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1. Dramatis Personae. For details, see

Notes on Derived Functors and Grothendieck Duality, to appear, SLN.

A contravariant pseudofunctor (pullback) over a category S assigns to each

X ∈ S a category X#, to each map f : X → Y a functor f # : Y# → X#

(1# = 1), and to each X
f
−→ Y

g
−→ Z a ‘transitivity’ isomorphism

df ,g : f #g# −→∼ (gf )#

satisfying d1, g = dg ,1 = identity, and ‘associative,’ meaning that

for each triple of maps X
f
−→ Y

g
−→ Z

h
−→W the following commutes:

(hgf )#
df ,hg
←−−−− f #(hg)#

dg f ,h

x
xf #dg,h

(gf )#h# ←−−−−
df,g

f #g#h#

Covariant pseudofunctor (pushforth) is similarly defined, with
arrows reversed, i.e., it means contravariant functor over Sop.
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Examples.

S := category of rings

X# := {X -modules}

f# := extension of scalars resp. f # := restriction of scalars

S := category of rings

X# := D(X )
(
derived category of {X -modules})

f# := left-derived extension of scalars resp. f # := restriction of scalars

S := category of ringed spaces

X# := D(X )
(
derived category of {OX -modules})

f # := Lf ∗ (derived inverse-image) resp. f# := Rf∗ (derived direct-image)
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Relations between Lf
∗ and Rf∗

1. For any ringed-space map f : X → Y ,

Lf ∗ : D(Y )→ D(X ) is left-adjoint to Rf∗, i.e., for E ∈ D(Y ), F ∈ D(X ),

HomD(X )(Lf ∗E , F ) ∼= HomD(Y )(E ,Rf∗F ).

2. For any commutative square of ringed-space maps

X ′
v

−−−−→ X

g

y
yf

Y ′

σ

−−−−→
u

Y

one has the functorial map θ = θσ : Lu∗Rf∗ → Rg∗Lv∗,
adjoint to the natural composition

Rf∗ → Rf∗Rv∗Lv∗ −→∼ Ru∗Rg∗Lv∗.

If σ is a fiber square of noetherian schemes, and Dqc(X ) the full subcategory
of D(X ) whose objects are the complexes having quasi-coherent homology,

θσ is an isomorphism of functors on Dqc(X ) ⇐⇒ σ is tor-independent.
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Grothendieck operations

The adjoint pseudofunctors Rf∗ and Lf ∗, and
the derived sheaf-Hom and Tensor functors
—also adjoint, i.e., for any ringed-space X there is a natural isomorphism

HomD(X )(E ⊗=X
F , G) −→∼ HomD(X )

(
E , RHomX (F , G)

)

—and the right adjoint to Rf∗, about to be introduced,
are five of the six operations of Grothendieck.

These operations, and their category-theoretic interrelations, generate an
incredibly rich structure, around which e.g., Grothendieck Duality is built.

Projection isomorphism

E ⊗
=Y

Rf∗F −→
∼ Rf∗(Lf ∗E ⊗

=X
F )

(
E ∈ Dqc(Y ), F ∈ Dqc(X )

)

Sheafified adjointness of Lf
∗ and Rf∗

Rf∗RHomX (Lf ∗E , F ) ∼= RHomY (E ,Rf∗F )
(
E ∈ D(Y ), F ∈ D(X )

)
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2. Global Duality

Grothendieck Duality begins with this theorem:

For any map f : X → Y of quasi-compact quasi-separated (e.g.,
noetherian) schemes, the functor Rf∗ : Dqc(X )→ D(Y ) has a
cohomologically bounded-below (homologically bounded-above)
right adjoint.

