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Definition (Pseudofunctor: special case of 2-functor )

A contravariant pseudofunctor on a category S assigns to each X ∈ S

a category X#, to each map f : X → Y a functor f # : Y# → X# (with

1# = 1), and to each map-pair X
f−→ Y

g−→ Z a functorial isomorphism

df ,g : f #g# −→∼ (gf )#

satisfying d1, g = dg ,1 = identity, and such that

for each triple of maps X
f−→ Y

g−→ Z
h−→W the following commutes:

(hgf )#
df ,hg←−−−− f #(hg)#

dg f h

x xdg,h

(gf )#h# ←−−−−
df,g

f #g#h#

Covariant pseudofunctor is similarly defined, with arrows reversed, i.e., it
means contravariant functor on Sop.
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Examples: Derived inverse-image (contravariant).
Derived direct-image (covariant).

S := category of ringed spaces

X# := D(X )
(
derived category of {OX -modules})

f # := Lf ∗ resp. f# := Rf∗

Relations between Lf ∗ and Rf∗
1. For any ringed-space map f : X → Y ,

Lf ∗ : D(Y )→ D(X ) is left-adjoint to Rf∗, i.e., for E ∈ D(Y ), F ∈ D(X ),

HomD(X )(Lf ∗E ,F ) ∼= HomD(Y )(E ,Rf∗F ).
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Relations between Lf ∗ and Rf∗ (ct’d)

2. For any commutative square of ringed-space maps

X ′ v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

one has the functorial map θ = θσ : Lu∗Rf∗ → Rg∗Lv∗, adjoint to the
natural composition

Rf∗ → Rf∗Rv∗Lv∗ −→∼ Ru∗Rg∗Lv∗.

If σ is a fiber square of concentrated (= quasi-compact, quasi-separated)
schemes then, with Dqc the full subcategory of D whose objects are the
complexes with quasi-coherent homology,

θσ is an isomorphism of functors on Dqc ⇐⇒ σ is tor-independent.
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Grothendieck operations

The adjoint pseudofunctors Rf∗ and Lf ∗, and the derived sheaf-Hom and Tensor
functors—also adjoint, i.e., for any ringed-space X there is a natural isomorphism

HomD(X )(E ⊗=X
F ,G ) −→∼ HomD(X )

(
E , RHomX (F ,G )

)
—are four of the six operations of Grothendieck. A fifth, right adjoint to Rf∗, is
about to be introduced.
These operations, and their interrelations, generate an incredibly rich structure,
around which e.g., Grothendieck Duality is built. For examples,

Sheafified adjointness of Lf ∗ and Rf∗

Rf∗RHomX (Lf ∗E ,F ) ∼= RHomY (E ,Rf∗F )
(
E ∈ D(Y ), F ∈ D(X )

)
Projection isomorphism for concentrated f : X → Y

Rf∗(Lf ∗E ⊗
=X

F ) −→∼ E ⊗
=Y

Rf∗F
(
E ∈ Dqc(Y ), F ∈ Dqc(X )

)
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2. Global Duality Theorem

Grothendieck Duality begins with this theorem:

Let X be a concentrated scheme and f : X → Y a concentrated
scheme-map. Then the ∆-functor Rf∗ : Dqc(X )→ D(Y ) has a
bounded-below right ∆-adjoint.

More elaborately,

For f : X → Y as before, there is a bounded-below ∆-functor
(f ×, identity): D(Y )→ Dqc(X ) and a map of ∆-functors τ : Rf∗f

× → 1
such that for all F ∈ Dqc(X ) and G ∈ D(Y ), the natural composite
∆-functorial map (in the derived category of abelian groups)

RHom•
X(F , f ×G ) −→ RHom•

X(Lf ∗Rf∗F , f
×G )

−→ RHom•
Y (Rf∗F , Rf∗f

×G )

−→
τ

RHom•
Y (Rf∗F , G )

is a ∆-functorial isomorphism.
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Definitions

(Needed for not-necessarily-noetherian situations.)

