⇒ (i) is given by (a).
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Proposition (4.7.3.1). For any independent square of scheme-maps,

X ′ v
−−−−→ X

g

y
yf

Y ′ −−−−→
u

Y

(i) if f is quasi-perfect then so is g; and
(ii) if the (bounded-below) functor f× : Dqc(Y )→ Dqc(X) is bounded

above, then so is g× : Dqc(Y
′)→ Dqc(X

′).
Hence, if (Yi)i∈I is an open cover of Y then
(iii) f is quasi-perfect ⇔ for all i, the same is true of the induced

map f−1Yi → Yi ; and
(iv) if f is quasi-proper then f× is bounded above ⇔ for all i, the

same is true of the induced map f−1Yi → Yi .

Proof. To begin with, (iii) follows easily from (i) and (4.7.1)(ii);
and (iv) follows from (ii) and (4.4.3).

In the rest of this proof, quasi-perfection is characterized by (4.7.1)(i).
Suppose first that Y ′ is separated. We induct on q = q(Y ′), the least

number of affine open subschemes needed to cover Y ′.
If q = 1 then the map u is affine, whence so is v [GD, p. 358, (9.1.16),

(v) and (iii)]; so to prove (i) (resp. (ii)) it suffices, by (3.10.2.2), to show
that for any small Dqc(Y

′)-family (Fα) the natural map is an isomorphism

⊕
α

Rv∗g
×Fα

(3.9.3.3)
∼= Rv∗

(
⊕
α
g×Fα

)
−→∼ Rv∗g

×(⊕
α
Fα)

(resp.—since every G ∈ Dqc(X
′) is isomorphic to a quasi-coherent, hence

v∗-acyclic, OX′ -complex G′, see (2.7.5)(a), so that

Hn(Rv∗G) ∼= Hn(v∗G
′) ∼= v∗H

n(G′) = 0 =⇒ Hn(G) ∼= Hn(G′) = 0

—that Rv∗g
× : Dqc(Y

′) → Dqc(X) is bounded). Since Ru∗ is bounded
(see (3.9.2.3)), the second of these facts results from the natural isomor-
phism Rv∗g

× −→∼ f×
Ru∗ of (3.10.4). The first results from the (easily-

checked) commutativity of

⊕
α

Rv∗g
×Fα ˜−−−−−→

(3.9.3.3)
Rv∗

(
⊕
α
g×Fα

)
−−−−→ Rv∗g

×(⊕
α
Fα)

≃

y(3.10.4) (3.10.4)

y≃

⊕
α
f×

Ru∗Fα ˜−−−−→ f×
(
⊕
α

Ru∗Fα
)

˜−−−−−→
(3.9.3.3)

f×
Ru∗(⊕

α
Fα)

Suppose q > 1, so Y ′ = Y ′
1 ∪ Y

′
2 with Y ′

i open in Y ′, q(Y ′
1) = q − 1,

and q(Y ′
2) = 1. Set Y ′

12 := Y ′
1 ∩ Y

′
2 , so that q(Y ′

12) ≤ q − 1. (Y ′ being
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separated, the intersection of affine subschemes of Y ′ is affine). We have
the commutative diagram of immersions

Y ′
12

w1−−−−→ Y ′
1

w2

y
yu1

Y ′
2 −−−−→u2

Y ′

With u12 := u1w1 = u2w2 there is, for any F ∈ D(Y ′), a natural triangle

(4.7.3.2) F → Ru1∗u
∗
1F ⊕ Ru2∗u

∗
2F → Ru12∗u

∗
12F → F [1]

obtained by applying the standard exact sequence—holding for any injec-
tive (or even flasque) OY ′-module G—

0→ G→ u1∗u
∗
1G⊕ u2∗u

∗
2G→ u12∗u

∗
12G→ 0

to an injective q-injective resolution of F (see paragraph around (1.4.4.2)).
The inductive hypothesis applied to the natural composite independent

square (see (3.10.3.2)), with i = 1, 2, 12,

X ′
i

vi−−−−→ X ′ v
−−−−→ X

gi

y
yg

yf

Y ′
i −−−−→ui

Y ′ −−−−→
u

Y

gives that g×i is bounded. Since Rvi∗ is bounded (3.9.2.3), therefore so is

g×Rui∗u
∗
i
∼=

(3.10.4)
Rvi∗g

×
i u

∗
i .

Hence, application of the ∆-functor g× to the triangle (4.7.3.2) shows that
g× is bounded above, proving (ii).

As for (i), in view of (∆3)∗ of §1.4 it similarly suffices to show (left
as an exercise) that the following natural diagram—whose columns are
triangles (see (3.8.3)), and where the two middle arrows are isomorphisms
by (3.9.3.3), by the inductive hypothesis, and by (3.8.2)(ii) (for the trivial
case of an open immersion)—commutes:

⊕
α
g×Fα −−→ g×

(
⊕
α
Fα

)

y
y

⊕
α

(
Rv1∗g

×
1 u

∗
1Fα⊕ Rv2∗g

×
2 u

∗
2Fα

)
−̃−→

(
Rv1∗g

×
1 u

∗
1 ⊕
α
Fα

)
⊕

(
Rv2∗g

×
2 u

∗
2 ⊕
α
Fα

)

y
y

⊕
α

Rv12∗g
×
12u

∗
12Fα −̃−→ Rv12∗g

×
12u

∗
12 ⊕α

Fα
y

y

⊕
α
g×Fα[1] −−→ g×

(
⊕
α
Fα

)
[1]



4.7. Quasi-perfect maps 185

Having thus settled the separated case, we can proceed similarly for
arbitrary concentrated Y ′, with q(Y ′) the least number of separated open
subschemes needed to cover Y ′ . Q.E.D.

Proposition (4.7.3.3). Let f :X → Y be a locally embeddable
scheme-map, i.e., every y ∈ Y has an open neighborhood V over which the

induced map f−1V → V factors as f−1V i−→ Z
p
−→ V where i is a closed

immersion and p is smooth. (For instance, any quasi-projective f satisfies
this condition [EGA, II, (5.3.3)].) If f is quasi-perfect then f is perfect.

Proof. (i) By (4.7.3.1)(iii), quasi-perfection is local over Y , and the
same clearly holds for perfection; so we may as well assume that X = f−1V .
Then by [I, p. 252, Prop. 4.4] it suffices to show that the complex i∗OX is
perfect, or, more generally, that the map i is quasi-perfect. But i factors

as X
γ
−→ X×Y Z

g
−→ Z where γ is the graph of i and g is the projection.

The map γ is a local complete intersection [EGA, IV, (17.12.3)], so the
complex γ∗OX is perfect, and by Example (4.7.3)(d) (or otherwise) γ is
quasi-perfect. Also, g arises from f by flat base change, so by (4.7.3.1)(i),
g is quasi-perfect. Hence i = gγ is quasi-perfect, as desired. Q.E.D.

Remark. Using the analog of (4.7.3.1)(i) with “quasi-proper” in place
of “quasi-perfect” [LN, Prop. 4.4], one shows similarly for locally embed-
dable f that f quasi-proper ⇒ f pseudo-coherent. The converse holds
when f is also proper, see (4.3.3.2). Thus, e.g., a projective map is quasi-
proper if and only if it is pseudo-coherent.

Exercises (4.7.3.4). For a scheme-map f : X → Y and for E, F ∈ Dqc(Y ), let

χE,F : f×E⊗
=

Lf∗F −→ f×(E⊗
=
F ).

be the map adjoint to

Rf∗(f×E⊗
=

Lf∗F ) −→∼
(3.9.4)

Rf∗f
×E⊗

=
F −−→

via τ
E⊗

=
F.

In particular, χ
OY ,F

is the map in (4.7.1)(iv).

(a) Show that for any E, F , G ∈ Dqc(Y ), the following diagram commutes.

f×E ⊗
=

(Lf∗F ⊗
=

Lf∗G) ˜−−−−−−−→
via (3.2.4)

f×E ⊗
=

Lf∗(F ⊗
=
G) −−−−−−→

χ
E,F⊗

=
G

f×(E ⊗
=

(F ⊗
=
G))

≃

y
y≃

(f×E ⊗
=

Lf∗F )⊗
=

Lf∗G −−−−−−→
χ
E,F

⊗
=

1
f×(E ⊗

=
F )⊗

=
Lf∗G −−−−−−→

χ
E⊗

=
F,G

f×((E ⊗
=
F )⊗

=
G)

Taking E = OY , deduce that f is quasi-perfect if and only if χ
F,G

is an isomorphism

for all F and G. (For this one needs that for any f the map defined in (4.7.1)(iv) is

an isomorphism

(#) f×OY ⊗= Lf∗OY −→
∼ f×OY ,

since, e.g., it factors naturally as f×OY ⊗= Lf∗OY −→
∼ f×OY ⊗=OX −→

∼ f×OY . In fact

(#) obtains with any perfect complex in place of OY : see [N, pp. 227–228 and p. 213].

Cf. also (4.7.5) below.)

Hint. Using 3.4.7(iv), show that the adjoint of the preceding diagram commutes.
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(b) Show that, with 1 the identity map of Y , the map

χE,F : E ⊗
=
F = 1×E ⊗ 1∗F → E ⊗

=
F

is the identity map

(c) (Compatibility of χ and base change.) In this exercise, v∗ is an abbreviation
for Lv∗, and u∗, f∗ and g∗ are analogously understood. Also, ⊗ stands for ⊗

=
.

For any independent square

X′ v
−−−−−→ X

g

y
yf

Y ′ −−−−−→
u

Y

show that the following diagram, in which β comes from (4.4.3), and the unlabeled

isomorphisms are the natural ones, commutes:

v∗f×E ⊗ v∗f∗F
β(E)⊗1
−−−−−→ g×u∗E ⊗ v∗f∗Fy≃ ≃

y
v∗(f×E ⊗ f∗F )

v∗χ
E,F

y

g×u∗E ⊗ g∗u∗Fyχu∗E,u∗F
g×(u∗E ⊗ u∗F )y≃

v∗f×(E ⊗ F ) −−−−−−→
β(E⊗F )

g×u∗(E ⊗ F )

Hint. It suffices to check commutativity of the following natural diagram, whose

outer border is adjoint to that of the one in question.

g∗(v∗f×E ⊗ v∗f∗F )
β(E)

−−−−−−−−−−−−−−−−−−−−−−−−−−→ g∗(g×u∗E ⊗ v∗f∗F )∥∥∥
y≃

g∗(v∗f×E ⊗ v∗f∗F )

≃

y

cf. (3.7.3)

−̃−→ g∗(v∗f×E ⊗ g∗u∗F )
β(E)
−−−→ g∗(g×u∗E ⊗ g∗u∗F )

p

y
yp

g∗v∗f×E ⊗ u∗F
β(E)
−−−→ g∗g×u∗E ⊗ u∗Fy

y
u∗f∗f×E ⊗ u∗F −−→ u∗E ⊗ u∗Fy

y≃

u∗(f∗f×E ⊗ F ) −−→ u∗(E ⊗ F )∥∥∥∥∥∥∥∥

p

y
g∗v∗(f×E ⊗ f∗F ) −−→ u∗f∗(f×E ⊗ f∗F )y

y
g∗v∗f×(E ⊗ F ) −̃−→ u∗f∗f×(E ⊗ F ) −−→ u∗(E ⊗ F )
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(d) (Transitivity of χ ). If g : Y → Z is a second scheme-map then the following
natural diagram is commutative:

f×g×E ⊗
=

Lf∗Lg∗F −−−−−→ f×(g×E ⊗
=

Lg∗F ) −−−−−→ f×(g×(E ⊗
=
F ))

≃

y
∥∥∥

(gf)×E ⊗
=

L(gf)∗F −−−−−→ (gf)×(E ⊗
=
F ) ˜−−−−−→ f×g×(E ⊗

=
F )

Hint. Using (3.7.1), show that the adjoint diagram commutes.

(e) Show that χ
E,F

corresponds via (2.6.1)′ to the composite map

f×E −−−−→
natural

f×RHom
•(F,E ⊗

=
F ) ˜−−−−−→

(4.2.3)(c)
f×[F,E ⊗

=
F ]Y

˜−−−−−→
(4.2.3)(e)

[Lf∗F, f×(E ⊗
=
F )]X

−−−−−→
natural

RHom
•(Lf∗F, f×(E ⊗

=
F )).

(f) With notation as in (4.2.3)(e), and E, F,G ∈ Dqc(Y ), establish a natural com-

mutative functorial diagram

f×F ⊗
=

Lf∗[E,G]Y
χ

−−−−→ f×(F ⊗
=

[E,G]Y ) −−−−→ f×[E, F ⊗
=
G]Yy

x≃

f×F ⊗
=

[Lf∗E,Lf∗G]X −−−−→ [Lf∗E, f×F ⊗
=

Lf∗G]X −−−−→
via χ

[Lf∗E, f×(F ⊗
=
G)]X

We adopt again the notations introduced at the beginning of §4.4.

Apropos of the next theorem, recall from the beginning of §4.7 that
f quasi-perfect =⇒ f× bounded.

Theorem (4.7.4). Let

X ′ v
−−−−→ X

g

y
yf

Y ′ −−−−→
u

Y

be an independent square of scheme-maps, with f quasi-perfect. Then for
all E ∈ Dqc(Y ) the base-change map of (4.4.3)—with × in place of ! —is
an isomorphism

β(E) : v∗f×E −→∼ g×u∗E.

The same holds, with no assumption on f, whenever u is finite and perfect.
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Conversely, the following conditions on a scheme-map f : X → Y are
equivalent; and if Y is separated and f× bounded above, they imply that
f is quasi-perfect :

(i) For any flat affine universally bicontinuous map u : Y ′ → Y, ( i.e.,
for any Y ′′ → Y the resulting projection Y ′ ×Y Y ′′ → Y ′′ is a homeo-
morphism onto its image [GD, p. 249, Défn. (3.8.1)]) the base-change map
associated to the independent fiber square

Y ′ ×Y X = X ′ v
−−−−→ X

g

y
yf

Y ′ −−−−→
u

Y

is an isomorphism β(OY ) : v∗f×OY −→
∼ g×u∗OY .

(ii) The map in (4.7.1)(iv) is an isomorphism

χF : f×OY ⊗
=

Lf∗F −→∼ f×F

whenever F is a flat quasi-coherent OY -module.

Proof. For the first assertion, using (4.7.3.1)(i) we reduce as in IV
of §4.6 to where u, hence v, is an open immersion or affine, so that v is
isofaithful ((3.10.2.1)(d) or (3.10.2.2)), and for β to be an isomorphism it
suffices that v∗β be an isomorphism.

For this purpose it will clearly suffice that the following diagram—in
which O′ := OY ′ , φ is the isomorphism in (3.10.4), θ′ is as in (3.10.2)
(see (3.10.3)), χ := χE,u∗O

′ is as in (4.7.3.4)(a), q is the natural composite
isomorphism

f×E ⊗ v∗g
∗O′ ˜−−−→

(3.9.4)
v∗(v

∗f×E ⊗ g∗O′) −̃−→ v∗v
∗f×E

and r is the natural composite isomorphism

E ⊗ u∗O
′ ˜−−−−→

(3.9.4)
u∗(u

∗E ⊗O′) −̃−→ u∗u
∗E,

—is commutative:

(4.7.4.1)

f×E ⊗ v∗g
∗O′ ˜−−−−→q v∗v

∗f×E −−−−→
v∗β(E)

v∗g
×u∗E

1⊗θ′
x≃ ≃

yφ

f×E ⊗ f∗u∗O
′ ˜−−−−→χ f×(E ⊗ u∗O

′) ˜−−−−→
f×r

f×u∗u
∗E

Since χ is an isomorphism whenever u∗O
′ is perfect (see the end

of exercise (4.7.3.4)(a)), and since finite maps are isofaithful (3.10.2.2),
commutativity of (4.7.4.1) also implies the theorem’s assertion about finite
perfect u .
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Now, commutativity of (4.7.4.1) results from commutativity of the
following diagram (4.7.4.1)∗, where q′ is the composite isomorphism

f∗f
×E ⊗ u∗O

′ ˜−−−−→
(3.9.4)

u∗(u
∗f∗f

×E ⊗O′) −̃−→ u∗u
∗f∗f

×E

and t and t′ are the natural maps, a diagram whose outer border, with the
isomorphism (3.4.9) replaced by its inverse, is adjoint to (4.7.4.1):

(4.7.4.1)∗

f∗(f
×E ⊗ v∗g

∗O′)
f∗q
−−−−→

©1

f∗v∗v
∗f×E

f∗v∗β
−−−−→ f∗v∗g

×u∗E

f∗(1⊗θ′)

x≃

∥∥∥
∥∥∥

f∗(f
×E ⊗ f∗u∗O

′) u∗g∗v
∗f×E

u∗g∗β
−−−−→ u∗g∗g

×u∗E

(3.9.4)

x≃ u∗θ

x≃

yu∗t
′

f∗f
×E ⊗ u∗O

′ ˜−−−−→
q′

u∗u
∗f∗f

×E

©2

−−−−→
u∗u∗t

u∗u
∗E

Subdiagram ©2 commutes by the very definition of β.
Expand subdiagram ©1 as follows, with an arbitrary F ∈ D(X) in

place of f×E, with unlabeled maps being the natural ones, and with p
denoting projection maps from (3.4.6) or (3.9.4):

f∗(F ⊗ v∗g∗O′) −−→ f∗(v∗v∗F ⊗ v∗g∗O′)
(3.4.2.1)
−−−−→ f∗v∗(v∗F ⊗ g∗O′) ˜−−→ f∗v∗v∗F

θ′

x θ′

x
∥∥∥

∥∥∥
f∗(F ⊗ f∗u∗O′) −−→ f∗(v∗v∗F ⊗ f∗u∗O′) u∗g∗(v∗F ⊗ g∗O′)x

u∗p

˜−−→ u∗g∗v∗F

©4

∥∥∥∥∥∥∥∥

p

x p

x ©3

f∗F ⊗ u∗O′

∥∥∥∥∥∥∥∥
©5

−−→ f∗v∗v∗F ⊗ u∗O′∥∥∥
u∗g∗v∗F ⊗ u∗O′

(3.4.2.1)
−−−−→ u∗(g∗v∗F ⊗O′) ˜−−→ u∗g∗v∗F

θ

x
xθ

xθ
f∗F ⊗ u∗O′ −−→ u∗u∗f∗F ⊗ u∗O′ −−−−→

(3.4.2.1)
u∗(u∗f∗F ⊗O′) ˜−−→ u∗u∗f∗F

Commutativity of the unlabeled subdiagrams is clear. That of ©5 follows
from the definition (3.7.2)(a) of θ ; and that of ©4 follows from (3.4.7)(iii).
Subdiagram ©3 expands as follows:

f∗(v∗v∗F ⊗ v∗g∗O′)

θ′

x
©6

f∗(v∗v∗F ⊗ v∗g∗O′)
(3.4.2.1)
−−−−→ f∗v∗(v∗F ⊗ g∗O′)

©7

∥∥∥∥∥∥∥∥

x(3.4.2.1)

f∗v∗v∗F ⊗ f∗v∗g∗O′

∥∥∥
f∗(v∗v∗F ⊗ f∗u∗O′) u∗g∗v∗F ⊗ u∗g∗g∗O′

(3.4.2.1)
−−−−→ u∗g∗(v∗F ⊗ g∗O′)

p

x
x ©8

xu∗p

f∗v∗v∗F ⊗ u∗O′ u∗g∗v∗F ⊗ u∗O′ −−−−→
(3.4.2.1)

u∗(g∗v∗F ⊗O′)
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For commutativity of subdiagram ©8 , replace p by its definition (3.4.6),
and apply commutativity of (3.6.7.2). Commutativity of ©7 also follows
from that of (3.6.7.2). Finally, subdiagram ©6 expands as follows:

f∗(v∗v∗F ⊗ f∗u∗O′)
θ′

−−−−−−−−−−−−−−−−−−−−−−−−−→ f∗(v∗v∗F ⊗ v∗g∗O′)

(3.4.2.1)

x
x(3.4.2.1)

f∗v∗v∗F ⊗ f∗f∗u∗O′ θ′

−−−−−−−−−−−−−−−−−−−−−−−−−→ f∗v∗v∗F ⊗ f∗v∗g∗O′

x ©9
∥∥∥

f∗v∗v∗F ⊗ u∗O′ −−→ f∗v∗v∗F ⊗ u∗g∗g∗O′ −−→ u∗g∗v∗F ⊗ u∗g∗g∗O′

∥∥∥
x

f∗v∗v∗F ⊗ u∗O′ u∗g∗v∗F ⊗ u∗O′

Commutativity of ©9 is an easy consequence of the definition (3.7.2)(a)
of θ′; and that of the other two subdiagrams is clear.

