D. B. Zagier

Zetafunktionen und quadratische Körper

Eine Einführung in die höhere Zahlentheorie

Mit 8 Abbildungen

Springer-Verlag Berlin Heidelberg New York 1981

UNIVERSITY LIBRARIES 1201 E. 38TH STREET INDIANAPOLIS 46205 IUPUI

Don Bernard Zagier

Sonderforschungsbereich "Theoretische Mathematik" Beringstraße 4

ISBN 0-387-10603-0 Springer-Verlag New York Heidelberg Berlin ISBN 3-540-10603-0 Springer-Verlag Berlin Heidelberg New York

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Zagier, Don Bernard:

Zetafunktionen und quadratische Körper: e. Einf. in d. höhere Zahlentheorie / Don B. Zagler. – Berlin; Heidelberg; New York: Springer, 1981. (Hochschuftext)

ISBN 3-540-10603-0 (Berlin, Heidelberg, New York) ISBN 0-387-10603-0 (New York, Heidelberg, Berlin)

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdruckes, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf photomechanischem oder Shnilchem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Die Vergütungsansprüche des § 54, Abs. 2 UrhG werden durch die "Verwertungsgesellschaft Wort", München, wahrgenommen.

C by Springer-Verlag Berlin Heidelberg 1981 Printed in Germany

Druck und Bindearbeiten: Beitz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

To my father

Vorwort

Das Ziel dieses Buchs ist, die Theorie der binären quadratischen Formen, die im letzten Jahrhundert in ihren algebraischen Aspekten von Gauß und in ihren analytischen Aspekten von Dirichlet entwickelt wurde, darzustellen. Diese Theorie, die früher zur normalen Ausbildung in der Mathematik gehörte, wird heute den Studenten oft nur als Beispiel für die moderne algebraische Zahlentheorie, analytische Zahlentheorie oder Klassenkörpertheorie präsentiert. Da sie aber eine große Schönheit besitzt und außerdem elementar zugänglich ist, halte ich es für zwecknüßiger, sie umgekehrt als Einführung in die genannten Gebiete zu benutzen, die ja historisch aus ihr hervorgegangen sind.

Da das Buch eine Einführung sein soll, sind die Voraussetzngen minimal gehalten, und zwar:

- aus der Algebra die Grundbegriffe über Gruppen und Ringe und der Struktursatz für endlich erzeugte abelsche Gruppen;
- aus der komplexen Funktionentheorie eigentlich nur die Begriffe "holomorphe Funktion", "meromorphe Funktion", "Residuum" und "analytische Fortsetzung" (der Cauchysche Integralsatz wird nie benutzt);
- aus der Zahlentheorie etwa der Inhalt einer elementaren einsemestrigen Vorlesung, insbesondere Kongruenzen, Legendre-Symbol, quadratische Reziprozität.

Das Buch basiert auf Vorlesungen in Bonn (SS 1975) und Harvard (WS 1977) und ist als Vorläufer eines umfassenderen Buches auf Englisch gedacht. Hanspeter Kraft, David Kramer und Winfried Kohnen, die Teile des Manuskripts gelesen und ausführlich kommentiert haben, möchte ich hier herzlich danken; vor allem gilt mein Dank Silke Suter für ihre Unterstützung bei dem ganzen Unternehmen und für ihre Hilfe bei sprachlichen und darstellerischen Schwierigkeiten.

Konventionen und Bezeichnungen: Wir bezeichnen mit Z, N, Q, R, C die Mengen der ganzen, natürlichen (also strikt positiven ganzen), rationalen, reellen und komplexen Zahlen. Die Kardinalität einer Menge C wird mit |C| oder #C bezeichnet. Für xER ist [x] die größte ganze Zahl n x. Sind f und g Funktionen einer Veränderlichen x,

die nach a strebt (häufig a = 0 oder ∞), so bedeuten die Symbole f = 0(g), f = 0(g) bzw. f \sim g, daß für x \rightarrow a das Verhältnis f(x)/g(x) beschränkt bleibt, nach 0 strebt bzw. nach 1 strebt. Die n-te Formel von §m wird innerhalb des Paragraphen als (n), in anderen Paragraphen als (m.n) zitiert.

Inhaltsverzeichnis

Š	Š	Ε		Ś	Ś	Ś	ιO	Ø	S	Ś	₽e	Li		Ś	ω	S	Ś	ďΩ	Ś	Ś	Teil
	Ch	Ĺte		14	<u>1</u> 3	12		10	9	o o	Teil	te:		7	6	տ	4	ω	2		1
Symbolverzeichnis 1	Sachverzeichnis 1	Literatur zur Teil II	Klassenzahlen	Werte von Zetafunktionen bei s = 0, Kettenbrüche und	Reduktionstheorie	Geschlechtertheorie 1	Die Zetafunktion eines quadratischen Körpers	Quadratische Formen und quadratische Zahlkörper	assenzahlformeln	:	II. Quadratische Körper und ihre Zetafunktionen	Literatur zu Teil I	L-Reihen, an negativen ganzen Stellen	Werte von Dirichletschen Reihen, insbesondere von	L-Reihen	Charaktere	Die Riemannsche Zetafunktion	Die Gammafunktion	Dirichletsche Reihen: formale Eigenschaften	Dirichletsche Reihen: analytische Theorie	I. Dirichletsche Reihen
44	142	140	132	,	120	108	96	87	75	57	57	56	47		4		. 4		۷ د		_

Teil I. Dirichletsche Reihen

§1 Dirichletsche Reihen: analytische Theorie

Wir wollen in diesem und dem nächsten Paragraphen die elementarsten Eigenschaften von Dirichletschen Reihen angeben, die in der analytischen Zahlentheorie eine so grundlegende Rolle spielen wie die Potenzreihen in der Funktionentheorie.

In der Theorie der Potenzreihen nimmt man die *Potenzfunktionen* $z\mapsto z^n$ (nEN) als die zugrundeliegenden Funktionen und versucht, beliebige Funktionen als unendliche Linearkombinationen dieser speziellen Funktionen darzustellen. Bei Dirichletschen Reihen nehmen wir statt dessen die *Exponentialfunktionen* $z\to e^{-\lambda z}$ (λ ETR) als Bausteine; da aber TR nicht abzählbar ist, müssen wir uns auf eine Folge $z\to e^{-\lambda}$ ($z\to e^{-\lambda}$ beschränken, wobei $z\to e^{-\lambda}$ reelle Zahlen sind, von denen wir annehmen, daß

(1)
$$\lambda_1 < \lambda_2 < \cdots$$
, $\lambda_n \rightarrow \infty$.

Schließlich bemerken wir, daß es sich in der Theorie der Dirichletschen Reihen eingebürgert hat, die komplexe Veränderliche mit s (statt wie in der Funktionentheorie mit z) und ihren Real-bzw. Imaginärteil mit g bzw. t (statt mit x bzw. y) zu bezeichnen. Wir haben also die folgende

Definition: Eine Dirichletsche Reihe ist eine Reihe

(2)
$$\sum_{n=1}^{\infty} a_n e^{-\lambda} s$$

I Me

or W. S. W. S.

wobei die λ_n reelle Zahlen sind, die (1) genügen, die a_n beliebige komplexe Zahlen sind, und $s=\sigma+it$ eine komplexe Zahl ist.

Beispiel 1: $\lambda_n = n$. Das ist sicherlich die naheliegendste Wahl für die Folge (1), führt aber zu keiner neuen Theorie, weil die Substi-

tution $z=e^{-S}$ die Reihe (2) in die Gestalt $\sum a_n z^n$ bringt, so daß die Theorie der Dirichletschen Reihen in diesem Fall identisch ist mit der gewöhnlichen Funktionentheorie.

Beispiel 2: $\lambda_n = \log n$. Mit dieser Wahl der Exponentenmenge läßt sich die Reihe (2) schöner schreiben als

$$\sum_{n=1}^{\infty} a_n^{-s}.$$

Dieser Fall ist der für die analytische Zahlentheorie relevante. Eine Reihe der Gestalt (3) heißt gewöhnliche Dirichletsche Reihe.

raden $\sigma = \sigma_0$, Reihen typisch ist. daß dieses Beispiel für das Konvergenzverhalten von Dirichletschen entspricht, allgemein nichts aussagen kann). Wir werden jetzt sehen, mit $\sigma < \sigma_0$ konvergiert (während man über das Verhalten auf der Genämlich, daß die Reihe (2) für alle s mit $\sigma > \sigma_0$ mit Hilfe der dort angegebenen Transformation $z = e^{-S}$ sofort auf $R = \infty$ setzt für Reihen, die nirgendwo bzw. überall konvergieren). und für kein z mit |z| > R konvergiert (wobei man R = 0 oder gibt (Konvergenzradius), so daß $\sum_{n}^{2} a_{n}^{2}$ für alle z mit |z| < Rdie Veränderliche s übertragen; mit $\sigma_0 = \log(1/R)$ finden wir dann Für den Fall $\lambda_{
m n}$ = n des ersten Beispiels läßt sich dieses Ergebnis Wann und wo konvergiert eine Dirichletsche Reihe? Für Potenzdie dem Konvergenzkreis |z| = R der Potenzreihe und für kein s

SATZ 1: Ist die Reihe (2) für s = s₀ konvergent, so konvergiert sie auch für alle s mit Re(s) > Re(s₀), und zwar gleichmäßig auf kompakten Mengen. Somit existiert eine reelle Zahl σ_0 , so daß die Reihe (2) für alle s mit $\sigma > \sigma_0$ konvergiert und für alle s mit $\sigma < \sigma_0$ divergiert (falls (2) überall konvergent bzw. divergent ist, setzen wir σ_0 gleich $-\infty$ bzw. ∞). Die in dem Gebiet $\sigma > \sigma_0$ durch

(4)
$$f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda} s$$

definierte Funktion von s ist dort holomorph; die Ableitungen von f(s) sind gegeben durch

(5)
$$f^{(k)}(s) = (-1)^k \sum_{n=1}^{\infty} \lambda_n^k a_n e^{-\lambda_n s}$$
,

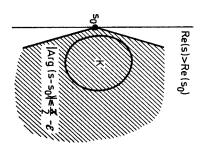
wober die rechts stehende Dirichletsche Reihe auch für $\sigma > \sigma_0$ konvergiert.

Die Zahl $\sigma_0^{}$ heißt Konvergenzabszisse der Dirichletschen Reihe (2).

Beweis: Wir brauchen nur die erste Aussage zu beweisen, da die Existenz von einem σ_0 mit den angegebenen Eigenschaften dann klar ist und die Holomorphie von (4) sowie die Zulässigkeit der der Formel (5) zugrundeliegenden gliedweisen Differentiation wegen des bekannten Weierstraßschen Satzes aus der gleichmäßigen Konvergenz folgen. Wir werden sogar mehr beweisen, nämlich, daß die Reihe in jedem Gebiet

(6)
$$|\arg(s-s_0)| \le \frac{\pi}{2} - \varepsilon < \frac{\pi}{2}$$

gleichmäßig konvergiert; das ist stärker als die Aussage des Satzes, da jede in $\{s \mid \sigma > \sigma_0\}$ enthaltene kompakte Menge K in einem Winkel



der Gestalt (6) liegt (s. Abb.).

Wir führen die Bezeichnungen

(7)
$$A(N) = \sum_{n=1}^{N} a_n$$
, $A(M,N) = \sum_{n=M}^{N} a_n$, $A(M,M-1) = 0$

ein, die in diesem Paragraphen mehrmals benutzt werden. O.B.d.A. könnnen wir s $_0$ = 0 voraussetzen (indem wir s durch s + s $_0$, and durch an e $^{-\lambda}n^{S_0}$ ersetzen); dann ist $\sum a_n$ konvergent und es gibt zu vorgegebenem $\epsilon > 0$ ein N_0 , so daß $|A(M,N)| \le \epsilon$ für alle $N > M \ge N_0$. Dann gilt für $N > M \ge N_0$

$$= A(M,M) e^{-\lambda_{M} S} - A(M,M) e^{-\lambda_{M+1} S} + A(M,M+1) e^{-\lambda_{M+1} S}$$

$$- \dots + A(M,N-1) e^{-\lambda_{N-1} S} - A(M,N-1) e^{-\lambda_{N} S}$$

$$+ A(M,N) e^{-\lambda_{N} S}$$

$$+ A(M,N) e^{-\lambda_{N} S}$$

$$= \sum_{M} A(M,n) \left[e^{-\lambda_{n} S} - e^{-\lambda_{n+1} S} \right] + A(M,N) e^{-\lambda_{N} S}$$

(dieser Trick ist das sogenannte Abelsche Summationsverfahren). Es ist
$$\begin{vmatrix} e^{-\lambda_n}s & -e^{-\lambda_n+1}s \end{vmatrix} = \begin{vmatrix} s^{\lambda_n+1} & e^{-su}du \end{vmatrix} \leq |s| \int_{\lambda_n}^{\lambda_n+1} |e^{-su}|du$$
$$= |s| \int_{\lambda_n}^{\lambda_n+1} e^{-\sigma u} du = \frac{|s|}{\sigma} (e^{-\lambda_n \sigma} - e^{-\lambda_n+1}\sigma)$$

und die Größe öße $\frac{|s|}{\sigma}$ ist in dem Bereich (6) (mit $s_0 = 0$) durch eine C beschränkt; somit ist für $\sigma > 0$

$$\begin{split} \left| \sum_{M}^{N} a_{n} e^{-\lambda_{n} S} \right| &\leq \sum_{M}^{N-1} |A(M,n)| \left| e^{-\lambda_{n} S} - e^{-\lambda_{n+1} S} \right| \\ &+ |A(M,N)| \left| e^{-\lambda_{N} S} \right| \\ &\leq C \epsilon \sum_{M}^{N-1} \left| e^{-\lambda_{n} \sigma} - e^{-\lambda_{n+1} \sigma} \right| + \epsilon e^{-\lambda_{N} \sigma} \\ &\leq C \epsilon e^{-\lambda_{M} \sigma} - e^{-\lambda_{N} \sigma} &< (C+1) e^{-\lambda_{N} \sigma} \epsilon \end{split}$$

woraus die gleichmäßige Konvergenz von (2) in diesem Bereich folgt.

den folgenden Satz geliefert. für den Konvergenzradius einer Potenzreihe $\sum a_n z^n$. Diese wird durch stimmen? Wir wollen eine Formel für σ_0 in Abhängigkeit von den Ko-Wie kann man die Konvergenzabszisse einer Dirichletschen Reihe beangeben, analog zur Formel R = lim inf $|a_n|^{-1/n}$

ist die Konvergenzabszisse σ_0 durch Sei $\left\{f{a_n}^e\right\}$ eine Dirichletsche Reihe mit $\left\{f{a_n}\right\}$ divergent. Dann

$$\sigma_0 = \lim_{N \to \infty} \sup_{\lambda \setminus N} \frac{\log |A(N)|}{\lambda}$$

gegeben, wo A(N) die in (7) definierte Koeffizientensumme ist

(Bemerkung: Falls \sum_{n} konvergiert, gilt der Satz noch, wenn wir A(N

durch $\sum\limits_{N=0}^{\infty}$ a ersetzen; übrigens kann man durch Verschiebung immer erreichen, daß σ_0 > 0 und somit $\sum {\bf a}_n$ divergent ist.)

müssen also zeigen, daß Beweis: Wir beweisen der Einfachheit halber nur den von uns benötigten Fall von gewöhnlichen Dirichletschen Reihen: $\lambda_{
m N}$ = log N; wir

(9)
$$\sigma_0 = \gamma := \lim \sup_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf \{\alpha | A(N) = O(N^{\alpha})\} \cdot \lim_{N \to \infty} \frac{\log |A(N)|}{\log N} = \inf_{N \to \infty} \frac{\log N}{\log N} = \inf_{N \to \infty}$$

 $|A(N)| \le BN^{\alpha}$ für alle N.) (Die Gleichung $A(N) = O(N^{\alpha})$ bedeutet: es gibt eine Zahl B > O mit

Summation (wie im Beweis von Satz 1) erhalten wir für alle N und geeignetes C. Mit Hilfe der Abelschen partieller Sei $\sigma > \sigma_0$. Dann ist $\left[a_n^{-\sigma} \right]$ konvergent, also $\left| \sum_{i=1}^{N} a_i^{-\sigma} \right| < C$

$$\begin{split} |\mathbf{A}(\mathbf{N})| &= \left| \sum_{\mathbf{n}=1}^{\mathbf{N}} (\mathbf{a_n} \mathbf{n}^{-\sigma}) \mathbf{n}^{\sigma} \right| \\ &= \left| \sum_{\mathbf{n}=1}^{\mathbf{N}-1} \left(\sum_{\mathbf{m}=1}^{\mathbf{n}} \mathbf{a_m} \mathbf{n}^{-\sigma} \right) \left(\mathbf{n}^{\sigma} - (\mathbf{n}+1)^{\sigma} \right) + \left(\sum_{\mathbf{n}=1}^{\mathbf{N}} \mathbf{a_n} \mathbf{n}^{-\sigma} \right) \mathbf{N}^{\sigma} \right| \\ &\leq \sum_{\mathbf{n}=1}^{\mathbf{N}-1} \left| \sum_{\mathbf{m}=1}^{\mathbf{n}} \mathbf{a_m} \mathbf{n}^{-\sigma} \right| \left((\mathbf{n}+1)^{\sigma} - \mathbf{n}^{\sigma} \right) + \left| \sum_{\mathbf{n}=1}^{\mathbf{N}} \mathbf{a_n} \mathbf{n}^{-\sigma} \right| \mathbf{N}^{\sigma} \\ &< C \sum_{\mathbf{n}=1}^{\mathbf{N}-1} ((\mathbf{n}+1)^{\sigma} - \mathbf{n}^{\sigma}) + C \mathbf{N}^{\sigma} < 2C \mathbf{N}^{\sigma} \end{split}$$

also $\gamma \le \sigma$, und da dies für alle σ mit $\sigma > \sigma_0$ gilt, ist $\gamma \le \sigma_0$. Sei umgekehrt $\sigma > \gamma$. Dann finden wir wieder mit partieller Summa-

(10)
$$\sum_{n=1}^{N} a_n n^{-\sigma} = \sum_{n=1}^{N-1} A(n) (n^{-\sigma} - (n+1)^{-\sigma}) + A(N) N^{-\sigma} .$$

N. Dann ist Wir wählen α mit $\gamma < \alpha < \sigma$ und ein C mit $|A(N)| \le CN^{\alpha}$ für alle

$$|A(n)(n^{-\sigma}-(n+1)^{-\sigma})| \le Cn^{\alpha}(n^{-\sigma}-(n+1)^{-\sigma})$$

$$= C\sigma n^{\alpha} \cdot \int_{\mathbf{x}} \mathbf{x}^{-\sigma-1} d\mathbf{x} < C\sigma n^{\alpha-\sigma-1}$$

$$= C\sigma n^{\alpha} \cdot \int_{\mathbf{x}} \mathbf{x}^{-\sigma-1} d\mathbf{x} < C\sigma n^{\alpha-\sigma-1}$$

also $\sigma \geqslant \sigma_0$ und (da dies für jedes $\sigma > \gamma$ gilt) $\gamma \ge \sigma_0$. rechte Seite von (10) einen endlichen Limes, wenn N nach - geht, und $|A(N)N^{-\sigma}| \le CN^{\alpha-\sigma} \to 0$; da $\sum\limits_{n=1}^{\infty} n^{\alpha-\sigma-1}$ konvergiert, hat die rechte seite

Beispiele: a) Sei

(11)
$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$

(das ist die berühmte Riemannsche Zetafunktion, die wir in §4 studieren werden). Hier ist $a_n=1$, A(N)=N, also $\sigma_0=\gamma=1$; die Reihe (11) konvergiert für $\sigma>1$.

b) Sei

(12)
$$\psi(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \dots$$

Hier ist $a_n=(-1)^{n-1}$, A(N) gleich 1 oder 0 je nachdem N ungerade oder gerade ist, also $\sigma_0=\gamma=0$; die Reihe (12) konvergiert also für $\sigma>0$ und definiert in dieser Halbebene eine analytische Funktion. Für $\sigma>1$ gilt aber offensichtlich

(13)
$$\psi(s) = \zeta(s) - 2\left(\frac{1}{2}s + \frac{1}{4}s + \ldots\right) = (1 - 2^{1-s}) \zeta(s) ,$$

so daß wir eine Methode erhalten, $\zeta(s)$ in die Halbebene $\sigma > 0$ meromorph fortzusetzen, mit Polen höchstens in den Punkten s=1, $1\pm\frac{2\pi i}{\log 2}$, $1\pm\frac{4\pi i}{\log 2}$ usw., wo der Faktor $(1-2^{1-s})$ verschwindet.

Diese Beispiele zeigen einen großen Unterschied zwischen der Theorie der (gewöhnlichen) Dirichletschen Reihen und der der Potenzreihen. Aus der Formel R = lim inf $|a_n|^{-1/n}$ folgt, daß die Potenzreihen $\sum a_n z^n$ und $\sum |a_n| z^n$ gleichen Konvergenzradius haben; außer auf dem Konvergenzradius |z| = R selbst ist die Reihe also überall, wo sie überhaupt konvergiert, absolut konvergent. Dagegen ist die Dirichletsche Reihe (12) für $\sigma > 0$, die entsprechende Reihe mit Pluszeichen (nämlich (11)) aber erst für $\sigma > 1$ konvergent. Dies ist in einem gewissen Sinne ein extremer Fall, da man aus (9) leicht folgenden Satz erhalten kann:

SATZ 3: Sei $\left[a_n^{-s}\right]$ eine Dirichletsche Reihe mit Konvergenzabszisse σ_0 und sei σ_1 ($\geq \sigma_0$) die Konvergenabszisse von $\left[a_n^{-s}\right]$ Dann ist

$$\sigma_1 \leq \sigma_0 + 1$$
.

Bemerkung: Dieser Satz ist nur für gewöhnliche Dirichletsche Reihen gültig: z.B. ist die Reihe $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n}} (\log n)^{-S} \text{ für alle s konvergent, aber für kein s absolut konvergent.}$

Es gibt einen noch viel wichtigeren Unterschied zwischen Dirichlet-

schen Reihen und den uns geläufigeren Potenzreihen. Bei Potenzreihen kann man den Konvergenzradius nicht nur in Abhängigkeit von den Koeffizienten, sondern auch durch das Verhalten der durch die Reihe definierten analytischen Funktion bestimmen, nämlich als den Absolutbetrag der kleinsten Singularität: stellt die Reihe $\sum_{a} z^{n}$ eine Funktion dar, die sich in |z| < r holomorph fortsetzen läßt, so ist sie auch in diesem Bereich konvergent. Für Dirichletsche Reihen stimmt das nicht - die Funktion $\psi(s)$, die für $\sigma > 0$ durch (12) gegeben wird, läßt sich auf die ganze komplexe Ebene holomorph fortsetzen (dies folgt aus (13), da wir in §4 die Funktion $\zeta(s)$ auf \mathfrak{C} - {1} fortsetzen werden), aber die Reihe (12) ist nur für $\sigma > 0$ konvergent Nur in einem Spezialfall können wir auf die Existenz einer Singularität schließen:

SATZ 4 (Landau): Sei $\sum_{n=1}^{\infty}$ a n^{-S} eine gewöhnliche Dirichletsche Reihe mit Konvergenzabszisse σ_0 und nichtnegativen reellen Koeffizienten. Dann hat die durch

$$f(s) = \sum_{n=1}^{\infty} a_n^{-s} \qquad (\sigma > \sigma_0)$$

definierte Funktion an der Stelle $s = \sigma_0$ eine Singularität.

Beweis: O.B.d.A. set $\sigma_0=0$. Nehmen wir an, die Funktion f(s) wäre bei s=0 holomorph. Dann würde sie auch in einer Kreisscheibe |s| < ε holomorph sein und folglich um s=1 eine Taylor-Entwick-lung haben mit Konvergenzradius > 1, also wäre für geeignetes δ > 0 die Reihe $\sum\limits_{k=0}^{\infty}\frac{(-1-\delta)^k}{k!}f^{(k)}(1)$ konvergent (und gleich $f(-\delta)$). Aber nach (5) ist

$$\sum_{k=0}^{\infty} \frac{(-1-\delta)^k}{k!} f^{(k)}(1) = \sum_{k=0}^{\infty} \frac{(1+\delta)^k}{k!} \sum_{n=1}^{\infty} \frac{(\log n)^k a_n}{n}$$
$$= \sum_{n=1}^{\infty} \frac{a_n}{n} \sum_{k=0}^{\infty} \frac{(1+\delta)^k (\log n)^k}{k!}$$

(die Vertauschung ist zulässig, da die konvergente Reihe wegen $\ a_n \ge 0$ auch absolut konvergent ist)

$$= \sum_{n=1}^{\infty} \frac{a_n}{n} e^{(1+\delta) \log n} = \sum_{n=1}^{\infty} a_n n^{\delta}$$

also wäre $\sum a_n^{\delta}$ im Widerspruch zur Annahme $\sigma_0 = 0$ konvergent.

Wir schließen mit einem einfachen Satz über die Eindeutigkeit der Koeffizienten einer Dirichletschen Reihe.

Beweis: Nehmen wir an, dies sei nicht der Fall, und sei m der kleinste Index mit $a_m + b_m$. Dann gilt für σ genügend groß

$$O = e^{\lambda_m \sigma} \left(\sum_{n=1}^{\infty} a_n e^{-\lambda_n \sigma} - \sum_{n=1}^{\infty} b_n e^{-\lambda_n \sigma} \right)$$
$$= a_m - b_m + \sum_{n=m+1}^{\infty} (a_n - b_n) e^{-(\lambda_n - \lambda_m) \sigma}.$$

In der Reihe hat jedes Glied für $\sigma \to \infty$ den Limes 0 (da λ - λ > und die gleichmäßige Konvergenz impliziert, daß dann auch die Summe mi wachsendem σ nach 0 strebt, im Widerspruch zu a_m + b_m .

Aufgaben:

- 1. An welcher Stelle wurde im Beweis von Satz 2 die Annahme " $\stackrel{\square}{\mbox{\searrow}} a_n$ divergiert" benutzt?
- 2. Man zeige ohne Benutzung von (9), daß die Reihe (12) die Konvergenzabszisse σ_0 = 0 hat, indem man die Konvergenz für s reell, s > 0 direkt nachweist und Satz 1 anwendet (daß σ_0 > 0 ist, ist trivial).
- Man beweise Satz 3.
- 4. Man zeige (entweder mit Satz 2 oder so wie in Aufgabe 2), daß die Reihe

$$1 + \frac{1}{2^{S}} - \frac{2}{3^{S}} + \frac{1}{4^{S}} + \frac{1}{5^{S}} - \frac{2}{6^{S}} + \dots = (1 - 3^{1 - S}) \zeta(s)$$

für $\sigma>0$ konvergiert, und schließe daraus, daß $\zeta(s)$ eine meromorphe Fortsetzung nach $\sigma>0$ hat mit Polen höchstens bei $s=s=1\pm\frac{2\pi i}{\log 3}, 1\pm\frac{4\pi i}{\log 3}$ usw. Man zeige ferner, daß das Verhältnis von log 3 zu log 2 irrational ist und folgere, daß $\zeta(s)$ höchstens bei s=1 einen Pol hat (und dort nach Satz 4 sicherlich einen).