Definition

An OX -complex (X a scheme) is pseudo-coherent if its restriction to each
affine open subscheme is D-isomorphic to a bounded-above complex of
finite-rank locally free sheaves.

When X is noetherian, pseudo-coherent just means:

has coherent homology modules, vanishing in all large degrees.

Definition

A scheme-map f : X → Y is quasi-proper if Rf∗ takes pseudo-coherent
OX -complexes to pseudo-coherent OY -complexes.

When X is noetherian, and f finite type and separated,

quasi-proper simply means proper.

For quasi-proper f we write f ! in place of f ×.
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3. Tor-independent Base Change Theorem

Here is the other basic building block of the theory.

Theorem

Suppose there is given a tor-independent fiber square

X ′ v−−−−→ X

g

y yf

8><>:f (hence g) quasi-proper

u of finite tor-dimension

Y ′

σ

−−−−→
u

Y

Then the functorial map adjoint to the natural composition

Rg∗Lv∗f !G ˜−−−→
above

Lu∗Rf∗f
!G −−−→

Lu∗τ
Lu∗G ,

is an isomorphism

βσ(G ) : Lv∗f !G −→∼ g !Lu∗G
(
G ∈ D+

qc(Y )
)

(where G ∈ D+
qc means G ∈ Dqc and Hn(G ) = 0 for all n� 0.
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Corollary: Sheafified Duality

The Base-change Theorem for open immersions u is equivalent to the
following Sheafified Duality Theorem.

Theorem

Let f : X → Y be quasi-proper. Then for any F ∈ Dqc(X ), G ∈ D+
qc(Y ),

the composite duality map

Rf∗RHomX(F , f ×G ) −→ Rf∗RHomX(Lf ∗Rf∗F , f
×G )

−→ RHomY (Rf∗F , Rf∗f
×G )

−−→
τ

RHomY (Rf∗F , G )

is an isomorphism.

• Global Duality results from this by application of the functor RΓ(Y ,−).

• (Neeman) Theorem fails without the boundedness restriction on G .
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4. Twisted Inverse-image Pseudofunctor

On the category Sf of finite-type separated maps of noetherian schemes,
∃ a D+

qc-valued pseudofunctor ! that is uniquely determined up to isomorphism
by the following three properties :

(i) The pseudofunctor ! restricts on the subcategory of proper maps to a right
adjoint of the derived direct-image pseudofunctor.
(ii) The pseudofunctor ! restricts on the subcategory of étale maps to the (derived
or not) inverse-image pseudofunctor.
(iii) For any fiber square

• v−−−−→ •

g

y yf

•

σ

−−−−→
u

•

(f , g proper; u, v étale),

the base-change map βσ : v∗f ! → g !u∗, adjoint to the natural composition

Rg∗v
∗f ! −̃−→

above
u∗Rf∗f

! −→ u∗,

is the natural composite isomorphism

v∗f ! = v !f ! −→∼ (fv)! = (ug)! −→∼ g !u! = g !u∗.
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Remarks

1. The proof uses Nagata’s compactification theorem:
Every finite-type separated map of noetherian (or just concentrated)
schemes factors as proper ◦ open immersion.

Use the base change theorem to paste the pseudofunctors on proper maps
and on open immersions. The problem is to show that everything is
independent of choice of compactification for the maps.

2. Without noetherian hypotheses, Nayak showed, without needing
Nagata’ theorem, that there is a ! as above, but over the smallest
subcategory of arbitrary concentrated schemes which contains all flat
finitely-presented proper maps and all separated étale maps.

3. (Something concrete.) When f is both étale and proper—hence finite
and flat—then for any such !, the natural f∗f

∗ = f∗f
! → 1 is nothing but

the standard trace map.
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Interaction of twisted inverse image with RHom

For any scheme-map f : X → Y there is a natural pseudofunctorial
(i.e., transitive w.r.t. composition in Sf ) map

ψf
E,F : RHomX (Lf ∗E , f !F )→ f !RHomY (E ,F )

agreeing with the obvious one when f is étale (so that f ! = f ∗), and dual,
when f is proper, to the natural composition

Rf∗RHomX (Lf ∗E , f !F ) −−−→
above

RHomY (E ,Rf∗f
!F )→ RHomY (E ,F ).