It is thus established that (4.7.4.1)∗ commutes.
We show next that (i) ⇔ (ii).
Assume (i). Let F be a flat quasi-coherent OY -module. Let F be

the OY -algebra OY ⊕ F with F 2 = 0 (i.e., the symmetric algebra on F,
modulo everything of degree ≥ 2), and let u : Y ′ → Y be an affine scheme-
map such that u∗OY ′ = F (see [GD, p. 355, (9.1.4) and p. 370, (9.4.4)]).
This u is a flat affine universally bicontinuous map. With E = OY , all
the maps in the commutative diagram (4.7.4.1) other than χ = χOY

⊕ χF
are isomorphisms, and so χ must be an isomorphism too. But χOY

is an

isomorphism (exercise), so χF is an isomorphism, i.e., (ii) holds.

Conversely, if u is any flat affine map and (ii) holds for the flat quasi-
coherent OY -module F = u∗OY ′ then (4.7.4.1) with E = OY shows
that v∗β(OY) is an isomorphism, whence, v being affine, so is β(OY ),
see (3.10.2.2).

Finally, assuming (ii) and that Y is separated and f× bounded-above,
let us deduce that the map χE : f×OY ⊗

=
Lf∗E → f×E is an isomorphism

for all E ∈ Dqc(Y ), so that f is quasi-perfect (see (4.7.1)(iv)).
Since Y is separated, we can replace E by a D-isomorphic q-flat

quasi-coherent complex, which is a lim
−→

of bounded-above flat complexes,
see [AJL, p. 10, (1.1)] and its proof. Since the functors f×OY ⊗

=
Lf∗(−) and

f×(−) are both bounded-above, we may assume that E is bounded-below:
for each n ∈ Z, if E′ is obtained by replacing all sufficiently-negative-degree
components of E by (0) then χE and χE′ induce identical homology maps
in degree n , and (1.2.2) can be applied. Similarly, since f× is bounded
below, and Lf∗E = f∗E when E is a lim

−→
of bounded-above flat complexes,

we can reduce further to where E is bounded, flat, and quasi-coherent.
Now an induction on the number of nonvanishing components of E (using
the triangle [H, p. 70, (1)]) gives the desired conclusion. Q.E.D.

For more along these lines see exercise 4.7.6(f) below.
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Proposition (4.7.5). If f : X → Y is quasi-proper and F ∈ Dqc(Y )
has finite tor-dimension then for all E ∈ Dqc(Y ) the map χE,F of (4.7.3.4)
is an isomorphism

f×E ⊗
=

Lf∗F −→∼ f×(E ⊗
=
F ).

Proof. If U →֒ Y is an open immersion, then by [LN, Prop. 4.4],
the projection X ×Y U → U is quasi-proper. Together with (4.4.3)
and (4.7.3.4)(c), this implies that the assertion in (4.7.5) is local on Y ,
so we may assume that Y is affine.

We can then replace F by a D-isomorphic bounded-above quasi-
coherent complex—see (3.9.6)(a)—which by [H, p. 42, 4.6 1)] (dualized)
may be assumed flat. Since F has finite tor-dimension, an application of
[I, p. 131, 5.1.1] to a suitable D-isomorphic truncation of F allows one to
assume further that F is bounded. Then an induction on the number of
nonvanishing components of F (using the triangle [H, p. 70, (1)]) reduces
the problem to where F is a single flat quasi-coherent OY -module.

As in the proof of (4.7.4) ((i) ⇔ (ii)), let u : Y ′ → Y be an affine
scheme-map such that u∗OY ′ = OY ⊕F. The map u is flat, so u and f are
two sides of an independent square, and by (4.4.3) the corresponding base-
change map β(E) in the commutative diagram (4.7.4.1) is an isomorphism.
One concludes as before that χE,F is an isomorphism. Q.E.D.

Exercises (4.7.6). (a). Let f : X → Y be a quasi-perfect scheme-map. Assume

that X is divisorial—i.e., X has an ample family of invertible OX -modules—so that

by [I, p. 173, 2.2.8b)] every pseudo-coherent OX -complex is D-isomorphic to a bounded
above complex of finite-rank locally free OX -modules. Show that an OX -complex F is

pseudo-coherent iff for every n ∈ Z there is a triangle P → F → R → P [1] with P

perfect and R ∈ (Dqc)<n; and using (3.9.2.3) above, deduce that f is quasi-proper.
(A similar result without the divisoriality assumption is [LN, Thm. 4.1].)

(b). Let f : X → Y be a quasi-proper scheme-map. Let r ∈ Z and let (Gα)α∈A
be a family of complexes in Dqc(X)≥r , i.e., for every α, Hm(Gα) = 0 whenever m < r.

Show that the natural map is an isomorphism 52

⊕
α
f×Gα −→

∼ f×(⊕
α
Gα) .

Hint. Write f∗ for Rf∗, HX for RHom
•
X

, etc. The triangulated category
Dqc(X) ≡ D(Aqc(X)) is generated by perfect complexes (see [N, pp. 215–216], or

[LN, Thm. 4.2]), so a Dqc-map ϕ : A1 → A2 is an isomorphism iff the induced map

Hom(E,A1)→ Hom(E,A2) is an isomorphism for all perfect E ∈ D(X). In the follow-
ing natural diagram, easily seen to commute,

f∗HX (E, ⊕f×Gα) −−−→ f∗HX(E, f×(⊕Gα)) ˜−−−−→
(4.3.6)

HY (f∗E, ⊕Gα)x
x

x
f∗(⊕HX(E, f×Gα)) ˜←−−−−−

(3.9.3.1)
⊕f∗HX(E, f×Gα) ˜−−−−→

(4.3.6)
⊕HY (f∗E, Gα)

the left and right vertical arrows are isomorphisms whenever E is pseudo-coherent.

52 Cf. [V′, p. 396, Lemma 1], where the necessary uniform lower bound on the Gα
is omitted.
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(The question being local on X, one can, as in the proof of (4.3.5), replace E by a
bounded finite-rank free complex E′ and then, using the triangle [H, p. 70, (1)], proceed

by induction on the number of degrees in which E′ doesn’t vanish.) Finally, apply the

functor H0RΓ(Y,−).
(c) Deduce from (b) that a quasi-proper scheme-map f with f× bounded above is

quasi-perfect. (This is part of [LN, Thm. 1.2.])

(d) Let f : X → Y be a scheme-map. Show that if f is quasi-perfect then the fol-

lowing two conditions hold, and that the converse is true when f× is bounded. (Apropos,

recall again from the beginning of this section that f quasi-perfect =⇒ f× bounded.)

(i) If u : Y ′ → Y is an open immersion, and v : f−1U → X , g : f−1U → U are

the obvious induced maps, then the base-change map is an isomorphism

β(OY ) : v∗f×OY −→
∼ g×u∗OY .

Equivalently (see subsection V in §4.6), for all F ∈ Dqc(X) the duality map δ(F,OY )

defined as in (4.4.2) is an isomorphism

Rf∗RHom
•
X(F, f×OY ) −→∼ RHom

•
Y (Rf∗F,OY )

(ii) If (Fα) is a small filtered direct system of flat quasi-coherent OY -modules then
for all n ∈ Z the natural map is an isomorphism

lim
−→α

Hn(f×Fα) −→∼ Hn(f×lim
−→α

Fα).

Hint. Use (4.7.3.4)(c) and Lazard’s theorem that over a commutative ring A any
flat module is a lim

−→
of finite-rank free A-modules [GD, p. 163, (6.6.24)] to show that (i)

and (ii) imply condition (ii) in (4.7.4).

(e) (i) (Neeman). Using, e.g., (i) in (d) (with F = OX ), show that if f :X → Y

is quasi-perfect then the OY -complex Rf∗f×OY is perfect; and deduce that for any

perfect OY -complex E, Rf∗f×E is perfect.
(ii) (cf. [I, p. 257, 4.8]). Let f :X → Y be a concentrated quasi-proper map of

quasi-compact schemes. Then for any f -perfect OX -complex E, Rf∗E is a perfect

OY -complex.

(f) Let U u−→ X
f
−→ Y be scheme-maps, with f quasi-proper, and let E ∈ Dqc(Y ).

Show that the following are equivalent.

(i) The functor Lu∗f×(E⊗
=
F ) (F ∈ Dqc(Y )) is bounded above.

(ii) Lu∗f×E ∈D−(X)), and the map (see exercise (4.7.3.4) above)

Lu∗χE,F : Lu∗f×E⊗
=

L(fu)∗F → Lu∗f×(E⊗
=
F ),

is an isomorphism for all F ∈ Dqc(Y ).

(iii) Lu∗f×E ∈ D−(X)), and the functor Lu∗f×(E⊗
=
F ) (F ∈ Dqc(Y )) respects

direct sums (cf. (4.7.1)(i)).

Moreover, if u has finite tor-dimension, then the following are equivalent.

(i)′ The functor Lu∗f×(E⊗
=
F ) (F ∈ Dqc(Y )) is bounded.

(ii)′ The complex Lu∗f×E has finite flat fu-amplitude (2.7.6), and Lu∗χ
E,F

is

an isomorphism for all F ∈ Dqc(Y ).

(iii)′ Lu∗f×E has finite flat fu-amplitude, and the functor Lu∗f×(E⊗
=
F )

(F ∈ Dqc(Y )) respects direct sums.

Hint. Given (i), one sees as in exercise (c) above that the functor Lu∗f×(E⊗
=
F )

respects direct sums; and then arguing as in [N, p. 226, Thm. 5.4], one see that Lu∗χ
E,F

in (ii) is an isomorphism. It follows then from [I, p. 242, 3.3(iv)], and the fact that if

V ⊂ Y is open then any quasi-coherent OV -module M is the restriction of a quasi-

coherent OY -module, that if (i)′ holds then Lu∗f×E has finite flat fu-amplitude.
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4.8. Two fundamental theorems

Up to now we have dealt with the pseudofunctor ××× (see (4.1.1)) for
quite general maps—it cost nothing to do so. But for non-proper maps this
pseudofunctor may still be of limited interest (see [De′, p. 416, line 3]).

As indicated in the Introduction to these notes, Grothendieck Duality
is fundamentally concerned with a D+

qc-valued pseudofunctor ! over the
category of say, separated finite-type maps of noetherian schemes, agreeing
with ××× on proper maps, but, unlike ××× (see (4.2.3)(d)), agreeing with the
usual pseudofunctor * on open immersions (more generally, on separated
étale maps see [EGA, IV, §§17.3, 17.6]), and compatible in a suitable sense
with flat base change. The existence and uniqueness, up to isomorphism, of
this remarkable pseudofunctor is given by Theorem (4.8.1), and its behavior
vis-à-vis flat base change is described in Theorem (4.8.3).

The proof of (4.8.1) presented here is based on a formal method of
Deligne for pasting pseudofunctors (see Proposition (4.8.4)), and on the
compactification theorem of Nagata, that any finite-type separable map of
noetherian schemes factors as an open immersion followed by a proper map
(see [Lt], [C′ ], [Vj]). The proof of (4.8.3) is based on a formal pasting
procedure for base-change setups (see (4.8.2), (4.8.5)).

There are other pasting techniques, due to Nayak [Nk], to establish
the two basic theorems, (4.8.1) and (4.8.3).53 As mentioned in the Intro-
duction, Nayak’s methods avoid using Nagata’s theorem, and so apply in
contexts where Nagata’s theorem may not hold. For example, the results in
[Nk, §7.1] are generalizations of (4.8.1) and (4.8.3) to the case of noetherian
formal schemes (except for “thickening” as in (4.8.11) below, which allows
flat base-change isomorphisms for admissible squares (4.8.3.0) rather than
just fiber squares, see Exercise (4.8.12)(d).)

All commutative squares will be considered to be oriented, as in §3.10.

The first main result defines (up to isomorphism) the twisted inverse
image pseudofunctor.

Theorem (4.8.1). On the category Sf of finite-type separated maps of
noetherian schemes, there is a D+

qc-valued pseudofunctor ! that is uniquely
determined up to isomorphism by the following three properties :

(i) The pseudofunctor ! restricts on the subcategory of proper maps to
a right adjoint of the derived direct-image pseudofunctor, see (3.6.7)(d) .

(ii) The pseudofunctor ! restricts on the subcategory of étale maps to
the usual inverse-image pseudofunctor * .

53 [Nk, §7.5] discusses the relation between Nayak’s methods and Deligne’s. On
the other hand, in [Nk′ ] Nayak extends Nagata compactification—and hence Theorems

(4.8.1) and (4.8.3)—to separated maps which are essentially of finite type.



194 Chapter 4. Grothendieck Duality for schemes

(iii) For any fiber square in Sf :

•
v

−−−−→ •

g

y
yf

•

σ

−−−−→
u

•

(f, g proper; u, v étale),

the base-change map βσ of (4.4.3) is the natural composite isomorphism

v∗f ! = v!f ! −→∼ (fv)! = (ug)! −→∼ g!u! = g!u∗.

Remark (4.8.1.1). It follows that when f is both étale and proper
(hence by [EGA, III, 4.4.11], finite), then the natural map f∗f

∗ = f∗f
! → 1

is precisely—not just up to isomorphism—the standard trace map, see Ex-
ercise (4.8.12)(b)(vii).

For subsequent considerations, involving base-change isomorphisms
and their properties, the following definition will be convenient to have.

Definition (4.8.2). A base-change setup B
(
S,P,F, !, * , (βσ)σ∈�

)

consists of the following data (a)–(d), subject to conditions (1)–(3):

(a) Subcategories P and F of a category S, each containing every
object of S.

(b) Contravariant pseudofunctors ! on P and * on F such that for all
objects X ∈ S, the categories X! and X* coincide (see §3.6.5).

(c) A class � of (oriented) commutative S-squares, the distinguished
squares, each member of which has the form

•
v

−−−−→ •

g

y
yf

•

σ

−−−−→
u

•

(f, g ∈ P; u, v ∈ F)

(where u precedes f in the orientation of σ, see §3.10).

(d) For each distinguished σ as in (c), an isomorphism of functors

βσ : v∗f ! −→∼ g!u∗.

(1) If two commutative S-squares

•
v

−−−−→ •

g

y
yf

•

σ

−−−−→
u

•

•
v1−−−−→ •

g1

y
yf1

•

σ1

−−−−→
u1

•
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are isomorphic, i.e., there exists a commutative cube with front
and rear faces σ and σ1 respectively, and i, i1, j, j1 isomorphisms:

• •

• •

• •

• •

u

u1

i1 i

v

j
1

v
1

j

f

f
1

g

g
1

then σ is distinguished⇔ σ1 is distinguished.

(2) For every P-map f, the square

•
1

−−−−→ •

f

y
yf

•

σ

−−−−→
1

•

is distinguished, and βσ : f ! → f ! is the identity map.

(2)′ For every F-map u, the square

•
u

−−−−→ •

1

y
y1

•

σ

−−−−→
u

•

is distinguished, and βσ : u∗ → u∗ is the identity map.

(3) (Horizontal and vertical transitivity.) If the square σ0 = σ2 ◦σ1

(with g resp. v deleted)

•
v1−−−−→ •

v2−−−−→ •

h

y g

y
yf

•

σ1

−−−−→
u1

•

σ2

−−−−→
u2

•

resp.

•
w

−−−−→ •

g1

y
yf1

•
v

−−−−→

σ1

•

g2

y
yf2

•

σ2

−−−−→
u

•

as well as its constituents σ2 and σ1 are all distinguished, then
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the corresponding natural diagram of functorial maps commutes:

(v2v1)
∗f !

βσ0
−−−−−−−−−−−−−−−−→ h!(u2u1)

∗

≃

y
y≃

v∗
1
v∗

2
f ! −−−−→

v∗1βσ2

v∗
1
g!u∗2 −−−−→

βσ1

h!u∗1u
∗
2

resp.

(g2g1)
!u∗

βσ0
←−−−−−−−−−−−−−−−− w∗(f2f1)

!