More elaborately,

There is a cohomologically bounded-below functor f × : D(Y )→ Dqc(X )
and a map of functors τ : Rf∗f

× → 1 such that for all F ∈ Dqc(X ) and
G ∈ D(Y ), the composite functorial map, in D(abelian groups),

RHom•

X(F , f ×G ) −→ RHom•

X(Lf ∗Rf∗F , f ×G )

−→ RHom•

Y (Rf∗F , Rf∗f
×G )

−→
τ

RHom•

Y (Rf∗F , G )

is an isomorphism.
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3. Tor-independent Base Change Theorem

Henceforth schemes are noetherian. Here is the other pillar of duality.

Theorem

Suppose there is given a tor-independent fiber square

X ′ v
−−−−→ X

g

y
yf

8

>

<

>

:

f (hence g) proper

u of finite flat dimension

Y ′

σ

−−−−→
u

Y

Then the functorial map adjoint to the natural composition

Rg∗Lv∗f ×G ˜−−−→
above

Lu∗Rf∗f
×G −−−→

Lu∗τ
Lu∗G ,

is an isomorphism

βσ(G ) : Lv∗f ×G −→∼ g×Lu∗G
(
G ∈ D+

qc(Y )
)

(where G ∈ D+

qc means G ∈ Dqc and Hn(G ) = 0 for all n≪ 0).
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Corollary: Sheafified duality

The Base-change Theorem for open immersions u is equivalent to the
following Sheafified Duality Theorem.

Theorem

Let f : X → Y be proper. Then for any F ∈ Dqc(X ), G ∈ D+
qc(Y ),

the composite duality map

Rf∗RHomX(F , f ×G ) −→ Rf∗RHomX(Lf ∗Rf∗F , f ×G )

−→ RHomY (Rf∗F , Rf∗f
×G )

−−→
τ

RHomY (Rf∗F , G )

is an isomorphism.

• Global Duality results from this by application of the functor RΓ(Y ,−).

• (Neeman) Theorem fails without the boundedness restriction on G .

• For F = OX , the Theorem says Rf∗f
×G −→∼ RHomY (Rf∗OX , G ).

This fixes f × when f is a finite map (so that Rf∗ can be replaced by f∗).
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4. Twisted inverse-image pseudofunctor

One can use global duality and base change to extend
the pseudofunctor (−)× over (the category of) proper scheme-maps to a
pseudofunctor over arbitrary separated maps by combining it with the
a priori very different functor Lu∗, u an open immersion (or even étale).

This extended pseudofunctor is the basic object of study in the theory.
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Theorem. On the category Sf of finite-type separated scheme-maps,
∃ a D+

qc-valued pseudofunctor ! that is uniquely determined up to isomorphism
by the following three properties :

(i) The restriction of the pseudofunctor (−)! to the subcategory of proper maps
is isomorphic to (−)×, i.e.,
it is right adjoint to the derived direct-image pseudofunctor.

(ii) The pseudofunctor ! restricts on the subcategory of étale maps to the
(derived or not) inverse-image pseudofunctor.

(iii) For any fiber square

•
v

−−−−→ •

g

y
yf

•

σ

−−−−→
u

•

(f , g proper; u, v étale),

the base-change map βσ : v∗f ! → g !u∗, adjoint to the natural composition

Rg∗v
∗f ! −̃−→

above
u∗Rf∗f

! −→ u∗,

is the natural composite isomorphism

v∗f ! = v !f ! −→∼ (fv)! = (ug)! −→∼ g !u! = g !u∗.
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Example (cf. Serre duality)

f : X → Y smooth (so Ωf locally free, of rank, say, nf ) =⇒
∃ functorial iso

f #E :=
(
Λnf Ωf

)
[nf ]⊗X f ∗E −→∼ f !E .

The functor # extends to a pseudofunctor on the category of smooth
maps, via the natural isomorphism

(
Λnf Ωf

)
[nf ]⊗X f ∗

(
Λng Ωg

)
[ng ] −→∼

(
Λngf Ωgf

)
[ngf ]

relative to a pair of smooth maps X
f
−→ Y

g
−→ Z .