ψf
E,F is an isomorphism if E is pseudo-coherent and F ∈ D+

qc(Y ).
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Interaction of twisted inverse image with ⊗
=
⊗
=
⊗
=

For any Sf -map f : X → Y there is a natural functorial map, defined via
compactification and the “projection isomorphism” (details on request)

χf
E : f !OY ⊗= Lf ∗E → f !E

(
E ∈ D+

qc(Y )
)
;

and, at least in the noetherian case,

f is perfect (i.e., has finite tor-dimension) =⇒ χf
E iso for all E ;

and conversely when f is proper.

Consequently (and more generally in appearance):

When f is perfect there is a natural functorial isomorphism

χf
E,F : f !E ⊗

=
Lf ∗F −→∼ f !(E ⊗

=
F )

(
E ,F ∈ D+

qc(Y )
)
.

Thus for perfect f the study of f ! is reduced, modulo properties of ⊗
=

, to
that of the relative dualizing complex f !OY .
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5. Perfection

Definitions

Given a scheme-map f : X → Y , we say an OX -complex E is f -perfect if
E is pseudo-coherent and has finite relative tor-dimension (i.e., there are
integers m ≤ n such that the stalk Ex at each x ∈ X is,
as an OY ,f (x)-complex, D-isomorphic to a flat complex vanishing in
degrees outside [m, n]).

E is perfect if X is covered by open sets over which E is D-isomorphic to a
bounded complex of finite-rank free OX -modules. (⇐⇒ E is 1X -perfect.)

Theorem

Equivalent for a finite-type separated f : X → Y with X , Y , noetherian:
(i) The map f is perfect, i.e., the complex OX is f -perfect.
(ii) The complex f !OY is f -perfect.
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continuation of Theorem

(iii) f !OY ∈D−
qc(X ), and for every F ∈D+

qc(Y ), the Dqc(X )-map

χf
OY ,F f !OY ⊗ f ∗F −→∼ f !F

is an isomorphism.

(iii)′ For every perfect OY -complex E , f !E is f -perfect; and for all
E ,F ∈ D(Y ) such that E and E ⊗ F are in D+

qc(Y ), the Dqc(X )-map

χf
E,F f !E ⊗ f ∗F −→∼ f !(E ⊗ F ).

is an isomorphism.
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Proper perfect maps

For a proper map f : X → Y of noetherian schemes:

f is perfect ⇐⇒
Rf∗ takes perfect OX -complexes to perfect OY -complexes.

f is perfect ⇐⇒ unrestricted tor-independent base change holds:

For any tor-independent fiber square of noetherian schemes

X ′ v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

and G ∈ Dqc(Y ) the above-defined base-change map is an isomorphism

βσ(G ) : Lv∗f !G −→∼ g !Lu∗G .

(u need not have finite tor-dimension, and G need not be bounded below.)
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Proper perfect maps (continued)

If f is perfect and (Fα) is a small filtered direct system of flat
quasi-coherent OY -modules then for all n ∈ Z the natural map is an
isomorphism

lim−→α
Hn(f !Fα) −→∼ Hn(f ! lim−→α

Fα).
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6. Dualizing Complexes

Definition

A dualizing complex R on a noetherian scheme X is a complex with
coherent homology that is D-isomorphic to a bounded injective complex,
and has the following equivalent properties:

(i) For every F ∈ Dc(X ), the map that is (derived) Hom-Tensor adjoint to
the natural composition

F ⊗ RHom(F ,R) −→∼ RHom(F ,R)⊗ F → R

is an isomorphism

F −→∼ RHom(RHom(F ,R),R).

(ii) Condition (i) holds for F = OX , i.e., the map OX → RHom(R,R)

which takes 1 ∈ Γ(X ,OX ) to the identity map of R is an isomorphism.
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Remarks

Grothendieck’s original strategy for proving duality for proper
not-necessarily-projective maps of noetherian schemes, at least for
bounded-below complexes with coherent homology, is based on
pseudofunctorial properties of dualizing complexes.
The basic problem in this approach is the construction of a

coherent family of dualizing complexes,

or, roughly speaking,

a pseudofunctor on proper maps with properties like those of (−)!, but
taking values in dualizing complexes.