≃

y
y≃

g!
1g

!
2u

∗ ←−−−−
g!1βσ2

g!
1v

∗f !
2 ←−−−−

βσ1

w∗f !
1f

!
2

Remarks (4.8.2.1). (a) Let u and v be S-isomorphisms. If f and g
are S-maps such that fv = ug is in P, then the squares

•
v

−−−−→ •

g

y
yf

•

σ

−−−−→
u

•

and

•
1

−−−−→ •

ug

y
yfv

•

σ̃

−−−−→
1

•

are isomorphic, so that by (1) and (2), σ is distinguished—which entails
that u and v are in F and that f and g are in P . In particular,

•
v

−−−−→ •

v

y
yv−1

• −−−−→
v−1

•

is distinguished, so that every S-isomorphism lies in P ∩ F (whence
fv ∈ P ⇐⇒ f ∈ P , and ug ∈ P ⇐⇒ g ∈ P).

Similarly, if f and g are S-isomorphisms, and u and v are any F-maps
such that fv = ug, then σ is distinguished.

(b) That the isomorphism βσ in (2) is idempotent, hence the identity,
actually follows from (3), with ui = vi = 1 (resp. fi = gi = 1).

(c) To each base-change setup B = B
(
S,P, F, !, *, (βσ)σ∈�

)
is asso-

ciated a dual setup Bop := B
(
S,F,P, *, !, (βσ′ := β−1

σ )σ′∈�′

)
, where σ′ is

the transpose of σ (i.e., σ with its orientation reversed, or, visually, the
reflection of σ in its upper-left to lower-right diagonal), and �

′ consists of
all transposes of squares in � .
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Example (4.8.2.2). Let S be a category, take P = F = S, let ! = *

be a contravariant pseudofunctor on S, let all commutative squares in S
be distinguished, and for any such square σ, let

βσ : v∗f∗ −→∼ (fv)∗ = (ug)∗ −→∼ g∗u∗

be the isomorphism naturally associated with the pseudofunctor *.
Then (4.8.2)(1) holds trivially, and (2), (2)′, (3) follow readily from

the definition of “pseudofunctor.”
We will denote such a base-change setup by B

(
S, *

)
.

Example (4.8.2.3). Let S be a subcategory of the category of quasi-
compact separated schemes, P ⊂ S the subcategory of quasi-proper maps,
and F ⊂ S the subcategory of finite-tor-dimension maps. On P there
is the D+

qc-valued pseudofunctor ××× (see (4.1.2)); and on F there is the

D+
qc-valued pseudofunctor * with u∗ := Lu∗ for any F-map u . Let � be

the class of independent fiber squares of the form specified in 4.8.2(c). For
σ ∈ � , let βσ : v∗f× → g×u∗ be the corresponding base-change isomor-
phism from (4.4.3).

Conditions (1), (2) and (2)′ in (4.8.2) are then easily verified; and
as in (4.6.8), (3) follows formally from (3.7.2), (ii) and (iii). So we have a
base-change setup B

(
S,P,F, ××× , * , (βσ)σ∈�

)
.

Example (4.8.2.4). As a special case, we have the base-change setup
B

(
Sf ,P,E, ××× , * , (βσ)σ∈�

)
with Sf as in (4.8.1), P ⊂ Sf the subcategory

of proper maps, E ⊂ Sf the subcategory of étale maps, and ××× , * , � , βσ
as in the preceding example (4.8.2.3) (with F replaced by E).

To prove (4.8.1), we will need to show that there is a unique way to
enlarge the preceding setup to a setup B

(
Sf ,P,E, ××× , * , (β

′
σ)σ∈�′

)
where

�
′ consists of all commutative Sf -squares

X ′ v
−−−−→ X

g

y
yf

Y ′

σ

−−−−→
u

Y

with f, g proper and u, v étale.
This, and more, will be done in (4.8.11). Meanwhile, we’ll refer to this

unique enlarged setup as Example (4.8.2.4)′.

Notation-Definition (4.8.3.0). A category S having been given,
for S-maps v, f, g, u with fv = ug , σv,f,g,u is the commutative square

•
v

−−−−→ •

g

y
yf

• −−−−→
u

•
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In the category of schemes, such a σv,f,g,u :

X ′ v
−−−−→ X

g

y
yf

Y ′ −−−−→
u

Y

is an admissible square if u is flat, f is finitely presentable, and in the
associated diagram

X ′ i
−−−−→ X ×Y Y

′
q1−−−−→ X

q2

y
yf

Y ′ −−−−→
u

Y

where q1, q2 are the projections, q1i = v and q2i = g, the map i is étale.
(Note that then g = q2i is finitely presentable, and v = q1i is flat, so that
Lv∗ = v∗.)

Theorem (4.8.3). Let S be the category of separated maps of
noetherian schemes, let Sf ⊂ S and ! be as in (4.8.1), let F ⊂ S be
the subcategory of flat maps, and let * be the usual D+

qc-valued inverse-
image pseudofunctor on F. Then there is a unique base-change setup

B
(
S,Sf , F,

!, *, (βσ)σ∈�

)
with � the class of admissible S-squares, such

that the following conditions hold for any admissible S-square σ = σv,f,g,u :

(i) If σ is a fiber square with f proper then βσ is the base-change
isomorphism in (4.4.3).

(ii) If f—and hence g—is étale, so that f ! = f∗ and g! = g∗, then
βσ is the natural isomorphism v∗f∗ −→∼ g∗u∗.

(iii) If u—and hence v—is étale, so that u∗ = u! and v∗ = v!, then
βσ is the natural isomorphism v!f ! −→∼ g!u!.

Remarks (4.8.3.1). (a) Since étale maps are unramified [EGA, IV,
(17.6.2)], therefore by [EGA, IV, (17.3.3)(iii) and (17.3.4)], every commu-
tative Sf -square σv,f,g,u with u and v flat and such that either f and g
or u and v are étale is admissible.

(b) Uniqueness in (4.8.3) is implied by (i), (ii) and vertical transitivity
as in (4.8.2)(3), because if σv,f,g,u is admissible, then, by Nagata’s theorem,
f = f2f1 with f2 proper and f1 an open immersion, whence σ decomposes
as in the second diagram in (4.8.2)(3), with σ1 having v, w flat and f1, g1
étale, and with σ2 an admissible fiber square.

(c) As for existence, the preceding suggests defining βσ via a choice of
such factorizations, one for each f, then showing that the definition does
not depend on the choice, and that (i)–(iii) in (4.8.3) are satisfied.



4.8. Two fundamental theorems 199

This purely formal procedure is straightforward in principle but, as
will emerge, lengthy in practice.

In view of Nagata’s compactification theorem, it is readily verified that
the existence of the pseudofunctor ! in Theorem (4.8.1) results from the
next Proposition (4.8.4) on the pasting of pseudofunctors, as applied to the
base-change setup (4.8.2.4)′.

Proposition 4.8.4 ([De, p. 318, Prop. 3.3.4]). Let there be given a
base-change setup B = B

(
S,P,E,×××, * , (βσ)σ∈�

)
such that :

(a) the fiber product in P of any two P-maps with the same target
exists, and is a fiber product in S of the same two maps;

(b) every map f ∈ S has a “compactification,” i.e., a factorization

f = f̄ i with f̄ ∈ P and i ∈ E; and

(c) � consists of all of the commutative S-squares σv,f,g,u for which
f, g ∈ P and u, v ∈ E.

Then there exists a contravariant pseudofunctor ! on S, uniquely
determined up to isomorphism by the properties that X! = X××× = X* for
all X ∈ S and that there exist isomorphisms of pseudofunctors (see (3.6.6))

αP : ! |P −→
∼ ××× and αE : ! |E −→

∼ * such that for any σ = σv,f,g,u ∈ �,
βσ is the natural composition (with first and last isomorphisms coming from
αP and αE) :

v∗f× −→∼ v!f ! −̃−→ (fv)! = (ug)! −̃−→ g!u! −→∼ g×u∗.

In other words, B
(
S, !

)
(see (4.8.2.2)) extends B, via αP and αE.

In fact there is a ! such that, furthermore, ! |E = * and αE is the
identity isomorphism.

Remark. Uniqueness (up to isomorphism) in (4.8.1) also results
from (4.8.4), as follows. Let P ⊂ Sf , E ⊂ Sf and �

′ be as in (4.8.2.4).
If the pseudofunctor ! satisfies the conditions in (4.8.1) then there is a
natural pseudofunctorial isomorphism αP : ! |P −→

∼ ××× |P (since both ! |P
and ××× |P have the same pseudofunctorial left adjoint). For any σv,f,g,u ∈ �

′

let β′′
σ be the natural composite isomorphism

v∗f× ˜−−−→
v∗α−1

P

v∗f ! = v!f ! −̃−→ g!u! = g!u∗ −̃−→
α

P

g×u∗.

This gives a setup B′′ = B
(
Sf ,P,E,

×××, *, (β′′
σ)σ∈�′

)
. (Check directly, or see

Exercise (4.8.12)(a).) When σ is a fiber square then, one checks, β′′
σ is the

base change map of (4.4.3). Thus B′′ is the unique enlargement (4.8.2.4)′

of the setup (4.8.2.4), so that the uniqueness assertion in (4.8.4) gives the
uniqueness in (4.8.1).
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Proof of (4.8.4). (Outline: more details are in [De, pp. 304–318].54 )

If the pseudofunctor ! exists then to each compactification f = f̄ i

there is naturally associated an isomorphism f ! −→∼ i∗f̄
×
; and for a com-

posite S-map f1f2 and compactifications f1 = f̄1i1, f2 = f̄2 i2, i1f̄2 = ḡj,

with σ := σj,ḡ,f̄2,i1 , the canonical isomorphism f !
2f

!
1 −→

∼ (f1f2)
! factors

naturally as

(4.8.4.1)
(f̄2 i2)

!(f̄1i1)
! −→∼ i∗2 f̄

×

2 i
∗
1f̄

×

1 −̃−→
β−1
σ

i∗2 j
∗ḡ×f̄×

1

−→∼ (ji2)
∗(f̄1ḡ)

× −→∼ (f̄1ḡji2)
! = (f̄1i1 f̄2 i2)

!.

If !! is another pseudofunctor with the same property as ! then for
each compactification f = f̄ i we have a natural composite functorial iso-
morphism

(4.8.4.2) f ! = (f̄ i)! −→∼ i!f̄
!
−→∼ i∗f̄

×
−→∼ i!!f̄

!!
−→∼ (f̄ i)!! = f !!.

One must show that (4.8.4.2) depends only on the S-map f : X → Y , not
on any particular compactification. Then it is a simple exercise to check
via (4.8.4.1) that these isomorphisms, for variable f, constitute an isomor-
phism of pseudofunctors, giving uniqueness of ! (up to a pseudofunctorial
isomorphism—itself unique if we require compatibility with αP and αE ).

For comparing (4.8.4.2) relative to various compactifications of f,

(is, f̄s) :=
(
X

is−→ Xs
f̄s−→ Y

)
,

let [(i1, f̄1), (i2, f̄2)] be the natural composite isomorphism

i∗2 f̄
×

2 −→
∼ i

!
2 f̄

!
2 −→

∼ f ! −→∼ i
!
1 f̄

!
1 −→

∼ i∗1 f̄
×

1 .

Noting that the compactifications of f are the objects of a category C in

which a morphism (i1, f̄1) → (i2, f̄2) is a P-map g : X1 → X2 such that

gi1 = i2 and f̄2g = f̄1, one shows the following identity, transitivity and

normalization properties (sketch the diagrams!):

(i) [(i1, f̄1), (i1, f̄1)] = identity.

(ii) [(i1, f̄1), (i2, f̄2)] ◦ [(i2, f̄2), (i3, f̄3)] = [(i1, f̄1), (i3, f̄3)].

(iii) For any g : (i1, f̄1) → (i2, f̄2), and σ := σi1,g,1,i2 , the isomorphism

[(i2, f̄2), (i1, f̄1)] factors naturally as i∗1 f̄
×

1 −→
∼ i∗1 g

×f̄
×

2 −→
∼

βσ
i∗2 f̄

×

2 .

54 where there are a few minor misprints (for example, (3.2.4.∗) should be

(3.2.5.∗) ), and omissions of symbols.
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Making use of condition (4.8.4)(a), Deligne shows in [De, p. 308,
3.2.6(ii)] that the opposite category Cop is filtered (see [M, p. 211]).55 It

follows that the independence verification for (4.8.4.2) need only be done
for a pair of compactifications of which one maps to the other. This is now
a straightforward exercise, using isomorphisms of the form [(i1, f̄1), (i2, f̄2)].

To prove existence of ! Deligne constructs, for each map f , a family
of functorial isomorphisms [(i1, f̄1), (i2, f̄2)] : i

∗
2 f̄

×

2 −→∼ i∗1 f̄
×

1 , indexed by

pairs of compactifications of f, and satisfying (i)–(iii) [De, p. 313, 3.3.2.1].

(There is a pretty obvious such isomorphism when (i1, f̄1) maps to (i2, f̄2) ;
and the rest follows from the fact that Cop is filtered.) He then makes an
arbitrary choice of a compactification f = f̄ i, and sets f ! := i∗f̄×. Thus
for any compactification f = f̄•i• one has an isomorphism

(4.8.4.3) [(i•, f̄•), (i, f̄ )] : f ! = i∗f̄× −→∼ i∗• f̄
×

• .

For f ∈ E, taking f̄• = 1, i• = f, one gets f ! −→∼ f∗, giving αE at the
functorial—but not yet the pseudofunctorial—level. Analogous remarks
lead to αP.

Substituting isomorphisms as in (4.8.4.3) at each of the three appro-
priate places in (4.8.4.1), one gets a definition of df1,f2 : f !

2f
!
1 −→

∼ (f1f2)
!,

provided it is first shown that the result of this substitution does not depend
on the choice of ḡ and j. As before, since Cop is filtered it suffices to show
that (4.8.4.1) (as here modified) is unaltered by the substitution for (j, ḡ)
of a compactification (j1, ḡ1) of i1f̄2 such that there exists a P-map h̄ with
j = j1h̄ and ḡh̄ = ḡ1. This is done in [De, pp. 314–316].

Finally, a brief check [De, p. 317, 3.3.2.4] ensures that this d endows ! ,
αP and αE with all the desired pseudofunctorial properties. The last
assertion in (4.8.4) simply reflects the possibility in the above definition
of ! of making the obvious choice f̄ = 1, i = f whenever f ∈ E. Q.E.D.

The proof of (4.8.3) will be based on the following pasting result for
base-change setups.56

Proposition (4.8.5). With notation and assumptions as in (4.8.4),
let S be a category containing S as a subcategory. Let

B′ := B
(
S,E, F, *, #, (β′

σ)σ∈�′

)
, B′′ := B

(
S,P, F, ××× , #, (β′′

σ)σ∈�′′

)
,

be base-change setups with �
′ (resp. �

′′) the class of S-fiber squares σv,f,g,u
such that f, g ∈ E (resp. P) and u, v ∈ F. Assume that for any f ∈ E
(resp. P) and u ∈ F, such a σv,f,g,u exists.

55 In that proof take K to be the inverse image of the diagonal under the map

(r, s) : Y1 → Y2 ×X Y2.
56 This result should be compared with [Nk, p. 205, Thm. 2.3.2].
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Then there is at most one base-change setup

B :=B
(
S,S,F, !, # , (β̄σ)σ∈�

)

which extends—in the obvious sense, via αP and αE—both B′ and B′′,

and with � the class of S-fiber squares σv,f,g,u such that f, g ∈ S and

u, v ∈ F. Such a B exists if and only if, for any S-cube with i, i1, j, j1 ∈ E,

f, f1, g, g1 ∈ P, and u, u1, v, v1 ∈ F, and in which all the faces are distin-
guished (for the appropriate one of B, B′, or B′′) :

• •

• •

• •

• •

u

u1

i1 i

v

j
1

v
1

j

f

f
1

g

g
1

the following diagram commutes :

(4.8.5.1)

v#

1 j
∗f× β′

−−−−→ j∗1v
#f× β′′

−−−−→ j∗1g
×u#

β

y
yβ

v#

1 f
×
1 i

∗ −−−−→
β′′

g×1 u
#

1 i
∗ −−−−→

β′
g×1 i

∗
1u

#

Remark (4.8.5.2). The existence part of Theorem (4.8.3), weakened
by substituting for � the class of fiber squares σv,f,g,u with u, v flat and f, g
finitely presentable, and by leaving aside conditions (4.8.3)(iii), results from
an application of (4.8.5) to the following base-change setups B′ and B′′.

For B′, let S be the category of separated maps of noetherian schemes;
F the subcategory of flat maps, with # = * , the usual D+

qc-valued inverse-
image pseudofunctor; E ⊂ F the subcategory of étale maps, with the
same inverse-image pseudofunctor * ; �

′ the class of all S-fiber squares
σv,f,g,u with f, g étale and u, v flat; and βσ : v∗f∗ −→∼ g∗u∗ the natural

isomorphism. (This is just a “subsetup” of B(S,L−∗), see (4.8.2.2).)

For B′′, let S and (F,# ) be the same as for B′; let P be the subcat-
egory of proper maps, with the D+

qc-valued pseudofunctor ××× (see (4.1.2));

�
′′ the class of those S-fiber squares σv,f,g,u with f and g proper, u and v

flat; and βσ (σ ∈ �
′) the base-change isomorphism from (4.4.3).
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In this situation, commutativity of (4.8.5.1) is easily checked, via
“horizontal transitivity” in Example (4.8.2.3).

In (4.8.6)–(4.8.11), the resulting base-change setup B will be extended
to where � consists of all admissible S-squares.

Proof of (4.8.5). Fiber products being unique up to isomorphism,
it follows from (4.8.2.1)(a) and the assumption in (4.8.5) that any S-fiber
square σv,f,g,u with f ∈ E (resp. P) and u ∈ F is in �

′ (resp. �
′′). It

is then straightforward to see via (4.8.4)(b) that any σ ∈ � is a vertical
composite σ2 ◦σ1 with σ1 ∈ �

′ and σ2 ∈ �
′′ :

(4.8.5.3) σ =

•
v

−−−−→ •

j

y
yi

•
w

−−−−→

σ1

•

ḡ

y
yf̄

•

σ2

−−−−→
u

• ,

and to check that if B exists then β̄σ has to be the natural composition

v#(f̄ i)! −→∼ v#i!f̄
!
−→∼
α

P

v#i!f̄
×
−→∼
α

E

v#i∗f̄
×
−→∼
β′

j∗w#f̄
×

−→∼
β′′

j∗ḡ×u# −→∼
α−1

E

j!ḡ×u# −→∼
α−1

P

j!ḡ!u# −→∼ (ḡj)!u#,

whence the uniqueness of B (if it exists). Expanding the two instances
of β in (4.8.5.1) according to the description of βσ in (4.8.4), one finds
then that (4.8.5.1) commutes. (The commutativity amounts to two ways

of expanding β̄ : v#

1 (fj)! = v#

1 (if1)
! −→∼ (gj1)

!u# = (i1g1)
!u# according to

vertical transitivity (4.8.2)(3).)