The above isomorphism f # −→∼ f ! is pseudofunctorial, i.e., compatible
with the pair of natural isomorphisms f #g# −→∼ (gf )#, f !g ! −→∼ (gf )!.

Corollary

f !Dc(Y ) ⊂ Dc(X ).

Since f factors locally as (smooth)◦(closed immersion), one need only
show this for f finite or smooth, where it results from preceding examples.
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Remarks

1. The theorem’s proof uses Nagata’s compactification theorem:
Every finite-type separated map factors as proper ◦ (open immersion).

One uses the base change theorem to paste the proper-map pseudofunctor
and the open-immersion pseudofunctor. The problem is to show that
everything is independent of choice of compactification for the maps.

2. The theorem applies to affine schemes, that is, to finite-type ring
homomorphisms. But one often wishes to look at essentially-finite-type
ring homomorphisms, e.g., local homomorphisms of local rings. So one
would like to extend the theorem to essentially finite-type f : X → Y ,
i.e., f such that each y ∈ Y has an affine neighborhood V = SpecA
such that f −1V = ∪i SpecBi with the Bi essentially-finite-type A-algebras.
Unfortunately, the appropriate analog of compactification is not yet
known, so the question remains open.
But fortunately, less suffices for algebraic applications:
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Remarks, continued

If in the definition of essentially finite-type scheme-maps, all the maps
A→ Bi are localizations then we say that f is localizing.

The scheme-map f is essentially compactifiable if there exists a
factorization f = f̄ u with f̄ proper and u localizing.

Example

Maps corresponding to essentially-finite-type ring homomorphisms are
easily seen to be essentially compactifiable.

We don’t know that a composition of two essentially compactifiable maps
is essentially compactifiable. But Suresh Nayak has shown, via his theorem
on pasting pseudofunctors, that the basic facts about the twisted
inverse-image pseudofunctor hold over the least category Sf of noetherian
schemes which contains all the essentially compactifiable maps.
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Twisted inverse image and ⊗
=
⊗
=
⊗
=

; relative dualizing complex

For any Sf -map f : X → Y there is a natural functorial map, defined via
compactification and the above projection isomorphism,

χf
E : f !OY ⊗= Lf ∗E =: f #E → f !E

(
E ∈ D+

qc(Y )
)
.

Given a compactification X
u
−→ X

f
−→ Y (f = f u, u an open immersion, f proper),

one gets χf
E by applying u∗ to the adjoint of the natural composition

f∗(f
!
E ⊗ f

∗

F ) −→∼
proj’n

f∗f
!
E ⊗ F −→ E ⊗ F ,

Of course one has to show this is independent of the choice of compactification.

Theorem

f is perfect (i.e., has finite flat dimension) ⇐⇒
f !OY has bounded homology and χf

E iso for all E .
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Pseudofunctoriality of χf
E

For perfect maps X
f
−→ Y

g
−→ Z, and E ∈ D+

qc(Z ), the following commutes:

f #g#E = f !OY ⊗ f ∗(g !OZ ⊗ g∗E )
χ
−→ f !(g !OZ ⊗ g∗E )

f !χ
−−→ f !g !E

y

y

(f !OY ⊗ f ∗g !OZ )⊗ f ∗g∗E

χ⊗1

y

f !g !OZ ⊗ f ∗g∗E
y

(gf )#E = (gf )!OZ ⊗ (gf )∗E −−−−−−−−−−−−−−−−−−−→
χ

(gf )!E

Thus for perfect f the study of f ! is reduced, modulo properties of ⊗
=

, to
that of the relative dualizing complex f !OY —a central player in this talk.
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Example (Formally smooth Sf -maps)

In this case, f !OY
∼= Ωnf

f [nf ] (cf. above).

Example (Cohen-Macaulay and Gorenstein maps)

A flat, finite-type, f : X → Y is, by definition, Cohen-Macaulay
(resp. Gorenstein) if its fibers are such.