Though this approach gives less general results than stated before, it is not
without interest—historical and otherwise; and indeed, for formal schemes,
it yields results not otherwise obtainable (as of 2007), see Sastry’s paper in
Contemporary Math. 375.

This paper is preceded by one (by Sastry, Nayak and L.) in which the original
construction in “Residues and Duality” is simplified, and generalized to Cousin
complexes on formal schemes.
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More Remarks

For connected X, dualizing OX -complexes, if they exist, are unique up to
tensoring with a shifted invertible OX -module.

The existence of a dualizing complex places restrictions on X . For
instance, X must be universally catenary and of finite Krull dimension.
(Very recently, Neeman generalized the definition of dualizing complex to
where it applies to bounded coherent complexes without the
finite-dimensionality restriction on X .)

Any scheme of finite type over a regular (or even Gorenstein) scheme of
finite Krull dimension has a dualizing complex.

The relation between dualizing complexes and the twisted inverse image
pseudofunctor (−)! is rooted in the following, by now classical,
Proposition.
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Proposition

Let f : X → Y be a finite-type separated map of noetherian schemes, and
let R be a dualizing OY -complex.
Then with Rf := f !R, and DRf

(−) := RHom(−,Rf ), it holds that

(i) Rf is a dualizing OX -complex.

(ii) There is a functorial isomorphism

f !DRF −→∼ DRf
Lf ∗F

(
F ∈D−

c (Y )
)

or equivalently,

f !E −→∼ DRf
Lf ∗DRE

(
E ∈D+

c (Y )
)
.

(i) ⇒(ii) via the above iso ψf
E,F : RHomX (Lf ∗E , f !F ) −→∼ f !RHomY (E ,F ).

This Proposition suggests how a coherent system of dualizing complexes,
when such exists can give rise to a twisted inverse-image pseudofunctor.

Details in Notes on Derived Functors and Grothendieck Duality,

http://www.math.purdue.edu/˜lipman
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7. Comments and Problems

Even leaving aside applications, there’s lots more to Duality theory,
especially enlivening concrete interpretations, e.g., via differentials and
familiar maps like traces and residues.
There is also generalization to formal schemes, which unifies global and
local duality; and analogous theories for étale cohomology, analytic spaces,
etc., etc.

Mention one problem in the abstract vein:

Problem

Can the twisted inverse-image pseudofunctor and its basic properties (as
above) be extended to the category of essentially finite-type separated
maps of noetherian schemes?

Probably so, but not trivially.

Being essentially of finite type is a local condition, so it’s not clear that
useful global properties like compactifiability obtain.
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More comments and problems

The idea is then to use Nayak’s methods of pasting pseudofunctors, methods
which don’t require compactifiability, but do require (as do all of the
preceding results!) verification of commutativity of complicated diagrams.

In fact these massively time-consuming verifications take up a major (and
essential) part of the above-mentioned notes, suggesting that:

Problem

It would be very nice if someone came up with a “coherence” theorem, or
at least an expert computer program, to make such tedium unnecessary.

A serious attempt to do this could lead to a much deeper understanding of
how and why the formalism works, not to mention the potential interest of
the artificial intelligence aspects.
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We can also ask:

Problem

Can the twisted inverse-image pseudofunctor and its basic properties be
extended to a nonnoetherian context, or to category of essentially
pseudo-finite-type separated maps of noetherian formal schemes?

As already indicated, Nayak has done this to a considerable extent.
Pursuing this further might give some insight into:

Final (for today) Problem

In some sense the twisted inverse image is too good to be true.

Why do these pastings of two quite different pseudofunctors, for proper
resp. étale maps, and of canonical maps of these pseudofunctors—pastings
which depend on complicated compatibilities, whether from the abstract or
the concrete point of view—work out so well?

There may well be an as yet undiscovered deeper underlying structure
which would explain it all.
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