To prove the existence of B , we first show that the above expression
for β̄σ depends only on σ .

For this purpose, consider the category S̃ whose objects are F-maps,
the morphisms from an F-map v : X ′ → X to an F-map u : Y ′ → Y being
the fibre squares σv,f,g,u ∈ �, with the obvious definition of composition.

Define the subcategory Ẽ ⊂ S̃ (resp. P̃ ⊂ S̃) to be the one having the same

objects as S̃ , but with morphisms σv,f,g,u ∈ � such that f, g ∈ E (resp. P).

The above decomposition σ = σ2 ◦σ1 signifies that every S̃-morphism has

an (Ẽ, P̃)-compactification, i.e., it factors as an Ẽ-morphism followed by a

P̃-morphism.

It is left as an exercise to deduce from (4.8.4)(a) its analogue for P̃ ⊂ S̃.
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It follows then, as in the proof of (4.8.4), that it will be enough to
show that two different compactifications of σ ∈ � give the same β̄σ when

one of them maps to the other, via P̃—cf. the definition of morphisms
of compactifications which appears in the proof of (4.8.4). Let the target
compactification be given by factorizations f = f̄ i, g = ḡj (see (4.8.5.3));
let the source compactification be given similarly by factorizations f = f̄1i1,
g = ḡ1j1. Then the map of compactifications is given by P-maps p and q
fitting into commutative cubes (with a common face), whose horizontal
arrows are F-maps:

• •

• •

• •

• •

w

v

j i

w
1

j
1

v

i
1

p

1

q

1

• •

• •

• •

• •

u

w

ḡ f̄

u

ḡ
1

w
1

f̄
1

1

p

1

q

The first cube entails, via (4.8.5.1), a commutative diagram

(4.8.5.4)

v#i∗1p
× β′

−−−−→ j∗1w
#

1p
× β′′

−−−−→ j∗1q
×w#

β

y
yβ

v#i∗ v#i∗ −−−−→
β′

j∗w#

Vertical transitivity (4.8.2)(3) for the setup B
(
S,P, F, ××× , #, (β′′

σ)σ∈�′′

)
,

applied to the composite diagram consisting of the rear and bottom faces
of the second cube, yields a commutative diagram

(4.8.5.5)

ḡ×1 u
# −−−−−−−−−−−−−−−−→ w#

1 f̄
×

1x
x

q×ḡ×u# ←−−−− q×w#f̄
×
←−−−− w#

1 p
×f̄

×



4.8. Two fundamental theorems 205

Now, by the definition of β̄σ with respect to a given compactification,
the present problem is to show commutativity of the outer border of the
following diagram, in which the maps are the obvious isomorphisms. (Recall
that i ◦1 = i = pi1, f̄1 = f̄p, j ◦1 = j = qj1, wq = pw1 and ḡ1 = ḡq.)

v#f ! v#f !

y
y

v#i!f̄
!
−−−−−−−−−−−−−−−−−−→ v#i!1p

!f̄
!
−−−−→ v#i!1f̄

!
1y

y
y

v#i∗f̄
×

©1

−−−−−−−−−−−−−−−−−−→ v#i∗1p
×f̄

×

©2

−−−−→ v#i∗1f̄
×

1y ©3
y

y

j∗w#f̄
×
−−−−→ j∗1q

×w#f̄
×
−−−−→ j∗1w

#

1 p
×f̄

×
−−−−→ j∗1w

#

1 f̄
×

1y
y

y

j∗ḡ×u# −−−−→ j∗1q
×ḡ×u#

©4

−−−−−−−−−−−−−−−−−−→ j∗1ḡ
×
1 u

#

y
y

y

j!ḡ!u# −−−−→ j!1q
!ḡ!u#

©5

−−−−−−−−−−−−−−−−−−→ j!1ḡ
!
1u

#

y
y

g!u# g!u#

Subdiagram ©1 commutes by (4.8.4) (for v := i1, f := p, u := i and g := 1),
©3 by (4.8.5.4), and ©4 by (4.8.5.5). Subdiagrams ©2 and ©5 commute
because the isomorphism αP is pseudofunctorial. Commutativity of the
remaining subdiagrams is clear. Thus the entire diagram does commute,
and so β̄σ depends only on σ.

It remains to check conditions (1)–(3) in (4.8.2), of which only “vertical
transitivity for β̄σ” is not straightforward enough to be left to the reader.
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So we need to consider a commutative diagram, with f̄t, ḡt ∈ P and
it, jt ∈ E (t = 1, 2), w, x, y, z, u ∈ F, and in which all the squares are fiber
squares:

•
w

−−−−→ •

j1

y
yi1

X ′ x
−−−−→ X

g1

y
yf1

•
y

−−−−→ •

j2

y
yi2

Z ′ z
−−−−→ Z

g2

y
yf2

•
u

−−−−→ •

Let i2f1 = fi with f : Y → Z ∈ P and i : X → Y ∈ E.

Let g : Z ′×Z Y → Z ′ and v : Z ′×Z Y → Y be the projections, so that
g ∈ P and v ∈ F.

Then there is a unique E-map j : X ′ → Z ′×Z Y such that gj = j2g1
and vj = ix . One sees then that in the cube

Z ′ Z

• •

Z ′×Z Y Y

X ′ X

z

y

j
2

i
2

v

j

x

i

f

f
1

g

g
1

the top and bottom faces are B′-distinguished, the front and back faces are
B′′-distinguished, and the other two faces are B-distinguished.
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Now vertical transitivity amounts to commutativity of the diagram

w#(ii1)
∗(f2f)×
y

−−−−→ w#i∗1i
∗f×f×

2 −−−−→ w#i∗1f
×
1 i

∗
2f

×
2y

y

©1 j∗1x
#i∗f×f×

2 −−−−→ j∗1x
#f×

1 i
∗
2f

×
2y

y

(jj1)
∗v#(f2f)×

y

−−−−→ j∗1 j
∗v#f×f×

2 ©3 j∗1g
×
1 y

#i∗2f
×
2y

y

©2 j∗1 j
∗g×z#f×

2 −−−−→ j∗1g
×
1 j

∗
2z

#f×
2y

y

(jj1)
∗(g2g)

×u# −−−−→ j∗1j
∗g×g×2 u

# −−−−→ j∗1g
×
1 j

∗
2g

×
2 u

#

Subsquares ©1 and ©2 commute by vertical transitivity for B′′. Commu-
tativity of ©3 is the instance of (4.8.5.1) corresponding to the preceding
cube. Commutativity of the remaining two subsquares is obvious.

This completes the proof of Proposition (4.8.5). Q.E.D.

As previously noted, to finish the proof of (4.8.1) we need to enlarge
the setup (4.8.2.4) to (4.8.2.4)′. Similarly, to finish the proof of (4.8.3) we

need to show that there exists a unique enlargement B̃ of the setup B at

the end of (4.8.5.2) such that all admissible S-squares are B̃-distinguished.

In addition, we need to check that (4.8.3)(ii) and (iii) hold for this B̃.
All this will be done in (4.8.11), after the supporting formal details are

developed in (4.8.6)–(4.8.10).

Definition (4.8.6). For a base-change setup B
(
S,P, F, !, *, (βσ)σ∈�

)

a subcategory E ⊂ S is special if for any maps i : X → Y in E, g : X ′ → X
in P, and v : X ′ → X in F, the squares

X ′ 1
−−−−→ X ′

g

y
yig

X −−−−→
i

Y

X ′ v
−−−−→ X

1

y
yi

X ′ −−−−→
iv

Y

are distinguished.

Remarks (4.8.6.1). (a) If E is special then E ⊂ P ∩F.

(b) If E is special for B, then E is also special for the dual of B (see
(4.8.2.1)(c)).
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Example (4.8.6.2). For (4.8.2.4), or for B′, B′′ or B in (4.8.5.2), the
category E whose maps are all the open-and-closed immersions of noethe-
rian schemes is special. Indeed, since i is a monomorphism, both squares
in (4.8.6) are fiber squares.

After fixing a special subcategory E, we will call its maps special. For
any special map i : X → Y ,

(4.8.7.0) βi : i
! −→∼ i∗

is defined to be the isomorphism βτ associated to the distinguished square

X
1

−−−−→ X

1

y
yi

X

τ

−−−−→
i

Y

Proposition (4.8.7). Let B
(
S,P, F, !, * , (βσ)σ∈�

)
be a base-change

setup and E a special subcategory. Then the restrictions of the pseudofunc-
tors ! and * to E are naturally isomorphic.

Proof. The family of isomorphisms βi (i ∈ E) of (4.8.7.0) is pseudo-
functorial (see (3.6.6)): if i : X → Y and j : Y → Z are in E, apply (3)
and (2) of (4.8.2) to

X

1

y

1
−−−−→ X

1
−−−−→ X

i

y
yi

Y
1

−−−−→ Y

1

y
yj

X −−−−→
i

Y −−−−→
j

Z

to see that the left and right halves of the following diagram commute:

(ji)! (ji)!
βji
−−−−→ (ji)∗

≃

y ≃

y
y≃

i!j! −−−−→
i!βj

i!j∗ −−−−→
βi

i∗j∗

Q.E.D.
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Proposition (4.8.8). Let B
(
S,P, F, !, * , (βσ)σ∈�

)
be a base-change

setup, E a special subcategory, and βi (i ∈ E) as in (4.8.7.0). Then :

(i) For each distinguished square

•
v

−−−−→ •

g

y
yf

•

σ

−−−−→
u

•

with f and g in E, the following diagram commutes :

v∗f ! βσ
−−−−−−−−−−−−−−−−−−−−−−→ g!u∗

v∗βf

y
yβg

v∗f∗ ˜−−−−→ (fv)∗ = (ug)∗ ˜←−−−− g∗u∗

(ii) For each distinguished square

•
v

−−−−→ •

g

y
yf

•

σ

−−−−→
u

•

with u and v in E, the following diagram commutes :

v∗f ! βσ
−−−−−−−−−−−−−−−−−−−−−−→ g!u∗

βv

x
xg!βu

v!f ! ˜←−−−− (fv)! = (ug)! ˜−−−−→ g!u!

Proof. Definition (4.8.6) shows that the following composite square ρ
is distinguished, as are its constituents:

•
1

−−−−→ •
v

−−−−→ •

1

y g

y σ
yf

• −−−−→
g

• −−−−→
u

•

so horizontal transitivity (4.8.2)(3) gives a commutative diagram

(4.8.8.1)

v∗f ! βσ
−−−−→ g!u∗

βρ

y
yβg

(ug)∗ ˜←−−−− g∗u∗
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Also, the following decomposition of ρ

•
v

−−−−→ •
1

−−−−→ •

1

y
y1

yf

• −−−−→
v

• −−−−→
f

•

yields—via (2)′ and (3) of (4.8.2)—the commutative diagram

(4.8.8.2)

v∗f ! v∗f !

v∗βf

y
yβρ

v∗f∗ ˜−−−−→ (fv)∗ (ug)∗

Pasting (4.8.8.1) and (4.8.8.2) along their common edge, we get (i).

Assertion (ii) is just (i) for the dual setup (see (4.8.2.1)(c)).
Q.E.D.

(4.8.9) We will now see how to enlarge certain base-change setups.

Consider a category S in which for any maps X → Y and Y ′ → Y
a fiber product X ×Y Y

′ exists. A square σv,f,g,u in S :

(4.8.9.1)

X ′ v
−−−−→ X

g

y
yf

Y ′ −−−−→
u

Y

is, as usual, called a fiber square if the corresponding map X ′ → X ×Y Y
′

is an isomorphism.
Let B := B

(
S,P, F, !, * , (βσ)σ∈�

)
be a base-change setup, and E a

special subcategory, see (4.8.6).
We make the following assumptions, in addition to those in (4.8.2).

(4) In the following S-diagrams, suppose that u1 ∈ F (resp. f1 ∈ P).

•
v1−−−−→ •

v2−−−−→ •

h

y g

y
yf

•

σ1

−−−−→
u1

•

σ2

−−−−→
u2

•

•
w

−−−−→ •

g1

y
yf1

•
v

−−−−→

σ1

•

g2

y
yf2

•

σ2

−−−−→
u

•

In either diagram, if σ2 is a fiber square and the composed square
σ2σ1 is in � , then σ1 ∈ � .
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(5) For any fiber square (4.8.9.1) in � , if u (resp. f) is special (i.e.,
lies in E) then so is v (resp. g).

(6) If the square (4.8.9.1) is in � then so is any fiber square with the
same u and f,

X ′′ −−−−→ X
y

yf

Y ′ −−−−→
u

Y

and furthermore, the resulting map X ′ → X ′′ is special.

Example (4.8.9.2) Conditions (4)–(6) are easily seen to be satisfied
in any of the situations in Example (4.8.6.2), where all distinguished squares
are fiber squares.

Remark (4.8.9.3) Let µ : X ′ → X ′′ be an isomorphism and consider
the following fiber squares, the first of which is, by (4.8.2)(2), distinguished:

X ′′ 1
−−−−→ X ′′

1

y
y1

X ′′ −−−−→
1

X ′′

X ′ µ
−−−−→ X ′′

µ

y
y1

X ′′ −−−−→
1

X ′′

From (6) it follows that µ is special. Thus every isomorphism is special.

Proposition (4.8.10). Under the preceding assumptions, there is a
unique base-change setup B′ = B′E = B

(
S,P, F, !, * , (β′

σ)σ∈�′

)
such that :

(i) A commutative square

X ′ v
−−−−→ X

g

y
yf

Y ′ −−−−→
u

Y

is in �
′ if and only if there is a fiber square in �

X ′′ −−−−→ X
y

yf

Y ′ −−−−→
u

Y

such that the resulting map X ′ → X ′′ is special.

So by (4.8.9)(6) and (4.8.9.3), � ⊆ �
′; and by (4.8.2)(1), every fiber

square in �
′ is in �.

(ii) For every σ ∈ � ⊆ �
′ it holds that βσ = β′

σ.
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Proof. For uniqueness, suppose that B′ satisfies (i) (which deter-
mines �

′ ) and (ii). We note first that if i : X → Y is a special map, then
by (i), the square τ ′ in the following diagram is in �

′ , as are the squares τ
(by (4.8.6)) and τ ′τ (by (4.8.2)(2)′ ):

X
1

−−−−→ X
i

−−−−→ Y

1

y
yi

y1

X

τ

−−−−→
i

Y

τ ′

−−−−→
1

Y

It follows then from (4.8.2)(3) and (4.8.2)(2)′ that

β′
τ ′ = (β′

τ )
−1 (ii)

= (βτ )
−1 (4.8.7.0)

= (βi)
−1.

Now, any σ ∈ �
′ :

X ′ v
−−−−→ X

g

y
yf

Y ′

σ

−−−−→
u

Y

can, according to (i), be decomposed as

(4.8.10.1)

X ′ i
−−−−→ X ′′ w

−−−−→ X
y

f

i

y
y1

X ′′

σ1

−−−−→
1

X ′′

h

y
yh

Y ′

σ2

−−−−→
1

Y ′

σ3

−−−−→
u

Y

with σ3 ∈ � a fiber square (so that h ∈ P), and i special. The fiber
square σ2 is in � , by (4.8.2)(2); and by (i), σ1 and σ2σ1 ∈ �

′. We
saw above that β′

σ1
= (βi)

−1 ; and the maps β′
σ
k

(k = 2, 3) are determined

by (ii). Hence β′
σ2σ1

is determined, and then so is β′
σ (see (4.8.2)(3)). Thus

B′ is unique.

For the existence, let �
′ be the class of all squares

X ′ v
−−−−→ X

g

y
yf

Y ′

σ

−−−−→
u

Y

satisfying (i), that is, decomposing as in (4.8.10.1)—where i ∈ P ∩ F
(see (4.8.6.1)), h ∈ P and w ∈ F, so that f, g ∈ P and u, v ∈ F, as
required of distinguished squares.
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To such a decomposition we associate the natural composite map

(4.8.10.2) v∗f ! −→∼ i∗w∗f ! −−→
i∗βσ

3

i∗h!u∗ −→∼
βi
−1

i!h!u∗ −→∼ g!u∗.

We will define β′
σ for B′ to be (4.8.10.2), but first we need to show it

independent of the chosen decomposition.
Suppose then that we have another decomposition with (X ′′, i, h, w)

replaced by (X ′′
1 , i1, h1, w1), i.e., there is an isomorphism µ : X ′′ −→∼ X ′′

1

such that
i1 = µi, h1 = hµ−1, w1 = wµ−1.

For the special map µ (see (4.8.9.3)), we have the isomorphism βµ
of (4.8.7.0). We have also the isomorphism βρ associated to the square

X ′ 1
−−−−→ X ′

i

y
yi1

X ′′

ρ

−−−−→
µ

X ′′
1

which is in � by (4.8.2.1)(a).
We want to show that the following diagram of natural maps (with

outside columns as in (4.8.10.2)) commutes:

v∗f ! v∗f !

y
y

i∗w∗f !

y

−−−−→ i∗µ∗w∗
1f

! −−−−−−−−−−−−−−−−−−→ i∗1w
∗
1f

!

y
y

i∗µ∗h!
1u

∗ i∗µ∗h!
1u

∗

β−1
i

y

−−−−→ i∗1h
!
1u

∗

©2

y

β−1
i
1

yi∗β−1
µ

i∗h!u∗

©1

−−−−→ i∗µ!h!
1u

∗

β−1
i

y
yβ−1

i

i!h!u∗ −−−−→ i!µ!h!
1u

∗
i!βµ
−−−−→ i!µ∗h!