§2 Dirichletsche Reihen: formale Eigenschaften

Nachdem wir die Konvergenz von Dirichletschen Reihen besprochen haben, wollen wir erläutern, wie man mit solchen Reihen umgeht - die Regeln für die Handhabung Dirichletscher Reihen sind nämlich anders als bei Potenzreihen.

Es ist klar, daß die Summe von zwei Dirichletschen Reihen die Reihe ist, deren allgemeiner Koeffizient die Summe der Koeffizienten der einzelnen Reihen ist. Wie bildet man das Produkt? Seien

(1)
$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s}, g(s) = \sum_{m=1}^{\infty} b_m m^{-s}$$

zwei in einer offenen Menge U durch absolut konvergente Dirichletsche Reihen gegebene Funktionen; dann ist in U

$$f(s) g(s) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_n b_m n^{-s} m^{-s}$$

$$= \sum_{\substack{n,m=1\\ k=1}}^{\infty} a_n b_m (nm)^{-S}$$

(2)

wobei

ω

$$c_k = \sum_{\substack{n,m > 1 \\ nm = k}} a_n b_m = \sum_{\substack{n \mid k}} a_n b_k/n$$

die $\mathit{Faltung}$ der Koeffizienten $\{a_n\}$ und $\{b_m\}$ genannt wird. (Das Symbol $\sum\limits_{\substack{n \mid k}}$ bezeichnet eine Summe über alle positiven Teiler n von k.) Das heißt, die additive Faltung $c_k = \sum\limits_{\substack{n \mid k}} a_n b_m$, die die Multiplikation von Potenzreihen beschreibt, wird in der Theorie der Dirichletschen Reihen durch die multiplikative Faltung (3) ersetzt; es ist diese Tatsache, die für die große Bedeutung der Dirichletschen Reihen in der Zahlentheorie verantwortlich ist.

Wir werden nichts weiteres über die Konvergenz von $\begin{bmatrix} c_k & k^{-s} & beweisen; man kann z.B. ohne wiel Mühe zeigen, daß diese Reihe mindestens dann konvergiert, wenn beide Reihen (1) konvergieren und eine davon absolut konvergent ist.$

Bespiele: a) Sei d(n) die Anzahl der positiven Teiler von n. Dann ist für $\sigma > 1$

$$da \quad d(n) = \sum_{\substack{i=1 \ d \mid n}} 1 \times 1 \text{ ist.}$$

b) Sei $\tau(n)$ die Summe der positiven Teiler von n, oder allgemeiner

(5)
$$\sigma_{\mathbf{k}}(\mathbf{n}) = \sum_{\mathbf{d} \mid \mathbf{n}} \mathbf{d}^{\mathbf{k}}$$

die Summe der k-ten Potenzen der positiven Teiler. Dann ist

(6)
$$\sum_{n=1}^{\infty} \frac{\sigma_k(n)}{n^s} = \zeta(s) \zeta(s-k) \qquad (\sigma > k+1)$$

nicht identisch verschwindende Funktion, die multiplikativ zu sein. Eine $\mathit{multiplikative}$ Funktion f: $\mathbb{N} \to \mathbb{C}$ ist eine In beiden Beispielen haben die Koeffizienten die spezielle Eigenschaft

(7)
$$f(mn) = f(m)f(n)$$

sich auf die entsprechenden Dirichletschen Reihen wie folgt aus: ist f multiplikativ, so ist f(1) = 1 (da aus (7) $f(1)^2 = f(1)$ folgt. alle m,n erfüllt, heißt streng multiplikativ). Diese Eigenschaft wirkt für alle m,n mit (m,n) = 1 erfüllt (eine Funktion, die (7) für f(1) = 0 das identische Verschwinden von f implizieren würde

$$f(n) = f(p_1^{r_1}) \dots f(p_k^{r_k})$$

für eine Zahl n mit der Primzahlzerlegung $n=p_1$... p_k . Es ist also in dem Bereich der absoluten Konvergenz von $\sum f(n)n^{-s}$

$$\sum_{n=1}^{\infty} f(n)n^{-s} = \sum_{r_2, r_3, r_5, \dots} f(2^{r_2} 3^{3} 5^{r_5} \dots) (2^{r_2} 3^{3} 5^{r_5} \dots)^{-s}$$

(wo die Summe über alle Zuordnungen $p \mapsto r_p$ läuft mit $r_p \ge 0$ und $r_p = 0$ für alle bis auf endlich viele Primzahlen p)

$$= \frac{\sum_{r_2, r_3, r_5, \dots \ge 0} \frac{f(2^r)}{2^{r_2}} \frac{f(3^3)}{r_3} \frac{f(5^r)}{r_5}}{\sum_{r_5}^{r_5}}$$

$$= \prod_{p} \left[\sum_{r=0}^{\infty} \frac{f(p^r)}{p^{r_5}} \right],$$

wo das Produkt über alle Primzahlen p läuft. Wir haben also den

SATZ 1: Sei f: $\mathbb{N} \to \mathbb{C}$ eine multiplikative Funktion, und sei die Reihe

=

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}$$

absolut konvergent. Dann ist · F(s) gleich dem Euler-Produkt

(8)
$$F(s) = II \left(1 + \frac{f(p)}{s} + \frac{f(p^2)}{p^2s} + \dots\right),$$

wo das Produkt über alle Primzahlen p läuft und auch absolut konvergiert

Beispiele: c) Für ç(s) sind die Koeffizienten alle gleich 1, also

9)
$$\zeta(s) = II (1 + \frac{1}{p} + \frac{1}{p^2s} + ...) = II \frac{1}{p^{1-p-s}} (\sigma > 1)$$
.

Glieder nicht Null sind). Für die in a) und b) angegebenen Reihen schwinden kann (da das Produkt konvergent ist und seine einzelnen Außerdem lehrt sie, daß für $\sigma > 1$ die Funktion $\zeta(s)$ nie vergroße Rolle, die die Zetafunktion in der Primzahltheorie spielt. Diese von Euler entdeckte Produktentwicklung ist der Grund für die

$$\sum_{n=1}^{\infty} \frac{d(n)}{n^{S}} = \zeta(s)^{2} = \prod_{p} (1 - p^{-S})^{-2}$$

$$= \prod_{p} (1 + 2p^{-S} + 3p^{-2S} + ...)$$

$$= \prod_{p} (1 + \frac{d(p)}{p^{S}} + \frac{d(p^{2})}{p^{2S}} + ...) ,$$

$$\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n^{S}} = \zeta(s) \zeta(s-k) = \prod_{p} [(1 - p^{-S})(1 - p^{k-S})]^{-1}$$

$$= \prod_{p} (1 + \frac{p^{k+1}}{p^{S}} + \frac{p^{2k} + p^{k+1}}{p^{2S}} + ...) ,$$

$$= \prod_{p} (1 + \frac{\sigma_{k}(p)}{p^{S}} + \frac{\sigma_{k}(p^{2})}{p^{2S}} + ...) ,$$

kativ (was man auch direkt leicht sieht), da trivialerweise die Umalso sind die beiden Funktionen $n \mapsto d(n)$ und $n \mapsto \sigma_k(n)$ multipli-Produkt (8), so stellen die Koeffizienten dieser Reihe eine multiplikehrung von Satz 1 gilt: besitzt eine Dirichletsche Reihe ein Eulerkative Funktion

d) Für den Kehrwert $\frac{1}{\zeta(s)}$ erhalten wir

wo μ(n) die Werte die multiplikative Funktion ist, die für Primzahlpotenzen $\mu(p) = -1$, $\mu(p^r) = 0$ $(r \ge 2)$ annimmt, d.h.

(11)
$$\mu(n) = \begin{cases} 0, & \text{falls } n \text{ ein Quadrat enthält} \\ (-1)^k, & \text{falls } n = p_1 \cdots p_k, p_1 < \cdots < p_k \end{cases}$$

ziehung $\zeta(s) \cdot \frac{1}{\zeta(s)} = 1$ und der Faltungsformel (3) folgt die wichtige Eigenschaft dieser Funktion, daß Die Funktion µ(n) ist die sogenannte Möbiussche Funktion. Aus der Be-

(12)
$$\sum_{\mathbf{d}\mid\mathbf{n}} \mu(\mathbf{d}) = \begin{cases} 1, \text{ falls } \mathbf{n} = 1 \\ 0, \text{ falls } \mathbf{n} > 1 \end{cases}.$$

Die Möbiussche Funktion ist wegen folgender Möbiusschen Umkehrformel wichtig

SATZ 2: Seien f und g zwei Funktionen von IN nach **C.** Ist für alle n

(13)
$$f(n) = \sum_{d \mid n} g(d) ,$$

so ist für alle n

(14)
$$g(n) = \sum_{d \mid n} \mu(\frac{n}{d}) f(d)$$

plikativ genau dann, wenn f multiplikativ ist. und umgekehrt. Stehen f und g in dieser Beziehung zueinander, so ist g multi-

sie aber durch Anwendung von Dirichletschen Reihen erhalten, um Übung Beweis: Die erste Aussage ist leicht aus (12) herzuleiten; wir wollen im Umgang mit solchen Reihen zu bekommen. Die Gleichungen

$$f(1) = g(1)$$

 $f(2) = g(1) + g(2)$,

$$f(3) = g(1) + g(3)$$
,

$$f(4) = g(1) + g(2) + g(4)$$
, ...

$$f(4) = g(1) + g(2) + g(4)$$
, ...

lassen sich induktiv für g lösen:

$$g(1) = f(1)$$
,

$$g(2) = f(2) - f(1)$$
,

$$g(3) = f(3) - f(1)$$
,

$$g(4) = f(4) - f(2)$$
, ...

annehmen, daß die zugehörigen Dirichletschen Reihen nur für Folgen $\{f(n)\}$, $\{g(n)\}$ von langsamem Wachstum zu beweisen gen Koeffizienten existieren muß; somit brauchen wir (13) 🕶 (14) Es ist also klar, daß eine Beziehung wie (14) mit von f unabhängi-(z.B. nur für solche mit g(n) = 0 für $n > n_0$) und können deshalb

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}, G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$$

Faltungsformel (3) und der Beziehung (10) absolut konvergent sind (für mindestens ein s). Dann gilt wegen der

(13)
$$\leftarrow$$
 F(s) = $\sum_{n=1}^{\infty} 1 \cdot n^{-s} \sum_{m=1}^{\infty} g(m)m^{-s} = \zeta(s) G(s)$

$$G(s) = \zeta(s)^{-1} F(s) = \sum_{n=1}^{\infty} \mu(n) n^{-s} \sum_{m=1}^{\infty} f(m) m^{-s}$$

und, wenn (13) und (14) gelten,

g multiplikativ 🕶 G(s) besitzt eine Eulersche Produktentwicklung

 $\mathbf{F}(s) = \zeta(s)$ G(s) besitzt eine Eulersche Produktentwicklung

f multiplikativ.

ist $\lambda(n)$ multiplikativ und Beispiel: Sei v(n) die Anzahl der Primteiler von n (mit Multiplizität: $v(p_1, \dots, p_k, \nu) = r_1 + \dots + r_k$) und $\lambda(n) = (-1)^{v(n)}$. Dann

also gilt (14) mit $g = \lambda$ und

$$f(n) = \text{Koeffizient von } n^{-s} \text{ in } \zeta(2s)$$

(16) =
$$\begin{cases} 1, \text{ falls n eine Quadratzahl ist,} \\ 0 \text{ sonst.} \end{cases}$$

Es gilt also

(17)
$$f(n) = \sum_{d \mid n} \lambda(d) .$$

 $\phi(n) = n \text{ II } (1 - \frac{1}{p})$ die Eulersche Funktion und schen Reihen mit multiplikativen Koeffizienten auf. Hierbei sind Wir führen einige (z.T. schon besprochene) Beispiele von Dirichletp|n r der verschiedenen Primteiler von die schon eingeführten arithmetischen Funktionen, ω(n)

f(n)	$\sum f(n)n^{-S}$
_	ζ(s)
μ(n)	1/ç(s)
φ(n)	$\zeta(s-1)/\zeta(s)$
d(n)	ζ(s) ²
τ(n)	ζ(s) ζ(s-1)
σ _k (n)	ζ(s) ζ(s-k)
λ (n)	ζ(2s)/ζ(s)
2 ^{ω(n)}	$\zeta(s)^2/\zeta(2s)$
) (n) ²	ζ(s)/ζ(2s)
d(n) ²	$\zeta(s)^{\frac{4}{2}}/\zeta(2s)$
d(n²)	ζ(s) ³ /ζ(2s)
$\sigma_{\mathbf{k}}^{(\mathbf{n})}\sigma_{\mathbf{k}}^{(\mathbf{n})}$	ζ(s)ζ(s-k)ζ(s-l)ζ(s-k-l)/ζ(2s-k-l)

Als letztes Beispiel sei

$$r(n) = \#\{(a,b)\in\mathbb{Z}^2 \mid a^2 + b^2 = n\}$$

Dirichletsche Reihe ist durch die Anzahl der Darstellungen von n als Summe von zwei Quadraten (z.B. r(1) = 4, da $1 = 0^2 + 1^2 = 0^2 + (-1)^2 = 1^2 + 0^2 = (-1)^2 + 0^2$). Dann ist die Funktion $\frac{1}{4}$ r(n) multiplikativ und die entsprechende

(18)
$$\sum_{n=1}^{\infty} \frac{1}{4} r(n) n^{-S} = \zeta(s) L(s)$$

gegeben, wobei

$$L(s) = 1 - \frac{1}{3}s + \frac{1}{5}s - \dots$$

die Dirichletsche Reihe mit den periodischen und multiplikativen Ko-

$$\chi(n) = \begin{cases} +1, & \text{falls } n = 1 \pmod{4} \\ -1, & \text{falls } n = -1 \pmod{4} \\ 0, & \text{falls } n = 0 \pmod{2} \end{cases}$$

6. Sei F(s) =

f(n)n-s

eine Dirichletsche Reihe, die als Produkt

von Zetafunktionen ausgedrückt werden kann (also F(s) =

bezeichnet. Die Beziehung (18) ist zu dem nichttrivialen Satz

$$r(n) = 4 \sum_{d \mid n} \chi(d)$$

hen wie L(s) werden wir uns ab §6 eingehend beschäftigen. (oder, nach Satz 2, zu $\chi(n)=\frac{1}{4}\sum\limits_{d\mid n}\mu(\frac{n}{d})$ r(d)) äquivalent. Mit Rei-

Aufgaben

- Man beweise die beiden Aussagen von Satz 2 (also die Äquivalenz von (13) und (14) und die Tatsache, daß f genau dann multiplikativ ist, wenn g es ist) ohne Verwendung von Dirichletschen Rei-
- 2. Man folgere aus (4) und den Sätzen 2 und 4 des §1, daß

$$\sum_{n \le N} d(n) = o(N^{1+\epsilon})$$

für alle $\varepsilon > 0$ gilt. (In der Tat gilt die stärkere Aussage $d(n) = O(n^{\varepsilon})$.)

- 3. Man beweise die Identität $\sum_{a} a^{u}(d) = d(n^{a}) \ (a, \ n \ nat \ urliche$ Zahlen) $(Abb \ (13) \ a.)$ Zahlen). When (13) and 1+|z-| 1+|z-Zahlen). (Ass (13) and
- dukts und bestimme für jede Reihe die Konvergenzabszisse. Dirichletschen Reihenentwicklungen mit Hilfe des Eulerschen Pro-
- 5. Sei K die durch

5. Sei
$$\kappa$$
 die durch
$$\kappa(1) = 1 , \kappa(p_1^1 \dots p_k^k) = r_1 \dots r_k$$
 $\kappa(1) = 1 , \kappa(p_1^1 \dots p_k^k) = r_1 \dots r_k$ $\kappa(1) = 1 , \kappa(p_1^1 \dots p_k^k) = r_1 \dots r_k$ definierte multiplikative Funktion. Man zeige, daß für $0 \le a \le 4$ die Dirichletsche Reihe $\sum_{n=1}^{\infty} \kappa(n^a) n^{-s}$ mit Hilfe der Riemannschen Zetafunktion ausgedrückt werden kann. (Dies gilt für keinen anderen Wert von a.)

The print of the p

If c_1 für geeignete ganze Zahlen a_1 , b_1 , c_1 , a_1 > 0). In c_1 für geeignete ganze Zahlen a_1 , a_1 , a_2 > 0). Man zeige, daß dann auch die Reihe a_1 a_2 a_3 a_4 a_5 so ausgedrückt werden kann und schreibe die entsprechenden Identitäten für die Dirichletschen Reihen der Aufgaben 4 und 5 explizit hin.

7. Sei g(n) die Anzahl der nichtisomorphen abelschen Gruppen der Ordnung n. Man benutze den Struktursatz für endliche abelsche Gruppen um zu zeigen, daß g(n) die multiplikative Funktion ist, deren Wert für eine Primzahlpotenz p r gleich der Anzahl der Partitionen von r ist (also der Zerlegungen $r = r_1 + r_2 + \cdots$ mit $r_1 \geq r_2 \geq \cdots > 0$). Man schließe hieraus, daß die Dirichletsche Reihe

$$(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$$

für $\sigma > 1$ gleich dem (konvergenten) Produkt

 $\zeta(s)\zeta(2s)\zeta(3s)\dots$

ist; insbesondere ist G(s) holomorph für $\sigma > 1$ und hat einen Pol bei s=1 mit Residuum

$$C = \zeta(2)\zeta(3)\zeta(4)... = 2,29485...$$

Es kann gezeigt werden, daß

$$\sum_{n=1}^{N} g(n) = CN + O(\sqrt{N});$$

d.h. der Mittelwert von g(n) ist gleich C, also endlich!

§3 Die Gammafunktion

Die Gammafunktion ist eine der wichtigsten mathematischen Funktionen und sicherlich die einfachste von den nichtelementaren Funktionen. Sie spielt eine ganz wesentliche Rolle bei der Untersuchung von

Sie spielt eine ganz wesentliche Rolle bei der Untersuchung von Dirichletschen Reihen.

Man sucht eine Interpolationsfunktion für die Funktion $n \leftrightarrow n!$, d.h. eine stetige Funktion $\mathbb{I}(x)$, so daß $\mathbb{I}(n) = n!$ für alle natürlichen Zahlen n ist. Einem vielleicht unglücklichen, von Legendre

eingeführten Brauch folgend, machen wir die Substitution x=s-1 und schreiben $\Gamma(s)$ für $\Pi(x)=\Pi(s-1)$. Wir suchen also eine stetige Funktion $\Gamma(s)$, die

7

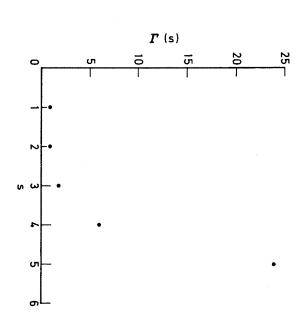
$$\Gamma(n) = (n-1)!$$
 $(n = 1, 2, ...)$

3

erfüllt und außerdem die Grundeigenschaft n! = n.(n-1)! der Fakultät noch besitzt:

(2)
$$\Gamma(s+1) = s\Gamma(s)$$
 für alle $s \neq 0$

Wie findet man eine solche Funktion? Für s klein muß $\Gamma(s)$ durch folgende Punkte hindurchgehen:



und es ist nicht klar, wie man interpolieren soll; für n groß ist die Funktion n \mapsto n! wegen des schnellen Wachstums viel gleichmäßiger, und es sollte leichter sein, sie zu interpolieren. Durch wiederholte Anwendung von (2) erhalten wir

(3)
$$\Gamma(s+N) = s(s+1) \dots (s+N-1)\Gamma(s)$$
;

es reicht also, eine asymptotische Formel für $\Gamma\left(s{+}N\right)$ $(N\to\infty)$ anzugeben. Für s E $I\!N$ gilt

 $= N^{S} (1 + \frac{S-1}{N}) (1 + \frac{S-2}{N}) \dots (1 + \frac{1}{N}) \cdot (N-1)! ,$

also $\Gamma(s+N) \sim N^S(N-1)!$ für $N \to \infty.$ Es ist daher naheliegend, $\Gamma(s)$

4)
$$\Gamma(s) = \lim_{N \to \infty} \frac{N^{S}(N-1)!}{S(S+1)...(S+N-1)}$$
 ($S \in \mathbb{C}$)

falls s 🕊 -IN: sei zu definieren, falls der Grenzwert existiert. Das ist auch der Fall,

5)
$$\Gamma_{N}(s) = \frac{N^{S}(N-1)!}{s(s+1)...(s+N-1)}$$
 $(N \in \mathbb{N});$

$$\frac{\Gamma_{N+1}(s)}{\Gamma_{N}(s)} = (\frac{N+1}{N})^{s} \frac{N}{s+N} = (1 + \frac{1}{N})^{s} (1 + \frac{s}{N})^{-1}$$

$$= (1 + \frac{s}{N} + O(\frac{1}{2})) (1 - \frac{s}{N} + O(\frac{1}{2})) = (1 + O(\frac{1}{2})),$$

$$\Gamma_{N+1}(s)$$

und das beweist, daß das Produkt II $\frac{\Gamma_{N+1}(s)}{\Gamma_N(s)}$ konvergiert, d.h. daß lim $\Gamma_N(s)$ existiert. Wir erhalten auch

$$\Gamma_{N}(s) = \Gamma_{1}(s) \prod_{n=1}^{N-1} \frac{\Gamma_{n+1}(s)}{\Gamma_{n}(s)} = \frac{1}{s} \prod_{n=1}^{N-1} \left[(1 + \frac{1}{n}) (1 + \frac{s}{n})^{-1} \right]$$

und somit

$$\Gamma(s+1) = s\Gamma(s) = \prod_{n=1}^{\infty} \frac{(1+\frac{1}{n})^s}{(1+\frac{s}{n})},$$
 von Euler stammende Produktformel für di

6)

eine von Euler stammende Produktformel für die I-Funktion.

Die Eigenschaft (2) der durch (4) definierten Funktion ist klar,

$$\Gamma(s+1) = \lim_{N\to\infty} \left[\frac{N^{s+1}(N-1)!}{(s+1)(s+2)...(s+N)} \right]$$

$$= \lim_{N\to\infty} \left[s \cdot \frac{N}{N+s} \cdot \frac{N^{s}(N-1)!}{s(s+1)...(s+N-1)} \right]$$

$$= \lim_{N\to\infty} \left[s \cdot \frac{N}{N+s} \cdot \Gamma_{N}(s) \right] = s\Gamma(s)$$

ist. Die Gleichung (1) folgt jetzt durch Induktion, da $\Gamma(1)$ nach (6)

Wenn wir (4) in der Gestalt

(7)
$$\Gamma(s+1) = s\Gamma(s) = \lim_{N\to\infty} \left[\frac{N^s}{(1+\frac{s}{1})(1+\frac{s}{2})\dots(1+\frac{s}{N-1})} \right]$$

schreiben und Logarithmen nehmen, erhalten wir für |s| < 1

$$\log \Gamma(s+1) = \lim_{N \to \infty} [s \log N - \sum_{n=1}^{N-1} \log(1 + \frac{s}{n})]$$

$$= \lim_{N \to \infty} [s \log N - \sum_{n=1}^{N-1} (\frac{s}{n} - \frac{s^2}{2n^2} + \frac{s^3}{3n^3} - \dots)]$$

$$= \lim_{N \to \infty} [s (\log N - (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N-1}))]$$

$$+ \frac{s^2}{2} (\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{(N-1)^2})$$

$$- \frac{s^3}{3} (\frac{1}{1^3} + \frac{1}{2^3} + \dots + \frac{1}{(N-1)^3}) + \dots].$$

Die Forge i $\frac{1}{2}$... N-1 $N \to \infty$ einen Grenzwert, den man mit γ bezeichnet und die Eulersche Konstante nennt. Für $r \ge 2$ strebt $1 + \frac{1}{2^r} + \dots + \frac{1}{(N-1)^r}$ nach dem Die Folge $1 + \frac{1}{2} + \dots + \frac{1}{N-1} - \log N$ hat, wie man leicht zeigt, für Limes $\sum_{n=1}^{\infty} \frac{1}{n^r} = \zeta(r)$, wo $\zeta(r)$ die in (1.11) eingeführte Riemannsche Zetafunktion bezeichnet. Es gilt also

(8)
$$\log \Gamma(1+s) = -\gamma s + \frac{\zeta(2)}{2} s^2 - \frac{\zeta(3)}{3} s^3 + \dots$$
 (|s| < 1)

also als Koeffizienten der Taylorentwicklung von $\log \Gamma(s)$ an der Aufgabe 1.) Die Werte der Zetafunktion an ganzzahligen Stellen treten (Die Vertauschung von Summation und Grenzübergang ist erlaubt: vgl.

Wir können mit Hilfe der Beziehung

$$1 + \frac{1}{2} + \dots + \frac{1}{N} = \log N + \gamma + o(1)$$

auch eine weitere Produktformel für I(s) herleiten, indem wir

$$N^{S} = e^{S} \log N = e^{S(1 + \frac{1}{2} + \dots + \frac{1}{N} - \gamma + o(1))}$$
$$\sim e^{-\gamma S} e^{S(1 + \frac{1}{2} + \dots + \frac{1}{N})}$$

in (7) einsetzen; dies liefert die Formel

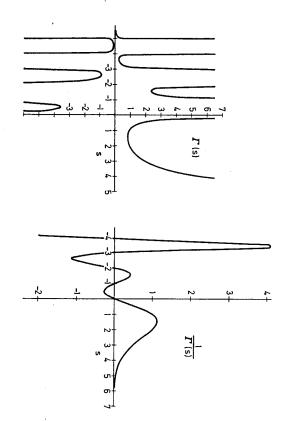
(9)
$$\frac{1}{\Gamma(s)} = se^{\gamma s} \prod_{n=1}^{\infty} \left[(1 + \frac{s}{n})e^{-s/n} \right] ,$$

die sogenannte Weierstraßsche Produktdarstellung. Aus (6) oder folgt, daß die Funktion $1/\Gamma(s)$ in der ganzen komplexen Ebene definiert und holomorph ist (weil die Produktentwicklungen jeweils kon-

vergieren). Ferner hat $1/\Gamma(s)$ nach (9) einfache Nullstellen bei $s=0,-1,-2,\ldots$ und ist sonst von Null verschieden. Das beweist folgenden

SATZ: Die durch (4), (6) oder (9) erklärte Funktion $\Gamma(s)$ ist in der ganzen kompleæn Ebene als meromorphe Funktion von s definiert. Sie hat bei $s=0,-1,-2,\ldots$ einfache Pole und ist sonst holomorph. Außerdem ist sie nie gleich Null, d.h. die Funktion $1/\Gamma(s)$ ist überall holomorph.