Exercise 9.7 in Hartshorne’s Residues and Duality states that this holds
⇐⇒ locally on X , the relative dualizing complex f !OY has a single
nonzero homology sheaf, which is flat over OY (resp. invertible on X).

A suitable generalization of the base-change theorem reduces this assertion
to the corresponding one for the fibers, i.e., the case where Y is Spec of a
field. In this case, the question being local, one is just saying something
familiar about the canonical module of a local ring.

Other proofs: Lemma 1 in Compositio 38, 37-43; Thm. 3.5.1 in SLN 1750.

Recently Avramov and Iyengar gave yet another proof (modulo the
commutative-algebra version of relative dualizing complex, see below).

Joseph Lipman (Purdue University) Derived Hochschild and Grothendieck May 20, 2008 17 / 25



5. Relatively perfect complexes

Definitions

Given a scheme-map f : X → Y , we say an OX -complex E is f -perfect if
E ∈ Dc(X ) and has finite relative flat dimension (i.e., there are integers
m ≤ n such that the stalk Ex at each x ∈ X is, as an OY ,f (x)-complex,
D-isomorphic to a flat complex vanishing in degrees outside [m, n]).

E is perfect if X is covered by open sets over which E is D-isomorphic to a
bounded complex of finite-rank free OX -modules. (⇐⇒ E is 1X -perfect.)

Example

f is perfect ⇐⇒ OX is f -perfect ⇐⇒ f !OY is f -perfect.

The first ⇐⇒ holds essentially by definition. An efficient (omitted) proof
of the second uses the following recent result of Avramov and Iyengar:

On any scheme W , an OW -complex F is perfect ⇐⇒
F has bounded, coherent homology and RHomW (F ,OW ) is perfect.
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Duality for relatively perfect complexes

Theorem (Illusie, SGA 6, p. 259, 4.2.9.)

If E ∈ D(X ) is f -perfect, then so is Df E := RHomX (E , f !OY );
and the canonical map is an isomorphism E −→∼ DfDf E.
So Df is an involution of the full subcategory P(f ) ⊂ D(X ) whose objects
are the f -perfect complexes.

Corollary

If f is perfect then Df is semidualizing: the natural map is an isomorphism

OX −→
∼ RHomX (Df ,Df ) = DfDf E .

So if Y is locally Gorenstein, then Df is a dualizing complex.

Remark. The last assertion holds because f ! preserves coherence of
homology and finiteness of injective dimension.

Conversely, Avramov and Iyengar have shown (again, modulo the
commutative-algebra version of relative dualizing complex) that
if Df is a dualizing complex then Y is locally Gorenstein.
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6. Relative dualizing complexes in Commutative Algebra

Applying the above to maps of affine schemes, in view of the standard
correspondence between modules over a ring and quasi-coherent sheaves
on its Spec—an equivalence which extends to derived categories—we can
associate to any essentially finite-type map σ : K → S a relative dualizing
complex, as follows.

Express S as a homomorphic image of (or a module-finite algebra over) a
localization P of a polynomial ring K [x1, . . . , xn]; and set

∆σ := RHomP(S ,ΛnΩP/K [n]) ∼= RHomP(S ,P).

Then show that ∆σ depends, up to isomorphism in D(S), only on σ,
(not on the choice of P → S).

One reason for this independence is that the sheafification of ∆σ is f !OY ,
where f : X := SpecS → SpecK =: Y corresponds to σ. But f ! involves
all sorts of global considerations, so this is not very aesthetic.

One could just argue directly, reducing to the case where S itself is a
localized polynomial ring over K . (Exercise.)
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More Remarks

There’s another way, leading to some intriguing global questions about
structures involving DGAs.

One can factor σ : K → S in the category of (positively graded,
graded-commutative) K-DGAs as K → A→ S with A flat over K
and A→ S a quasi-isomorphism, i.e.,
the induced map H∗(A)→ H∗(S) = S is an isomorphism.

Let S⊗
=KS be the DGA A⊗K A.