1u
∗

β−1
ρ

−−−−→ i!1h
!
1u

∗

y
y

y

g!u∗ −−−−→ i!1h
!
1u

∗

©3

−−−−−−−−−−−−−−−−−−→ g!u∗

Commutativity of ©2 (resp.©3 ) follows from (4.8.8)(i) (resp. (4.8.8)(ii))
applied to ρ.
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Commutativity of ©1 follows from (4.8.2)(3) and (4.8.8)(ii), applied
respectively to the following fiber squares σ3 = σ′

3σ
′ and σ′ (σ′ being

distinguished, by (4.8.2.1)(a)):

X ′′ µ
−−−−→ X ′′

1

w1−−−−→ X

h

y
yh1

yf

Y ′

σ′

−−−−→
1

Y ′

σ′
3

−−−−→
u

Y

Commutativity of the remaining subdiagrams is clear.
So we can indeed define β′

σ as indicated above.
Condition (i) in (4.8.10) is then obvious.
As for (ii), referring to a decomposition (4.8.10.1) of σ ∈ � (where

wi = v and hi = g ), note that by (4.8.9)(4) the square σ2σ1 is in �, so
by (4.8.2)(3) the diagram

v∗f ! βσ
−−−−−−−−−−−−−−−−→ g!u∗

≃

y
∥∥∥

i∗w∗f ! −−−−→
i∗βσ3

i∗h!u∗ −−−−→
βσ2σ1

g!1∗u∗

commutes. Also, (4.8.8)(ii) applied to σ2σ1 shows that βσ2σ1 factors as

i∗h!u∗ −−→
β−1
i

i!h!u∗ −̃−→ g!u∗.

Hence the composite map (4.8.10.2) is equal to βσ, proving (ii).

Having thus defined B′ , we are left with proving (1)–(3) in (4.8.2).
For (1), assume, with notation as in (4.8.2), that σ1 ∈ �

′. Consider a
commutative decomposition of σ

•
j−1
1−−−−→ •

v1−−−−→ •
j

−−−−→ •

kj−1
1

y k

y
y1

y1

• •
w1−−−−→ •

j
−−−−→ •

i1h

y h

y
yf1

yf

•

σ′

−−−−→
i−1
1

•

τ

−−−−→
u1

•

σ′′

−−−−→
i

•

in which the middle third of the diagram is a decomposition of σ1 with
τ ∈ � a fiber square and k special, and v1 := w1k; and the right third exists
by assumption, σ′′ being a fiber square because i and j are isomorphisms.
(Note: i1hkj

−1
1 = i1g1j

−1
1 = g.) The composed fiber square σ′′τσ′, being

isomorphic to τ , is in � ; and thus, since kj−1
1 is special (see (4.8.6.1)(a)),

therefore σ ∈ �
′, proving (1).
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Conditions (2) and (2)′ for B′ follow from the same for B, because
of (4.8.10)(ii).

As for (3), consider a composite diagram σ0 = σ2σ1 :

•
v1−−−−→ •

v2−−−−→ •

h

y g

y
yf

•

σ1

−−−−→
u1

•

σ2

−−−−→
u2

•

with σ2, σ1 and σ0 in �
′. Using all the assumptions in (4.8.9), we find

that this decomposes further as

(4.8.10.3)

•

j

y

•

v1

−−−−→
p

•

h2

y k

y

•

σ′′

−−−−→
q

•

v2

−−−−→
w

•

h1

y g1

y
yf

•

σ′

−−−−→
u1

•

τ

−−−−→
u2

•

where σ′′, σ′ and τ are fiber squares in �; the maps g1, w, h1, q, h2, p are
the natural projections; the maps j and k are special—whence so are h2

and h2j (see (4.8.9)(5)); the triangles commute; g1k = g and h1h2j = h.

What (3) asserts is, first, that the following natural diagram commutes:

(4.8.10.4)

(v2v1)
∗f !

βσ
0−−−−−−−−−−−−−−−−−−−−→ h!(u2u1)

∗

y
y

v∗1v
∗
2f

! v∗1g
!u∗2 −−−−→

βσ
1

h!u∗1u
∗
2

≃

y
x≃

j∗p∗v∗2f
! −−−−→

via βσ
2

j∗p∗(g1k)
!u∗2

Expanding βσ2 , βσ1 , and βσ2σ1 , as in (4.8.10.2), one sees that for this it is
enough to show commutativity of the outer border of the natural diagram
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on the following page, or just to show that each of its twelve undecomposed
subdiagrams commutes.

But for the eight unlabeled subdiagrams, commutativity holds by el-
ementary (pseudo)functorial considerations; for subdiagram ©1 , one can
use (4.8.7); for ©2 and ©4 , (4.8.2)(3); and for ©3 , (4.8.8)(i).

This completes the proof of the “horizontal” part of (3).

The proof of the “vertical” part of (3) is similar. Alternatively, one can
just dualize everything in sight, as indicated in (4.8.2.1)(c). The conditions
in (4.8.6) defining a special subcategory are self-dual, so that if E is special
for a setup B , then E is also special for the dual setup Bop. Likewise,
conditions (4)–(6) in (4.8.9) hold for B iff they hold for Bop. Then, one
checks, vertical transitivity for (Bop)′ (constructed as above) is identical
with the just-proved horizontal transitivity for B′.

This completes the proof of Proposition (4.8.10). Q.E.D.

Corollary (4.8.10.5). With notation and assumptions as in (4.8.10),
let E′ be a subcategory of S such that for every map i : X → Y ∈ E′ the
diagonal map δi : X → X ×Y X is in E. Assume further that for any fiber
square σv,f,g,u in S, if u (resp. f) is in E′ then so is v (resp. g). Then :

(i) E′ is B′-special; and conditions (4)-(6) in (4.8.9) hold for (B′,E′).
Thus it is meaningful to set B′′ := (B′)′E′.

(ii) If a fiber square σ = σv,f,g,u with u ∈ E′ is in �, then any

commutative σv′,f,g′,u with v′ ∈ E′ and g′ ∈ P is B′′-distinguished.

Proof. (i) The second diagram in (4.8.6)—call it σ—expands as

•
v

−−−−→ •
1

−−−−→ •

1

y 1

y
yi

• −−−−→
v

• −−−−→
i

•

which when i ∈ E′ can be further expanded in the form (4.8.10.3), with
j = 1 and k ∈ E, whence (since σ′′ ∈ �) h2 ∈ E, whence by (4.8.10)(i),
σ ∈ �

′. In a similar way, or by dualizing (see (4.8.6.1(b)), one finds that
the first diagram in (4.8.6) is in �

′.

For (4.8.9)(4), decompose the horizontal σ2σ1 of that condition as
•

j
y

•

v1

−−−−→
q

•
v2−−−−→ •

h1

y g

y
yf

•

σ′

−−−−→
u1

•

σ2

−−−−→
u2

•

with j ∈ E, qj = v1, h1j = h, and σ2, σ
′ fiber squares such that the fiber

square σ2σ
′ is in � .
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(v
2 v

1 )
∗f

!
−−
−
−→

(h
2 j)

∗(w
q)

∗f
!
−−
−
−→
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It follows from (4.8.9)(4) for B that σ′ ∈ �, whence σ1 ∈ �
′ , proving

the horizontal part of (4.8.9)(4) for B′. The vertical part is similar (or
dual).

Since any fiber square in �
′ is in �, (4.8.9)(5) is essentially the

“further” assumption on E′.
Finally, (4.8.9)(6) for B′ follows from (4.8.10)(i), (4.8.9)(6) for B,

and (4.8.9.3).
(ii) Consider a decomposition of σv′,f,g′,u

Z

j
y

X ′

v′

−−−−→
v

X

g

y
yf

Y ′

σ

−−−−→
u

Y

with v′ = vj. We need only show that j ∈ E′.
With Γj the graph map of j and π2 : Z ×X X ′ → X ′ the projection,

the map j factors as

Z
Γj
−→ Z ×X X ′ π2−→ X ′.

The fiber square

Z ×X X ′
π2−−−−→ X ′

π1

y
yv

Z −−−−→
v′

X

shows that π2 ∈ E′ ; and the fiber square

Z
Γj

−−−−→ Z ×X X ′

j

y
yj×1X′

X ′ −−−−→
δv

X ′ ×X X ′

shows that Γj ∈ E′, whence the conclusion. Q.E.D.

(4.8.11). Let us now complete the proof of (4.8.1) and (4.8.3) by doing
what was indicated just before Definition (4.8.6).

For either the setup B of (4.8.2.4) or the larger setup B of (4.8.5.2),
the category E of open-and-closed immersions is special, see (4.8.6.2).

The diagonal of a separated étale map is an open-and-closed immer-
sion [EGA IV, (17.4.2)(b)]; and maps which are étale (resp. separated,
resp. proper) remain so after arbitrary base change [EGA IV, (17.3.3)(iii)].
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Therefore the category E′ of separated étale maps (resp. proper étale maps)

satisfies the hypotheses of (4.8.10.5) with respect to (B,E) (resp. (B,E)) .
Keeping in mind the uniqueness part of (4.8.10), one see that the resulting

base-change setup B̃ := B
′′

is the sought-after unique enlargement of B ,
and that B′′ is the unique enlargement (4.8.2.4)′ of B.

It remains to show that conditions (4.8.3)(ii) and (iii) hold for B̃.
Using the definition (4.8.10.2) of βσ, one readily reduces the question

to where σ is a fiber square. In that case, (ii) follows from the description

of B′ in (4.8.5.2).
As for (iii), let f = f̄ i be a compactification, and apply vertical tran-

sitivity (4.8.2)(3), to reduce to where either f = i is an open immersion,
a case covered by (ii), or f = f̄ is proper, a case covered by (4.8.1)(iii).
Q.E.D.

Exercises (4.8.12). (a) Let B(S,P, F, !, * , (βσ)σ∈�) be a base-change setup,

and let there be given pseudofunctorial isomorphisms ! −→∼ ××× , * −→∼ # . For any

σv,f,g,u ∈ � let β̄σ be the natural composite isomorphism

v#f× −→∼ v∗f ! −̃−→
βσ

g!u∗ −→∼ g×u#.

Show that B(S,P, F,×××, # , (β̄σ)σ∈�) is a base-change setup.

(b) (generalizing (4.1.9)(c)). Notation is as in (4.8.2.4). For a finite étale scheme-

map f : X → Y , the natural map is an isomorphism f∗ −→∼ Rf∗ of functors from

Dqc(X) to Dqc(Y ) , see proof of (3.10.2.2). Define the functorial “trace” map

f∗f
∗E ∼=

(3.9.4)
f∗OX ⊗E → OY ⊗ E ∼= E (E ∈ Dqc(Y ))

to be trf ⊗ 1 where trf is the natural composition

f∗OX −→ Hom
•(f∗OX , f∗OX) ∼= Hom

•(f∗OX ,OY )⊗ f∗OX −→ OY ,

given locally by the usual linear-algebra trace map. (Note that, f being flat and finitely

presented, f∗f∗OY is a locally free OY -module.) There corresponds a functorial map
tf : f∗ → f×.

(i) Show that on finite étale maps, the map t(−) : (−)∗ → (−)× is pseudofunctorial,

see (3.6.6). (Reduction to the affine case may help.) Also, tidentity = identity.

(ii) (Compatibility of trace with base change.) Given a fiber square σ = σv,f,g,u
with f and g finite étale, u and v flat, show that the following diagram commutes:

u∗f∗f∗
u∗trf
−−−−−→ u∗

(3.7.2)

y≃

xtrg

g∗v∗f∗ ˜−−−−−→
natural

g∗g∗u∗

(iii) For σ as in (ii), show that the following diagram commutes:

v∗f∗
natural
−−−−−→ g∗u∗

v∗tf

y
ytg

v∗f× −−−−−→
βσ

g×u∗

(Commutativity of the adjoint diagram is a consequence of (ii).)
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(iv) For any finite étale f show, using, e.g., (i), (iii), and (4.8.10.2), that with
βf : f× −→∼ f∗ (see (4.8.7.0)) as in the base-change setup (4.8.2.4)′, βf tf is the identity

(whence tf is an isomorphism—which can also be proved more directly).

(v) Deduce from (iv) that when ! is constructed as in the proof of (4.8.1), via

application of (4.8.4) to (4.8.2.4)′, then the canonical map f∗f∗ = f∗f ! → 1 (arising
from right-adjointness of f ! to f∗ ) is just the trace map.

(vi) For any finite étale f : X → Y , and E, F ∈ Dqc(X), show, using (v), or other-

wise, that the map χ
E,F

of (4.7.3.4) is just the isomorphism f∗E⊗f∗F −→∼ f∗(E⊗F )

of (3.2.4).

(vii) Suppose that on the category E of finite étale maps of noetherian schemes

there is associated to each f : X → Y a functorial map τ
f
: f∗f∗ → 1 in such a way

that the pairs (f∗, τ
f
) (f ∈ E) form a pseudofunctorial right adjoint to the Dqc-valued

direct image pseudofunctor, and such that furthermore, the diagram in (ii) above still

commutes when trf is replaced by τ
f

. Prove that τ
f

= trf for all f.

Deduce that (v) holds for any f ! satisfying (4.8.1).

Hint. Show that τ
f

= trf ◦ θf for some automorphism θf of the functor f∗, i.e.,

θf = multiplication by ef for some unit ef ∈ H0(X,OX) . Then check that pseudofunc-

toriality implies, for any composition X
f
−→ Y

g
−→ Z, that egf = eg(g∗ef ) ; and check

that for any σ as in (ii), eg = v∗ef . Then deduce from (iii), mutatis mutandis, that for

any open-and closed immersion δ, eδ = 1; and finally, from the diagram

X
δ

−−−−−→ X ×Y X
π2

−−−−−→ X

π1

y
yf

X −−−−−→
f

Y

(δ := diagonal), that ef = 1 for all f.

(c) Show that a horizontal or vertical composite of admissible squares is admissible.

(d) Adapt the arguments in §4.11 to extend [Nk, p. 268, Thm. 7.3.2]—which avoids

noetherian hypotheses—to where s can be any admissible square σv,f,g,u with f and g
composites of finitely-presentable proper flat maps and étale maps. (Recall that finitely-

presentable flat maps are pseudo-coherent (4.3.1).)

4.9. Perfect maps of noetherian schemes

In this section all schemes are assumed noetherian and all scheme-maps
finite-type and separated. The abbreviations introduced at the beginning
of §4.4 will be used throughout.

We will associate to any such scheme-map f : X → Y a canonical
bifunctorial map, with f ! as in (4.8.1), and both E and E⊗F in D+

qc(Y ) ,

χfE,F : f !E ⊗ f∗F → f !(E ⊗ F ),

agreeing with the map χE,F in (4.7.3.4) when f is proper, and with the

inverse of the isomorphism in (3.2.4) when f is étale.
Any functorial relation involving (−)! ought to be examined with

regard to pseudofunctoriality and base change (cf., e.g., (4.2.3)(h)–(j)).
For χ , this is done in Corollary (4.9.5) and Exercise (4.9.3)(c).



4.9. Perfect maps of noetherian schemes 221

The main result, Theorem (4.9.4), inspired by [V′, p. 396, Lemma 1
and Corollary 2], gives several criteria for f to be perfect (i.e., since f
is pseudo-coherent, to have finite tor-dimension). Included there is the

implication f perfect =⇒ χfE,F an isomorphism.

In [Nk′,Theorem 5.9] Nayak extends these results to separated maps
that are only essentially of finite type.

(4.9.1). For scheme-maps X
u
−→ X

f
−→ Y , u an open immersion,

f proper, we define the bifunctorial map

χfE,F : f
!
E ⊗ f

∗
F −→ f

!
(E ⊗ F )

(
E, F ∈ Dqc(Y )

)

to be the map adjoint to the natural composite map

f∗(f
!
E ⊗ f

∗
F ) −→∼

(3.9.4)
f∗f

!
E ⊗ F −→ E ⊗ F ,

and we define the bifunctorial map

χf,uE,F : u∗f
!
E ⊗ f∗F −→ u∗f

!
(E ⊗ F )

(
E, F ∈ Dqc(Y )

)

to be the natural composite map

u∗f
!
E ⊗ f∗F −→∼ u∗f

!
E ⊗ u∗f

∗
F −→∼ u∗(f

!
E ⊗ f

∗
F )

u∗χf
E,F

−−−−→ u∗f
!
(E ⊗ F ).

When E and E ⊗ F are in D+
qc(Y ) , setting f := f u we can write f !

for u∗f
!
. In that case, we’ll see below, in (4.9.2.2), that χf,uE,F depends only

on f , not on the factorization f = f u , so we can denote the map χf,uE,F by

(4.9.1.1) χfE,F : f !E ⊗ f∗F → f !(E ⊗ F ).

In this connection, recall that by Nagata’s compactification theorem,
any (finite-type separated) scheme-map f factors as f = f u.

Lemma (4.9.2). Let there be given a commutative diagram

X
f

−−−−−−−−−−−−→

u

X

f

Y
g

−−−−−−−−−−−−−→

v

Y

ḡ

Z

w

X

h̄

with u, v and w open immersions, f , ḡ and h̄ proper.
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Then for all E, F ∈ D(Z) such that E and E ⊗ F are in D+
qc(Z),

the following natural diagram commutes.

(gf)!E ⊗ (gf)∗F
χḡh̄,wu
E,F

−−−−−−−−−−−−−−−−−−−−−−−−−→ (gf)!(E ⊗ F )

≃

y
y≃

f !g!E ⊗ f∗g∗F −−−−−→
χf,u
g!E,g∗F

u∗f
!
(g!E ⊗ g∗F ) −−−−−−→

u∗f
!
χḡ,v
E,F

f !g!(E ⊗ F )

Proof (Sketch). Set Ē := ḡ!E, F̄ := ḡ∗F (so that v∗Ē ∼= g!E and
v∗F̄ ∼= g∗F ). Let β be the natural composite functorial isomorphism

(4.9.2.1) w∗h̄! −→∼ (h̄w)! = (vf )! −→∼ f
!
v∗.