Auf der reellen Achse sehen $\Gamma(s)$ bzw. $\frac{1}{\Gamma(s)}$ so aus:



Wir geben noch ein paar Eigenschaften der I-Funktion an.

$$f(s) = \Gamma(\frac{s}{2})\Gamma(\frac{s+1}{2}) ;$$

dann gilt

$$f(s+1) = \Gamma(\frac{s+1}{2}) \ \Gamma(\frac{s}{2}+1) = \frac{s}{2} \ \Gamma(\frac{s+1}{2}) \ \Gamma(\frac{s}{2}) = \frac{s}{2} \ f(s)$$

oder $2^{S+1}f(s+1)=s\cdot 2^{S}f(s)$. Es ist dann naheliegend zu vermuten, daß $2^{S}f(s)$ eine Konstante mal $\Gamma(s)$ ist, und dies ist auch der Fall:

$$2^{S}\Gamma(\frac{s}{2})\Gamma(\frac{s+1}{2}) = \lim_{N \to \infty} 2^{S} \left[\frac{\frac{s}{2}(N-1)!}{\frac{s}{2}(N-1)!} \cdot \frac{\frac{s+1}{2}(N-1)!}{\frac{s+1}{2}(N-1)!} \cdot \frac{\frac{s+1}{2}(N-1)!}{\frac{s+1}{2}(N-1)!} \right]$$

$$= \lim_{N \to \infty} \left[\frac{\frac{s}{2}(\frac{s}{2}+1) \dots (\frac{s}{2}+N-1)!}{\frac{s}{2}(\frac{s+1}{2}) \dots (\frac{s}{2}+N-1)!} \cdot \frac{\frac{s+1}{2}(N-1)!}{\frac{s+1}{2}(N-1)!} \right]$$

$$= \lim_{N\to\infty} \left[2^{2N} \sqrt{\frac{1}{2}} \frac{(N-1)!^2}{(2N-1)!} \frac{(2N)^5}{s(s+1)(s+2)...(s+2N-1)} \right]$$

= CI

mit

(10)
$$C = \lim_{N \to \infty} \left[2^{2N} N^{\frac{1}{2}} \frac{(N-1)!^{2}}{(2N-1)!} \right].$$

Die Konstante C ist gleich $2\sqrt{\pi}$ (siehe Aufgabe 4), also erhalten wir

(11)
$$\Gamma(\frac{s}{2}) \Gamma(\frac{s+1}{2}) = 2^{1-s} \sqrt{\pi} \Gamma(s)$$
,

die Legendresche Verdoppelungsformel. Insbesondere folgt mit s=1, daß

(12)
$$\Gamma(\frac{1}{2}) = \sqrt{\pi} .$$

2. Die Funktion $\frac{1}{\Gamma(s)}$ ist holomorph und hat Nullstellen bei s=0, -1, -2, ..., also ist die Funktion

$$y(s) = \frac{1}{\Gamma(s) \Gamma(1-s)}$$

auch holomorph und hat Nullstellen bei s = ..., -2, -1, 0, 1, 2, ... Außerdem ist

$$g(s+1) = \frac{1}{\Gamma(1+s)\Gamma(-s)} = \frac{1}{s\Gamma(s)\Gamma(-s)} = \frac{1}{\Gamma(s)\Gamma(1-s)} = -g(s)$$

insbesondere ist g(s) periodisch mit Periode 2. Es liegt dann nahe, daß g(s) = C sin πs ist, wobei die Konstante C wegen lim $[g(s)/s] = \lim_{s\to 0} [1/\Gamma(1+s)\Gamma(1-s)] = 1$ gleich $1/\pi$ sein muß: s+0

(13)
$$\Gamma(s) \Gamma(1-s) = \frac{\pi}{\sin \pi s}.$$

Diese Formel ist auch richtig, z.B. wegen (9) und der bekannten Beziehung

(14)
$$\frac{\sin \pi s}{\pi s} = \prod_{n=1}^{\infty} (1 - \frac{s^2}{2}).$$

Schließlich sei

$$h(s) = \int_{0}^{\infty} t^{s-1} e^{-t} dt$$
.

Das Integral konvergiert für $\sigma > 0$ und es gilt

$$h(s+1) = \int_{0}^{\infty} t^{S} d(-e^{-t}) = \int_{0}^{\infty} e^{-t} d(t^{S})$$

$$= s \int_{0}^{\infty} t^{s-1} e^{-t} dt = sh(s)$$

(partielle Integration) und

$$h(1) = \int_{0}^{\infty} e^{-t} dt = 1;$$

Tat nicht schwer zu zeigen, daß $h(s) = \Gamma(s)$ ist (siehe Aufgabe 6), die Funktion h(s) ist also ein Kandidat für die ursprünglich gesuch- $\Gamma(s)$ mit den Eigenschaften (1) und (2). Es ist in der

(15)
$$\Gamma(s) = \int_{0}^{\infty} t^{s-1} e^{-t} dt$$
 $(\sigma > 0)$.

Es ist diese Formel, die die Wichtigkeit der Gammafunktion für die der Dirichletschen Reihen erklärt. Man hat nämlich

$$\int_{0}^{\infty} t^{s-1} e^{-nt} dt = n^{-s} \int_{0}^{\infty} u^{s-1} e^{-u} du \qquad (u = nt)$$

$$= \Gamma(s) n^{-s},$$

also (im Bereich der absoluten Konvergenz)

(16)
$$\sum_{n=1}^{\infty} \frac{a_n}{n^s} = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \left(\sum_{n=1}^{\infty} a_n e^{-nt} \right) t^{s-1} dt .$$

Das heißt, die (gewöhnliche) Dirichletsche Reihe $f(s) = \sum_n a_n^{-s}$ und die Potenzreihe $F(z) = \sum_n z^n$ mit denselben Koeffizienten sind durch die Integraltransformation

17)
$$f(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} F(e^{-t}) t^{s-1} dt$$
,

schaften von Dirichletschen Reihen zu schließen oder umgekehrt. ermöglicht es häufig, von Eigenschaften von Potenzreihen auf Eigendie sogenannte Mellinsche Transformation, miteinander verknüpft. Dies

Natürlich gilt auch für nicht-gewöhnliche Dirichletsche Reihen

(18)
$$\sum_{n=1}^{\infty} a_n \lambda_n^{-s} = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \left(\sum_{n=1}^{\infty} a_n e^{-\lambda_n t} \right) t^{s-1} dt.$$

in §1 als Beispiele verwender wurden. Für $\zeta(s) = \sum_{n=0}^{\infty} 1$ st $a_n = 1$, also $\sum_{n=0}^{\infty} a_n e^{-nt} = \frac{1}{e^t-1}$, und wir finden Als Beispiele für (16) nehmen wir die Dirichletschen Reihen, die

(19)
$$\zeta(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1}}{e^{t}-1} dt$$
 $(\sigma > 1)$.

Für $\psi(s)=\sum\limits_{c=1}^{n-1}(-1)^{n-1}$ $\psi(s)=\sum\limits_{c=1}^{n-1}(-1)^{n-1}$, also $\sum\limits_{c=1}^{n}a_{n}e^{-nt}=\frac{1}{t+1}$, und wir finden

(20)
$$(1 - 2^{1-s}) \zeta(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1} dt}{e^{t+1}} \qquad (\sigma > 0)$$

Aufgaben:

- 1. Man zeige die Existenz von $\gamma = \lim_{N \to \infty} (1 + \frac{1}{2} + \dots + \frac{1}{N} \log N)$ und die Zulässigkeit der Vertauschung von Summation und Grenzübergang. die zu (8) führte.
- 2. Man beweise für jede natürliche Zahl n die Beziehung

$$n^{S} \Gamma(\frac{S}{n}) \Gamma(\frac{S+1}{n}) \dots \Gamma(\frac{S+n-1}{n}) = C_{n} \Gamma(S)$$

mit einer nur von n abhängigen Konstanten (es ist $C_n=(2\pi)^{\frac{n-1}{2}}\sqrt{n}$, siehe Aufgabe 5). Diese Formel stammt . siehe Aufgabe 5). Diese Formel stammt von Gauß.

- 3. Man bestimme das Residuum von $\Gamma(s)$ an jeder Polstelle
- 4. Man beweise, daß die durch (10) definierte Konstante C gleich $2\sqrt{\pi}$ ist, indem man aus (13) den Wert $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ entnimmt und s = 1 in die Beziehung

$$2^{\mathbf{S}} \Gamma(\frac{\mathbf{S}}{2}) \Gamma(\frac{\mathbf{S}+1}{2}) = \mathbf{C} \Gamma(\mathbf{S})$$

einsetzt. Man schließe auch aus (12) und (15), daß

$$\int_{0}^{\infty} e^{-t^{2}} dt = \frac{1}{2} \sqrt{\pi}$$

ist.

5. Man beweise die Stirlingsche Formel

$$\Gamma(x) \sim \sqrt{2\pi} x^{-\frac{1}{2}} e^{-x} \qquad (x \to \infty)$$
,

Man benutze auch die Stirlingsche Formel, um für die Konstante $^{\mathrm{C}}_{\mathrm{n}}$ Seite von (10) gleich $2\sqrt{\pi}$ ist, die Beziehung $A = \sqrt{2\pi}$ folgert. und dann aus der in Aufgabe 4 bewiesenen Tatsache, daß die rechte um zu zeigen, daß der Grenzwert A = $\lim \left[\Gamma(x) / x^{\frac{1}{2}} e^{-x} \right]$ existiert. indem man zunächst den Beweis der Existenz des Limes (4) nachahmt,

6. Man beweise (15), indem man die Beziehungen

$$\int_{0}^{N} (1 - \frac{t}{N})^{N} t^{S-1} dt = N^{S} \sum_{r=0}^{N} \frac{(-1)^{r} \binom{N}{r}}{r+s} = \frac{N}{N+s} \Gamma_{N}(s)$$

nachweist (die erste durch gliedweise Integration, die zweite durch Vergleich der Polstellen der zwei rationalen Funktionen von s) und dann unter Benutzung von $\lim_{N\to\infty} (1-\frac{t}{N})^N = e^{-t} \ den \ Grenz \ bergang \ N\to\infty \ (streng) \ durch f \ burth.$

§4 Die Riemannsche Zetafunktion

Die einfachste und wichtigste Dirichletsche Reihe ist die in (1.11) eingeführte Riemannsche ζ -Funktion

(1)
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (\sigma > 1)$$
.

Wir haben schon in §1 gesehen, daß $\zeta(s)$ sich als meromorphe Funktion in die Halbebene $\sigma>0$ fortsetzen läßt, und zwar (Aufgabe 3, §1) mit einem einfachen Pol bei s=1 als einzige Singularität. Wir haben auch in §2 die für $\sigma>1$ gültige Eulersche Produktdarstellung

$$\zeta(s) = \prod_{p \text{ prim } 1 - p^{-s}}$$

bewiesen und in §3 die ebenfalls für $\sigma > 1$ geltende Integraldarstellung

(3)
$$\zeta(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1}}{e^{t-1}} dt$$

gewonnen. Die wichtigsten in diesem Paragraphen bewiesenen Eigenschaften der ζ -Funktion sind im folgenden Satz zusammengestellt.

SATZ: Die durch (1) für o > 1 definierte Funktion ζ(S) besitzt eine meromorphe Fortsetzung in die ganze komplexe Ebene, und zwar mit einem einfachen Pol vom Residum 1 an der Stelle S = 1 als einzige Polstelle. Die Werte der ζ-Funktion bei nichtpositiven ganzen Zahlen sind rational, und zwar ist

(4)
$$\zeta(0) = -\frac{1}{2}$$

25

$$\zeta(-2n) = 0 \qquad (n = 1)$$

$$\zeta(1-2n) = -\frac{B_{2n}}{2n}$$
 (n = 1, 2, 3, ...)

6)

(5)

where the rationalen Zahlen $B_2 = \frac{1}{6}$, $B_4 = \frac{-1}{30}$, ... die durch

(7)
$$\frac{t}{e^{t}-1} = \sum_{k=0}^{\infty} \frac{B_{k}}{k!} t^{k} \qquad (|t| < 2\pi)$$

definierten Bernoullischen Zahlen sind. Die Werte der Zetafunktion an positiven geraden ganzen Zahlen sind durch

(8)
$$\zeta(2n) = \frac{(-1)^{n-1} 2^{2n-1} B_{2n}}{(2n)!} \pi^{2n} \qquad (n = 1, 2, 3, ...)$$

gegeben.

Beweis: Wir gehen von der Integraldarstellung (3) aus. Seien die Zahlen B_k (k = 0, 1, 2, ...) durch (7) definiert, d.h. wir entwickeln

$$\frac{t}{e^{t}-1} = \frac{t}{t + \frac{t^{2}}{2i} + \frac{t^{3}}{3i} + \cdots} = 1 - \frac{t}{2} + \frac{t^{2}}{12} + ot^{3} - \frac{t^{4}}{720} + \cdots$$

und definieren $\,{\bf B}_n\,\,$ als $\,n\,!\,\,$ mal den Koeffizienten von $\,t^n\,\,$ auf der rechten Seite; aus

$$\frac{t}{e^{t}-1} - \frac{-t}{e^{-t}-1} = -t$$

folgt, daß abgesehen von $B_1=-\frac{1}{2}$ alle B_n mit n ungerade Null sind. Sei jetzt n>0 fest und

$$f_{n}(t) = \sum_{k=0}^{n} (-1)^{k} \frac{B_{k}}{k!} t^{k} = 1 + \frac{t}{2} + \frac{B_{2}}{2!} t^{2} + \dots + \frac{B_{n}}{n!} t^{n}$$

(für n > 1 ist $(-1)^n B_n = B_n$). Dann ist für $\sigma > 1$

$$\Gamma(s) \cdot \zeta(s) = \int_{0}^{\infty} \frac{te^{t}}{t-1} e^{-t} t^{s-2} dt$$

(9)
$$= \int_{0}^{\infty} \left(\frac{te^{t}}{t-1} - f_{n}(t) \right) e^{-t} t^{s-2} dt + \int_{0}^{\infty} f_{n}(t) e^{-t} t^{s-2} dt$$

$$= I_1(s) + I_2(s)$$
,

wobei wir mit ${
m I_1}$ und ${
m I_2}$ die beiden Integrale bezeichnen. Die Funk-

tion $\frac{te^t}{e^t-1}$ ist bei t=0 holomorph und hat dort die Taylor-Entwicklung

$$\frac{te^{\frac{t}{t}}}{e^{\frac{t}{t}-1}} = \frac{-t}{e^{-\frac{t}{t}-1}} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} B_k t^k$$

und somit

$$\frac{te^{t}}{e^{t}-1} - f_{n}(t) = O(t^{n+1}) \qquad (t \to 0) .$$

Es folgt daraus, daß das Integral $I_1(s)$ konvergiert für alle s mit $\sigma > -n$ (da der Integrand für $t \to 0$ $O(t^{n+\sigma-1})$ ist und für $t \to \infty$ exponentiell klein ist), also stellt $I_1(s)$ im Bereich $\sigma > -n$ eine holomorphe Funktion dar. Das zweite Integral $I_2(s)$ ist nur für $\sigma > 1$ konvergent, läßt sich aber, da $f_n(t)$ ein Polynom ist, mit Hilfe von (3.15) explizit ausrechnen:

$$I_{2}(s) = \int_{0}^{\infty} \left[1 + \frac{t}{2} + \sum_{k=2}^{n} \frac{B_{k}}{k!} t^{k} \right] e^{-t} t^{s-2} dt$$

$$= \Gamma(s-1) + \frac{1}{2} \Gamma(s) + \sum_{k=2}^{n} \frac{B_{k}}{k!} \Gamma(s+k-1) .$$

Das ist wegen der Ergebnisse von §3 eine in der ganzen komplexen Ebene meromorphe Funktion, und somit haben wir bewiesen, daß Ç(s) sich in die Halbebene d > -n (und deswegen, da n beliebig war, in ganz C) meromorph fortsetzen läßt. Indem wir (10) in (9) einsetzen und die Funktionalgleichung (3.3) anwenden, erhalten wir die für g > -n gültige Darstellung

(11)
$$\zeta(s) = \frac{1}{s-1} + \frac{1}{2} + \frac{1}{k} + \sum_{k=2}^{n} \frac{B_k}{k!} s(s+1) \dots (s+k-2) + \frac{1}{\Gamma(s)} I_1(s)$$

der ζ -Funktion, wobei $I_1(s)$ in $\sigma > -n$ holomorph ist. Da nach §3 die Funktion $\frac{1}{\Gamma(s)}$ überall holomorph ist, zeigt diese Formel, daß $\zeta(s) = \frac{1}{s-1}$ in $\sigma > -n$ holomorph ist; da n beliebig war, ist

 $\zeta(s)=\frac{1}{s-1}$ sogar in ganz C holomorph, und die erste Behauptung des Satzes ist bewiesen.

Sel jetzt s eine ganze Zahl, die > -n und < 0 ist; dann ist $\frac{1}{\Gamma(s)}~I_1(s)$ wegen des Pols der Γ -Funktion an der Stelle s gleich Null, und somit ist

$$\zeta(s) = \frac{1}{s-1} + \frac{1}{2} + \frac{1}{2} - \frac{s(s+1)(s+2)}{720} + \frac{s(s+1)(s+2)(s+3)(s+4)}{30240}$$

$$(12) \qquad \qquad - \dots + \frac{B}{n!} s(s+1)\dots(s+n-2) \qquad (s = 0,-1,-2,\dots,-n+1)$$

Dies zeigt, daß

$$\zeta(0) = \frac{1}{-1} + \frac{1}{2} = -\frac{1}{2}$$

$$\zeta(-1) = \frac{1}{-2} + \frac{1}{2} - \frac{1}{12} = -\frac{1}{12}$$

$$\zeta(-2) = \frac{1}{-3} + \frac{1}{2} - \frac{1}{6} + 0 = 0$$

$$\zeta(-3) = \frac{1}{-4} + \frac{1}{2} - \frac{1}{4} + 0 + \frac{1}{120} = \frac{1}{120}$$

$$\zeta(-4) = \frac{1}{-5} + \frac{1}{2} - \frac{1}{3} + 0 + \frac{1}{30} + 0 = 0$$

(13)

gilt. Es ist klar, daß man dieses Verfahren (mit n genügend groß) fortsetzen könnte, um $\zeta(-k)$ für jede nichtnegative ganze Zahl k auszurechnen, und daß die Werte alle rational ausfallen. Aus (12) bekommt man explizit

$$\zeta(-k) = \frac{-1}{k+1} + \frac{1}{2} + \frac{1}{k} + \frac{n}{k} \frac{B_{r}}{r!} (-k) (-k+1) \dots (-k+r-2) \qquad (n > k)$$

$$= -\frac{1}{k+1} + \frac{1}{2} + \frac{k+1}{k} (-1)^{r-1} \frac{B_{r}}{r!} \frac{k!}{(k+1-r)!}$$

$$= -\frac{1}{k+1} \sum_{r=0}^{k+1} {k+1 \choose r} B_{r}.$$

Daß diese Summe, wie in (5), (6) behauptet, für k>0 immer gleich ihrem letzten Glied $-\frac{Bk+1}{k+1}$ ist (vgl. die Beispiele (13)), d.h. daß die Bernoullischen Zahlen der Beziehung

(14)
$$\sum_{r=0}^{n} {n \choose r} B_{r} = (-1)^{n} B_{n}$$

genügen, läßt sich leicht mit Hilfe der erzeugenden Reihe (7) beweisen:

$$\sum_{n=0}^{\infty} \left[\sum_{r=0}^{n} \binom{n}{r} B_{r} \right] \frac{t^{n}}{n!} = \sum_{\substack{0 \le r \le n \\ r = 0 \text{ k} = 0}} \frac{B_{r} t^{n}}{r! (n-r)!}$$

$$= \sum_{r=0}^{\infty} \sum_{k=0}^{\infty} \frac{B_{r} t^{r+k}}{r! k!} = \left(\sum_{r=0}^{\infty} \frac{B_{r}}{r!} t^{r} \right) \left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \right)$$

$$= \frac{t}{e^{t}-1} \cdot e^{t} = \frac{-t}{e^{-t}-1} = \sum_{n=0}^{\infty} (-1)^{n} B_{n} \frac{t^{n}}{n!}.$$

Die Beziehung (14) kann übrigens als Rekursionsformel zur Berechnung der B_{κ} benutzt werden.

Es bleibt nur noch, die Behauptung (8) über die Werte von $\zeta(2n)$ zu beweisen, also die Beziehungen

darauf war. Mit Hilfe der Gleichungen (13) und (8) aus §3 erhält man von denen die beiden ersten von Euler entdeckt wurden, der sehr stolz

$$\sum_{n=1}^{\infty} (-1)^{n-1} 2^{2n-1} \pi^{2n} \frac{B_{2n}}{(2n)!} s^{2n} = -\frac{1}{2} \left[\frac{2\pi i s}{e^{2\pi i s} - 1} - 1 + \frac{2\pi i s}{2} \right]$$

(|s| < 1)

$$= \frac{1}{2} - \frac{\pi is}{2} \frac{e^{\pi is} + e^{-\pi is}}{e^{\pi is} - e^{-\pi is}}$$
$$= \frac{1}{2} (1 - \frac{\pi s}{\tan \pi s})$$

$$\frac{s}{2} \frac{d}{ds} \log \frac{\pi s}{\sin \pi s}$$

$$\frac{s}{2} \frac{d}{ds} [\zeta(2) s^2 + \frac{\zeta(4)}{2} s^4 + \dots]$$

 $\frac{s}{2} \frac{d}{ds} \log [\Gamma(1+s) \Gamma(1-s)]$

$$= \sum_{n=1}^{\infty} \zeta(2n) s^{2n}$$

mit ist der Satz vollständig bewiesen. aus (3.14) schließen, daß $\frac{s}{2} \frac{d}{ds} \log \frac{\pi s}{\sin \pi s} = \sum_{k=1}^{\infty} \zeta(2k) s^{2k}$ ist). Da-(man braucht übrigens hier nicht die $\Gamma ext{-}Funktion$, sondern kann direkt

eine Beziehung zwischen $\zeta(s)$ und $\zeta(1-s)$ gibt. Wenn wir (5), (6)Bernoulli-Zahlen enthalten, läßt denken, daß es vielleicht überhaupt und (8) zusammenfassen als Die Tatsache, daß die Werte von $\zeta(2n)$ und $\zeta(1-2n)$ dieselben

$$\frac{2^{k-1} \pi^{k}}{(k-1)!} \zeta(1-k) = \begin{cases} (-1)^{k/2} \zeta(k) & k > 0, k \text{ gerade} \\ 0 & k > 1, k \text{ ungerade} \end{cases}$$

onsfunktion F(k) hat, während und bedenken, daß die Funktion $k \mapsto (k-1)!$ nach §3 die Interpolati- $\int_{0}^{\infty} (-1)^{k/2}$ k gerade

$$k \mapsto \begin{cases} (-1)^{k/2} & k \text{ gerade} \\ 0 & k \text{ ungerade} \end{cases}$$

nahe, die Beziehung auf natürliche Weise durch $\cos \frac{\pi k}{2}$ interpoliert wird, dann liegt es

(15)
$$\frac{2^{S-1}}{\Gamma(s)} \zeta(1-s) = \cos \frac{\pi s}{2} \zeta(s)$$

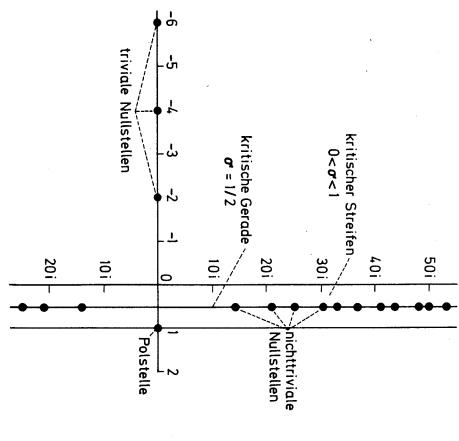
Durch Anwendung der Funktionalgleichungen (3.11), (3.13) der T-Funk-Anzahl der Primzahlen unter einer gegebenen Größe" bewiesen wurde. und erst 1859 von Riemann in seiner bahnbrechenden Arbeit "Uber die rectes que réciproques", einer der Berliner Akademie vorgelegten Arbeit) marques sur un beau rapport entre les series des puissances tant divon Euler 1749 aufgrund analoger überlegungen vermutet wurde (in "Rezu vermuten. Das ist die berühmte Funktionalgleichung der Ç-Funktion, die tion kann sie auch symmetrischer geschrieben werden in der Form (Ein Beweis der Funktionalgleichung wird in Aufgabe 2 angedeutet.)

(16)
$$\pi = \frac{s}{2} \frac{1-s}{\Gamma(\frac{s}{2})\zeta(s)} = \pi = \frac{1-s}{2} \frac{1-s}{\Gamma(\frac{1-s}{2})\zeta(1-s)} . \qquad \xi(\Delta) = \xi(1-\Delta)$$

ζ(s) d.h. nur einfache Nullstellen bei $s = -2, -4, -6, \ldots$ Die Funktion Halbebene $\sigma < 0$ nur dort Nullstellen hat, wo $\Gamma(\frac{s}{2})$ Polstellen hat, dort nicht verschwindet. Es folgt dann aus (16), daß $\zeta(s)$ in der in §2 schon bemerkt) die Produktdarstellung (2) impliziert, daß $\zeta(s)$ Für $\sigma > 1$ ist die linke Seite von (16) von Null verschieden, da (wie

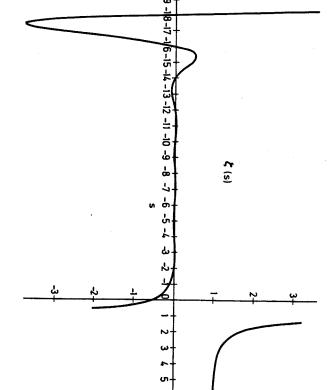
- eine einfache Polstelle bei s = 1,
- einfache Nullstellen bei s = -2, -4, ...
- (die sog. "trivialen Wurzeln"),
- und sonst Nullstellen höchstens in dem
- "kritischen Streifen" $0 < \sigma < 1$, wo sie in der Tat unendlich viele besitzt

Streifen sind Die dem Absolutbetrag nach kleinsten Nullstellen in dem kritischen



Streifen Realteil 1/2 haben. Das ist die berühmte, bis heute unbewie-Es ist naheliegend zu vermuten, daß alle Nullstellen in dem kritischen auch, daß die ersten 150.000.000 Nullstellen in dem kritischen Streilich viele Nullstellen von $\zeta(s)$ auf der Geraden $\sigma = \frac{1}{2}$ sene (und möglicherweise falsche) Riemannsche Vermutung. Man weiß, daß unen liegen und

Auf der reellen Achse sieht $\zeta(s)$ so aus:



Aufgaben:

1. Für die am Ende des §2 eingeführte Funktion

$$L(s) = 1 - \frac{1}{3}s + \frac{1}{5}s - \dots$$

zeige man:

a)
$$L(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1}}{t^{s-t}} dt$$
 $(\sigma > 0)$,

b) L(s) hat eine holomorphe Fortsetzung auf ganz C.

c)
$$L(-n) = \frac{1}{2} E_n$$
 (n = 0, 1, 2, ...), wobei E_n die durch

 $\frac{1}{\cos x} = \sum_{n=0}^{\infty} \frac{E_n}{n!} x^n$

 $E_6 = -61, \dots, E_1 = E_3 = E_5 = \dots = 0$. definierten Eulerschen Zahlen sind ($\mathbf{E}_0 = 1$, $\mathbf{E}_2 = -1$, \mathbf{E}_4 - 5,

d)
$$L(2n+1) = \frac{(-1)^n E_{2n}}{2^{2n+2}(2n)!} \pi^{2n+1}$$
 $(n = 0, 1, 2, ...)$.