Let P(σ) ⊂ D(X ) be the full subcategory with objects the complexes with
finitely generated homology and finite flat K -dimension.

Sheafification gives an equivalence from P(σ) to P(Spec σ) (Spec σ-perfect
complexes).

Assume henceforth that σ : K → S has finite flat dimension, i.e.,
Specσ is perfect.
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The following theorem gives an intrinsic characterization of ∆σ.

Theorem (Avramov, Iyengar)

There exists a complex Dσ ∈ P(σ) satisfying

RHomS(Dσ,Dσ) ∼= S ,

(i.e., Dσ is semidualizing) and a canonical bifunctorial isomorphism

RHomS ⊗
=K S(S ,M ⊗

=K N) ∼= RHomS (RHomS(M,Dσ),N)(
M ∈ P(σ), N ∈ D(S)

)
.

Such a Dσ is unique up to D(S)-isomorphism.

In fact, for every factorization K → P → S of σ with S finite over P
and P essentially smooth of relative dimension n over K,

Dσ ∼= RHomP(S , (Λn
PΩP/K )[n]),

so that Dσ is a relative dualizing complex, as defined above.
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Remarks

1. For any S-bimodule B , RHomS ⊗
=K S(S ,B) is the

derived Hochschild cohomology of the K -algebra S , with B-coefficients.
When S is flat over K , S ⊗

=KS can be replaced by S ⊗K S . In any case, at
the homology level, the isomorphism in the theorem is a reduction formula
expressing derived Hochschild cohomology with tensor-decomposable
coefficients in terms of Exts.

2. The proof is mainly a complex diagram chase involving DG resolutions
and various quasi-isomorphisms.

3. The special case where K is a regular finite-dimensional ring, and
M = N = Dσ, was first done in 2004 by Yekutieli and Zhang.
In this case, as mentioned above, Dσ is actually a dualizing complex.

4. Avramov and Iyengar came across the theorem in the course of
investigating homological criteria for Gorensteinness of local
homomorphisms. As indicated before, they use the theorem in showing
that Gorensteinness is characterized by (among other conditions)
invertibility of Dσ, or even perfection (absolute, not relative!) of Dσ.
Joseph Lipman (Purdue University) Derived Hochschild and Grothendieck May 20, 2008 23 / 25



7. Globalization: back to schemes

Since the derived-Hochschild approach to relative dualizing complexes is so
different than the approach via global duality, one naturally asks whether
the former has some interesting extension to the global context. So far
only the case of flat scheme maps f : X → Y (where DGAs are not
needed) can be dealt with.

For such f , let δ : X → X ×Y X be the diagonal. Then, as before,

δ∗δ
!G ∼= RHomX×Y X (δ∗OX ,G ),

so that δ!G is the global version of derived Hochschild cohomology with
coefficients in G .

Theorem (Global reduction formulae)

Let π1 and π2 : X ×Y X → X be the projections. There exist natural
isomorphisms

δ!(π∗

1M⊗=X ′ π∗

2N) −→∼ RHomX

(
RHomX (M, f !OY ),N

)
;

δ!RHomX ′(π∗

1M, π∗

2N) −→∼ RHomX (M⊗
=X f !OY ,N).
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Final Remarks and Questions

1. The proof is mainly a complex diagram chase involving various
derived-category isomorphisms arising from previously-mentioned relations
among the ‘five operations.’

2. Does this produce the same map in the affine case as the
Avramov-Iyengar procedure? Typically, such comparisons between abstract
and concrete instances of the duality formalism are not very easy to carry
through; and this one is no exception. In fact, we haven’t worked it out.

3. What about possible globalizations for non-flat perfect maps?

Question

Is there some homotopical structure on schemes, involving DGAs, for
which, in the affine situation, some category related to S ⊗

=K S (defined
only up to quasi-isomorphism) is closely related to the product of SpecS
with itself, over Spec(K ); and to which the duality formalism used in the
proof of the preceding theorem extends??
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