Straightforward—if a bit tedious—considerations, using the definitions of
the maps involved (see, e.g., (4.8.4)), translate Lemma (4.9.2) into commu-
tativity of the natural diagram

(wu)∗
(
(ḡh̄)!E ⊗ (ḡh̄)∗F

) (wu)∗χḡh̄
E,F

−−−−−−−−−−−−−−−−−−−−→ (wu)∗(ḡh̄)!(E ⊗ F )

≃

y ©1
y≃

u∗w∗h̄!Ē ⊗ u∗w∗h̄∗F̄
u∗w∗χh̄

Ē,F̄

−−→

©2

u∗w∗h̄!(Ē⊗ F̄ )
u∗w∗h̄!χḡ

E,F

−−→

©3

u∗w∗h̄!ḡ!(E ⊗ F )

via β

y≃ via β

y≃ ≃

yvia β

u∗f
!
v∗Ē ⊗ u∗f

∗
v∗F̄ −−−→

u∗χf
v∗Ē,v∗F̄

u∗f
!
v∗(Ē⊗ F̄ ) −−→

u∗f
!
v∗χḡ

E,F

u∗f
!
v∗ḡ!(E ⊗ F ),

in which, commutativity of subdiagram ©3 is obvious.

Commutativity of subdiagram ©1 follows from “transitivity” of χ with
respect to proper maps (Exercise (4.7.3.4)(d)).

As for the remaining subdiagram ©2 , decomposing σw,h̄,f̄,v as

X
i

−−−−→ Y ×Y X
w1−−−−→ X

f1

y σ
yh̄

Y −−−−→
v

Y

with w1i = w, f1i = f̄ , and σ an independent fiber square (since v is flat),
we see from (4.8.10.2) that β factors naturally as

w∗h̄! −→∼ i∗w∗
1h̄

! −→
βσ

i∗f !
1v

∗ −−→
β−1
i

i!f !
1v

∗ −→∼ f
!
v∗.
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Here i is an open and closed immersion, so that by (4.8.4), i! = i∗ and the
map βi (see (4.8.7.0)) is the identity. Indeed, since if1 and f1 are both
proper, therefore so is i [EGA, II, (5.4.3)(i)]; and since iw1 and w1 are
both open immersions, therefore so is i (cf. (4.8.3.1)(a)).

It is left now to the reader to expand β as above and then to verify,
with the aid of (4.7.3.4)(c) and (d), and of Exercise (4.8.12)(b)(vi) for open-
and-closed immersions, that ©2 does commute. Q.E.D.

Corollary (4.9.2.2). If a map f : X → Z factors in two ways as

X
u
−→ Y

f
−→ Z, X

v
−→ Y

ḡ
−→ Z

(f and ḡ proper, u and v open immersions) then for all E, F as in (4.9.2),

it holds that χf,uE,F = χḡ,vE,F .

Proof. The given data determine uniquely a map w̄ : X → Y ×Z Y ,

whose schematic image we denote byX, see [GD, p. 324, (6.10.1) and p. 325,
(6.10.5)]. The map w̄ factors as X → X ×Z X → Y ×Z Y , where the
first map is the diagonal, a closed immersion, and the second is an open
immersion. So w̄ is an immersion, and hence induces an open immersion

w : X →X . Furthermore, the projections to Y and Y induce proper maps

h :X→ Y and h̄ :X → Y . It suffices then for (i) to prove the Corollary for
each of the pairs of factorizations f = ḡv = (ḡh̄)w and f = f u = (f h)w .

For the first pair, one need only look at the case u = f = f = 1 of
Lemma (4.9.2). The second pair, being of the same form as the first, is
handled similarly. Q.E.D.

Corollary (4.9.2.3). For any étale g : Y → Z and E, F as in (4.9.2),
the map χgE,F (4.9.1.1) is the isomorphism f∗E ⊗ f∗F −→∼ f∗(E ⊗ F )

coming from (3.2.4).

Proof (Sketch). The idea is to redo everything in this section 4.9, up
to this point, with “étale” in place of “open immersion.” The first difficulty
which arises is that in the last paragraph of the proof of Lemma (4.9.2), the
map i is now finite étale, making it necessary to know (4.9.2.3) for finite
étale f, a fact given by Exercise (4.8.12)(b)(vi). The only other nontrivial
modification is in the proof of (4.9.2.2), where the map X×ZX → Y ×Z Y
should now be factored as X ×Z X →֒ W → Y ×Z Y with the first map

an open immersion and the second proper, and then X should be defined
to be the schematic image of X → X ×Z X →֒ W . . . Q.E.D.

Exercises (4.9.3). (a) In Ex. (4.7.3.4)(e) replace f× by f
!

and apply the func-

tor u∗ to get a natural map u∗f
!
E → HX(f∗F , u∗f

!
(E ⊗ F )) . Then show that this

map corresponds via (2.6.1)′ to χf,u
E,F

.

(b) Let f = f̄u be as in (4.9.1). Show, for E , F ∈ Dqc(Y ), that the composite map

u∗f
!
HY (E, F )⊗ u∗f

∗
E

χf,u

−−−−→ u∗f
!
(HY (E,F )⊗ E)

natural
−−−−−→ u∗f

!
F

depends only on f, not on its factorization.
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Deduce the existence, for any E ∈ D−
c (Y ) and F ∈D+

qc(Y ), of a canonical isomor-
phism

f
!
HY (E, F ) −→∼ HX(f∗E, f !F ),

inverse to u∗ζ where ζ comes from (4.2.3)(e) applied to f̄ . (This can also be done
without recourse to χ.)

(c) (Compatibility of χ with base change.) After replacing (−)× by (−)! , do
exercise (4.7.3.4)(c), assuming that the square is an admissible square, and interpreting β

as in (4.8.3). Do something similar with the map φ of (3.10.4) in place of β.

(d) Proceeding as in (a), work out exercises (4.7.3.4)(a), (d), and (f), with (−)×

replaced by (−)! . This will likely involve verifications of compatibility with restriction

to open subschemes for a number of functorial maps. Do similarly for (4.2.3)(h)–(j).

(e) Show that if f : X → Y is ètale then the map in (b) is the same as the map

coming from (3.5.4.5).

(f) Explain the formal tensor-hom symmetry in the pair of natural isomorphisms

f∗E ⊗ f !F −→∼ f !(E ⊗ F ) (E, F ∈ Dqc(Y )),

HX(f∗E, f !F ) −→∼ f !HY (E, F ) (E ∈D−
c (Y ), F ∈D+

qc(Y )).

Another such pair, coming from (3.9.4) and (3.2.3.2), is

E ⊗ f∗F −→
∼ f∗(f∗E ⊗ F ) (E, F ∈ Dqc(Y )),

HY (E, f∗F ) −→∼ f∗HX(f∗E, F ) (E, F ∈ D(Y )).

(I don’t have an answer.)

With respect to a scheme-map f : X → Y, an OX -complex E is
f-perfect if E has coherent homology and finite flat f -amplitude. As noted
in (2.7.6), f is perfect (i.e., of finite tor-dimension) ⇐⇒ OX is f -perfect.

When f is perfect, the natural map, taking 1 ∈ H0(X,OX) to the
identity map of the relative dualizing complex f !OY is an isomorphism

ξ : OX −→
∼ HX(f !OY , f

!OY ).

In fact, the functor HX(−, f !OY ) induces an antiequivalence of the full
subcategory of f -perfect complexes in D(X) to itself [I, p. 259, 4.9.2].

Theorem (4.9.4). For any finite-type separated map f : X → Y of
noetherian schemes, the following conditions are equivalent.

(i) The map f is perfect, i.e., the complex OX is f-perfect.
(ii) The complex f !OY is f-perfect.
(iii) f !OY ∈D−

qc(X), and for every F ∈D+
qc(Y ), the Dqc(X)-map

χfOY ,F : f !OY ⊗ f
∗F −→ f !F

is an isomorphism.

(iii)′ For every perfect OY -complex E, f !E is f-perfect; and for all
E, F ∈ D(Y ) such that E and E ⊗ F are in D+

qc(Y ), the Dqc(X)-map

χfE,F : f !E ⊗ f∗F −→ f !(E ⊗ F ).

is an isomorphism.

(iv) The functor f ! : D+
qc(Y )→D+

qc(X) is bounded.
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Proof. (i)⇔(ii). The question is local on X, so we may assume

that f factors as X i−→ Z
p
−→ Y where Z is an affine open subscheme

of Y ⊗Z Z[T1, . . . , Tn] (with independent indeterminates Ti ), i is a closed
immersion, and p is the obvious map.

By (4.4.2) (with F = OX), we have a functorial isomorphism

(4.9.4.1) i∗i
!G −→∼ HZ(i∗OX , G)

(
G ∈D+

qc(Z)
)
.

Also, with Ωnp the invertible OZ -module of relative Kähler n-forms,
there is a natural isomorphism

(4.9.4.2) p!E ∼= Ωnp [n]⊗ p∗E (E ∈D+
qc(Y )),

see [V′, p. 397, Thm. 3].57

Now, by [I, p. 250, 4.1, and p. 252, 4.4], (i) holds if and only if the
OZ -complex i∗OX is perfect; and (ii) holds if and only if the OZ -complex

i∗f
!OY ∼= i∗i

!p!OY ∼= HZ(i∗OX , p
!OY ) ∼= HZ(i∗OX ,Ω

n
p [n])

is perfect. Hence the equivalence of (i) and (ii) results from the following
fact, in the case F = i∗OX .

Lemma (4.9.4.3). On any noetherian scheme W, an OW -complex F

is perfect ⇐⇒ F ∈Db
c(W ) and HW (F,OW) is perfect.

Proof. The implication ⇒ results from [I, p. 148, 7.1].
For the converse, the question being local, we may assume that W

is affine, say W = Spec(R), that F is a bounded-above complex of
finite-rank locally free OW -modules (see 4.3.2), and that HW (F,OW ) is
D(W )-isomorphic to a strictly perfect OW -complex.

Then N := Γ(W,F ) is a bounded-above complex of finite-rank projec-
tive R-modules, and with ∼ the usual sheafification functor, F ∼= N∼ .

Let R → I• be an R-injective resolution of R. By [H, p. 130, 7.14],
the resulting map OW = R∼ → I•∼ is an injective resolution of OW .
So HomW (N∼, I•∼) ∼= HW (F,OW ) is D(W )-isomorphic—and hence,
by (3.9.6)(a), D(Aqc

W )-isomorphic—to a strictly perfect OW -complex. Since
Γ(W,−) is exact on Aqc

W , it follows that

RHomR(N,R) ∼= HomR(N, I•) ∼= Γ
(
W,HomW (N∼, I•∼)

)

is a perfect R-complex. So by [AIL, Prop. 4.1(ii)], N is perfect, whence so
is F ∼= N∼. Q.E.D.

57 The proof in loc. cit. can be imitated, without the assumption of finite Krull

dimension, and with E in place of OY ; but instead of Corollary 2 one should use
[H, p. 180, Cor. 7.3], noting that the graph map denoted by ∆ is a local complete

intersection map of codimension n [EGA, IV, (17.12.3)]. It might appear simpler to

use [V′, p. 396, Lemma 1], whose proof, however, seems to need an isomorphism of the
form (4.9.4.2) when Z is P1

Y
. For this, see [H, p. 161, 5.1] (duality for Pn

Y
), except

that the proof given there applies only to F ∈ D−
qc(Y ). That suffices, nevertheless,

by (4.3.7) applied to the map φ : Ω1
p → p!OY corresponding by duality to the canonical

isomorphism R1p∗(Ω1
p) −→

∼ OY [H, p. 155, 4.3].
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(i)⇒(iii). One may assume f factors as above: X i−→ Z
p
−→ Y .

By (4.9.4.2), for f !OY = i!p!OY to be in D−
qc(X) it suffices that

the functor i! be bounded on D+
qc(Z), which it is, by (4.9.4.1), because

i∗OX is perfect. (For this boundedness, as in the proof of [I, p. 148, 7.1],
after replacing i∗OX by an arbitrary perfect OX -complex E and localizing,
one may assume that E is a bounded complex of finite-rank free OZ -
modules, and proceed by “dévissage,” i.e., induction on the number of
nonzero components of E, to reduce to noting that HZ(E, G) is a bounded
functor of G ∈D+

qc(Z) when E is a finite-rank free OZ -module.)

Next, by (4.9.2), with (f, g, u, f̄ ) replaced by (i, p, 1, i) , it suffices to
show that χip!OY ,p∗F and χpOY ,F are isomorphisms.

By (4.9.3)(c), the question of whether χip!OY ,p∗F is an isomorphism is

local on Y , so we may assume Y affine, in which case every quasi-coherent
OY -module is a homomorphic image of a free one. Since p is flat and,
by (4.9.4.2), the complex p!OY is perfect, therefore p!OY⊗p

∗F is a bounded
functor of F ; and again by (4.9.4.2), so is p!F . Hence, by (1.11.3.1), one
need only note that by (4.7.5) applied to a compactification of p , χi

p!OY ,p∗F

is an isomorphism whenever F is a free OY -module.
That χip!OY ,G is an isomorphism for any G ∈ Dqc(Z) can be checked

after application of the functor i∗ . The source and target of i∗χ
i
p!OY ,G

are

i∗(i
!p!OY ⊗ i

∗G) ∼=
(3.9.4)

i∗i
!p!OY ⊗G ∼=

(4.9.4.1)
HZ(i∗OX , p

!OY )⊗G,

i∗i
!(p!OY ⊗G) ∼=

(4.9.4.1)
HZ(i∗OX , p

!OY ⊗G).

Since i∗OX is perfect, and, by (4.9.4.2), so is p!OY , therefore both the
source and target are bounded functors of G , commuting with direct sums
(see (3.8.2)). As before, one reduces to where Z is affine and G is a free
OZ -module, in which case commutativity with direct sums gives a reduction
to the trivial case G = OZ .

(Alternatively, it is a nontrivial exercise to show that (4.9.4.2) with
p!OY in place of Ωnp [n] is in fact χpOY ,E . One also shows, with E := i∗OX ,

F := p!OY , that i∗χ
i
F,G is isomorphic to the map

ζ(E) : HZ(E, F )⊗G→ HZ(E, F ⊗G)

associated by (2.6.1)∗ to the natural map HZ(E, F )⊗G⊗E → F ⊗G ,
and then finds via dévissage to the trivial case E = OZ that ζ(E) is an
isomorphism for all perfect E . What is involved here is a concrete local
interpretation of χf .)

(iii)⇔(iii)′ ⇒(ii). The implications (iii)′ ⇒ (ii) and (iii)′ ⇒ (iii)
are trivial

Assume, conversely, that (iii) holds.
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To be shown first is that for a perfect OY -complex E , f !E is f-perfect.
Since f ! commutes with open base change (4.8.3), one can replace Y by
any open subset. Thus one may assume that E is a bounded complex of
finite-rank free OY -modules, and then proceed by dévissage to reduce to
the case E = OY , treated as follows.

Let µ : V →֒ Y be the inclusion of an open subscheme, ν : f−1V →֒ X
the inclusion, g : f−1V → V the map induced by f, and M an OV -module.
We have then the obvious isomorphisms

ν∗f !OY ⊗ g
∗M ∼= ν∗(f !OY ⊗ f

∗µ∗M) ∼=
(iii)

ν∗f !µ∗M.

Since µ∗M is a bounded complex (3.9.2), and since f ! is bounded be-
low and, by (iii), bounded above, therefore there is an interval [m,n] not
depending on M such that

Hi(ν∗f !OY ⊗ g
∗M) = 0 for all i /∈ [m,n].

So by [I, p. 242, 3.3(iv)], f !OY has finite flat f-amplitude. Also, (4.9.4.1)
and (4.9.4.2) imply that f !OY ∈ Dc(X) . Thus f !OY is f-perfect.

For the isomorphism in (iii)′, apply (4.7.3.4)(a) with E = OY to a
compactification of f .

(i)⇒(iv). Theorem (4.1) gives that f ! is bounded below. If (i) holds
then by definition, the (derived) functor f∗ is bounded above; and as shown
above, (iii) holds, whence f ! is bounded above. Thus f ! is bounded.

(iv)⇒(i). With notation as in the proof of (i) ⇔ (ii), we will show
that if f ! is bounded then so is i! . By [LN, Thm. 1.2] (or (4.9.6(e) below),
this implies that i is perfect, whence so is f = pi .

Factor i as X
γ
−→ X×Y Z

g
−→ Z where γ is the graph of i and g is the

projection. The map γ, a local complete intersection [EGA, IV, (17.12.3)],
is perfect, and so, as we’ve just seen, γ! is bounded.

Also, g arises from f by flat base change, so, as in (4.7.3.1)(ii) with
× replaced by ! , g! is bounded: to imitate the proof of (4.7.3.1)(ii) one
just needs to associate a functorial isomorphism v∗g

! −→∼ f !u∗ to each
composite fiber square

•
v

−−−−→ •

s

y
yt

•
v̄

−−−−→ •

ḡ

y
yf̄

• −−−−→
u

•

with u , v̄ and v flat, f̄ and ḡ proper, t and s open immersions, f = f̄ t
and g = ḡs. One such isomorphism is the natural composition

v∗g
! −→∼ v∗s

∗ḡ! −→∼ t∗v̄∗ḡ
! −→∼
(3.10.4)

t∗f
!
u∗ −→

∼ f !u∗.
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Thus i! ∼= γ!g! is bounded. Q.E.D.

Corollary (4.9.5). On the category of perfect maps there is a pseudo-
functor (−)# which associates to each such map f : X → Y the functor
f# : D+

qc(Y )→D+
qc(X) given objectwise by

f#F := f !OY ⊗ F
(
F ∈D+

qc(Y )
)
.

For a composition X
f
−→ Y

g
−→ Z of perfect maps, the resulting func-

torial isomorphism f#g#G −→∼ (gf)#G (G ∈ D+
qc(Z)) is the left column

of the following diagram of natural isomorphisms, whose commutativity
results from (4.7.3.4)(a) and (d), as treated in (4.9.3)(d), or from (4.9.2)
with E := OX and F := G.

f#g#G = f !OY ⊗ f
∗(g!OZ ⊗ g

∗G)
χ
−−→ f !(g!OZ ⊗ g

∗G)
f !χ
−−→ f !g!G

y

y

(f !OY ⊗ f
∗g!OZ)⊗ f∗g∗G

χ⊗1

y

f !g!OZ ⊗ f
∗g∗G

y

(gf)#G = (gf)!OZ ⊗ (gf)∗G −−−−−−−−−−−−−−−−−−−→
χ

(gf)!G

Exercises (4.9.6). (a) Show that χf
E,F

is an isomorphism whenever F ∈ Dqc(X)

has finite tor-dimension. (Cf. (4.7.5).)