- 2. Man beweise die Funktionalgleichung (15), indem man folgende Schritte durchführt:
- a) Ausgehend von (3) zeige man für $\sigma > 1$

$$\Gamma(s) \ \zeta(s) \ = \int\limits_{O}^{1} \left(\frac{1}{e^{x}-1} - \frac{1}{x} \right) x^{s-1} \ dx \ + \frac{1}{s-1} + \int\limits_{1}^{\infty} \frac{x^{s-1}}{e^{x}-1} \ dx$$

und läßt sich für $0 < \sigma < 1$ schreiben als diese Gleichung gilt für $\sigma > 0$ wegen analytischer Fortsetzung

$$\Gamma(s) \zeta(s) = \int_{0}^{\infty} \left(\frac{1}{e^{x}-1} - \frac{1}{x}\right) x^{s-1} dx.$$

Ausgehend von a) zeige man für $0 < \sigma < 1$

$$\Gamma(s) \zeta(s) = \int_{0}^{1} \left(\frac{1}{e^{x} - 1} - \frac{1}{x} + \frac{1}{2} \right) x^{s-1} dx - \frac{1}{2s} + \int_{1}^{\infty} \left(\frac{1}{e^{x} - 1} - \frac{1}{x} \right) x^{s-1} dx ,$$

gelten muß und für $-1 < \sigma < 0$ die Formel was wiederum für $-1<\sigma<1$ wegen analytischer Fortsetzung

$$\Gamma(s) \zeta(s) = \int_{0}^{\infty} \left(\frac{1}{e^{x} - 1} - \frac{1}{x} + \frac{1}{2} \right) x^{s-1} dx$$

Man schließe aus (3.14), daß

0

$$\frac{\pi s}{\tan \pi s} - 1 = s \frac{d}{ds} \log \frac{\sin \pi s}{\pi s} = -\sum_{n=1}^{\infty} \frac{2s^2}{n^2 - s^2}$$

gilt, und setze $s = \frac{ix}{2\pi}$, un

$$\frac{1}{e^{x}-1} - \frac{1}{x} + \frac{1}{2} = \frac{1}{x} \left(\frac{ix/2}{\tan ix/2} - 1 \right) = \sum_{n=1}^{\infty} \frac{2x}{x^{2} + 4n^{2}\pi^{2}}$$

g G Man setze c) in b) ein, um (nach einer wegen absoluter Konvergenz zulässigen Vertauschung von Integral und Summation) die

$$\Gamma(s) \ \zeta(s) = 2 \sum_{n=1}^{\infty} (2\pi n)^{s-1} \int_{0}^{\infty} \frac{t^{s}}{t^{2}+1} = \frac{2^{s-1}}{\cos \frac{\pi s}{2}} \zeta(1-s)$$

ist die Funktionalgleichung dann für alle s bewiesen -1 < 0 < 0 zu beweisen; nach analytischer Fortsetzung

3. Man beweise für $\sigma > 1$ die Beziehung

$$\zeta(s) = \frac{s}{s-1} - \frac{s}{2i} [\zeta(s+1) - 1] - \frac{s(s+1)}{3i} [\zeta(s+2) - 1] - \dots,$$

holomorph in ganz C fortsetzen läßt. indem man $\zeta(s) = \sum_{i=1}^{n} c_{i}$ einsetzt und die Summationen vertauscht; man benutze diese Formel, um zu zeigen, daß $\zeta(s) - \frac{s}{s-1}$ sich Show by India that it's

(17)
$$\zeta(s) = \frac{1}{s-1} + \gamma + O(s-1) \qquad (s+1)$$

gilt, wo y die Eulersche Konstante ist.

Show that
$$\sum_{n=1}^{\infty} \left(\frac{1}{h^{\Delta}} - \int_{n}^{h^{+}} \frac{dt}{dt}\right)$$
 we continued as $A = 1$

§5 Charaktere

von ihm benutzt wurden, die "L-Reihen", die ebenfalls von Dirichlet eingeführt wurden und Die wichtigsten Dirichletschen Reihen (neben der Zetafunktion) sind

- die Existenz unendlich vieler Primzahleņ in jeder arithmetischen Folge $\{Nk+a\}_{k\in\mathbb{Z}}$ mit (N,a)=1 zu beweisen, und
- eine Formel anzugeben für die Anzahl der Kquivalenzklassen binären quadratischen Formen mit gegebener Diskriminante

geben können, müssen wir diese Charaktere etwas studieren. und bevor wir in §§ 6 - 8 eine Beschreibung von Dirichlets Ergebnissen Die L-Reihen sind Funktionen, die gewissen Charakteren zugeordnet sind

Ein Charakter auf einer endlichen Gruppe G ist ein Homomorphismus

$$\times$$
 : G \rightarrow C*,

Charaktere auf G sind, können wir das $\textit{Produkt} \chi\chi'$ und das $\textit{Inverse} \chi^{-1}$ durch der Multiplikation als Gruppenoperation). Falls χ und χ' zwei wo C* die Gruppe der von Null verschiedenen komplexen Zahlen ist (mit

$$\chi \chi'(g) = \chi(g) \chi'(g) , \chi^{-1}(g) = \chi(g)^{-1}$$
 (Vg. \in G)

mit Ĝ bezeichnen definieren. Somit bilden die Charaktere auf G eine Gruppe, die wir

SATZ 1: Sei G eine endliche abelsche Gruppe. Dann ist G zu G isomorph. Insbesondere ist $|\hat{G}| = |G|$.

schen Gruppen, also hat G Erzeugende g_1,\dots,g_k der Ordnungen n_1,\dots,n_k und jedes Element $g\in G$ läßt sich in der Gestalt $g=g_1^{-1}\dots g_k^{-K}$ schreiben mit $x_1,\dots,x_k\in \mathbb{Z}$. Ist χ ein Charakter auf G und $\chi(g_1)=\xi_1$ $(i=1,\dots,k)$, so ist Beweis: Bekanntlich ist G eine direkte Summe von endlichen zykli-

$$\xi_{\underline{1}}^{n_{\underline{1}}} = \chi(g_{\underline{1}})^{n_{\underline{1}}} = \chi(g_{\underline{1}}^{n_{\underline{1}}}) = \chi(e) = 1$$

und

(1)
$$\chi(g_1^{r_1} \dots g_k^{r_k}) = \chi(g_1)^{r_1} \dots \chi(g_k)^{r_k} = \xi_1^{r_1} \dots \xi_k^{r_k}$$
,

k-Tupeln (ξ_1, \ldots, ξ_k) mit $\xi_1^{n_1} = 1$, wobei das Produkt von Charakteren also eine bijektive Korrespondenz zwischen Charakteren χ und beliebig gewählt werden, so definiert bestimmt. Umgekehrt, wenn $\xi_1, \ldots, \xi_k \in \mathbb{C}^*$ mit $\xi_1^{n_1} = 1$ (i = 1, ..., k) dem Produkt der $\xi_{\dot{1}}$ entspricht. Somit ist d.h. die sind n_i -te Einheitswurzeln und χ ist durch die ξ_i (1) einen Charakter. Es gibt

$$\widehat{\mathbf{G}} \cong \{(\xi_1, \dots, \xi_k) \in \mathbf{c}^k | \xi_1^{n_1} = \dots = \xi_k^{n_k} = 1\}$$

$$\cong \mathbf{z}/n_1\mathbf{z} \times \mathbf{z}/n_2\mathbf{z} \times \dots \times \mathbf{z}/n_k\mathbf{z} \cong \mathbf{G}.$$

wurzel, also vom Absolutbetrag 1, und somit ist der durch Bemerkung: Für G endlich ist $\chi(g)$ für jedes $g \in G$ eine Einheits-

$$\overline{\chi}(g) = \overline{\chi(g)}$$
 (Vg \in G)

sen Charakter identisch χ konjugierte Charakter mit dem oben definierten inver-

ist ein Charakter auf der Gruppe Definition: Ein Dirichletscher Charakter modulo N (N eine natürliche Zahl)

$$(\mathbf{Z}/N\mathbf{Z})^{\times} = \{n \pmod{N} \mid (n,N) = 1\}$$
.

Wenn χ bezeichnete) Funktion $\chi: \mathbb{Z} \to \mathbb{C}$ χ ein solcher Charakter ist, definieren wir eine (ebenfalls durch

$$\chi(n) = \begin{cases} \chi(n \pmod{N}) , & \text{falls } (n,N) = 1 \\ 0 , & \text{falls } (n,N) > 1 . \end{cases}$$

Auch diese Funktion χ wird als Dirichletscher Charakter bezeichnet. den als eine Funktion $\chi\colon \mathbf{Z}\to \mathbf{C}$ mit den Eigenschaften Ein Dirichletscher Charakter (mod N) kann auch beschrieben wer-

- (1) $\chi(n) = 0 \updownarrow (n,N) > 1$
- 2) χ ist streng multiplikativ: $\chi(mn) = \chi(m) \chi(n)$ für alle
- (3 X(n) hängt nur von n (mod N)

Nach Satz 1 gibt es $\phi(N)$ Dirichletsche Charaktere, wo

$$\phi(N) = |(\mathbb{Z}/N\mathbb{Z})^{X}| = \#\{n \pmod{N} \mid (n,N) = 1\}$$

$$= N \quad \Pi \quad (1 - \frac{1}{p})$$

die Eulersche Funktion von N bezeichnet

Beispiele: a) Für jedes N ist der Hauptcharakter χ_0 (mod N) durch

$$\chi_0(n) = \begin{cases} 1 & (n,N) = 1 \\ 0 & (n,N) > 1 \end{cases}$$

erklärt (das entspricht der Eins von (Z/NZ))

 $N=3,\ 4,\ 6$ ist $\phi(N)$ jeweils gleich 2, und es gibt neben dem Hauptb) Für N=2 ist $\phi(N)=1$, also χ_0 der einzige Charakter. Für charakter die Charaktere

$\varepsilon_{6}(n)$ 0 1 0 0 0 -1 0 1 0 0 0 -1 0	Ħ	ε _μ (n) 0 1 0 -1 0 1 0 -1 0	þ	$\varepsilon_3(n) \mid 0$	Ħ
			_		
0		0	١	O	١
_	_	_			_
0	2	0	N	<u> </u>	2
0	0 1 2 3 4 5	1	0 1 2 3 4	0	0 1 2 3 4
0	4	0	44		4
1	ъ	_	5	1 -1 0 1 -1 0	տ
0	6	0	6 7	0	6
	7	<u>!</u>	7	:	:
0	∞	0	∞	•	١.
0	9	:	:		
0	ō	•	١ •		
7	6 7 8 9 10 11				
0	12			-	

Für z H σı gibt es neben ŏ drei Charaktere:

ដ

	χ(n)		n (mod 5)
0	0	0	0
_	_	_	_
Լ .	7	μ.	2
<u>‡</u> .	7	.	ω
<u>.</u>	_	7	4

c) Für jede Primzahl p ist das Legendresche Symbol

(2)
$$(\frac{n}{p}) = \begin{cases} 0, \text{ falls } p \mid n \\ 1, \text{ falls } p \mid n, n \neq x^2 \pmod{p} \end{cases}$$
 für ein $x \in \mathbb{Z}$

$$= \begin{cases} -1, \text{ sonst} \end{cases}$$

ein Dirichletscher Charakter (mod p).

Wir haben zwei einfache, aber sehr nützliche Sätze:

SATZ 2: Sei X ein Dirichletscher Charakter modulo N. Dann ist

(3)
$$\sum_{\mathbf{n} \pmod{\mathbf{N}}} \chi(\mathbf{n}) = \begin{cases} \phi(\mathbf{N}), & falls \ \chi = \chi_0 \\ 0, & falls \ \chi + \chi_0 \end{cases}$$

(Hier bezeichnet $\sum\limits_{n\pmod{N}}$ eine Summe über ein beliebiges Vertreter-

system von
$$\mathbb{Z}/N\mathbb{Z}$$
, z.B. $\sum\limits_{n=1}^{N}$.)

KOROLLAR: Seien χ_1 , χ_2 zwei Dirichletsche Charaktere (mod N). Dam ist

(4)
$$\frac{1}{\phi(N)} \sum_{\mathbf{n} \pmod{N}} \chi_{\mathbf{1}}(\mathbf{n}) \overline{\chi}_{\mathbf{2}}(\mathbf{n}) = \begin{cases} 1, \ falls \ \chi_{\mathbf{1}} = \chi_{\mathbf{2}} \\ 0, \ falls \ \chi_{\mathbf{1}} * \chi_{\mathbf{2}} \end{cases}.$$

<u>Beweis</u>: Für $\chi = \chi_0$ ist (3) trivial. Sei $\chi * \chi_0$ und m ε z so gewählt, daß (m,N) = 1 und χ (m) * 1 ist. Dann ist

$$(1 - \chi(m)) \sum_{n \pmod{N}} \chi(n) = \sum_{n \pmod{N}} [\chi(n) - \chi(mn)]$$

$$= \sum_{n \pmod{N}} \chi(n) - \sum_{n \pmod{N}} \chi(n) = 0$$

also, da (da mit n auch mn ein Vertretersystem von Z (mod N) durchläuft), $\chi(m) + 1$

$$\sum_{n \pmod{N}} \chi(n) = 0.$$

Das Korollar folgt, indem man $\chi_1^{}$ $\bar{\chi}_2^{}$ für χ wählt.

 $n \in \mathbb{Z}$. Dann ist

(5)
$$\sum_{X} \chi(n) = \begin{cases} \phi(N), falls & n = 1 \pmod{N} \\ 0, falls & n \neq 1 \pmod{N} \end{cases}$$

wobei über alle Dirichletschen Charaktere (mod N) summiert wird

3

Korollar: Seien a, b $\in \mathbb{Z}$, (b,N) = 1. Dann ist

(6)
$$\frac{1}{\phi(N)} \sum_{X} \chi(a) \overline{\chi}(b) = \begin{cases} 1, falls & a \neq b \pmod{N} \\ 0, falls & a \neq b \pmod{N} \end{cases}.$$

sind Charaktere auf der Quotientengruppe $(\mathbb{Z}/N\mathbb{Z})^{\times}/< n>$, und deren Ansolcher existiert wegen Satz 1, denn die Charaktere χ mit $\chi(n)$ = und χ_1 ein Dirichletscher Charakter (mod N) mit χ_1 (n) + 1. Ein dann $\chi(n)$ für alle χ verschwindet. Sei $n \neq 1 \pmod{N}$, (n,N) = 1, gibt und für alle $\chi(n) = 1$ gilt. Für (n,N) > 1 gilt (5) auch, da Beweis: Für n # 1 (mod N) ist (5) trivial, da es $\phi(N)$ Charaktere zahl ist demnach kleiner als |(Z/NZ)*|. Dann ist

$$(1 - \chi_{1}(n)) \sum_{X} \chi(n) = \sum_{X} [\chi(n) - \chi\chi_{1}(n)]$$

$$= \sum_{X} \chi(n) - \sum_{X} \chi(n) = 0$$

da $\chi\chi_1$ mit χ über die Gruppe ($\mathbb{Z}/N\mathbb{Z}$) * läuft. Da 1 - $\chi_1(n)$ + 0, man n mit folgt hieraus, daß die Summe verschwindet. Das Korollar folgt, indem nb ■ a (mod N) wählt.

ein von N verschiedener Teiler von N und ĭ

(7)
$$(\mathbf{Z}/\mathbf{NZ})^{\times} \longrightarrow (\mathbf{Z}/\mathbf{N}_{1}\mathbf{Z})^{\times} \xrightarrow{X_{1}} \mathbf{C}^{*},$$

2.B. ist der Hauptcharakter χ_0 (mod N) für N > 1 nie primitiv, auf diese Weise erhalten werden kann, heißt primitiv (oder eigentlich). Charakter X, der so entsteht, imprimitiv; ein Charakter, der nicht χ (mod N). Wir sagen, daß χ von χ_1 wobei der erste Pfeil die Reduktion (mod \mathtt{N}_1) ist, einen Charakter $extbf{N}_1$ mit der Eigenschaft, daß χ von einem primitiven Charakter zige Darstellung (7) won χ_{t} für die χ_{1} primitiv ist. Diese Zahl Zahl N $_1$, so daß χ dargestellt werden kann als die Zusammensetzung weil er von dem trivialen Charakter (mod 1) induziert wird. Für (mod N₁) induziert wird, nennt man den Führer von (7) mit geeignetem Charakter $\chi_1 \pmod{N_1}$, und dies ist die einjeden Dirichletschen Charakter χ (mod N) gibt es eine kleinste induziert wird und nennen einen

weisen einen Satz, in dem alle primitiven reellen Charaktere angegeben sieren, d.h. solche, die nur die Werte 1, 0, -1 annehmen. Wir be-Wir werden uns vor allem für reelle Charaktere $(\chi = \overline{\chi})$

8

werden.

Definition: Eine Grundzahl ist eine ganze Zahl D mit

D = 1 (mod 4), D quadratfrei,

oder

$$D = 0 \pmod{4}$$
, $\frac{D}{4}$ quadratfrei, $\frac{D}{4} = 2$ oder 3 (mod 4)

(Solche Zahlen nennt man auch Fundamentaldiskriminanten). Für eine Grundzahl D definieren wir eine Funktion $\chi_D\colon \mathbb{N}\to\mathbb{Z}$ durch

(8a)
$$\chi_{\overline{D}}(p) = (\frac{\overline{D}}{p})$$
 (p ungerade Primzahl)

(8b)
$$\chi_{\mathbf{D}}(2) = \begin{cases} 0, \text{ falls } D = 0 \pmod{4}, \\ 1, \text{ falls } D = 1 \pmod{8}, \\ -1, \text{ falls } D = 5 \pmod{8}, \end{cases}$$

(8c)
$$\chi_{\mathbf{D}}(\mathfrak{p}_{1}^{\mathbf{n}_{1}} \cdots \mathfrak{p}_{k}^{\mathbf{n}_{k}}) = \chi_{\mathbf{D}}(\mathfrak{p}_{1})^{\mathbf{n}_{1}} \cdots \chi_{\mathbf{D}}(\mathfrak{p}_{k})^{\mathbf{n}_{k}}$$

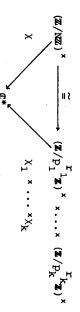
Insbesondere ist $\chi_1^{}$ der triviale Charakter.

SATZ 4: Die Funktion $n \mapsto \chi_D(n)$ (D eine Grundzahl) ist periodisch (mod |D|) und definiert einen primitiven Dirichletschen Charakter modulo |D| (ebenfalls mit χ_D bezeichnet) mit

(9)
$$\chi_{D}(-1) = \begin{cases} 1, & falls & D > 0, \\ -1, & falls & D < 0. \end{cases}$$

Jeder primitive reelle Dirichletsche Charakter ist einer der Charaktere $\chi_{ extsf{D}}.$

Beweis: Wegen Satz 1 ist jeder Dirichletsche Charakter χ (mod N), mit N = $p_1^{-1} \dots p_k^{-K}$, gleich einem Produkt $\chi_1 \dots \chi_k$, wo χ_1 von einem Charakter (mod p_1^{-1}) induziert wird:



Aus dem Diagramm geht hervor, daß χ dann und nur dann primitiv ist, wenn jeder χ_1 das ist. Für die Klassifizierung solcher Charaktere genügt es also, sich auf Primzahlpotenzführer $N=p^T$ zu be-

schränken.

မွ

Für p ungerade gibt es genau einen reellen primitiven Charakter χ (mod p). Dieser ist durch $\chi(n)=(\frac{n}{p})$ gegeben. Es gibt keinen reellen primitiven Charakter modulo p^r mit r>1.

ε#(n)	ε <mark>;</mark> (n)	n (mod 8)
0	0	0
_	_	-
0	0	2
_	7	ω
0	0	4.
	7	5
0	0	و
<u> </u>		7

definierten primitiven reellen Charaktere ϵ_0^{μ} und ϵ_0^{μ} (es muß $\chi(3) = \alpha$, $\chi(5) = \beta$, $\chi(7) = \chi(3 \times 5) = \alpha\beta$ mit α , $\beta = \pm 1$ sein, und von den 4 Möglichkeiten sind zwei die imprimitiven Charaktere χ_0 und ϵ_{μ}). Für r > 3 ist bekanntlich jede zu 1 (mod 8) kongruente Zahl modulo 2^{μ} zu einem Quadrat kongruent (siehe Aufgabe 1), also gilt für χ reell

$$n = 1 \pmod{8} \rightarrow n = x^2 \pmod{2^r}$$

 $\rightarrow \chi(n) = \chi(x^2) = \chi(x)^2 = (\pm 1)^2 = 1$,

 χ kann nicht primitiv sein. Das zeigt:

Es gibt genau einen primitiven reellen Charakter (ϵ_{μ}) modulo 4 und genau zwei (ϵ_{B}^{*}) und $\epsilon_{B}^{*})$ modulo 8; für r + 2, 3 gibt es keinen reellen primitiven Charakter (mod 2^{r}).

Wir haben jetzt alle reellen primitiven Charaktere gefunden: das sind die Produkte von Legendre Symbolen $(\frac{n}{p})$ für verschiedene ungerade Primzahlen p sowie die Produkte von solchen Charakteren mit ϵ_{μ} , ϵ_{8}^{1} oder ϵ_{8}^{n} ; insbesondere sind die einzigen Zahlen N, für die

4 mal oder 8 mal eine ungerade quadratfreie Zahl. Wir wenden jetzt es überhaupt reelle primitive Charaktere gibt, von der Gestalt 1 mal, Ergänzungssätze an, um folgende Identitäten zu erhalten: das quadratische Reziprozitätsgesetz bzw. die sogenannten 1. und 2.

$$(\frac{n}{p}) = \chi_{p}$$
, (n) für $p \neq 2$, p prim, wobei $p' = (-1)^{\frac{p-1}{2}}$

$$\varepsilon_{\mu}(n) = (\frac{-4}{n}) = \chi_{-\mu}(n) ,$$

$$\varepsilon_8^{\dagger}(n) = (\frac{8}{n}) = \chi_8(n)$$
,

$$\varepsilon_{\theta}^{"}(n) = (\frac{-\theta}{n}) = \chi_{-\theta}(n)$$
.

 $\mathrm{D}_2^{}$ wieder eine Grundzahl und es gilt Außerdem ist das Produkt zweier teilerfremder Grundzahlen ַם und

(10)
$$\chi_{D_1D_2} = \chi_{D_1}\chi_{D_2}$$
 ((D_1,D_2) = 1).

 $\chi_{ extsf{D}}$ sind, für die D ein Produkt von teilerfremden Zahlen aus der Somit ist bewiesen, daß die reellen primitiven Charaktere genau die Menge

Ergänzungssatzes leicht ist: für eine Primdiskriminante D zu beweisen, was mit Hilfe des ersten $p \mid m$ wiesen bis auf (9), und auch diese Formel brauchen wir wegen (10) nur der Formen m, -4m, 8m, -8m hat mit m quadratirei und m = 1 zu sehen, daß jede Grundzahl D ein solches Produkt ist, da D eine ist (die Zahlen aus (11) heißen Primdiskriminanten). Aber es ist leicht (mod 4), also m = II p'. Damit sind alle Aussagen des Satzes be-

$$\chi_{-\mu}(-1) = \varepsilon_{\mu}(-1) = -1 = \text{sign } (-4)$$
,

$$\chi_8(-1) = \varepsilon_8^*(-1) = 1 = \text{sign (8)}$$

$$\chi_{-8}(-1) = \varepsilon_8^*(-1) = -1 = \text{sign } (-8)$$
,

$$\chi_{\mathbf{p}}, (-1) = (\frac{-1}{\mathbf{p}}) = \begin{cases} 1, \text{ falls } \mathbf{p} = 1 \pmod{4} \\ -1, \text{ falls } \mathbf{p} = 3 \pmod{4} \end{cases} = \text{sign } (\mathbf{p}^1) .$$

Aufgaben

1. Man beweise die in diesem Paragraphen benutzten Tatsachen

4

- a) $(\mathbb{Z}/p^{r}\mathbb{Z})^{x}$ ist zyklisch $(p > 2 \text{ prim}, r \ge 1)$,
- b) $n = 1 \pmod{8} \Rightarrow n = x^2 \pmod{2^r}$ $(r \ge 3)$

pe eines endlichen Körpers), indem man das Element, das für preine Lösung liefert, modulo prin (bzw. 2^{r-1} für p=2) abändert, um eine Lösung (mod p^{r+1}) zu erhalten. sage ist Spezialfall eines bekannten Satzes über die Einheitengrupjeweils durch Induktion über r (der Fall r = 1 der ersten Aus-

2. Man beweise mit Hilfe von Aufgabe 1 folgende Isomorphismen

$$(\mathbf{Z}/\mathbf{p^{r}Z})^{\times} \cong \mathbf{Z}/\mathbf{p^{r-1}}(\mathbf{p-1})\mathbf{Z}$$
 (p ungerade)

$$(\mathbf{z}/2^{\mathbf{r}}\mathbf{z})^{\times} \cong \mathbf{z}/2 \times \mathbf{z}/2^{\mathbf{r}-2}\mathbf{z} \qquad (\mathbf{r} \ge 2)$$

bestimmen. Wieviele gibt es modulo und benutze sie, um alle primitiven Dirichletschen Charaktere

3. Man zeige durch ein Beispiel, daß für einen Dirichletschen Charakode (also die kleinste Zahl r mit $\chi(n+r) = \chi(n)$ für alle n) zwischen diesen drei Zahlen? und der Führer verschieden sein können. Welche Beziehung gibt es $\chi \pmod{N}$ der Definitionsmodul (also die Zahl

§6 L-Reiher

Sei χ ein Dirichletscher Charakter (mod N). Die Dirichletsche L-Reihe ist die Reihe × zugeordnete

(1)
$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n}.$$

Wegen der Multiplikativität von χ hat sie nach §2 eine Eulersche Wegen $|\chi(n)| \le 1$ ist diese Reihe für $\sigma > 1$ absolut konvergent. Produktdarstellung

$$L(s,\chi) = II (1 + \frac{\chi(p)}{s} + \frac{\chi(p^2)}{p^2} + ...) ;$$

wegen der strengen Multiplikativität $\chi(p^r) = \chi(p)^r$ ist sogar

(2)
$$L(s,\chi) = \prod_{p} \frac{1}{1 - \frac{\chi(p)}{s}}$$
 $(\sigma > 1)$.