(b) Noting Ex. (3.5.3)(g), establish a natural commutative diagram

f !F ⊗HX(f∗E, f∗G) −−−→ HX(f∗E, f !F ⊗ f∗G) ←−−− HX(f∗E, f !F )⊗ f∗Gx
y

y
f !F ⊗ f∗HY (E,G) HX(f∗E, f !(F ⊗G)) f !HY (E, F )⊗ f∗Gy

y
y

f !(F ⊗HY (E,G)) −−−→ f !HY (E, F ⊗G) ←−−− f !(HY (E, F )⊗G)

(c) (Neeman, van den Bergh). Show, for any perfect f :X → Y and E ∈D+
qc(Y ),

that the map f∗E →HX(f !OY , f
!E) induced via (2.6.1)′ by χf

OY ,E
is an isomorphism.

Hint. Factor f locally as pi—see proof of (4.9.4), and apply i∗.

(d) Let X be a noetherian scheme, E ∈ Db
c (X) . Show that the functor HX(E,−)

from D+
qc(X) to itself is bounded if and only if E is perfect.

Hint. Reduce to where X = Spec(A) , and where E is the sheafificaton E∼

of a bounded A-complex E of finitely generated A-modules. Use the fact that the

sheafification of an A-injective module is OX -injective [RD, p. 130, 7.14], to show that
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for any F ∈ D+(A), HX(E,F∼) = RHomA(E,F)∼, and hence to reduce further to the
corresponding statement for A-modules.

(e) Using (d) and (4.4.2) with F = OX , show that a finite map f : X → Y of

noetherian schemes is perfect if and only if the functor f ! : D+
qc(Y )→D+

qc(X) is bounded.

4.10. Appendix: Dualizing complexes

Grothendieck’s original strategy for proving duality—at least the
version in Corollary (4.2.2)—for proper not-necessarily-projective maps,
is based on pseudofunctorial properties of dualizing complexes. In this sec-
tion, we sketch the idea. The principal result, Thm. (4.10.4), makes clear
how the basic problem—not treated here—in this approach is the con-
struction of a “coherent” family of dualizing complexes (in other words, a
“Dualizing Complex,” see below). What emerges is less than Thm. (4.8.1).
But for formal schemes, this kind of approach yields results not otherwise
obtainable (as of early 2008), see the remarks following Thm. (4.10.4).

Throughout this section, without further mention we restrict to schemes
which are noetherian and to scheme-maps that are separated, of finite type.
Also, we continue to use the notations introduced at the beginning of §4.4.

Let Ac(X) ⊂ A(X) be the full subcategory whose objects are the co-
herent OX -modules; it is a plump subcategory [GD, 113, 5.3.5]. Additional

notation will be as in §(1.9.1), with # = c .

For example, D+
c (X) is the ∆-subcategory of D(X) whose objects are

the complexes whose homology modules vanish in all sufficiently negative
degrees, and are coherent in all degrees.

A dualizing complex R on a noetherian scheme X is a complex
in Dc(X)which is D-isomorphic to a bounded injective complex, and has
the following equivalent properties [H, p. 258, 2.1]:

(i) For every F ∈ Dc(X), the map corresponding via (2.6.1)′ to the
natural composition

F ⊗ RHom(F,R) −→∼ RHom(F,R)⊗ F → R

is an isomorphism (called by some other authors the Grothendieck Duality
isomorphism):

F −→∼ RHom(RHom(F,R), R).

(ii) Condition (i) holds for F = OX , i.e., the map OX → RHom(R,R)
which takes 1 ∈ Γ(X,OX) to the identity map of R is an isomorphism.

For connected X, dualizing OX -complexes, if they exist, are unique
up to tensoring with a complex of the form L[n] where L is an invertible
OX -module and n ∈ Z [H, p. 266, 3.1].

The associated dualizing functor

DR := RHomX(−, R)
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satisfies DR ◦DR ∼= 1 , and it induces antiequivalences from Dc(X) to itself,
and between D+

c (X) and D−
c (X) (in either direction).

The existence of a dualizing complex places restrictions on X—for
instance, X must then be universally catenary and of finite Krull dimension
[H, p. 300]. Sufficient conditions for the existence are given in [H, p. 299].
For example, any scheme of finite type over a regular (or even Gorenstein)
scheme of finite Krull dimension has a dualizing complex.58

Henceforth we restrict schemes to those which, in addition to being
noetherian, have dualizing complexes.

The relation between dualizing complexes and the pseudofunctor ! of
Thm. (4.8.1) is rooted in the following Proposition, see [H, Chapter V, §8],
[V′, p. 396, Corollary 3], or [N′′, Theorems 3.12 and 3.14].

Proposition 4.10.1. Let f : X → Y be a scheme-map, and let R be
a dualizing OY -complex. Then with Rf := f !R,

(i) Rf is a dualizing OX-complex.
(ii) There is a functorial isomorphism

f !DRF −→
∼ DRf Lf

∗F
(
F ∈D−

c (Y )
)

or equivalently,

f !E −→∼ DRf Lf
∗DRE

(
E ∈D+

c (Y )
)
.

Proof. First, it follows from the construction of the functor f× (see
just before (4.1.8)) that it preserves finite injective dimension. So when
f is proper, f ! = f× preserves finite injective dimension. The same is
clearly true for f ! = f∗ when f is an open immersion, and hence—via
compactification—for any f .

The question of whether f !R ∈ Dc(X) is local; hence an affirmative
answer is provided by (4.9.4.1) and (4.9.4.2).

It remains to show that the natural map ψf : OX → DRfDRfOX is an
isomorphism. Again, the question is local, so we reduce to the two cases
(a) f is smooth, (b) f is a closed immersion.

(a) For smooth f , (4.9.4.2) and (4.6.7) provide natural isomorphisms

RHomX(Rf , Rf ) −→
∼

RHomX(p∗R, p∗R) −→∼ p∗RHomY (R,R).

One verifies then that ψf is isomorphic, via the preceding isomorphisms,
to p∗ applied to the isomorphism OY −→

∼ DRDROY .
(b) It suffices that f∗ψf be an isomorphism, which it is, by (4.9.4.1)

(with i = f ), since f∗OX ∈ Db
c(Y ) and therefore the canonical map

f∗OX → DRDRf∗OX is an isomorphism.

Assertion (ii) follows immediately from Ex. (4.2.3)(e), as DR and DRf
are antiequivalences. Q.E.D.

58 In [N′′ ], Neeman studies a notion of dualizing complex which applies to infinite-

dimensional schemes. Suresh Nayak observed, via [C, p. 121, Lemma 3.1.5], that
Neeman’s dualizing complexes are the same as pointwise dualizing complexes with

bounded cohomology, cf. [C, p. 127, Lemma 3.2.1].
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Definition (4.10.2). A Dualizing Complex on a scheme Y is a map
which associates to each f : X → Y a dualizing complex Rf on X, to each

open immersion u : U → X a D(X)-isomorphism γf,u : u∗Rf −→
∼ Rfu ,

and to each proper map g : X ′ → X a D(X)-map τf,g : g∗Rfg → Rf ,

subject to the following conditions on each such f , u and g :

(a) If v : V → U is an open immersion, then the following diagram
commutes:

v∗u∗Rf ˜−−−−−→
(3.6.4)∗

(uv)∗Rf

v∗γf,u

y
yγf,uv

v∗Rfu −−−−→
γfu,v

Rfuv

(b) The pair (Rfg, τf,g) represents the functor

HomD(X)(g∗E,Rf) : D+
c (X ′)→D+

c (X),

that is, the natural composite map

HomD(X′)(E,Rfg) −→ HomD(X)(g∗E, g∗Rfg) −−−→
via τ

HomD(X)(g∗E,Rf)

is an isomorphism. Further, if h : X ′′ → X ′ is proper then the following
diagram commutes:

g∗h∗Rfgh ˜−−−−−→
(3.6.4)∗

(gh)∗Rfgh

g∗τfg,h

y
yτf,gh

g∗Rfg −−−−→
τf,g

Rf

(c) For any fiber square

V
v

−−−−→ Z

h

y
yg

U −−−−→
u

X

with g (hence h) proper and u (hence v ) an open immersion, the following
natural diagram commutes:

u∗g∗Rfg ˜−−−−−−−−−−−−−−→ h∗v
∗Rfg

u∗τf,g

y ≃

yh∗γfg,v

u∗Rf ˜−−−−→γf,u
Rfu ←−−−−τfu,h

h∗Rfuh = h∗Rfgv
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Remarks. In (4.10.2)(a) take U = V = X and let u and v be
identity maps, to get γf,u ◦ γf,u = γf,u , whence the isomorphism γf,u is

the identity map 1 of Rf . Similarly, when g is the identity map of X, one
deduces from (b) that τf,g ◦ τf,g = τf,g ; but (Rf , τf,g) and (Rf , 1) both

represent the same functor, whence τf,g is an isomorphism, so τf,g = 1.
Also, when Z = U = V and g = u is an open and closed immersion,
(c) shows that γf,g ◦ g

∗τf,g is the canonical isomorphism g∗g∗Rfg −→
∼ Rfg .

Examples (4.10.2.1). (A) If R is a dualizing OY -complex and ! is
as in (4.8.1), one can associate to each map f : X → Y the dualizing
OX -complex Rf := f !R , to each open immersion u : U → X the natural
composition

γf,u : u∗Rf = u!f !Rf −→
∼ (fu)!R = Rfu,

and to each proper map g : X ′ → X the map τ = τf,g : g∗(fg)
!R→ f !R

resulting from (4.1.1). Condition (a) is then clear, (b) follows from (4.1.2),
and (c) from (4.4.4)(d).

(B) Let R = (R, γ, τ) be a Dualizing Complex on Y . Then for any
map e : Y ′ → Y we have a Dualizing Complex R×Y Y

′ := (R′, γ′, τ ′) on Y ′,
where for all f : X → Y ′ we set R′

f := Ref , γ
′
f,u := γ′ef,u and τ ′f,g := τef,g .

That R×Y Y
′ satisfies conditions (a), (b) and (c) is simple to check.

(C) Let R = (R, γ, τ) be a Dualizing Complex on Y . Then for any
invertible OY -module L and any locally constant function n : Y → Z , we
have a Dualizing Complex

R⊗L[n] = (R⊗ L[n], γ ⊗ L[n], τ ⊗ L[n])

on Y , where for all f : X → Y ,

• (R ⊗ L[n])f := Rf ⊗ f∗L[n] (easily seen to be a dualizing OX -
complex),

• (γ ⊗ L[n])f,u is the natural composition

u∗
(
Rf ⊗ f

∗L[n]
)
−→∼ u∗Rf ⊗ u

∗f∗L[n] −→∼ Rfu ⊗ (fu)∗L[n],

•
(
τ ⊗ L[n]

)
f,g

is the natural composition

g∗
(
Rfg ⊗ (fg)∗L[n]

)
−→∼ g∗

(
Rfg ⊗ g

∗f∗L[n]
)
−→∼

(3.9.4)
g∗Rfg ⊗ f

∗L[n]

−→ Rf ⊗ f
∗L[n].

Here, condition (a) is given by the (readily verified) commutativity of the
natural diagram

v∗u∗(Rf ⊗ f∗L[n]) −−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (uv)∗(Rf ⊗ f∗L[n])y
y

v∗(u∗Rf ⊗ u∗f∗L[n]) −−−−→ v∗u∗Rf ⊗ v
∗u∗f∗L[n] −−−−→ (uv)∗Rf ⊗ (uv)∗f∗L[n]y

y
y

v∗(Rfu ⊗ (fu)∗L[n]) −−−−→ v∗Rfu ⊗ v
∗(fu)∗L[n] −−−−→ Rfuv ⊗ (fuv)∗L[n]
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Fix a D(X)-isomorphism α : L[n]⊗ L−1[−n] −→∼ OY . The first part
of condition (b) results from commutativity of the natural diagram

HomD(X)(E, Rfg ⊗ (fg)∗L[n]) ˜−−−−→ HomD(X)(E ⊗ (fg)∗L−1[−n], Rfg)y≃ ≃

y
HomD(X)(E, Rfg ⊗ g

∗f∗L[n]) −−−−→ HomD(X)(E ⊗ g
∗f∗L−1[−n], Rfg)y
y

HomD(Y )(g∗E, g∗(Rfg ⊗ g
∗f∗L[n])) HomD(Y )(g∗(E ⊗ g

∗f∗L−1[−n]), g∗Rfg)

via (3.9.4)

y≃ ≃

yvia (3.9.4)

HomD(Y )(g∗E, g∗Rfg ⊗ f
∗L[n]) ˜←−−−− HomD(Y )(g∗E ⊗ f

∗L−1[−n], g∗Rfg)y
y

HomD(Y )(g∗E, Rf ⊗ f
∗L[n]) ˜←−−−− HomD(Y )(g∗E ⊗ f

∗L−1[−n], Rf )

where, with Ln := L[n] and L−1
−n := L−1[−n], the first row takes a map

η : E → Rfg ⊗ (fg)∗Ln to the natural composition

E ⊗ (fg)∗L−1
−n

via η
−−→

(
Rfg ⊗ (fg)∗Ln

)
⊗ (fg)∗L−1

−n

−→∼ Rfg ⊗ (fg)∗
(
Ln ⊗L

−1
−n

) via α
−−→Rfg ⊗ (fg)∗OY −→

∼ Rfg

and the second row takes η′ : E → Rfg⊗g
∗f∗Ln to the natural composition

E ⊗ g∗f∗L−1
−n

via η′

−−−→
(
Rfg ⊗ g

∗f∗Ln
)
⊗ g∗f∗L−1

−n

−→∼ Rfg ⊗ g
∗f∗

(
Ln ⊗L

−1
−n

) via α
−−−→ Rfg ⊗ g

∗f∗OY −→
∼ Rfg.

The arrows in the last two rows are defined in a similar manner.

Commutativity of the bottom subrectangle is obvious. Checking com-
mutativity of the other two subdiagrams is left as an exercise. (For the
middle one, a variant of diagram (3.4.7)(iv) may prove useful.)

The second part of condition (b) follows from (3.7.1). (Details left as
an exercise.)

Condition (c) is given by commutativity of the following natural dia-
gram, where L[n] has been abbreviated to L :

u∗(Rf ⊗ f
∗L) ←− u∗(g∗Rfg ⊗ f

∗L) ←− u∗g∗(Rfg ⊗ g
∗f∗L) −→ h∗v∗(Rfg ⊗ g

∗f∗L)

©1

y

y
y

u∗Rf ⊗u
∗f∗Ly

←− u∗g∗Rfg ⊗ u
∗f∗Ly

h∗v∗Rfg⊗u
∗f∗Ly

←− h∗(v∗Rfg ⊗h
∗u∗f∗L)y

←− h∗(v∗Rfg ⊗ v
∗g∗f∗L)y

h∗(Rfgv ⊗ (fgv)∗L)∥∥∥
Rfu⊗ (fu)∗L ←− h∗Rfuh ⊗ (fu)∗L ←−h∗(Rfuh ⊗ h

∗(fu)∗L)←−h∗(Rfuh ⊗ (fuh)∗L)
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Commutativity of subdiagram ©1 is given by (3.7.3). Commutativity
of the other subdiagrams is easy to check.

A morphism of Dualizing Complexes on Y , ψ : (R, γ, τ) −→∼ (R′, γ′, τ ′)
is a map associating to each scheme-map f : X → Y a D(X)-map
ψf : Rf −→

∼ R′
f , such that for each open immersion u : U → X (resp. each

proper map g : X ′ → X ) the following diagrams commute:

(4.10.2.2)

u∗Rf
γf,u
−−−−→ Rfu

u∗ψf

y
yψfu

u∗R′
f −−−−→

γ′
f,u

R′
fu

g∗Rfg
τf,g
−−−−→ Rf

g∗ψfg

y
yψf

g∗R
′
fg −−−−→

τ ′
f,g

R′
f

In the next Proposition, 1 denotes the identity map of Y .

Proposition (4.10.3). Let (R, γ, τ) and (R′, γ′, τ ′) be Dualizing
Complexes on Y, and let ψ0 : R1 → R′

1 be a D(Y )-map. Then there exists
a unique morphism ψ : (R, γ, τ) −→∼ (R′, γ′, τ ′) with ψ1 = ψ0 .

Corollary (4.10.3.1) (Uniqueness of Dualizing Complexes). If R
and R′ are Dualizing Complexes on Y then there exists an invertible OY -
module L, unique up to isomorphism, and a unique locally constant function
n : Y → Z such that R′ ∼= R ⊗ L[n]. Moreover, if ψ and χ are two
isomorphisms from R′ to R⊗ L[n] then ψ−1χ is multiplication by a unit
in H0(Y ,OY ).

Proof of (4.10.3.1). One reduces easily to where Y is connected.
In view of (4.10.3), the first assertion follows then from the corre-
sponding assertion for dualizing OY -complexes [H, p. 266, Thm. 3.1].
The second assertion results from the sequence of natural ring iso-
morphisms and anti-isomorphisms—with R a dualizing OY -complex and
DR(−) := RHomX(−, R) :

HomD(Y )(R,R) ∼= HomD(Y )

(
DR(R),DR(R)

)
∼= HomD(Y )(OY ,OY )

∼= H0
RΓRHom(OY ,OY ) ∼= H0

RΓ(OY ) ∼= H0(Y ,OY ).

Proof of (4.10.3). For any proper map g : X → Y , since (R′
g, τ

′
1,g)

represents the functor HomD(Y )(g∗E,R
′
1) (see (4.10.2)(b)), there exists a

unique D(X)-map ψg : Rg → R′
g making the following diagram commute:

g∗Rg
g∗ψg
−−−−→ g∗R

′
g

τ1,g

y
yτ ′

1,g

R1 −−−−→
ψ0

R′
1
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A general map f : X → Y factors as X
u
−→ Z

g
−→ Y with g proper

and u an open immersion. Let ψg,u : Rf → R′
f be the unique D(X)-map

making the following diagram commute:

Rf
ψg,u
−−−−→ R′

f

γg,u

x≃ ≃

xγ′
g,u

u∗Rg −−−−→
u∗ψg

u∗R′
g

Let us show that ψg,u depends only on f , allowing us to write ψf
instead of ψg,u . So let X

ũ
−→ Z̃

g̃
−→ Y also be a factorization of f ( ũ an

open immersion, g̃ proper). There results a natural diagram

X YZ

Z

Z̃

ū ḡ

u g

ũ g̃

with Z the scheme-theoretic image [GD, p. 324, §6.10] of the composite

immersion X
diag
−−→ X ×Y X

(u,ũ)
−−−→ Z ×Y Z̃ , and ū : X → Z̄ the resulting

open immersion; and where the vertical maps, induced by the canonical
projections, are proper.

We need only show that ψu,g = ψū,ḡ = ψũ,g̃; so it’s enough to treat
the case (ũ, g̃) = (ū, ḡ) , that is, we may assume that there is a proper map

p : Z̃ → Z such that gp = g̃ and pũ = u, and that furthermore ũ(X) is a

dense open subset of Z̃ :

X X X

ũ

y u

y
yg̃

Z̃

©1

−−−−→
p

Z −−−−→
g

Y

Here subdiagram ©1 is a fiber square, since the map ũ0 : X → p−1(uX)
induced by ũ is both an open immersion (clearly) and a closed immersion
(because ũ0 has a left inverse, essentially p|p−1(uX) ), so that ũX is open,

closed and dense in p−1(uX), hence equal to p−1(uX). Consequently, there
is a natural functorial isomorphism θ : u∗p∗ −→

∼ ũ∗.



236 Chapter 4. Grothendieck Duality for schemes

It will be enough to show that the following diagram—whose top and
bottom rows compose to ψg,u and ψg̃,ũ respectively—commutes:

Rgu∥∥∥∥∥∥∥∥∥∥

©2

˜−−−−→
γ−1
g,u

u∗Rg
u∗ψg
−−−−→ u∗R′

g ˜−−−−→
γ′
g,u

R′
gu

©5

∥∥∥∥∥∥∥∥∥∥

u∗τg,p

x
xu∗τ ′

g,p

u∗p∗Rgp

©3

−−−−→
u∗p∗ψgp

©4

u∗p∗R
′
gp

θ

y≃ ≃

yθ

Rg̃ũ = Rgpũ ˜−−−−→
γ−1
gp,ũ

ũ∗Rgp −−−−→
ũ∗ψgp

ũ∗R′
gp ˜−−−−→

γ′
gp,ũ

R′
gpũ = R′

g̃ũ

Commutativity of subdiagram ©4 is clear. Subdiagrams ©2 and ©5
commute by condition (c) in (4.10.2), applied to the above fiber square ©1 .
Finally, the first part of (4.10.2)(b) guarantees the existence of a map
ψ̂gp : Rgp → R′

gp such that the following diagram commutes:

Rg
ψg

−−−−→ R′
g

τg,p

x
xτ ′

g,p

p∗Rgp −−−−→
p∗ψ̂gp

p∗R
′
gp ;

and in view of the of the commutative diagram in (4.10.2)(b), and of the
definition of ψf for proper f, application of the functor g∗ to the preceding

diagram shows that ψ̂gp = ψgp , whence ©3 commutes.

We have now defined ψf for all f. The commutativity in (4.10.2.2)
shows that no other family (ψf ) can satisfy (4.10.3). It remains to be
proved that with the present (ψf ) , commutativity does hold for the two
diagrams in (4.10.2.2).

For the first of those diagrams, the problem is to show, given a sequence

U
u
−→ X

v
−→ Z

g
−→ Y with u and v open immersions and g proper, that the

following natural diagram commutes:

u∗Rgv ˜−−−−→ u∗v∗Rg −−−−→ u∗v∗R′
g ˜−−−−→ u∗R′

gvy
y

y
y

Rgvu −−−−→ (vu)∗Rg −−−−→ (vu)∗R′
g −−−−→ R′

gvu ;

but this is an immediate consequence of (4.10.2)(a).

For the second diagram in (4.10.2.2), suppose there is given a sequence
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X ′ g
−→ X

v
−→ Z

h
−→ Y with u an open immersion and g, h both proper.

As above, there are maps X ′ w
−→ W

ḡ
−→ Z such that w maps X ′ isomor-

phically onto a dense open subscheme of W, ḡ is proper, and ḡw = vg :

X ′ w
−−−−→ W

g

y
yḡ

X −−−−→
v

Z −−−−→
h

Y

The proper map g factors naturally as X ′ → ḡ−1(vX)→ X, whence w(X ′)
is open, closed and dense in—hence equal to— ḡ−1(vX) , and so there is a
natural isomorphism θ : v∗ḡ∗ −→

∼ g∗w
∗.

The problem is to show commutativity of the natural diagram

g∗Rhvg −−−−−−−−−−−−−−−−−−→

©6

Rhvy

≃

∥∥∥

g∗Rhḡw

≃

y

g∗w
∗Rhḡ

θ−1

−−−−→ v∗ḡ∗Rhḡ −−−−→ v∗Rh

g∗w
∗ψhḡ

y v∗ḡ∗ψhḡ

y ©7
yv∗ψh

g∗w
∗R′

hḡ −−−−→
θ−1

v∗ḡ∗R
′
hḡ −−−−→ v∗R′

hy

≃

≃

y

g∗R
′
hḡw∥∥∥

g∗R
′
hvg

©8

−−−−−−−−−−−−−−−−−−→ R′
h

Commutativity of subdiagrams ©6 and ©8 is given by (4.10.2)(c). The
argument that subdiagram ©7 commutes is similar to that used above
for ©3 . Commutativity of the remaining subdiagram is obvious. Q.E.D.

Here is the main result of this section.59

Theorem (4.10.4). Let S be a category of noetherian schemes such
that if Y ∈ S and f : X → Y is a separated finite-type map then X ∈ S.
Suppose every scheme in S has a Dualizing Complex.

59 Cf. [H, p. 383, Cor. 3.4], and its proof.
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Then there exists on S a D+
c -valued pseudofunctor ! which is uniquely

determined up to isomorphism by the properties that it restricts to the
inverse-image pseudofunctor * on the subcategory of open immersions,
that for a proper f ∈ S, the functor f ! is right-adjoint to f∗ : D+

c (X) →
D+

c (Y ) (see (3.9.2.6)(c)), and that for any fiber square σ in S

X ′
j′

−−−−→ X

p′
y

yp

Y ′ −−−−→
j

Y

with j an open immersion and p proper, the base-change map βσ of (4.4.3)
is the natural composite isomorphism

j′∗p! = j′ !p! −→∼ (pj′)! = (jp′)! −→∼ p′ !j! = p′ !j∗.

With this !, each Dualizing Complex (R̄, γ̄, τ̄) on Y is isomorphic to
the one in (4.10.2.1)(A) with R := R̄(identity of Y ).

Remarks. This says less than Theorem (4.8.1): the restriction to S of
the pseudofunctor in that Theorem satisfies this one. The point is, however,
that Theorem (4.10.4) captures Grothendieck’s strategy for constructing a
duality pseudofunctor by means of Dualizing Complexes. Indeed, showing
the existence of Dualizing Complexes is a major theme of the second half
of [H]. (See also the discussion and clarification of this material in [C,
§§3.1–3.4].)60

Let us add a few words, in passing, about noetherian formal schemes.
Applying his results about pasting pseudofunctors to the duality theory
in [AJL′ ], Nayak gets the existence of a duality pseudofunctor for compos-
ites of any number of pseudo-proper maps and open immersions [Nk, §7.1].
(As of 2008, one doesn’t know whether or not any pseudo-finite separated
map of formal schemes is such a composite.) On the other hand, using an
analog of Theorem (4.10.4), Sastry constructs a duality pseudofunctor on
the category of all formal schemes admitting a dualizing complex (suitably
defined for formal schemes), with “essentially pseudo-finite type” maps;
and he shows that this pseudofunctor agrees with Nayak’s whenever both
are defined [S′, §9].

60 Recently, Yekutieli and Zhang have exploited the notion of “rigid dualizing com-

plex,” introduced by Van den Bergh in the context of noncommutative algebra, to give
an elegant new approach to the existence question, at least for finite tor-dimension maps

of schemes of finite type over a regular scheme. See [YZ] for a preliminary account.
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Sastry’s approach has some resemblance to the one in [H], but there
are a number of new techniques involved in the construction of Dualizing
Complexes. In short, Chapter 6 of [H] is localized, generalized, and ex-
tended to the context of formal schemes in [LNS]; and then, among other
things, the main results of Chapter 7 of [H], are extended to this context
in [S′ ].

Thus, at the present time (2008), the theory of Dualizing Complexes for
formal schemes gives rise in certain situations to the only way to construct
dualizing pseudofunctors.

Proof of (4.10.4) (Outline only). For each Y ∈ S choose a Dual-
izing Complex RY = (RY, γY, τY ). For any S-map f : X → Y let DYf be

the functor from Dc(X) to Dc(X) given by

DYf (E) := HX(E,RYf ) (HX := RHom
•
X).

We set RY := RY1Y and DY := DY1Y where 1Y is the identity map of Y .

For any S-map f : X → Y , the functor f ! : Dc(Y )→ Dc(X) is defined
to be

f ! := DYf f
∗DY .

This functor has the following properties.
(1) If f is an open immersion, there is a natural functorial isomorphism

f ! −→∼ f∗, namely, the natural composition, with E ∈ Dc(Y ),

f !E = HX
(
f∗DYE, RYf

)
˜−−−−−−→

via (4.6.7)
HX

(
HX(f∗E, f∗RY ), RYf

)

˜−−−−−−→
via γ−1

1Y ,u

HX
(
HX(f∗E, RYf ), RYf

)
−→∼ f∗E

(the last isomorphism resulting from RYf being a dualizing OX -complex).

(2) If f is proper then f ! is right-adjoint to f∗ : Dc(X) → Dc(Y ) .
Indeed, for E ∈ Dc(X), F ∈ Dc(Y )we have, in view of (4.10.2)(b), natural
functorial isomorphisms

HomD(X)

(
E, f !F

)
˜−−−→

(2.6.1)′
HomD(X)

(
E ⊗ f∗HY (F,RY ), RYf

)

˜−−−→ HomD(Y )

(
f∗(E ⊗ f

∗HY (F,RY )), RY
)

˜−−−→
(3.9.4)

HomD(Y )

(
f∗E ⊗HY (F,RY ), RY

)

˜−−−→
(2.6.1)′

HomD(Y )

(
f∗E,HY (HY (F,RY ), RY )

)

˜−−−→ HomD(Y )

(
f∗E,RY

)
.

(3) There is a natural isomorphism f !RY −→
∼ RYf . This follows easily

from the natural isomorphism DYRY −→
∼ OY .

(4) The functor ! extends to a pseudofunctor.
For the proof, we need:
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Lemma (4.10.4.1). For any sequence V
h
−→ W

g
−→ X

f
−→ Y in S

there is a natural isomorphism

φf,g,h : DXghh
∗DXg −→

∼ DYfghh
∗DYfg ,

such that

φf,g,h ◦φg,1W,h = φfg,1W,h : DWh h∗DW −→∼ DYfghh
∗DYfg.

Proof. By (4.10.3.1) there is an invertible OX -module Lf , a locally
constant, integer-valued function nf , and an isomorphism of Dualizing
Complexes

α : RX −→∼ (RY ×Y X)⊗Lf [nf ],

see (4.10.2.1), (B) and (C). Set I := Lf [nf ] and I−1 := HX(I,OX), so
that there is a canonical isomorphism I ⊗ I−1 −→∼ OX . Also, for any
map e : Z → X and F,G ∈ D(Z), the map coming from (3.5.3)(g) is an
isomorphism HZ(F,G)⊗ e∗I−1 −→∼ HZ(F ⊗ e∗I, G). (The question being
local, the proof reduces easily to the simple case I = OX .)

There results, for any E ∈ Dc(W ), a composite isomorphism

ϕα,L : DXghh
∗DXg E −→

∼ DYfgh(h
∗DXg E)⊗ (gh)∗I

−→∼ DYfgh(h
∗DYfgE ⊗ (gh)∗I)⊗ (gh)∗I

−→∼ DYfghh
∗DYfgE ⊗ (gh)∗I

−1 ⊗ (gh)∗I

−→∼ DYfghh
∗DYfgE ⊗ (gh)∗(I−1 ⊗ I)

−→∼ DYfghh
∗DYfgE.

It is easily checked that ϕα,L is independent of the choice of α and of L ,
i.e., if µ is a unit in H0(X,OX), and if L′ ∼= L, then ϕα,L = ϕµα,L′ . So
we can set φf,g,h = ϕα,L .

The final assertion is left to the very patient reader. (A direct
approach seems to involve a formidable diagram—although the analogous
statement (3.3.13) in [C, p. 135] is said there to be “easy to check.”) Q.E.D.

Next, with f , g , h as in (4.10.4.1), we define the functorial isomor-
phism dg,f : g!f ! −→∼ (fg)! to be the natural composition

g!f ! = DXg g
∗DXDYf f

∗DY ˜−−−→
φf,1V ,g

DYfgg
∗DYf D

Y
f f

∗DY

−̃−→ DYfgg
∗f∗DY −̃−→ DYfg(fg)

∗DY = (fg)!

Pseudofunctoriality requires the following diagram to commute:61

(fgh)!
dh,fg
←−−−− h!(fg)!

dgh,f

x
xh!df,g

(gh)!f ! ←−−−−
dg,h

h!g!f !

61 Strictly speaking, we need also to “normalize” !, i.e., to replace (1Y )! by the

identity functor of Dc(Y ) for every Y ∈ S .
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Expanding this diagram according to the definition of dg,f , one finds
quickly that the problem is to show commutativity of the following dia-
gram of natural isomorphisms:

DYfgh(gh)
∗DYf −−−→ DYfghh

∗g∗DYf ←−−− DYfghh
∗DYfgD

Y
fgg

∗DYf

φf,1X,gh

x
xφfg,1W,h

DXgh(gh)
∗DX ←−−− DXghh

∗g∗DX DWh h∗DWDYfgg
∗DYfx D

W
h h∗

D
W

x(φf,1X,g)

DXghh
∗DXg D

X
g g∗DX ←−−−−

φg,1W,h
DWh h∗DWDXg g

∗DX

Using the equality in (4.10.4.1), one transforms the question to commuta-
tivity of

DYfgh(gh)
∗DYf −−−→ DYfghh

∗g∗DYf ←−−− DYfghh
∗DYfgD

Y
fgg

∗DYf

D
Y
fghh

∗
D
Y
fg

x

(φf,1X,g)

φf,1X,gh

x

DXgh(gh)
∗DX ←−−− DXghh

∗g∗DX

x

DXghh
∗DXg D

X
g g∗DX ←−−−

φf,g,h
DYfghh

∗DYfgD
X
g g∗DX

Checking this commutativity is left to the few (if any) extremely patient
readers who might be willing to do it. Again, the complete expansion
according to definitions is intimidating—but the analogous associativity
statement is said in [C, p. 136] to be “straightforward to check.”

Pseudofunctoriality being thus established, one must now verify that
the isomorphism in (1) above is pseudofunctorial; that on proper maps,

* and ! are adjoint as pseudofunctors (see (2) and (3.6.7(d)); that the
isomorphism in (3) extends to an isomorphism of Dualizing Complexes; and
that βσ is as described in Theorem (4.10.4). And finally, the uniqueness (up
to isomorphism) of the pseudofuctor ! can be verified as at the beginning
of the proof of (4.8.4).

Each of these verifications amounts, upon expansion according to def-
initions, to checking commutativity of a rather unpleasant diagram.

For the purposes of these Notes, Thm. (4.10.4) is not one of the “main
results” referred to in Section (0.3) of the Introduction; so I leave it at that.
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cycle, Bull. Soc. Math. France, Mémoire 58 (1978).
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Astérisque, vol. 117, Soc. Math. de France, 1984.

[Lp′ ] , Residues and Traces of Differential Forms via Hochschild Homology,

Contemporary Math., vol. 61, Amer. Math. Soc., 1987.

[LO] Y. Laszlo, M. Olsson, The six operations for sheaves on Artin stacks I: finite

coefficients,, preprint, arXiv:math.AG/0512097 v1, 5 Dec 2005.

[Lt] W. Lütkebohmert, On compactification of schemes, Manuscr. Math., 80 (1993),
pp. 95–111.

[Lw] G. Lewis, Coherence for a closed functor, in Coherence in Categories, Lecture

Notes in Math., no. 281, Springer-Verlag, New York, 1972, pp. 148–195.

[M] S. Mac Lane, Categories for the Working Mathematician, Second Edition,

Springer-Verlag, New York, 1998.

[Mb] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les
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Künneth map, 136

Kiehl, Reinhardt, 162

left-acyclic, 43

and derivability, 46

left-derived functor, 39
local hypertor, 58

localizing subcategory, 26
lower dimension, 35

Lucier, Bradley, 1

monoidal category (symmetric), 93
monoidal ∆-category, 113

monoidal ∆-pseudofunctor, 113
morphism of ∆-functors, 21

Nagata’s compactification theorem, 193

Nayak, Suresh, 2, 193, 230, 238
Neeman, Amnon, 3, 151, 168, 181, 192,

228, 230

orientation of a commutative square, 135

reversed, 136

pasting of base-change setups, 201

pasting of pseudofunctors, 199

perfect complex, 181, 224
perfect amplitude, 181

perfect map, 181, 221
plump subcategory, 31

projection morphisms, 98

isomorphisms, 130
pseudo-coherent (complexes, maps), 161

and Lf∗, 163
and Rf∗ , 162

and RHom, 163

and projective maps, 165
pseudofunctor, 111

covariant, 111

contravariant, 111
morphism, 112

monoidal, 112

q-flat, 55

q-flat resolution, 56

q-injective, 47
q-injective resolution, 47

quasi-isomorphism, 8
quasi-perfect map, 180–188

quasi-proper, 162

relative dualizing sheaf, 158
right-acyclic, 43

and derivability, 45
right-derived functor, 39

ringed space, 67

morphism (map), 67

Sastry, Pramathanath, 238

Serre, Jean-Pierre, 2, 4
Serre Duality, 5

Sheafified Duality theorem, 167

special map, 208
special subcategory, 207

summit of a triangle, 12

symmetric monoidal category, 93
dual, 97

symmetric monoidal closed category, 102
symmetric monoidal functor, 94

tordim (tor-dimension, or

flat dimension), 73
flat amplitude, 133, 181

translation functor, 12
triangle, 12

triangulation, 12

triangulated category, 14
truncation functors, 33

twisted inverse image pseudofunctor, 193

upper dimension, 35

van den Bergh, Michel, 228

Verdier, Jean-Louis, 2, 3, 5, 7, 149, 151

way-out, 34, 35