Für den Hauptcharakter χ_0 ist nach (2)

$$L(s,\chi_{0}) = II (1 - \chi_{0}(p)p^{-s})^{-1}$$

$$= II (1 - p^{-s})^{-1}$$

$$= II (1 - p^{-s}) \cdot II (1 - p^{-s})^{-1}$$

$$= II (1 - p^{-s}) \cdot \zeta(s);$$

$$(3)$$

$$= II (1 - p^{-s}) \cdot \zeta(s);$$

p|N Stelle s = 1 als einziger Singularität. mit einem einfachen Pol mit Residuum kativen Faktor mit der Riemannschen Zetafunktion identisch. Insbesonalso ist die L-Reihe in diesem Fall bis auf einen einfachen multiplidere läßt sie sich auf die ganze komplexe Ebene meromorph fortsetzen $II (1 - p^{-1}) = \frac{\phi(N)}{N}$ an der

Für $\chi + \chi_0$ ist für $x \to \infty$

$$\begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) = \begin{vmatrix} \mathbf{N} [\mathbf{x}/\mathbf{N}] \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1 \end{vmatrix} \times (\mathbf{n}) + \begin{vmatrix} \mathbf{x} \\ \mathbf{n} = 1$$

0); insbesondere definiert (1) eine in $\sigma > 0$ holomorphe Funktion. In zisse von $\mathtt{L}(s,\chi)$ kleiner oder gleich 0 (offensichtlich sogar gleich genügt einer Funktionalgleichung analog zu der von $\zeta(s)$ (s. §7). der Tat läßt sich diese Funktion auf ganz ¢ holomorph fortsetzen und wegen Satz 2, §5; deswegen ist nach Satz 2 von §1 die Konvergenzabs-

von $L(1,\chi)$ (der nach dem eben Gesagten definiert ist) stets von vieler Primzahlen in arithmetischen Folgen schließen. Wir beweisen Null verschieden ist; hieraus kann man leicht die Existenz unendlich Der wichtigste Satz über L-Reihen ist die Tatsache, daß der Wert beiden Ergebnisse.

SATZ: Sei χ ein von χ_0 verschiedener Dirichletscher Charakter. Dann ist

(4)
$$L(1,\chi) + 0$$
.

Beweis: Sei

ಭ

(5)
$$F(s) = II L(s,\chi) ,$$

$$\chi$$

wo χ über sämtliche Dirichletschen Charaktere ist für $\sigma > 1$ nach (2) (mod N) läuft. Dann

$$\log F(s) = \sum_{x p} \log (1 - \chi(p)p^{-s})^{-1}$$

$$= \sum_{x p} \sum_{r=1}^{\infty} \frac{1}{r} \frac{\chi(p)^{r}}{p^{rs}}$$

$$= \phi(N) \sum_{p} \sum_{r\geq 1} \frac{1}{rp^{rs}}$$

$$p^{r} = 1 \pmod N$$

6)

 $\log F(s) \ge 0$ für s reell und > 1, und somit (die letzte Gleichung folgt aus Satz 3, §5); insbesondere ist

(7)
$$\lim_{s\to 1} F(s) \ge 1.$$
s reell

 $L(1,\overline{\chi}) = \overline{L(1,\chi)} = 0$ wäre, ist dieser Charakter χ (falls er existiert) gleich $\overline{\chi}$, also reell. Wir können uns also für den Beweis des Charakter $\chi + \chi_0$ mit $L(1,\chi) = 0$ geben. Da mit $L(1,\chi) = 0$ auch ben, was offensichtlich (7) widerspricht. Es kann also höchstens einen nach F(s) an der Stelle s=1 holomorph sein und den Wert O ha-Satzes auf reelle Charaktere beschränken. einen Pol hat, nämlich $L(s,\chi_0)$, und dieser Pol ist nach (3) einfach: Das Produkt (5) enthält nur einen Faktor, der an der Stelle s=1 $L(1,\chi) = 0$ ware für zwei oder mehr Charaktere $\chi + \chi_0$, müßte dem-

Sei also χ reell mit $L(1,\chi) = 0$, und sei

(8)
$$\Phi(s) = \frac{L(s,\chi) L(s,\chi_0)}{L(2s,\chi_0)}.$$

s = 1 durch die Nullstelle von $L(s,\chi)$ dort aufgehoben wird, während der Nenner $L(2s,\chi_0)$ wegen (3) für $\sigma > \frac{1}{2}$ von Null verschieden ist. Diese Funktion ist für $\sigma > \frac{1}{2}$ holomorph, da der Pol von L(s, χ_0) bej Für $\sigma > 1$ ist

$$\phi(s) = \prod \frac{1 - \chi_0(p)p^{-2s}}{p(1 - \chi(p)p^{-s})(1 - \chi_0(p)p^{-s})}$$

$$= \prod \frac{1 - p^{-2s}}{p \ln(1 - \chi(p)p^{-s})(1 - p^{-s})}$$

(da $\chi(p) = \pm 1$ für pIN ist), also

 $\phi(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \quad (\sigma > 1) \quad \text{mit } a_n \ge 0 .$

(Um dies zu erreichen, brauchten wir den Faktor $1 + p^{-S} = \frac{1 - p^{-2S}}{1 - p^{-S}}$ in dem Euler-Produkt von Φ ; das ist der Grund für die Wahl der Funktion (8).) Da Φ (s) in $\sigma > \frac{1}{2}$ holomorph ist, ist für $|s-2| < \frac{3}{2}$

$$\phi(s) = \sum_{k=0}^{\infty} \frac{(s-2)^k}{k!} \phi^{(k)}(2) = \sum_{k=0}^{\infty} \frac{(2-s)^k}{k!} \sum_{n=1}^{\infty} \frac{a_n (\log n)^k}{n^2}$$

reell, $\frac{1}{2}$ < s < 2, eine monoton fallende Funktion dar, also ist und wegen $a_n \stackrel{>}{_{\sim}} 0$ stellt die rechts stehende Doppelsumme für s

$$\phi(s) \ge \phi(2) \ge 1$$
 (s reell, $\frac{1}{2} < s < 2$).

Aber nach (8) ist

$$\lim_{S \to \frac{1}{2}} \Phi(s) = \frac{L(\frac{1}{2}, \chi) L(\frac{1}{2}, \chi_0)}{\lim_{\Sigma \to \frac{1}{2}} L(2s, \chi_0)} = 0 ,$$

Widerspruch beweist den Satz. da $L(2s,\chi_0)$ nach (3) an der Stelle $s=\frac{1}{2}$ einen Pol hat. Dieser

sen. Sei nämlich χ reell, und der Tat kann man (4) auch durch direkte Anwendung jenes Satzes bewei-Beweis des Landauschen Satzes (Satz 4, §1) sehr analog ist, und in Es ist dem Leser vielleicht aufgefallen, daß dieser Beweis zu dem

(9)
$$\psi(s) = L(s,\chi) \zeta(s) = \sum_{n=1}^{\infty} \frac{\rho(n)}{n^s},$$

(10)
$$\rho(n) = \sum_{\mathbf{d} \mid \mathbf{n}} \chi(\mathbf{d}) .$$

Dann ist

$$\psi(s) = \prod \frac{1}{p (1 - \chi(p)p^{-S})(1 - p^{-S})}$$

$$= \prod \frac{1}{\chi(p)=1 (1 - p^{-S})^{2}} \cdot \prod \frac{1}{\chi(p)=0 (1 - p^{-S})} \cdot \prod \frac{1}{\chi(p)=-1 (1 - p^{-2S})}$$

$$= \prod_{\chi(p)=1} \left(1 + \frac{2}{p^{s}} + \frac{3}{p^{2s}} + \dots\right) \cdot \prod_{\chi(p)=0} \left(1 + \frac{1}{p^{s}} + \frac{1}{p^{2s}} + \dots\right)$$

$$\cdot \prod_{\chi(p)=-1} \left(1 + \frac{1}{p^{2s}} + \frac{1}{p^{4s}} + \dots\right),$$

also für alle n

(12)
$$\rho(n) \ge 0$$
, $\rho(n^2) \ge 1$

dem Landauschen Satz muß also die Reihe. $\sum
ho(n) n^{-S}$ für $\sigma > 0$ konvergent sein, was im Widerspruch zu der aus (12) folgenden Beziehung so hat $\psi(s)$ nach (9) keine Singularität in $\sigma > 0$; nach (12) und als Anzahl der Ideale mit Norm n erkannt werden). Ist $L(1,\chi)=0$, indem $\psi(s)$ als Zetafunktion eines quadratischen Körpers und $ho\left(n\right)$ (die Beziehungen (11) und (12) werden später eine Bedeutung erhalten,

$$\sum_{n=1}^{\infty} \frac{\rho(n)}{n^{1/2}} \geq \sum_{n=1}^{\infty} \frac{\rho(n^2)}{n} \geq \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

steht. Damit ist unser Satz wieder bewiesen.

schiedene Beweise anzugeben). Es folgt nämlich aus (6), daß die durch geben, und zwar einen, der die Reduktion auf den Fall eines reellen σ > 0 holomorph, also nach dem Landauschen Satz die entsprechende $\mathbf{F}(\mathbf{s})$ an der Stelle $\mathbf{s}=1$ und deswegen in der ganzen Halbebene χ nicht braucht, sondern (4) simultan für alle χ (mod N) zeigt meinerung des kleinen Fermatschen Satzes ist (für s Dirichletsche Reihe für $\sigma > 0$ konvergent und damit auch die Reihe Charakter $\chi + \chi_0$ mit $L(1,\chi) = 0$, so wäre nach (5) die Funktion Reihe mit positiven Koeffizienten gegeben wird. Gäbe es auch nur einen (5) definierte Funktion F(s) für $\sigma > 1$ durch eine Dirichletsche (wegen der Wichtigkeit des Satzes scheuen wir uns nicht, drei ver-(6) in diesem Gebiet konvergent. Aber nach der Eulerschen Verallge-Man kann mit dem Landauschen Satz einen noch kürzeren Beweis an-

$$\sum_{\substack{p \\ r = 1 \text{ (mod N)}}} \sum_{\substack{rprs \\ r = 1}} \frac{1}{rprs} \ge \phi(N) \sum_{\substack{p \nmid N \\ p \nmid N}} \sum_{\substack{r=1 \\ k = 1}} \frac{1}{rprs}$$

$$= \sum_{\substack{p \mid N \\ p \mid N}} \sum_{k=1}^{\infty} \frac{1}{kp^{ks\phi(N)}}$$

$$= \sum_{\substack{p \mid N \\ p \mid N}} \log \frac{1}{1 - p^{-s\phi(N)}}$$

$$= \log L(s\phi(N), \chi_0),$$

also für $s = \frac{1}{\phi(N)}$ sicherlich nicht konvergent.

Noch ein vierter Beweis dafür, daß (4) für reelle Charaktere gilt, wird aus einem Ergebnis von §8 folgen, das besagt, daß für solche χ der Wert von L(1, χ) zu einer (stets von O verschiedenen) Klassen-zahl proportional ist; auf diesem Wege hat ursprünglich Dirichlet den Satz bewiesen.

KOROLLAR: Sei N eine natürliche Zahl, a zu N teilerfremd. Dann enthält die arithmetische Folge $\{Nk+a\}_{k\in \mathbf{N}}$ unendlich viele Primzahlen; es ist sogar

(13)
$$\sum_{\substack{p \text{ prim} \\ p \text{ ma} \text{ (mod N)}}} \frac{1}{p} = \infty .$$

Beweis: Nach dem Korollar zu Satz 3, §5, ist für σ >

$$\sum_{\mathbf{p}} \sum_{\mathbf{r} \geq 1} \frac{1}{\mathbf{r} \mathbf{p}^{\mathbf{r} \mathbf{s}}} = \sum_{\mathbf{p}} \sum_{\mathbf{r} \geq 1} \frac{1}{\phi(\mathbf{N})} \sum_{\mathbf{X}} \overline{\chi}(\mathbf{a}) \ \chi(\mathbf{p}^{\mathbf{r}}) \cdot \frac{1}{\mathbf{r} \mathbf{p}^{\mathbf{r} \mathbf{s}}}$$

$$\mathbf{p}^{\mathbf{r}} = \mathbf{a} \pmod{\mathbf{N}}$$

$$= \frac{1}{\phi(N)} \sum_{X} \overline{x}(a) \sum_{P} \sum_{r=1}^{\infty} \frac{\chi(P)^{r}}{rP^{rS}}$$

$$= \frac{1}{\phi(N)} \sum_{X} \overline{x}(a) \log L(s,\chi)$$

$$= \frac{1}{\phi(N)} \left[\log L(s,\chi_{0}) + \sum_{X \neq \chi_{0}} \overline{x}(a) \log L(s,\chi) \right],$$

(14)

wobei die Vertauschung wegen der absoluten Konvergenz erlaubt ist (hier bedeuten [] und [] wie üblich die über alle Primzahlen bzw. alle Dirichletschen Charaktere (mod N) erstreckten Summationen). Da log $L(s,\chi_0)$ für $s\to 1$ nach Unendlich strebt, aber log $L(s,\chi)$ für $\chi * \chi_0$ wegen (4) beschränkt ist, folgt aus (14), daß die Summe auf der linken Seite für s=1 divergiert. Aber

$$\sum_{\substack{p \\ r>1}} \sum_{r>1} \frac{1}{rp^r} \leq \sum_{\substack{p \\ r=2}}^{\infty} \frac{1}{rp^r}$$

$$p^r \text{wa} (\text{mod N})$$

$$\leq \sum_{p} \sum_{r=2}^{\infty} \frac{1}{2p^r} = \sum_{p} \frac{1}{2p(p-1)} \leq \sum_{n=2}^{\infty} \frac{1}{2n(n-1)} = \frac{1}{2}$$

also muß die Summe der Termen mit r = 1 divergieren.

Aufgaben

1. Man beweise elementar die Existenz unendlich vieler Primzahlen der Gestalt 4n-1 bzw. 4n+1, indem man unter der Annahme, es gäbe nur endlich viele, die Zahlen

4
$$\prod_{p=3 \pmod{4}} p-1 \text{ bzw. } 4 \prod_{p=1 \pmod{4}} p^2+1$$

bildet und einen Widerspruch ableitet. Für welche anderen arithmetischen Folgen gibt es einen analogen Beweis?

2. Man zeige, daß für jeden Dirichletschen Charakter χ

$$\frac{1}{L(s,\chi)} = \sum_{n=1}^{\infty} \frac{\mu(n) \chi(n)}{n^{s}} \qquad (\sigma > 1)$$

ist, wobel $\mu(n)$ die in §2 eingeführte Möbiussche Funktion bezeichnet. Kann man aus dem Satz dieses Paragraphen schließen, daß die Reihe für s = 1 konvergiert?

§7 Werte von Dirichletschen Reihen, insbesondere von L-Reihen an negativen ganzen Stellen

In §4 haben wir gesehen, daß die Riemannsche Zetafunktion (s) für alle geraden Argumente s > 1 und für alle ganzzahligen Argumente s < 1 Werte annimmt, die man in geschlossener Gestalt angeben kann; für s < 1 sind diese Werte stets rational und in der Hälfte der Fälle gleich Null. Ähnliche Eigenschaften gelten für alle Dirichletschen L-Reihen. Da diese Reihen Funktionalgleichungen erfüllen, braucht man die Werte nur für s ≥ 1 oder für s ≤ 0 zu berechnen. Überraschenderweise stellt sich heraus, daß die Werte an den negativen ganzzahligen Stellen trotz der Nichtkonvergenz der Reihen wesentlich einfacher auszurechnen sind als die an positiven ganzzahligen Stellen. Dies liegt an folgendem Satz, welcher es ermöglicht, unter sehr allgemeinen Voraussetzungen Werte von Dirichtletschen Reihen für ganzzahlige negative Argumente zu bestimmen.

f(t) für $t \rightarrow 0$ die asymptotische Entwicklung

(1)
$$f(t) \sim b_0 + b_1 t + b_2 t^2 + \dots$$
 $(t \to 0)$

so läßt sich $\phi(s)$ holomorph in die ganze komplexe Ebene fortsetzen und es gilt

(2)
$$\varphi(-n) = (-1)^n \text{ ni } b_n \quad (n = 0, 1, 2, ...)$$

Allgemeiner, wern f(t) für $t \to 0$ die asymptotische Entwicklung

(3)
$$f(t) \sim \frac{b_{-1}}{t} + b_0 + b_1 t + b_2 t^2 + \dots$$

besitzt, so hat $\phi(s)$ eine meromorphe Portsetzung, die Funktion $\phi(s) - \frac{b-1}{s-1}$ ist ganz, und die Werte $\phi(0)$, $\phi(-1)$, ... werden nach wie vor durch die Formel (2)

natürliche Zahl N die Abschätzung Bemerkungen: 1. "Asymptotische Entwicklung" bedeutet, daß für jede

(4)
$$\left| f(t) - \sum_{n < N} b_n t^n \right| \le Ct^N$$
 (0 < t < t₀)

lung \tilde{l} b tⁿ hat; i.a. wird aber nicht verlangt, daß die Reihe ∞ n=0 n tⁿ konvergiert, noch, falls sie das tut, daß ihr Wert gleich gilt (kurz: $f(t) = \sum_{n < N} b_n t^n + O(t^N)$). Insbesondere ist (1) erfüllt, falls $\int_{0}^{\infty} f(t)$ im Punkt t = 0 analytisch ist und die Taylor-Entwick-

2. Whe aus dem bewers continued by the authors of the series of the ser 2. Wie aus dem Beweis ersichtlich sein wird, gilt der Satz auch für

Dirichletschen Reihen) gilt im Bereich der absoluten Konvergenz die (16) von §3 (bzw. Gleichung (18) von §3 im Falle von allgemeiner nomial wachsen und die e^{-nt} exponentiell abfallen. Wegen Gleichung sitiven Werte von Beweis des Satzes: Es ist klar, daß die Reihe für f(t) für alle pot absolut konvergiert, da die a höchstens poly-nt

$$\Gamma(s)\phi(s) = \int_{0}^{\infty} f(t)t^{s-1} dt.$$

Wir zerlegen das Integral als $I_1(s) + I_2(s)$ mit

49

$$I_1(s) = \int_0^1 f(t)t^{s-1} dt$$
, $I_2(s) = \int_1^\infty f(t)t^{s-1} dt$.

eine ganze Funktion von s dar. Weiter gilt Da f(t) für t $\rightarrow \infty$ exponentiell abfällt (nämlich f(t) = $O(e^{-t})$ bzw. f(t) = $O(e^{-t})$, konvergiert das zweite Integral für alle s, und zwar absolut und gleichmäßig auf kompakten Mengen, es stellt also

$$\int\limits_0^1 \left(\sum\limits_{n < N} b_n t^n \right) t^{s-1} \ dt = \sum\limits_{n < N} b_n \frac{t^{n+s}}{n+s} \left| \frac{1}{0} \right| = \sum\limits_{n < N} \frac{b_n}{n+s} \quad (\sigma > 1) \ ,$$

$$I_{1}(s) = \sum_{n < N} \frac{b_{n}}{n+s} + \int_{0}^{1} \left(f(t) - \sum_{n < N} b_{n} t^{n}\right) t^{s-1} dt$$
 (0 > 1)

biet eine holomorphe Funktion darstellt. Die Funktion $\Gamma(s)\phi(s) = \sum\limits_{n \neq N} \frac{b_n}{n+s}$ hat also eine holomorphe Fortsetzung in Aig Waller . hat also eine holomorphe Fortsetzung in die Halbebene $\operatorname{Re}(s) > -N$. Pol bei s = 1 mit dem Residuum b $_1$ holomorph. Durch Vergleich der Residuen von $\Gamma(s) \phi(s)$ und $\Gamma(s)$ (vgl. Aufgabe 3, §3) erhält man s=-1, s=-2, ... verschwindet, ist $\phi(s)$ bis auf einen einfachen holomorph ist. Da die Funktion $1/\Gamma(s)$ ganz ist und für s=0, meromorphe Fortsetzung auf ganz ${\mathfrak C}$ hat, die bis auf (eventuelle) Da N beliebig groß gewählt werden kann, folgt, daß $\Gamma(s)\phi(s)$ eine und auf kompakten Mengen gleichmäßig konvergiert, also in diesem Gewobei das Integral wegen (4) für alle s mit Re(s) > -N absolut einfache Pole bei s = -n (n = '-1, 0, 1, 2, ...) mit Residuum b

Als erstes Beispiel nehmen wir $\varphi(s)=\zeta(s)$, die Riemannsche Zeta-

$$f(t) = \sum_{n=1}^{\infty} e^{-nt} = \frac{1}{e^{t}-1}$$

mit der asymptotischen Entwicklung (hier sogar konvergent für

$$f(t) \sim \frac{1}{t} + \sum_{n=0}^{\infty} \frac{B_{n+1}}{(n+1)!} t^n$$
,

und der Satz gibt sofort die holomorphe Fortsetzung von $\zeta(s) = \frac{1}{s-1}$

auf die ganze Ebene sowie die in §4 erhaltenen Werte

$$\zeta(-n) = (-1)^{n} \frac{B_{n+1}}{n+1} = \begin{cases} -\frac{1}{2} & (n = 0) , \\ -\frac{B_{n+1}}{n+1} & (n \ge 1, n \text{ ungerade}) , \\ 0 & (n \ge 2, n \text{ gerade}) . \end{cases}$$

tät der Koeffizienten gilt dann und setzen $a_n = \chi(n)$, $\varphi(s) = L(s,\chi)$ in Satz 1. Wegen der Periodizi-Wir betrachten jetzt einen Dirichletschen Charakter χ (mod N)

$$f(t) = \sum_{n=1}^{\infty} \chi(n) e^{-nt}$$

$$= \sum_{m=1}^{N} \chi(m) (e^{-mt} + e^{-(m+N)t} + e^{-(m+2N)t} + ...)$$

$$= \sum_{m=1}^{N} \chi(m) \frac{e^{-mt}}{1 - e^{-Nt}}.$$

Die Funktion e^{-mt} hat für t \rightarrow 0 die asymptotische Entwicklung $\sum_{k=0}^{\infty} \frac{(-m)^k}{k!} t^k$ und die Funktion $\frac{1}{1-e^{-Nt}}$ hat die Entwicklung $\sum_{r=0}^{\infty} \frac{(-1)^r B_r}{r!} (Nt)^{r-1}$, wobei die B_r Bernoullische Zahlen sind (s. (4.7)). Es gilt also

$$f(t) \sim \sum_{m=1}^{N} \chi(m) \sum_{k=0}^{\infty} \sum_{r=0}^{\infty} \frac{(-1)^{k+r} m^{k} N^{r-1} B_{r}}{r! k!} t^{r+k-1}$$

d.h. eine asymptotische Entwicklung der Gestalt (3) mit (5)
$$b_{n} = \sum_{m=1}^{N} \chi(m) \sum_{\substack{k,r \geq 0 \\ k+r=n+1}} \frac{(-1)^{k+r} B_{r} m^{k} N^{r-1}}{k! r!} \qquad (n \geq -1)$$

n = -1 reduziert sich diese Summe auf

$$b_{-1} = \frac{1}{N} \sum_{m=1}^{N} \chi(m)$$
,

also $L(s,\chi)$ in diesem Fall zu einer für alle s holomorphen Funkwas für $\chi * \chi_0$ verschwindet (§5, Satz 2); nach Satz 1 läßt sich tion fortsetzen. Für $\chi = \chi_0$ ist

$$b_{-1} = \frac{1}{N} \quad \sum_{m=1}^{N} 1 = \frac{\phi(N)}{N}$$
 $(m, N) = 1$

in Ubereinstimmung mit (6.3). und $L(s,\chi)$ hat einen einfachen Pol mit Residuum $\frac{\phi(N)}{N} \text{ bei } s = 1,$

Wir können (5) etwas bequemer schreiben, wenn wir die durch

(6)
$$B_{n}(x) = \int_{k=0}^{n} {n \choose k} B_{n-k} x^{k}$$

definierten Bermoullischen Polynome einführen, also

$$B_{0}(x) = 1$$
,
 $B_{1}(x) = x - \frac{1}{2}$,
 $B_{2}(x) = x^{2} - x + \frac{1}{6}$,
 $B_{3}(x) = x^{3} - \frac{3}{2}x^{2} + \frac{1}{6}x$,

Dann ist nämlich

$$b_{n} = \frac{(-1)^{n+1}}{(n+1)!} N^{n} \sum_{m=1}^{N} \chi(m) B_{n+1}(\frac{m}{N}) ,$$

und wir erhalten aus Satz 1 den

SATZ 2: Sei χ ein Dirichletscher Charakter modulo N und $L(s_r\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ Residuum $\frac{\phi(N)}{N}$ bei s=1 für $\chi=\chi_0$, und es gilt die ganze Ebene fortsetzen, und zwar holomorph bis auf einen einfachen Pol mit (Re(s) > 1) die entsprechende L-Reihe. Dann läßt sich $L(s,\chi)$ meromorph auf

(7)
$$L(-n,\chi) = -\frac{N^n}{n+1} \sum_{m=1}^{N} \chi(m) B_{n+1}(\frac{m}{N})$$
 $(n = 0, 1, 2, ...)$

Als Beispiel des Satzes haben wir

(8)
$$L(O,\chi) = -\frac{1}{N} \sum_{m=1}^{N} \chi(m) m (\chi * \chi_0)$$
.

hält man sofort die Formeln sammenhängen vorkommen, haben sehr schöne Eigenschaften. Aus (6) er-Die Bernoullischen Polynome, die in der Mathematik in vielen Zu-

(9)
$$B_n(0) = B_n$$
,

(10)
$$\frac{d}{dx} B_n(x) = n B_{n-1}(x)$$

ဌ

(die zusammen eine zweite, induktive Definition der Polynome $\,^{\rm B}_{\rm n}(x)\,^{\rm C}$ liefern), sowie die erzeugende Funktion

11)
$$\sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} = \frac{te^{xt}}{e^{t-1}}$$

(die ebenfalls als Definition der $B^{}_n(x)$ dienen kann). Aus der erzeugenden Funktion erhält man zwei weitere Eigenschaften der Polynome $B^{}_n(x)$: die Symmetrie

(12)
$$B_n(1-x) = (-1)^n B_n(x)$$

und die Rekursion

(13)
$$B_n(x+1) = B_n(x) + nx^{n-1}$$
.

Es ist übrigens wegen der aus (13) folgenden Formel für Potenzsummen

daß Jakob Bernoulli die nach ihm benannten Zahlen B_k eingeführt hat. Wegen $\chi(-1)^2=\chi(1)=1$ gilt für jeden Dirichletschen Charakter χ entweder $\chi(-1)=+1$ oder $\chi(-1)=-1$; wir nennen χ im ersten Fall gerade und im zweiten Fall wigerade. Der triviale Charakter ist z.B. immer gerade. Mit Hilfe von (12) erhält man nun leicht das folgende Korollar zu Satz 2:

KOROLLAR: Außer im Falle N=1, n=0 gilt für alle χ und alle $n\geq 0$

$$\chi(-1) = (-1)^{n} \Rightarrow L(-n,\chi) = 0$$

d.h. die L-Reihe von einem geraden bzw. ungeraden Charakter verschwindet an den negativen geraden bzw. ungeraden Stellen.

pas Korollar sowie seine Umkehrung (d.h., daß $L(-n,\chi)$ nur für die genannten Werte von n verschwindet) können auch aus der Funktionalgleichung der L-Reihe $L(s,\chi)$ abgeleitet werden. Wegen ihrer großen Bedeutung für die analytische Zahlentheorie werden wir diese Funktionalgleichung hier angeben, obwohl sie in diesem Buch weder bewiesen noch verwendet werden wird. Wir können uns dabei auf primitive Charaktere beschränken, da für einen von einem Charakter χ_1 indu-

zierten Charakter χ (mod N) die elementare Beziehung

$$L(s,\chi) = \prod_{p \mid N} \left(1 - \frac{\chi_1(p)}{p^s}\right) \cdot L(s,\chi_1)$$

zwischen den L-Reihen gilt. Die Funktionalgleichung für χ primitiv ist

$$\pi^{-s/2} N^{s/2} \Gamma(\frac{s+\delta}{2}) L(s,\chi)$$

$$= \frac{G}{i^{\delta} \sqrt{N}} \pi^{-(1-s)/2} N^{(1-s)/2} \Gamma(\frac{1-s+\delta}{2}) L(1-s,\bar{\chi}) ;$$

(15)

Aus der Funktionalgleichung und Satz 2 erhält man die Werte von $L(n,\chi)$ für $n \ge 1$, $\chi(-1) = (-1)^n$; z.B. liefern (8) und (15)

$$L(1,\chi) = -\frac{\min_{i} G}{N^2} \sum_{m=1}^{N} \overline{\chi}(m) m$$

für χ primitiv und ungerade. Da wir aber die Funktionalgleichung nicht bewiesen haben und ohnehin auf diese Weise nur die Hälfte der Fälle erledigen können, werden wir in §9 einen anderen Weg zur Berechnung von $L(1,\chi)$ beschreiben.

Wir schließen mit einer kleinen Tabelle von Werten von L-Reihen an negativen ganzen Stellen für die in §5 bestimmten primitiven reellen Charaktere $\chi_{\mbox{\scriptsize D}}.$

Tabelle 1. Werte von $L(-n,\chi_D)$

$\frac{1}{2}$ L $(-4,\chi_{\rm D})$	$-\frac{1}{2}\operatorname{L}(-2,\chi_{\widehat{\mathbf{D}}})$	Ι(0, χ _D)	ם
ω <u> -</u>	9 -1	ωl—	ل
υļα	41-	NI→	4
16	718	-	-7
2 57	ΝΙω		-8
1275 11	ω	_	11
496	œ	2	-15
1345	- 1	_	-19
1761	15	2	-20
3408	24	ω	-23
3985	23	2	-24
12960	48	ω	-31
21186	54	2	-35

r=1 :
f (r)
∥ 0 <u>~</u> ¤
f(x)dx
+ X-1 k=0
$\frac{(-1)^{k}}{(k+1)!}$
(f(k)(0)

- f (k) (N)

wobei K > 1 und N natürliche Zahlen sind, f(x) eine genügend

 $\frac{(-1)^{K}}{K!} \int_{0}^{K} B_{K}(x-[x]) f^{(K)}(x) dx$

tion; den allgemeinen Fall erhält man, indem man diesen Spezialfall Hinweis: Der Fall N = 1 folgt aus (10) durch partielle Integra-

 $f(x) = x^{n}, N > n.$ zahligen Teil von x bezeichnet. Formel (14) ist der Spezialfall oft differenzierbare Funktion auf [O,N] ist und [x] den ganz-

f(x), f(x+1), ..., f(x+N-1) anwendet und summiert.

Aufgaben

 $-\frac{1}{2}L(-5,\chi_{\rm D}) \left| \frac{1}{504} \right|$

 $\frac{1}{2}$ L(-3, χ_D) $\left| \frac{1}{240} \right|$

23

8

154

261

452

471

846

σ

 $-\frac{1}{2}L(-1,\chi_{D})$

201-

U

2

ದ

24

28

ω

- 1. Man beweise die erste Aussage von Satz 1 (nämlich, daß sich aus Fortsetzbarkeit von $\varphi(s)$ sowie die Werte (2) ergeben) auf folder Existenz einer asymptotischen Entwicklung (1) die holomorphe
- a) Die Aussage gilt für $\phi(s) = n^{-s}$ und daher für jede endliche Dirichletsche Reihe.
- ᡦ bar ist und daß $\varphi(-n) = 0$ für $0 \le n < N$. daß $\phi(s)$ in die Halbebene Re(s) > -N holomorph fortsetz- φ und f wie im Satz folgt aus $f(t) = O(t^N)$ $(t \to 0)$,
- c) Für vorgegebene b_0, \ldots, b_{N-1} $\sum_{n \in \mathbb{N}} b_n t^n + o(t^N) \text{ ist.}$ sche Reihe, deren zugehörige Exponentialreihe für $t \rightarrow 0$ gleich gibt es eine endliche Dirichlet-
- 2. Man verifiziere die Eigenschaften (9) (14) der Bernoullischen
- 3. Sei $\zeta(s,a) = \sum_{n=0}^{\infty} (n+a)^{-s}$ (Re(s) > 1, a > 0) $s = 0, -1, -2, \dots$ die Werte eine holomorphe Fortsetzung in die ganze Ebene hat und für Zetafunktion. Mit Hilfe von Satz 1 zeige man, daß $\zeta(s,a) - \frac{1}{s-1}$ die Hurwitzsche

$$\zeta(-n,a) = -\frac{1}{n+1}B_{n+1}(a)$$

annimmt. Insbesondere folgt Satz 2 aus der Identität $L(s,\chi) = N^{-S} \sum_{m=1}^{N} \chi(m) \; \zeta(s,m) \; \text{ und (13) aus der Identität}$ $\zeta(s,a) = a^{-S} + \zeta(s,a+1) \; .$

4. Man zeige, daß $B_n(\frac{1}{2}) = -(1-2^{1-n})B_n$, und allgemeiner, daß $B_{n}(kx) = k^{n-1} \sum_{j=0}^{k-1} B_{n}(x + \frac{j}{k})$

(k = 1, 2, ...)

Literatur zu Teil I

Die analytischen bzw. formalen Eigenschaften von Dirichletschen Reihen werden in

G.H. Hardy und M. Riesz, The General Theory of Dirichlet's Series, Cambridge Tracts No. 18, Cambridge 1915

bzw.

G.H. Hardy und E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford 1971, Kap. XVI, XVII

(in deutscher übersetzung erschienen bei Oldenburg, München 1958) ausführlich behandelt, wobei das zweite Buch auch sonst als Einführung und Nachschlagewerk für die elementare Zahlentheorie sehr zu empfehlen ist. Beide Themen werden auch in

T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York-Heidelberg-Berlin 1976, Kap. 2, 11

behandelt. Die Eigenschaften der Gammafunktion werden in fast jedem Buch über Funktionentheorie und in vielen über analytische Zahlen-theorie angegeben, z.B.

L.V. Ahlfors, Complex Analysis, McGraw-Hill, New York 1966, §5.2.4.

Für die Mellin-Transformation und ihre zahlentheoretischen Anwendungen siehe etwa

H. Rademacher, Topics in Analytic Number Theory, Grundlehren 169, Springer-Verlag, New York-Heidelberg-Berlin 1973, Kap. 3.

Das beste Werk speziell über die Riemannsche Zetafunktion ist

H. Edwards, Riemann's Leta Function, Academic Press, New York-London 1974,

während die allgemeine Theorie der Dirichletschen Charaktere und L-Reihen im oben zitierten Buch von Apostol (Kap. 6, 12) und in

H. Davenport, Multiplicative Number Theory, Markham, Chicago 1967, C.L. Siegel, Analytische Sahlentheorie I. II. vervielfältigte Vorlesu

C.L. Siegel, Analytische Zahlentheorie I, II, vervielfältigte Vorlesungsausarbeitung, Göttingen 1963,

die beide ausgezeichnet sind, behandelt wird.

Teil II. Quadratische Körper und ihre Zetafunktionen

§8 Binäre quadratische Formen

Neben dem Beweis des Satzes, daß arithmetische Folgen unendlich viele Primzahlen enthalten, war der Wunsch, Klassenzahlen binärer quadratischer Formen ausrechnen zu können, einer der Hauptgründe Dirichlets, Charaktere und L-Reihen einzuführen. Was diese Klassenzahlen sind und wie sie mit L-Reihen zusammenhängen, wollen wir in diesem Paragraphen erläutern, wobei wir im wesentlichen Dirichlets Argument folgen werden.

Als erstes müssen wir etwas über die Theorie der quadratischen Formen erzählen, die fast ganz von Gauß in den Disquisitiones Arithmeticae entwickelt wurde. Der Ausgangspunkt dieser Theorie ist die Frage nach der Lösbarkeit von quadratischen Diophantischen Gleichungen, z.B. der Nachweis, daß die Pellsche Gleichung

(1)
$$t^2 - Du^2 = 4$$

für jede Nichtquadratzahl D > O eine Lösung mit u \pm O hat oder der Fermatsche Satz, daß jede Primzahl p \equiv 1 (mod 4) eine Darstellung

(2)
$$p = x^2 + y$$

zuläßt. Außerdem interessiert man sich für die Anzahl der Lösungen, z.B für die Tatsache, daß die Darstellung (2) bis auf die Reihenfolge von x und y eindeutig ist. Allgemein ist eine binäre quadratische Form ein Ausdruck der Gestalt

(3)
$$f(x,y) = ax^2 + bxy + cy^2$$
,

wobei a, b, c (die *Koeffizienten* der Form) als fest und x, y als veränderlich anzusehen sind. Wir werden stets annehmen, daß die Koeffizienten a, b, c in Z liegen und auch, da wir nur binäre Formen (d.h. Formen in zwei Variablen) betrachten, das Wort "binär" häufig

weglassen. Die Hauptfrage ist dann, für eine gegebene quadratische Form f und ganze Zahl n die Lösungen der Gleichung f(x,y) = n $(x,y \in \mathbb{Z})$ zu beschreiben.

Sei $({\alpha\atop Y}{\beta\atop \delta})$ eine 2 x 2 Matrix mit ganzzahligen Koeffizienten und Determinante 1. Ersetzen wir x und y in (3) durch

(4)
$$x' = \alpha x + \beta y,$$
$$y' = \gamma x + \delta y,$$

so geht (3) in die Form $a'x^2 + b'xy + c'y^2$ mit

(5)
$$a'x^2 + b'xy + c'y^2 = a(\alpha x + \beta y)^2 + b(\alpha x + \beta y)(\gamma x + \delta y) + c(\gamma x + \delta y)^2,$$

d.h. mit

$$a' = a\alpha^2 + b\alpha\gamma + c\gamma^2$$

$$b' = 2a\alpha\beta + b(\alpha\delta + \beta\gamma) + 2c\gamma\delta$$

$$c' = a\beta^2 + b\beta\delta + c\delta^2,$$

(6)

über. Die Frage, ob für eine Zahl n die Gleichung

(7)
$$ax^2 + bxy + cy^2 = n$$

lösbar ist, ist jetzt offensichtlich mit der Frage äquivalent, ob

(8)
$$a'x^2 + b'xy + c'y^2 = n$$
 $(x, y \in \mathbb{Z})$

lösbar ist, denn jede Lösung von (8) liefert wegen (5) eine Lösung ($\alpha x + \beta y$, $\gamma x + \delta y$) von (7), und umgekehrt führt jede Lösung von (7) vermöge der zu (4) inversen Transformation

$$x = \delta x' - \beta y'$$

$$y = -\gamma x' + \alpha y'$$

zu einer Lösung von (8). Es gibt also eine natürliche bijektive Korrespondenz zwischen den Lösungsmengen der Gleichungen (7) und (8), und da wir uns ja gerade für diese Lösungen interessieren, ist es natürlich, die entsprechenden quadratischen Formen als äquivalent zu betrachten. Dies führt zu folgender

Definition: Zwei quadratische Formen $f(x,y) = ax^2 + bxy + cy^2$ und $f'(x,y) = a'x^2 + b'xy + c'y^2$ heißen äquivalent, falls sie unter einer Substitution $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, α , β , γ , $\delta \in \mathbb{Z}$, $\alpha\delta - \beta\gamma = 1$ wie in (5) inein-

ander übergehen, d.h. falls die Koeffizienten von f und f' durch (6) verknüpft sind.

Da die Menge ${\rm SL}_2({\bf Z})$ der Matrizen $({}^{\alpha}_{\gamma}{}^{\beta}_{\delta})$ mit α , β , γ , δ \in ${\bf Z}$, $\alpha\delta$ - $\beta\gamma$ = 1, eine Gruppe bildet, also unter Inversenbildung und Zusammensetzung abgeschlossen ist, ist es klar, daß diese Relation symmetrisch und transitiv, also wirklich eine Äquivalenzrelation ist.

Wieviele Äquivalenzklassen gibt es? Sicherlich unendlich viele, denn - wie man leicht nachprüft - die Diskriminante

$$(9) D = b^2 - 4a$$

einer Form (3) ist eine Invariante der Äquivalenzklasse (d.h., sie bleibt unverändert unter der Transformation (6)), und es gibt umgekehrt zu jeder Zahl D mit

mindestens eine Form der Diskriminante D, nämlich die Grundform

(11)
$$f_1(x,y) = \begin{cases} x^2 - \frac{D}{4} y^2, & \text{falls } D \equiv 0 \pmod{4} \\ x^2 + xy + \frac{1-D}{4} y^2, & \text{falls } D \equiv 1 \pmod{4} \end{cases}.$$

Eine vernünftigere Frage wäre also: wieviele Kquivalenzklassen von Formen gibt es mit gegebener Diskriminante? Das erste Hauptergebnis besagt, daß es nur endlich viele gibt:

SATZ 1: Sei $D \in \mathbf{Z}$, D kein Quadrat. Dann gibt es nur endlich viele Äquivalens-klassen von quadratischen Formen mit der Diskriminante D.

Bemerkung: Die Behauptung des Satzes bleibt richtig für D ein Quadrat, D # O (s. Aufgabe 1). Formen mit quadratischer Diskriminante werden wir im folgenden aber nicht betrachten, da diese in lineare Faktoren zerfallen.

Beweis: Wir zeigen, daß jede Form $f = ax^2 + bxy + cy^2$ zu einer Form $a'x^2 + b'xy + c'y^2$ äquivalent ist, deren Koeffizienten den Ungleichungen

(12)
$$|b'| \le |a'| \le |c'|$$

genügen. Die Behauptung folgt dann, da es nur endlich viele Zahlentripel (a', b', c') gibt, die (12) erfüllen und einen gegebenen Wert b'² - 4a'c' = D haben: es ist nämlich

$$|D| = |b^{2} - 4a^{c}| \ge |4a^{c}| - |b^{c}|^{2}$$

$$\ge 4|a^{c}|^{2} - |a^{c}|^{2} = 3a^{2},$$

also

$$|a'| \le \sqrt{\frac{|D|}{3}}$$
, $|b'| \le |a'|$, $c' = \frac{b'^2 - D}{4a'}$,

so daß nur endlich viele Werte für a', b', c' in Frage kommen. Um (12) zu erreichen, wählen wir a' als die dem Absolutbetrag nach kleinste Zahl, die durch f darstellbar ist. Dann gibt es Zahlen α und γ mit

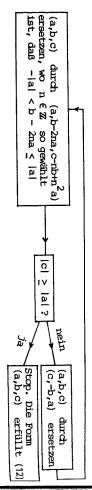
$$a' = a\alpha^2 + b\alpha\gamma + c\gamma^2$$

und der größte gemeinsame Teiler r von α und γ muß gleich 1 sein, weil a'/r² durch f darstellbar ist. Wir können also Zahlen β und δ so wählen, daß $\alpha\delta$ - $\beta\gamma$ = 1 ist; dann transformiert $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ die Form f in eine Form a'x² + b"xy + c"y² mit a' als erstem Koeffizienten (vgl. (6)). Wir wählen dann eine ganze Zahl n so, daß b':= b" - 2a'n dem Absolutbetrag nach kleiner gleich a' ist. Wegen

$$a'(x - ny)^2 + b''(x - ny)y + c''y^2$$

= $a'x^2 + (b'' - 2a'n)xy + (a'n^2 - b''n + c'')y^2$

ist dann $a'x^2 + b''xy + c''y^2$ (und somit auch f) zu einer Form $a'x^2 + b'xy + c'y^2$ äquivalent mit $|b'| \le |a'|$ (oder sogar -|a'| < $b' \le |a'|$). Schließlich ist nach Wahl von a' automatisch |c'| $\ge |a'|$, also (12) erfüllt. Damit ist der Satz bewiesen. Dieser Beweis, der ineffektiv ist (wie findet man a'?), kann durch einen effektiven Algorithmus ersetzt werden; dieser Algorithmus wird durch das Flußdiagramm



verdeutlicht und bricht deswegen nach endlich vielen Schritten ab, weil |a| bei jedem Umlauf um mindestens 1 heruntergeht.

Die Aussage des Satzes folgt auch aus den später in diesem Paragraphen ausgeführten Überlegungen über Darstellungsanzahlen.

Wir wollen die Klassenzahl von D, also die Anzahl der Äquivalenz-

klassen von quadratischen Formen der Diskriminante D, einführen und studieren. Neben der Diskriminante gibt es aber zwei weitere elementare Invarianten von quadratischen Formen, und wir wollen die Einteilung von Formen in Aquivalenzklassen verfeinern, indem wir auch diese festlegen. Die Invarianten sind:

- 1) der g.g.T. der Koeffizienten von f,
- 2) das Vorzeichen des ersten Koeffizienten, falls D < 0.

In der Tat, wenn a, b und c durch r teilbar sind, ist r nach (6) auch ein Teiler von a', b' und c'; es gilt also (a,b,c)! (a',b',c') und wegen der Symmetrie dann (a,b,c) = (a',b',c'). Sind $ax^2 + bxy + cy^2$ und $a'x^2 + b'xy + c'y^2$ äquivalent und D < O, so ist nach (6)

(13)
$$aa' = a^2\alpha^2 + ab\alpha\gamma + ac\gamma^2 = (a\alpha + \frac{1}{2}b\gamma)^2 + \frac{1}{4}|D|\gamma^2 > 0,$$

also haben a und a' dasselbe Vorzeichen. Ist dieses Vorzeichen positiv, so ist $f(\alpha,\gamma)$ wegen (13) für alle (α,γ) * (0,0) positiv; die Form heißt dann positiv-definit. Ist a < 0, so stellt f nur negative Zahlen dar und heißt negativ-definit. Die Äquivalenzklassen von quadratischen Formen zerfallen also für D < 0 in zwei Typen, je nachdem, ob sie positiv- oder negativ-definite Formén enthalten; wir brauchen nur die positiv-definiten zu betrachten, da die negativ-definiten Formen durch Multiplikation mit -1 aus ihnen entstehen. Wir können uns auch auf Formen beschränken, für die der g.g.T. der Koeffizienten gleich 1 ist - solche Formen heißen primitiv - weil eine Form der Diskriminante D mit (a,b,c) = r einfach r mal eine primitive Form Diskriminante D/r ist. Wir definieren also die Klaßenzahl von D als

Diese Anzahl ist nach Satz 1 endlich. Sie ist Null, falls (10) nicht erfüllt ist, da dann (9) keine Lösung hat, ist dagegen > 1, falls (10) erfüllt ist, da es dann immer mindestens die Grundform (11) gibt. Wir fügen eine kleine Tabelle von Klassenzahlen bei. (Wie man diese Werte berechnet, werden wir später sehen.)

h(D) 1	ס	h(D) 2	D
	_	2	-24 -23 -20 -19 -16 -15 -12 -11 -8 -7 -4 -3
	4	ω	-23
_	ъ	8	-20
	8	_	-19
2 2	9	1 2	-16
N	12	N	-15
	13		-12
2 1	16		-11
	17		-8
3 2	20		-7
2	21	<u></u>	-4
N	24	-	-3
4 2	8 9 12 13 16 17 20 21 24 25 28		
2	28		

<u>Warnung</u>: Es gibt zwei Begriffe von Äquivalenz (und damit auch zwei Klassenzahlen), die in der Literatur gebraucht werden. Die oben eingeführte Äquivalenz bezüglich $\operatorname{SL}_2(\mathbb{Z})$ heißt Äquivalenz im engeren Sinne. Die Äquivalenz im weiteren Sinne ist definiert durch die Formel: $f' \sim f$, falls

14)
$$f'(x,y) = \mu f(\alpha x + \beta y, \gamma x + \delta y),$$

wobel $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ eine 2 × 2 Matrix mit ganzzahligen Koeffizienten und Determinante $\alpha \delta$ – $\beta \gamma$ = μ = ±1 ist. Dieser letzte Begriff (allerdings häufig fehlerhaft definiert, indem der Faktor μ in (14) fehlt) wird in vielen Lehrbüchern zugrundegelegt und die Klassenzahl h(D) entsprechend definiert als die Anzahl der Äquivalenzklassen von primitiven quadratischen Formen der Diskriminante D (nicht notwendig positiv-definit, falls D < 0) im weiteren Sinne. Diese andere Klassenzahl, die wir mit $h_0(D)$ bezeichnen werden, stimmt für D negativ mit unserer Klassenzahl überein, da die Transformationen (14) mit μ = -1 einfach die positiv- und negativ-definiten Formen vertauschen. Für D > 0 gilt $h_0(D)$ = h(D) oder $h_0(D)$ = $\frac{1}{2}h(D)$ (s. Aufgabe 5).

Sei jetzt f eine quadratische Form. Wir Wollen wissen, welche Zahlen f darstellt und wie oft, d.h. die Lösungen der Diophantischen Gleichung

15)
$$f(x,y) = n \quad (x, y \in \mathbb{Z})$$

untersuchen. Auf der Menge dieser Lösungen gibt es eine natürliche Äquivalenzrelation. Ist nämlich $\binom{\alpha}{\gamma}$ \in $\operatorname{SL}_2(\mathbb{Z})$ eine Matrix mit der Eigenschaft, daß die durch (6) definierte quadratische Form a'x² + b'xy + c'y² mit f übereinstimmt, dann führt die Transformation (4) offenbar eine Lösung von (15) in eine andere über. In diesem Falle nennen wir $\binom{\alpha}{\gamma}$ einen Automorphismus von f. Es ist klar, daß die Automorphismen von f eine Untergruppe U_f von $\operatorname{SL}_2(\mathbb{Z})$ bilden; nach (6) ist

$$U_{\mathbf{f}} = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{SL}_{2}(\mathbf{z}) \middle| \mathbf{Q} \quad \operatorname{a}\alpha^{2} + \operatorname{b}\alpha\gamma + \operatorname{c}\gamma^{2} = \mathbf{a}, \right.$$

$$\left(\mathbf{Q} \right) \quad 2\operatorname{a}\alpha\beta + \operatorname{b}\beta\gamma + \operatorname{b}\alpha\delta + 2\operatorname{c}\gamma\delta = \mathbf{b}, \quad \left(\mathbf{Q} \right) \quad \operatorname{a}\beta^{2} + \operatorname{b}\beta\delta + \operatorname{c}\delta^{2} = \mathbf{c} \right\}.$$

Wir definieren die Darstellungsanzahl R(n,f) von n durch die Form fals die Anzahl der unter der Operation von Uf inäquivalenten Lösungen der Gleichung (15). Es wird sich herausstellen, daß R(n,f) endlich ist. Offenbar hängt sie nur von der Äquivalenzklasse von fabwir definieren die Gesamtdarstellungsanzahl R(n) von n durch Formen der Diskriminante Dals

(17)
$$R(n) = \sum_{i=1}^{h(D)} R(n, f_i) ,$$

wobei f_1 , ..., $f_h(D)$ Repräsentanten der Äquivalenzklassen von primitiven binären quadratischen Formen der Diskriminante D sind (positiv- bzw. negativ-definit, falls D < 0 und n positiv bzw. negativ-tiv ist).

Für die einzelnen Darstellungsanzahlen $R(n,f_{\frac{1}{4}})$ ist kein geschlossener Ausdruck bekannt; man kann i.a. nur den Mittelwert $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}R(n,f_{\frac{1}{4}})$ berechnen. Dagegen läßt sich die Gesamtdarstellungsanzahl R(n) in geschlossener Form angeben. Die Schritte zur Berechnung der Klassenzahl nach Gauß und Dirichlet werden also die folgenden sein:

- i) Bestimmung der Struktur der Automorphismengruppe $U_{\mathbf{f}}$;
- ii) Berechnung von R(n) (also auch von deren mittlerem Wert);
- iii) Berechnung der mittleren Werte der $R(n,f_{\frac{1}{2}})$, $1 \le i \le h(D)$; iv) Bestimmung von h(D) durch Vergleich von ii) und iii).

Diese vier Schritte werden in den nächsten vier Sätzen durchgeführt.

SATZ 2: Sei $f(x,y) = ax^2 + bxy + cy^2$ eine primitive quadratische Form der Diskriminante D, D keine Quadratzahl. Dann liefert die Abbildung

(18)
$$(t,u) \mapsto \left(\frac{\frac{t-bu}{2}}{2} - cu \right)$$
 an $\frac{t+bu}{2}$

eine Bijektion zwischen der Menge der Idsungen (t,u) der Pellschen Gleichung (1) und der Automorphismengruppe von f. Diese Bijektion ist ein Gruppenisomorphismus bezüglich der Kompositionsregel

(19)
$$(t_1, u_1) \circ (t_2, u_2) = \left(\frac{t_1 t_2 + Du_1 u_2}{2}, \frac{t_1 u_2 + u_1 t_2}{2}\right)$$

für Lösungen von (1). Die Gruppe $\mathbf{U}_{\underline{\mathbf{f}}}$ ist für D<0 endlich, und zwar zyklisch von der Ordnung

(20)
$$w = \begin{cases} 6 & \text{für } D = -3, \\ 4 & \text{für } D = -4, \\ 2 & \text{für } D < -4. \end{cases}$$

File D v 0 $ist \ U_{f} \cong \mathbb{Z} \times \mathbb{Z}/2.$

Aus (16) finden wir für $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in U_f$ $a\beta = \beta(a\alpha^2 + b\alpha\gamma + c\gamma^2)$

=
$$\alpha(a\alpha\beta + b\beta\gamma) + c\beta\gamma^2$$

= $\alpha(-c\gamma\delta) + c\beta\gamma^2$

(da wegen (2) $2(a\alpha\beta + b\beta\gamma + c\gamma\delta) = b(1 - \alpha\delta + \beta\gamma)$ II 9

$$-c\gamma$$
 (wegen $\alpha\delta - \beta\gamma = 1$)

und

$$c(\alpha-\delta) = \alpha(a\beta^2 + b\beta\delta + c\delta^2) - c\delta \quad \text{(wegen 3)}$$

$$= \beta(a\alpha\beta + c\gamma\delta) + b\alpha\beta\delta \quad \text{(wegen } \alpha\delta - \beta\gamma = 1\text{)}$$

$$= -\beta(b\beta\gamma) + b\alpha\beta\delta \quad \text{(wieder wegen } a\alpha\beta + b\beta\gamma + c\gamma\delta = 0\text{)}$$

$$= \beta b \quad \text{,}$$

also $\frac{\Upsilon}{a} = \frac{\delta - \alpha}{b} = \frac{-\beta}{c}$. Da (a,b,c) = 1 ist, ist dieser gemeinsame Wert eine ganze Zahl u; mit t = α + δ haben wir dann

$$\alpha = \frac{t-bu}{2}$$
 , $\delta = \frac{t+bu}{2}$, $\beta = -cu$, $\gamma = au$,

Daß die Matrizenmultiplikation der Regel (19) entspricht, ergibt sich durch Einsetzen, daß die Matrix in (18) ein Automorphismus von f ist. und aus $\alpha \delta$ - $\beta \gamma$ = 1 folgt dann t² - Du^2 = 4. Umgekehrt findet man

ebenfalls durch direktes Rechnen. Ist jetzt D < 0, so ist $t^2 - Du^2 \ge t^2$ und $t^2 - Du^2 \ge |D|u^2$; also hat (1) nur Lösungen für |t| ≤ 2, |u| ≤ 2, und zwar

$$(t,u) = (\pm 2,0)$$
 oder $(\pm 1,\pm 1)$ für $D = -3$,

$$(t,u) = (\pm 2,0)$$
 oder $(0,\pm 1)$ für $D = -4$, nur $(t,u) = (\pm 2,0)$, falls $D < -4$.

(21)

nur
$$(t,u) = (\pm 2,0)$$
, falls D < -

Damit ist gezeigt, daß die Anzahl der Lösungen von (1) gleich der in (20) angegebenen Zahl w ist. Wenn wir für jede Lösung (t,u) von (1)

(22)
$$\varepsilon = \frac{t + u\sqrt{D}}{2}, \ \varepsilon' = \frac{t - u\sqrt{D}}{2} \quad (\varepsilon \varepsilon' = 1)$$

setzen (bei fester Wahl von \sqrt{D}), dann entspricht (19) einfach Multiplikation der entsprechenden Zahlen $\,arepsilon_{i}^{i}$ wir erhalten also durch

දු

wir nach (21) einen injektiven Homomorphismus von $\mathbf{U}_{\mathbf{f}}$ in C*. Für ¤ ^

$$\varepsilon = \pm 1 \quad \text{oder} \quad \frac{\pm 1 \pm i\sqrt{3}}{2} \quad \text{für} \quad D = -3$$

$$(24) \qquad \varepsilon = \pm 1 \quad \text{oder} \quad \pm i \quad \text{für} \quad D = -4$$

$$\varepsilon = \pm 1 \quad \text{für} \quad D < -4$$

ist. bzw. (-2,0)(21) unter dem Gruppengesetz (19) Potenzen von (1,1) also genau die w-ten Einheitswurzeln; das zeigt, daß $\mathrm{U}_{\mathbf{f}^{-}}$ zyklisch (Man kann natürlich auch direkt nachrechnen, daß alle Lösungen sind.) bzw. (0,1)

trifft, womit auch die letzte Behauptung des Satzes bewiesen sein eine kleinste Lösung (t_0 , u_0) von (1) mit t_0 , $u_0 > 0$ und die Menge der ε in (22) ist gleich { $\pm \varepsilon_0^n | n \in \mathbf{Z}$ } mit $\varepsilon_0 = \frac{t_0 + u_0 \sqrt{b}}{2}$, also (d.h. mit u = 0, $t = \pm 2$) lösbar und $U_f = \{\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\}$, oder es gibt zwei Möglichkeiten: entweder ist die Pellsche Gleichung nur trivial Wahl yon \sqrt{D}) die Zahl ε in (22) für t, u > 0 mindestens gleich eine Untergruppe von IR*, die -1 enthält. Da (mit der positiven wird. Die Zahl $\frac{1+\sqrt{D}}{2}>1$ ist, ist das Bild nicht dicht in \mathbb{R}^* . Es gibt also nur ≅ ℤ × ℤ/2. Wir werden später sehen, daß stets der zweite Fall zu-Für D > 0 liefert (23) eine Injektion U $_{\mathrm{f}}$ + IR*. Das Bild ist ၉ heißt die Grundeinheit der Form f. Sie hängt nur

Korollar nur für Fundamentaldiskriminanten. Für den allgemeinen Fall Der Einfachheit halber formulieren wir den nächsten Satz und sein

SATZ 3: Sei D eine Fundamentaldiskriminante, n + 0 eine ganze Lahl. Dann wird die Gesamtanzahl R(n) der Darstellungen von n durch (primitive) Formen der Diskriminante D durch

(25)
$$R(n) = \sum_{m \mid n} \chi_{D}(m)$$

gegeben, wobei m über alle positiven Teiler von n eingeführte Charakter ist. Insbesondere sind R(n) und somit alle R(n,f) endläuft und X_D(m) der in §5

Bemerkung: Die rechte Seite von (25) ist identisch mit der in (6.10) eingeführten Summte $\rho(n)$. Somit erhalten die in §6 für den Nachweis

von L(1, χ) * O benutzten Ungleichungen (6.12) eine anschauliche Bedeutung, da offensichtlich R(n) \geq O und R(n²) > O ist (ein Quadrat hat immer eine Darstellung durch (11) mit y=0).

Beweis: Da es keine imprimitiven Formen der Diskriminante D gibt, können wir den Zusatz "primitive" im Satz weglassen. Sei R*(n) die Anzahl der inäquivalenten primitiven Darstellungen von n durch Formen der Diskriminante D (eine Darstellung (15) heißt primitiv, falls x und y teilerfremd sind). Offensichtlich ist

(26)
$$R(n) = \sum_{g \ge 1} R^*(\frac{n}{2}),$$
 $g^2 \mid n$

da jede Darstellung Vielfaches einer primitiven ist. Der Hauptschritt im Beweis ist der Nachweis der Formel

(27)
$$R^*(n) = \#\{b \pmod{2n} | b^2 = D \pmod{4n}\}$$

 $G_{\mathbf{x}} = \{g \in G \mid g\mathbf{x} = \mathbf{x}\}$ von \mathbf{x} in G. Insbesondere gilt für die Anzahl von $Y_{x} = \{y \in Y | (x,y) \in S\}$ unter der Operation des Stabilisators Komponente haben. Als Vertreter für diese Bahnen können wir Paare viele Elemente von S/G ein gegebenes Element von X/G ten Bahnen stehen also in eineindeutiger Korrespondenz mit den Bahnen genau dann äquivalent, wenn y' = gy mit $g \in G$, gx = x; die besagbenen Bahn in X/G ist. Zwei solche Paare (x,y) und (x,y') sind analysieren, indem wir erst X/G beschreiben und dann fragen, wieersten Komponenten G-äquivalent. Wir können also die Bahnenmenge S/G "aquivalent sind, also (x',y') = (gx,gy), so sind insbesondere threTeilmenge. Wenn zwei Elemente s = (x,y), $s' = (x',y') \in S$ unter G und Sc X × Y eine unter der Diagonaloperation von G invariante $(\mathbf{x}_{\prime}\mathbf{y})$ nehmen, deren erste Komponente ein fester Vertreter der gege-Der Beweis von (27) stützt sich auf folgendes allgemeine Prinzip eine Gruppe, X und Y zwei Mengen, auf denen G operiert, als erste

18/GI =
$$\sum_{\mathbf{x} \in \mathbf{X}/G} |\mathbf{Y}_{\mathbf{x}}/G_{\mathbf{x}}|$$
,

falls beide Seiten endlich sind, und durch Rollenvertauschung natürlich auch

(29)
$$|S/G| = \sum_{Y \in Y/G} |X_Y/G_Y|$$
.

Wir wenden diese Formel an mit

$$\begin{split} & \text{G} = \operatorname{SL}_2(\mathbb{Z}) = \{ (\begin{matrix} \alpha & \beta \\ \gamma & \delta \end{matrix}) \, | \, \alpha, \ \beta, \ \gamma, \ \delta \in \mathbb{Z}, \ \alpha \delta - \beta \gamma = 1 \} \ , \\ & \text{X} = \{ \text{quadratische Formen } f(\mathbf{x}, \mathbf{y}) = \operatorname{ax}^2 + \operatorname{bxy} + \operatorname{cy}^2, \ \operatorname{b}^2 - 4\operatorname{ac} = D \} \ , \\ & \text{Y} = \{ \text{Zahlenpaare } \mathbf{z} = (\mathbf{x}, \mathbf{y}) \text{ mit } \mathbf{x}, \ \mathbf{y} \in \mathbb{Z} \text{ teilerfremd} \} \ , \\ & \text{S} = \{ (\mathbf{f}, \mathbf{z}) \in \mathbf{X} \times \mathbf{Y} \mid \mathbf{f}(\mathbf{z}) = \mathbf{n} \} \ . \end{split}$$

pann sind die Elemente von X/G die Äquivalenzklassen von Formen der Diskriminante D, und für $f \in X$ ist $Y_{\underline{f}}/G_{\underline{f}}$ die Menge der inäquivalenten primitiven Darstellungen von n durch f, also nach (28)

$$|S/G| = \sum_{\begin{subarray}{c} K \in S(n) \\ K \in S(n) \end{subarray}} R*(n,f) = R*(n) .$$

Andererseits können wir |S/G| durch (29) berechnen. Jedes Element von y ist zu (1,0) äquivalent, da es für $(x,y) \in Y$ Zahlen a, b $\in \mathbb{Z}$ gibt mit ax + by = 1, also $\begin{pmatrix} x & -b \\ y & a \end{pmatrix} \in G$, $\begin{pmatrix} x & -b \\ y & a \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$. Somit besteht Y/G aus einer Bahn mit dem Vertreter z = (1,0). Für dieses Element ist $G_z = \{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, x \in \mathbb{Z}\}$ und X_z die Menge der Formen f $\in X$ mit erstem Koeffizienten a = n, also

$$X_{z} = \{nx^{2} + bxy + \frac{b^{2} - D}{4n}y^{2}, b \in \mathbb{Z}, b^{2} = D \pmod{4n}\}$$
.

Da die Operation von $\binom{1}{0}$ $\binom{r}{1}$ \in G_z durch b + b + 2nr gegeben wird, ist $|X_z/G_z|$ gleich der rechten Seite der Formel (27), womit diese Formel auch bewiesen ist.

Um den Satz zu beweisen, müssen wir noch den Ausdruck in (27) explizit berechnen und das Ergebnis in (26) substituieren. Für n = $2 p_1 \dots p_s$ (p_1 ungerade) sieht man aus (27) leicht, daß

$$R*(n) = R*(2^{0})R*(p_1^{1})...R*(p_s^{s})$$

mit

(30)
$$R^*(p^r) = \#\{b \mod p^r\} | b^2 = D \pmod p^r\} \}$$
 $(p + 2)$.

Da die rechte Seite von (25) auch multiplikativ ist, brauchen wir nur Primzahlpotenzen zu betrachten. Für p / D (und r > 0) ist die rechte Seite von (30) gleich 0 oder 2, je nachdem, ob D ein quadratischer Rest oder Nichtrest modulo p ist; für p|D ist sie gleich 1 für r = 1 (es gibt nur die Lösung b = 0) und gleich 0 für r > 1 (da p^2/D). Wenn wir diese Werte in (26) substituieren, finden wir:

$$R(p^{r}) = \sum_{0 \le s < \frac{r}{2}} 2 + \sum_{s = \frac{r}{2}} 1$$

$$= r + 1 = \sum_{0 \le i \le r} \chi_{p}(p^{i}) ,$$

falls
$$(\frac{z}{p}) = +1$$
,
$$R(p^{r}) = \sum_{0 \le s < \frac{r}{2}} \quad 0 + \sum_{s = \frac{r}{2}} 1$$
$$0 \le s < \frac{r}{2} \quad s = \frac{r}{2}$$
$$= \begin{cases} 1 \text{ (r gerade)} \\ 0 \text{ (r ungerade)} \end{cases} = \sum_{0 \le i \le r} \chi_{D}(p^{i}) ,$$

 $(\frac{D}{P}) = -1$, und

$$R(p^{r}) = \sum_{0 \le s < \frac{r-1}{2}} 0 + \sum_{\frac{r-1}{2} \le s \le \frac{r}{2}} 1$$

$$= 1 = \sum_{0 \le 1 \le r} \chi_{D}(p^{1}) ,$$

bewiesen. Den Beweis für $n = 2^r$, der ähnlich ist, überlassen wir falls p|D. Somit ist (25) für $n = p^{r}$, p ungerade, in allen Fällen

KOROLLAR: Seien D und χ_D wie im Satz. Dann ist der Mittelwert der Gesamtdarstellungsanzahlen R(n) gleich dem Wert der L-Reihe L(s,χ_D) an der Stelle

1)
$$\lim_{N\to\infty} \left(\frac{1}{N} \sum_{n=1}^{N} R(n)\right) = L(1,\chi_{D}) .$$
Weis: Nach (25) ist

Beweis: Nach (25) ist

$$\frac{N}{\sum_{n=1}^{N} R(n)} = \sum_{n \leq N} \sum_{m \mid n} \chi_{D}(m)$$

$$= \sum_{k m \leq N} \chi_{D}(m)$$

$$= \sum_{m < \sqrt{N}} \chi_{D}(m) \cdot \sum_{k \leq N/m} 1 + \sum_{k \leq \sqrt{N}} \sum_{\sqrt{N} \leq m \leq \frac{N}{k}} \chi_{D}(m) \cdot \sum_{k \leq N/m} \chi_{D}(m)$$

automatisch $k \leq \sqrt{N}$.) Es ist aber (In der zweiten Summe, nämlich über die m $\geq \sqrt{N}$, ist wegen km $\leq N$

$$\sum_{k \le N/m} 1 = [\frac{N}{m}] = \frac{N}{m} + O(1)$$

und

$$\sum_{\sqrt{N} \le m \le \frac{N}{K}} \chi_{D}(m) = O(1)$$

wegen Satz 2, §5, verschwindet und die beiden Endintervalle (da in jedem Intervall $(r-1)|D| < m \le r|D|$ die Summe von $\chi_D(m)$

 $\sqrt{N} \leq m \leq \left[\frac{\sqrt{N}}{|D|} + 1\right] |D| \quad und \quad \left[\frac{N}{k|D|}\right] |D| < m \leq \frac{N}{k} \quad beschränkte \ Länge \ haben). \ Somit \ ist$

æ

$$\sum_{\mathbf{n} \leq \mathbf{N}} \mathbf{R}(\mathbf{n}) = \sum_{\mathbf{m} < \mathbf{V} \overline{\mathbf{N}}} \mathbf{X}_{\mathbf{D}}(\mathbf{m}) \cdot \left(\frac{\mathbf{N}}{\mathbf{m}} + O(1)\right) + \sum_{\mathbf{k} \leq \mathbf{V} \overline{\mathbf{N}}} O(1)$$

$$= \mathbf{N} \cdot \sum_{\mathbf{m} = 1}^{\left[\mathbf{V} \overline{\mathbf{N}}\right]} \frac{\mathbf{X}_{\mathbf{D}}(\mathbf{m})}{\mathbf{m}} + O(\mathbf{V} \overline{\mathbf{N}}) ,$$

woraus die Behauptung folgt.

SATZ 4: Sei f eine primitive, für D < 0 auch positiv definite, binäre quazahlen R(n,f) gegeben durch dratische Form der Diskriminante D. Dann wird der Mittelwert der Darstellungsan-

zahlen
$$R(n,f)$$
 gegeben durch
$$\frac{1}{N \to \infty} \frac{1}{N} \left(\sum_{n=1}^{N} R(n,f) \right) = \begin{cases} \frac{2\pi}{W \sqrt{|D|}}, & \text{falls } D < 0, \\ \frac{1}{W \sqrt{|D|}}, & \text{falls } D > 0, \end{cases}$$

wo w die durch (20) angegebene Ordnung von $\mathbf{U_f}$ und $\mathbf{\varepsilon_0}$ die Grundeinheit von \mathbf{f}

Beweis: Dieser Satz wird auf geometrische Weise bewiesen. Sei zunächst D<0. Weil $|U_{\underline{f}}| = w < \infty$ ist und $U_{\underline{f}}$ auf \underline{z}^2 - O ohne Fixpunkte 🕁 mal die Anzahl sämtlicher Lösungen: operiert, sind jeweils genau w Lösungen von (15) zueinander äguivalent, also die Anzahl R(n,f) der inäquivalenten Lösungen gleich

(33)
$$R(n,f) = \frac{1}{w} \# \{(x,y) \in \mathbb{Z}^2 | ax^2 + bxy + cy^2 = n \}.$$

Somit ist

$$\sum_{n=1}^{N} R(n,f) = \frac{1}{w} \# \{(x,y) \in \mathbb{Z}^2 | ax^2 + bxy + cy^2 \le N \} .$$

totisch gleich dem Flächeninhalt (im Bild ist z.B. a = 2, b = 3, c = 5, N = 400, Anzahl der Gitterpunkte = 457, $\frac{2\pi N}{\sqrt{|D|}}$ = 451,4), also Ellipse (s. Bild). Dieses Gebiet hat den Flächeninhalt $\frac{2\pi N}{N}$ (Aufgabe 6). Die Ungleichung $ax^2 + bxy + cy^2 \le N$ beschreibt das Innere einer $2\pi N$ groß ist die Anzahl der Gitterpunkte in diesem Gebiet asymp-

$$\lim_{N\to\infty}\frac{1}{N} \# \{(x,y) \in \mathbf{Z}^2 | ax^2 + bxy + cy^2 \le N\} = \frac{2\pi}{\sqrt{|D|}}.$$

Für D > O ist U_f unendlich, das Argument also anders. Falls (x',y') eine Lösung von (15) ist, die aus (x,y) durch Anwendung der Substitution (4) entsteht, wobei ($^{\alpha}_{\gamma}{}^{\beta}_{\delta}$) ein Automorphismus von f ist, der unter (23) der Zahl ϵ entspricht, so ist

$$x' + \frac{b - \sqrt{D}}{2a} y' = \varepsilon (x + \frac{b - \sqrt{D}}{2a} y)$$
,

wie man leicht ausrechnet. Mit den Abkürzungen

$$\Theta = \frac{-b + \sqrt{D}}{2a}$$
 , $\Theta' = \frac{-b - \sqrt{D}}{2a}$

(so daß $ax^2 + bxy + cy^2 = a(x - \theta y)(x - \theta y)$ gilt) folgt also

$$x' - \theta y' = \varepsilon(x - \theta y)$$
, $x' - \theta ' y' = \varepsilon ' (x - \theta ' y)$,

$$\frac{\mathbf{x}' - \mathbf{\theta}' \mathbf{y}'}{\mathbf{x}' - \mathbf{\theta} \mathbf{y}'} = \varepsilon^{-2} \frac{\mathbf{x} - \mathbf{\theta}' \mathbf{y}}{\mathbf{x} - \mathbf{\theta} \mathbf{y}}.$$

Da jedes ϵ die Gestalt $\pm\epsilon_0^n$ hat, können wir genau eine zu (x,y) äquivalente Lösung (x',y') finden, die die Bedingungen

$$x' - \theta y' > 0$$
, $1 < \frac{x' - \theta y'}{x' - \theta y'} \le \varepsilon_0^2$

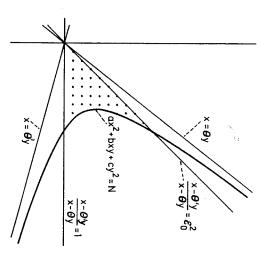
erfüllt. Das Analogon zu (33) für indefinite Formen ist also

$$R(n,f) = \#\{(x,y) \in \mathbf{z}^2 \mid ax^2 + bxy + cy^2 = n, \\ x - \theta y > 0, 1 < \frac{x - \theta y}{x - \theta y} \le \epsilon_0^2\}.$$

Es folgt dann genau wie im Falle $\, D < O \,$, daß der Limes in (32) gleich

$$\lim_{N\to\infty}\frac{1}{N}\cdot \text{ Flächeninhalt von } \{(x,y)\in\mathbb{R}^2\mid ax^2+bxy+cy^2\leq N,\\ N\to\infty \quad x-\theta y>0,\ 1<\frac{x-\theta^1y}{x-\theta y}\leq \epsilon_0^2\}$$

ist. Die Ungleichungen beschreiben einen Sektor einer Hyperbel (s. Bild, wo a = 1, b = 3, c = -3, N = 100, $\varepsilon_0 = \frac{5+\sqrt{21}}{2}$), dessen Flächen-



inhalt gleich $\frac{\log \varepsilon_0}{\sqrt{D}}$ N ist (Aufgabe 7). Hieraus folgt die Behauptung des Satzes wie im Fall D < 0. Die Existenz der Grundeinheit folgt ebenfalls: wäre nämlich U_f = {±1}, so wäre im Widerspruch zu der Existenz des Mittelwertes von R(n) der Mittelwert von R(n,f) unendlich, da das Gebiet zwischen der Hyperbel ax 2 + bxy + cy 2 = N und ihren Asymptoten unendlichen Flächeninhalt hat.

Aus den Tatsachen, daß R(n) den endlichen Mittelwert $L(1,\chi_D)$ hat und daß der Mittelwert von R(n,f) positiv und nur von der Diskriminante abhängig ist, erhalten wir neue Beweise für die Endlichkeit der Klassenzahl und für das Nichtverschwinden von $L(1,\chi_D)$. Aus Satz 4 und dem Korollar zu Satz 3 erhalten wir (mindestens für Fundamentaldiskriminanten; für den allgemeinen Fall s. Aufgabe 8) das erste Haupt-

73

ergebnis Dirichlets, nämlich eine Beziehung zwischen h(D)

SATZ 5: Sei D eine Diskriminante. Dann ist

(34)
$$h(D) = \begin{cases} \frac{w\sqrt{|D|}}{2\pi} L(1,\chi_D), & falls D < 0, \\ \frac{\sqrt{D}}{\log \varepsilon_0} L(1,\chi_D), & falls D > 0. \end{cases}$$

die endgültige Klassenzahlformel erhalten Im nächsten Paragraphen werden wir $\text{L}\left(1,\chi_{D}\right)$ berechnen und somit

- 1. Man zeige, daß es genau m Äquivalenzklassen von quadratischen phismengruppe einer Form, deren Diskriminante eine Quadratzahl bzw Formen (bzw. \phi(m) Aquivalenzklassen von primitiven quadratischen kation der Formen der Diskriminante O? Wie groß ist die Automor-Formen) der Diskriminante m^{*}, m > 0 gibt. Wie ist die Klassifigleich Null ist?
- 2. Was sind die Automorphismen der Formen $x^2 + y^2$, $x^2 + xy + y^2$, $2x^2 + 3xy + y^2$, $x^2 5y^2$, $2x^2 + 6xy + 3y^2$?
- 3. Wieviele Darstellungen als Summe von zwei Quadraten hat eine ungeh(-4) = 1.) Vgl. das letzte Beispiel in §2. Wie lautet das Ergebnis für n gerade? rade Zahl n? (Zunächst Primzahlen betrachten; man braucht
- Unter Benutzung von h(5) = 1 zeige man, daß die einzigen Lösunger

$$t^2 - 5u^2 = 4$$

durch u = \mathbf{F}_{2n} , t = \mathbf{f}_{2n-1} + \mathbf{F}_{2n+1}) gegeben sind, wo \mathbf{F}_n die n-te Fibonacci-Zahl bezeichnet (\mathbf{F}_0 = 0, \mathbf{F}_1 = 1, \mathbf{F}_{n+1} = \mathbf{F}_n + \mathbf{F}_{n-1}).

5. Man zeige, daß für D > O die Klassenzahlen im engeren und im weiteren Sinne durch $h_0(D) = h(D)$ oder $h_0(D) = \frac{1}{2} h(D)$ verknüpft sind, je nachdem, ob die Gleichung $t^2 - Du^2 = -4$ eine ganzzahlige Lösung hat oder nicht

6. Man verifiziere die im Beweis von Satz 4 benutzten Beziehungen

7. Man berechne
$$\sum_{n=1}^{\infty} \frac{1}{9n^2 - 1}, \sum_{n=1}^{\infty} \frac{1}{16n^2 - 1}, \sum_{n=1}^{\infty} \frac{n}{(25n^2 - 1)(25n^2 - 4)}$$
8. Sei D (* 0 und * 0 oder 1 (mod 4)) eine allgemeine Diskrimi-

nante; D läßt sich dann eindeutig als D_G^2 schreiben mit r $\in \mathbb{N}$ und D_0 eine Fundamentaldiskriminante. Sei

$$\chi_{D}(m) = \begin{cases} \chi_{D_0}(m), \text{ falls } (m,r) = 1 \\ 0, \text{ sonst} \end{cases}$$

der von χ_{D_0} induzierte Charakter. Man zeige:

a) Die Aussage von Satz 3 bleibt für zu r teilerfremde Zahlen richtig, d.h.

$$R_{\mathbf{D}}(\mathbf{n}) = \sum_{\mathbf{m} \mid \mathbf{n}} \chi_{\mathbf{D}}(\mathbf{n}) \qquad (= \sum_{\mathbf{m} \mid \mathbf{n}} \chi_{\mathbf{D}}(\mathbf{n})) \quad \text{für } (\mathbf{n}, \mathbf{r}) = 1 .$$

minante D dargestellt werden kann.) teilerfremde Zahl nicht durch eine imprimitive Form der Diskrialle oder nur durch primitive Formen betrachtet, da eine zu r (Es ist hierbei gleichgültig, ob man die Darstellungen durch

b) Das Korollar zu Satz 3 bleibt richtig, wenn man den Mittelwert

$$\lim_{N\to\infty} \left(\sum_{n=1}^{N} R_{D}(n) / \frac{\phi(r)}{r} N \right) = L(1,\chi_{D}) .$$

$$(n,r)=1$$

für (m,r) > 1 sowieso verschwindet. Es gilt außerdem Hinweis: Im Beweis des Korollars muß man (k,r) = 1, aber nicht (m,r) = 1 zu den Summationsbedingungen hinzunehmen, da

$$\sum_{\substack{k \le \frac{N}{m} \\ (k,r)=1}} 1 = \frac{\phi(r)}{r} \frac{N}{m} + O(1) .$$

G Satz 4 bleibt ebenfalls richtig, wenn man den Mittelwert über Gebiet der Ebene die Dichte der Zahlenpaare (x,y) mit die zu r teilerfremden Zahlen bildet, weil in jedem großen (f(x,y),r) = 1 gleich $\frac{\phi(r)}{r}$ ist.

Form der Diskriminante D können a und c nicht beide durch Hinweis: Für p|r und $f(x,y) = ax^2 + bxy + cy^2$ eine primitive p teilbar sein; ist etwa a zu p teilerfremd und p \pm 2, so folgt aus $4af(x,y) = (2ax+by)^2 \pmod{p}$, daß

$$*\{(x,y) \mod p | pIf(x,y)\} = p(p-1) .$$

d) Formel (34) (Satz 5) bleibt für Nichtfundamentaldiskriminanten durch die Relation richtig. Folglich sind die Klassenzahlen von $D = D_0 r^2$ und D_o

$$h(D) = \frac{\gamma_{D_0}(r)}{\nu_r} h(D_0)$$

verknüpft. Hierbei ist

$$\gamma_{D_0}(\mathbf{r}) = \mathbf{r} \prod_{\mathbf{p} \mid \mathbf{r}} \left(1 - \frac{\chi_{D_0}(\mathbf{p})}{\mathbf{p}} \right)$$

mit dem Multiplikationsgesetz (19)), also $v_r=1$ für D < 0 (außer im Falle D $_0=-3$ bzw. -4 und r > 1, wo $v_r=3$ bzw. $v_{f r}$ der Index von $u_{f D}$ in $u_{f D_0}$ $(U_D = \{(t,u)|t^2 - Du^2 = 4\}$

$$v_r = \min \{n \mid n > 0, u_n = 0 \pmod{r}\}\$$

 $\begin{array}{ll} \text{für D > 0, wobei} & \frac{t_n + u_1 \sqrt{D_0}}{2} = \left(\frac{t_0 + u_0 \sqrt{D_0}}{2}\right)^n & \text{mit } (t_0, u_0) = \text{klein-ste positive Lösung der Pellschen Gleichung (1).} \end{array}$

(27) ableiten läßt, lautet wie folgt: Ist (r^2,n) kein Quadrat, so ist $R_D(n)=0$. Ist $(r^2,n)=s^2$, also $n=n's^2$ und D=D's mit $(n',\frac{D}{D_0})=1$, so ist $R_D(n)=\gamma_{D_1}(s)\cdot\sum\limits_{m\mid n'}\chi_{D_1}(m)$ (siehe etwa F. Hirzebruch, D. Zagier, Invent. math. 36 (1976), S. 69-70, Bemerkung: Teil a) der Aufgabe gibt den Wert von $R_D(n)$ für (n,r) = 1 an. Das allgemeine Ergebnis, das sich ebenfalls aus und $D = D^{t}s^{2}$

§9 Die Berechnung von $L(1,\chi)$ und die Klassenzahlformeln

nen. Wir haben schon bewiesen, daß dieser Wert endlich und von Null wir L(1, χ) für beliebige Dirichletsche Charaktere χ + χ_0 berechverschieden ist. Charaktere $\chi = \chi_D$ rer quadratischer Formen auf die Berechnung von $L(1,\chi)$ für reelle Wir haben in §8 gesehen, wie man die Bestimmung der Klassenzahl binäzurückführen kann. In diesem Paragraphen werden

unterscheiden.) Um $L(1,\chi)$ zu berechnen, machen wir Gebrauch von scher Charakter. Wir setzen voraus, daß χ primitiv ist. (Wenn nämfache Beziehung zwischen $L(1,\chi)$ und $L(1,\chi_1)$, da die L-Reihen $L(s,\chi)$ lich χ von einem Charakter χ_1 $L(s,\chi_1)$ sich nur in endlich vielen Faktoren der Euler-Produkte Sei also χ ein von dem Hauptcharakter verschiedener Dirichletinduziert wird, gibt es eine ein-

(1)
$$G = \sum_{n=1}^{N} \chi(n) e^{2\pi i n/N}$$

Hilfssatz zusammengestellt. Die Eigenschaften von G, die wir brauchen, sind in dem folgenden

HILFSSATZ 1: Sei X ein primitiver Dirichletscher Charakter (mod N) und G durch (1) definiert. Dann gilt

a)
$$\sum_{k=1}^{N} \chi(n) e^{2\pi i k n/N} = \overline{\chi(k)} G \text{ für alle } k \in \mathbf{Z},$$

b)
$$|G| = \sqrt{N}$$

Beweis: a) ist leicht, falls (k,N) = 1, denn in diesem Fall ist

$$\sum_{n \pmod{N}} \chi(n) e^{2\pi i n k/N} = \sum_{n \pmod{N}} \chi(nk^{-1}) e^{2\pi i n/N}$$

$$= \sum_{n \pmod{N}} \frac{\chi(k)}{\chi(k)} \chi(n) e^{2\pi i n/N}$$

$$=\overline{\chi(k)}G$$
,

wobei k^{-1} eine Zahl mit $k \cdot k^{-1} = 1 \pmod{N}$ bezeichnet. Sei jetzt (k,N)=d>1; dann ist $\chi(k)=0$ und wir müssen zeigen, daß $\sum\chi(n)\;e^{2\pi ikn/N}$ auch 0 ist. Mit $k_{\uparrow}=k/d$, $N_{\uparrow}=N/d$ ist $\sum_{n \pmod{N}} \chi(n) e^{2\pi i n k/N} =$ ist. Mit $k_1 = k/d$, $N_1 = N/d$ ist $\sum_{\substack{n \pmod N}}^{2\pi i n k_1/N_1} \chi(n) e^{2\pi i n k_1/N_1}$

$$= \sum_{\substack{n_1 \pmod{N_1}}} e^{2\pi i n_1 k_1/N_1} \left[\sum_{\substack{n \pmod{N} \\ n \equiv n_1 \pmod{N_1}}} \chi(n) \right],$$

 $2\pi ink_1/N_1$ nur von dem Wert von n (mod N_1) abhängt. Wir behaupten, daß die innere Summe verschwindet. Wir können nämlich eine ganze Zahl c finden mit

$$(c,N) = 1$$
 , $c = 1 \pmod{N_1}$, $\chi(c) + 1$

(sonst wurde χ auf dem Kern von $(\mathbf{Z}/N\mathbf{Z})^{\times} \to (\mathbf{Z}/N_{\mathbf{Z}})^{\times}$ immer gleich 1 sein, so daß χ über $(\mathbf{Z}/N_{\mathbf{Z}})^{\times}$ faktorisieren würde, was der Primitivität widerspräche). Dann ist, analog zum Beweis von Satz 2, §5,

$$\begin{array}{ll} n & \chi(nc) = 0 , \\ n & (mod N) \\ n = n_1 & (mod N_1) \end{array}$$

da nc (mod N) über dieselbe Menge läuft wie n (mod N); wegen $1-\chi(c)$ # O ist dann die Summe Null.

Wir benutzen a), um b) zu beweisen:

$$|G|^2 = G\overline{G} = G \sum_{k=1}^{N} \frac{\sqrt{(k)}}{\sqrt{(k)}} e^{-2\pi i k/N}$$

$$= \sum_{k=1}^{N} \sum_{n=1}^{N} \chi(n) e^{2\pi i k n/N} e^{-2\pi i k/N}$$

$$= \sum_{n=1}^{N} \chi(n) \sum_{k \pmod{N}} e^{2\pi i k (n-1)/N}.$$

Die innere Summe ist für n=1 offensichtlich gleich N, während sie für n+1 verschwindet (wenn man nämlich k durch k+1 ersetzt, wird sie mit $e^{2\pi i (n-1)/N} + 1$ multipliziert); es ist also

$$|G|^2 = \chi(1) \cdot N = N$$
.

Aus b) folgt insbesondere, daß $G \neq 0$ ist; wir können also die Formel in a) durch G teilen und beide Seiten konjugieren, um

(2)
$$\chi(k) = \frac{1}{G} \sum_{n=1}^{N} \overline{\chi}(n) e^{-2\pi i n k/N}$$

zu erhalten. Es ist diese Beziehung, die die Bedeutung der Gaußschen Summe erklärt, weil sie es ermöglicht, die periodische Funktion

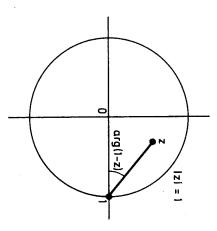
 $k \mapsto \chi(k)$ als Linearkombination der einfacheren periodischen Funktionen $k \mapsto e^{2\pi i k n/N}$ zu schreiben.

Wir brauchen noch einen Hilfssatz.

HILFSSATZ 2: Für O < 0 < 2 ist

(3)
$$\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n} = -\log(2 \sin \frac{\theta}{2}) + i(\frac{\pi}{2} - \frac{\theta}{2}) .$$

Beweis: Die Summe $\sum\limits_{n=1}^{\infty} z^n/n$ konvergiert für $|z| \le 1$, z+1 nach n=1 -log(1-z), wobei derjenige Zweig des Logarithmus zu wählen ist, der auf der positiven reellen Achse reell ist. Ein Bild zeigt, daß 1 - z für |z| < 1 immer ein Argument zwischen - $\frac{\pi}{2}$ und + $\frac{\pi}{2}$ hat; daher



müssen wir den Zweig von $\log(1-z)$ wählen, dessen Imaginärteil zwischen diesen Grenzen liegt. Für $0<\theta<2\pi$ ist $\sin\frac{\theta}{2}>0$ und $|\frac{\pi}{2}-\frac{\theta}{2}|<\frac{\pi}{2}$, also

$$\sum_{e} e^{in\theta} / n = -\log(1 - e^{i\theta})$$

$$= -\log\left(-e^{\frac{i\theta}{2}} (e^{\frac{i\theta}{2}} - e^{-\frac{i\theta}{2}})\right)$$

$$= -\log\left(-e^{\frac{i\theta}{2}} (2i \sin \frac{\theta}{2})\right)$$

$$= -\log\left(e^{-\frac{i\pi}{2}} + \frac{i\theta}{2} \cdot 2 \sin \frac{\theta}{2}\right)$$

 $= -\log(2 \sin \frac{\theta}{2}) + i(\frac{\pi}{2} - \frac{\theta}{2}) .$

Mit den Gleichungen (2) und (3) können wir leicht $L(1,\chi)$ bestimmen:

$$L(1,\chi) = \sum_{k=1}^{\infty} \frac{\chi(k)}{k} = \frac{1}{G} \sum_{k=1}^{\infty} \frac{1}{k} \sum_{n=1}^{N-1} \overline{\chi}(n) e^{-2\pi i n k/N}$$

(wegen $\overline{\chi}(N) = 0$ können wir n = N weglassen)

$$= \frac{1}{G} \sum_{n=1}^{N-1} \overline{\chi}(n) \sum_{k=1}^{\infty} \frac{e^{-2\pi i k n/N}}{k}$$

$$= \frac{1}{G} \sum_{n=1}^{N-1} \frac{\chi(n)}{\chi(n)} \left(-\log(2 \sin \frac{\pi n}{N}) - i(\frac{\pi}{2} - \frac{\pi n}{N}) \right)$$

(wir haben hier die komplex konjugierte Form von (3) benutzt). Wegen N-1 $\sum_{n=1}^{N-1} \overline{\chi(n)} = 0$ kann man die Terme -log 2 und -i $\frac{\pi}{2}$ in den eckigen n=1 Klammern weglassen. Wir haben also bewiesen:

SATZ 1: Sei χ ein primitiver Dirichletscher Charakter (mod N), N > 1. Dann ist

(4)
$$L(1,\chi) = -\frac{1}{G} \sum_{n=1}^{N-1} \overline{\chi}(n) \log \sin \frac{\pi n}{N} + \frac{i\pi}{NG} \sum_{n=1}^{N-1} \overline{\chi}(n) n.$$

Wir betrachten jetzt den Fall, daß χ reell ist, also $\chi=\chi_D$ und N = |D| mit einer Fundamentaldiskriminante D. Wegen

$$\sum_{n \pmod{N}} \chi(-n) e^{2\pi i n/N} = \chi(-1)G$$

ist dann G reell oder rein imaginär, je nachdem, ob $\chi(-1)$ gleich + 1 oder - 1 ist; nach (5.9) wissen wir, daß das wiederum davon abhängt, ob D > 0 oder D < 0. Aus Hilfssatz 1, b) erhalten wir

(5)
$$G = \begin{cases} \pm \sqrt{D} , & \text{falls } D > 0, \\ \pm i\sqrt{|D|} , & \text{falls } D < 0. \end{cases}$$

Die Bestimmung des Vorzeichens in dieser Gleichung ist eine der wichtigsten Episoden in der Geschichte der Zahlentheorie gewesen und hat Gauß (der in seinem Leben mehrere Beweise fand) einige Jahre gekostet; die Antwort lautet

(6)
$$G = \begin{cases} + \sqrt{D}, & \text{falls } D > 0 \\ + i\sqrt{|D|}, & \text{falls } D < 0. \end{cases}$$

Wir werden das nicht beweisen, da es für den Zweck der Bestimmung von $L(1,\chi_D)$ und h(D) völlig ausreicht, G nur bis aufs Vorzeichen zu kennen - wir wissen ja ohnehin, daß beide Größen positiv sind

Weil $L(1,\chi)$ für χ reell sicherlich auch reell ist, G aber nach (5) entweder reell oder rein imaginär, muß in jedem Fall eine der beiden Summen in (4) identisch verschwinden – die erste, falls $\chi(-1) = -1$, die zweite, falls $\chi(-1) = 1$ (vgl. auch Aufgabe 1). Somit erhalten wir aus (4) und (6) das Ergebnis:

SATE 2: Sei D eine Fundamentaldiskriminante. Dann ist für D < 0

(7)
$$L(1,\chi_{D}) = -\frac{\pi}{|D|^{3}/2} \sum_{n=1}^{|D|-1} \chi_{D}(n)n$$

und für D > 0

(8)
$$L(1,\chi_{D}) = -\frac{1}{\sqrt{D}} \sum_{n=1}^{D-1} \chi_{D}(n) \log \sin \frac{\pi n}{D}$$
.

In Verbindung mit Satz 5, §8, liefern diese Formeln endlich den gesuchten elementaren Ausdruck für die Klassenzahl:

SATZ 3: Sei D eine Fundamentaldiskriminante. Für D < 0 ist

(9)
$$h(D) = -\frac{w/2}{|D|} \sum_{n=1}^{|D|-1} x_D(n)n$$

wo w durch (8.20) gegeben wird. Für D > C ist

(10)
$$h(D) = -\frac{1}{\log \varepsilon_0} \sum_{n=1}^{D-1} \chi_D(n) \log \sin \frac{\pi n}{D},$$

wobei $\epsilon_0 > 1$ die Grundeinheit ist.

Es sei nochmals betont, daß diese Formeln zwar richtig sind, hier aber nur bis auf das Vorzeichen bewiesen worden sind. Wenn man direkt – d.h. ohne analytische Methoden und ohne Satz 3 – zeigen könnte, daß die Summen in den Gleichungen (7) – (10) negativ sind, dann würde aus $L(1,\chi) > 0$ bzw. h(D) > 0 folgen, daß die Minuszeichen in diesen Gleichungen richtig sind, womit man auch noch den Beweis für (6) (die Bestimmung des Vorzeichens von G) hätte. Bisher hat aber niemand einen solchen Beweis gefunden:

^{*} Allerdings ist kürzlich ein Beweis von (9) gefunden worden, der zwar den Hauptsatz über Darstellungen durch quadratische Formen (Satz 3, §8) benutzt, aber keinen Gebrauch von unendlichen Reihen oder von Grenzverfahren macht (H. Orde, On Dirichlet's class number formula, J. London Math. Soc. 18 (1978) 409 - 420).

Klassenzahlformeln jetzt weiter diskutieren. Zunächst geben wir einige Beispiele: Mit Satz 3 ist unser Ziel erreicht. Wir werden die gewonnenen

D = -3: Hier ist w = 6, also nach (9)

$$h(-3) = -\frac{3}{3} \sum_{n=1}^{2} \chi_{-3}(n)n = -(1-2) = 1$$
.

D = -4: Hier ist w = 4, also

$$h(-4) = -\frac{2}{4} \sum_{n=1}^{3} \chi_{-\mu}(n)n = -\frac{1}{2}(1-3) = 1$$

D < -4 ist w = 2, also

$$h(-7) = -\frac{1}{7}(1+2-3+4-5-6) = 1,$$

$$h(-8) = -\frac{1}{8}(1+3-5-7) = 1,$$

$$h(-11) = -\frac{1}{11}(1-2+3+4+5-6-7-8+9-10) = 1,$$

$$h(-15) = -\frac{1}{15}(1+2+4-7+8-11-13-14) = 2.$$

Rechnen gibt Das letzte Beispiel zeigt, daß h(D) nicht immer = 1 ist. Weiteres

$$h(-19) = 1$$
, $h(-20) = 2$, $h(-23) = 3$, $h(-24) = 2$

eine allgemeine Tatsache: mit Hilfe der "Geschlechtertheorie" von diskriminante (positiv oder negativ), Gauß werden wir später (§12) sehen, daß, für D eine Fundamentalrade ist, sobald D zwei verschiedene Primzahlen enthält. Das ist Wenn wir diese Werte angucken, stellen wir fest, daß h(D) immer ge-

zahl einer Fundamentaldiskriminante mit t verschiedenen Primfakto-(d.h. D = -4, +8, -8, oder $D = \pm p = 1 \pmod{4}$), während die Klassen-2^{t-1} teilbar ist.

umschreiben in die Form Die Rechnung mit (10) ist etwas umständlicher. Wir können (10)

$$\epsilon_0^{h\left(D\right)} = \prod_{n=1}^{D-1} \left(\sin \frac{\pi n}{D}\right)^{-\chi_D(n)}$$

Für D = 5 ist z.B. $\epsilon_0 = \frac{3+\sqrt{5}}{2}$ (da t = 3, u = 1 die kleinste Lösung der Pellschen Gleichung t 2 - 5u 2 = 4 in positiven Zahlen ist), und die rechte Seite von (12) gleich

$$\frac{\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}}{\sin\frac{\pi}{5}}=\sin\frac{3\pi}{5}=\left(\frac{\sin\frac{2\pi}{5}}{\sin\frac{\pi}{5}}\right)^2=(2\cos\frac{\pi}{5})^2=(\frac{1+\sqrt{5}}{2})^2=\frac{3+\sqrt{5}}{2}$$

Wegen der Formel

$$L(1,\chi) = -\frac{1}{G} \sum_{n=1}^{N-1} \overline{\chi}(n) \log(1-\eta^n) \qquad (\dot{\eta} = e^{2\pi i \dot{\tilde{\mu}}/N}) ,$$

die der Ausgangspunkt für unseren Beweis von Satz 1 war, können wir D > O Formel (10) auch durch

$$h(D) = \frac{-1}{\log \varepsilon_0} \sum_{n=1}^{D-1} \chi_D(n) \log(1 - \eta^n)$$

ersetzen, d.h.

finden wir z.B. eine Formel, die fürs Rechnen vielleicht geeigneter ist. Für U H

$$\varepsilon_0 = 3 + \sqrt{8}$$
 , $\eta = e^{2\pi i/8} = \frac{1+i}{\sqrt{2}}$, also
$$(3+\sqrt{8})^{h(8)} = \frac{(1-\eta^3)(1-\eta^5)}{(1-\eta)(1-\eta^7)} = \frac{2-\eta^3-\eta^3}{2-\eta-\eta} = \frac{2+\sqrt{2}}{2-\sqrt{2}} = 3+\sqrt{8}$$

und daher h(8) = 1.

zeigen, daß sie ganze Zahlen darstellen. Für nachweisen können, daß sie positiv sind. Dagegen kann man elementar von (9) bzw. (10) stehen? Wie schon erwähnt, hat bisher niemand direkt Kreisteilungstheorie, mit deren Hilfe man nachweisen kann, daß die Was kann man über die Ausdrücke sagen, die auf der rechten Seite D > 0 folgt das aus der

rechte Seite von (13) eine Zahl von der Gestalt $\frac{t+u\sqrt{D}}{2}$ mit $t^2-u^2D=4$ ist, also auf jeden Fall eine Potenz von ϵ_0 ist (siehe Aufgabe 6). Für D < O kann man noch elementarer zeigen, daß die rechte Seite von (9) ganz ist. Sei z.B. D = -p < -3 mit p prim (also p = 3 (mod 4)); dann ist die rechte Seite von (9) gleich

(14)
$$\frac{1}{p} \left(\sum N - \sum R \right) ,$$

wobei N über alle quadratischen Nichtreste und R über alle quadratischen Reste von p im Intervall [0,p] läuft. Es ist

$$\sum_{n=1}^{\infty} N + \sum_{n=1}^{\infty} R = \sum_{n=1}^{p-1} n = \frac{p(p-1)}{2} = 0 \pmod{p}$$

$$2 \sum_{n=1}^{\infty} R = \sum_{n=1}^{p-1} n^2 = \frac{p(p-1)(2p-1)}{6} = 0 \pmod{p} ,$$

und somit (14) eine ganze Zahl. Die Positivität von (14) bedeutet, daß die quadratischen Nichtreste im Durchschnitt größer sind als die quadratischen Reste. Wir werden jetzt eine verwandte Tatsache beweisen, ebenfalls mit Hilfe von (9): es gibt mehr quadratische Reste als quadratische Nichtreste zwischen 0 und $\frac{p}{2}$. Dies folgt aus

SATZ 4: Für D < -4, D eine Fundamentaldiskriminante, gilt

15)
$$h(D) = \frac{1}{2-\chi_{D}(2)} \sum_{0 < k < \frac{|D|}{2}} \chi_{D}(k) ;$$

d.h. es gibt stets mehr Zahlen in dem Intervall $[O,\frac{1}{2}|D|]$ mit $\chi_D(k)=+1$ als mit $\chi_D(k)=-1$, und der Überschuß ist gleich h(D), 2h(D) oder 3h(D) je nachdem, ob $D=1\pmod 8$, $D=0\pmod 4$ oder $D=5\pmod 8$ ist (vgl.(5.8b)).

Beweis: Wir nehmen an, daß D ungerade ist (für D gerade s. Aufgabe 2). Sei

$$Q = \sum_{n=1}^{\lfloor D \rfloor - 1} \chi_{D}(n) n .$$

Je nachdem, ob n gerade oder ungerade ist, können wir n als 2k mit $0 < k < \frac{|D|}{2}$ oder als 2k - |D| mit $\frac{|D|}{2} < k < |D|$ schreiben, also gilt

$$Q = \sum_{\substack{0 < k < \frac{|D|}{2}}} \chi_{D}(2k) \cdot 2k + \sum_{\substack{|D| < k < |D|}} \chi_{D}(2k - |D|)(2k - |D|)$$

$$= \sum_{\substack{0 < k < |D| \\ 0 < k < 2}} \chi_{D}(2k) \cdot 2k + \sum_{\substack{|D| \\ 2 < k < |D| \\ 0 < k < |D|}} \chi_{D}(2k) (2k - |D|)$$

$$= 2 \sum_{\substack{0 < k < |D| \\ 0 < k < |D|}} \chi_{D}(2k)k - |D| \sum_{\substack{|D| \\ 2 < k < |D| \\ 2 < k < |D|}} \chi_{D}(2k)$$

$$= 2\chi_{D}(2) Q - |D| \chi_{D}(2) \sum_{\substack{|D| \\ 2 < k < |D| \\ 2 < k < |D|}} \chi_{D}(k) .$$

omit is

$$Q = \frac{|D| \chi_{D}(2)}{2\chi_{D}(2) - 1} \sum_{\substack{|D| \\ 2} < k < |D|} \chi_{D}(k)$$

oder, da $\chi_{D}(2)=\pm 1$ und $\sum\limits_{0< k<|D|}\chi_{D}(k)=0$ ist,

$$Q = -\frac{|D|}{2-\chi_{D}(2)} \sum_{0 < k < \frac{|D|}{2}} \chi_{D}(k) .$$

Nach (9) ist aber $h(D) = -\frac{1}{|D|} Q$, womit (15) für ungerade D bewiesen ist. Unser Argument zeigt auch, daß für $D = 1 \pmod 4$ und 3/D die rechte Seite von (9) eine ganze Zahl darstellt.

Als Beispiel für (15) haben wir für D = -19 in [0,9] die 6 Reste 1, 4, 5, 6, 7, 9 und die 3 Nichtreste 2, 3, 8; es ist also $h(-19) = \frac{1}{3}(6-3) = 1$. Für D = -23 sind in [0,11] die 7 Reste 1, 2, 3, 4, 6, 8, 9 und die 4 Nichtreste 5, 7, 10, 11; es ist also $h(-23) = \frac{1}{1}(7-4) = 3$ und somit 23 die erste Primzahl $p = 3 \pmod{4}$ mit h(-p) > 1.

Zum Schluß wollen wir etwas über das Wachstum von h(D) erzählen. Wir haben gesehen, daß h(D)=1 ist für

$$D = -3, -4, -7, -8, -11, -19$$

man findet auch h(D) = 1 für

$$D = -43, -67, -163$$

Gauß hat h(D) ausgerechnet für O > D > -10.000 (!) und keine anderen Fundamentaldiskriminanten gefunden mit h(D) = 1. Er vermutete, daß diese neun Zahlen die einzigen Fundamentaldiskriminanten mit der Klassenzahl 1 sind (wegen (11) kommen für D < -8 nur Primzahlen in Frage); weiter vermutete Gauß, daß

$$h(D) \rightarrow \infty$$
 für $D \rightarrow -\infty$.

Diese letzte Behauptung wurde erst 1934 von Heilbronn bewiesen. Im darauf folgenden Jahr wurde das Ergebnis von Siegel wesentlich verschärft, indem er zeigte, daß für $\epsilon>0$

(16)
$$h(D) > C|D|^{\frac{1}{2}} - \varepsilon \qquad (D < 0)$$

gilt für ein geeignetes (von ϵ abhängiges) C > 0. Andererseits kann man aus dem Beweis von Satz 1, §8, leicht die umgekehrte Abschätzung

7)
$$h(D) < C' |D|^{\frac{1}{2} + \epsilon}$$
 (D < 0)

erhalten, also läßt sich dieser Satz auch so formulieren:

$$\lim_{D\to\infty} \frac{\log n(D)}{\log |D|} = \frac{1}{2}$$

Die erste Vermutung von Gauß wurde 1934 von Heilbronn und Linfoot "fast" beantwortet, indem sie zeigten, daß es höchstens eine Diskriminante D < -163 geben kann mit h(D) = 1. Lange Zeit wußte man über diese eventuell vorhandene "zehnte Diskriminante" nur, daß sie < $-5\cdot10^9$ sein müßte. Erst 1952 bewies Heegner, daß es keine zehnte Diskriminante gibt; sein Beweis erschien anderen Mathematikern lückenhaft und wurde erst von Stark "rehabilitiert", und ein ganz anderer Beweis des Satzes wurde von Baker gegeben.

Für D > 0 bewies Siegel an Stelle von (16) und (17) die Ungleichungen

$$C D^{\frac{1}{2} - \varepsilon} < h(D) \log \varepsilon_0 < C' D^{\frac{1}{2} + \varepsilon} \qquad (D \to \infty)$$

oder

(18)

$$\lim_{D\to\infty} \frac{\log(h(D) \log \varepsilon_0)}{\log D} = \frac{1}{2}.$$

(Was Siegel wirklich bewies, war, daß

$$C' |D|^{-\varepsilon} < L(1, \chi_D) < C|D|^{\varepsilon}$$

für alle D gilt, was je nach dem Vorzeichen von D entweder (16) und (17) oder (18) ergibt.) Hieraus kann man aber nicht schließen, daß h(D) nach Unendlich geht, da ε_0 im Vergleich zu D sehr groß sein kann (für D = 97 ist z.B. ε_0 = 62809633 + 6377352 $\sqrt{97}$), und in der Tat lassen die tabellierten Werte (die schon Gauß bis 3000 berechnet hatte) vermuten, daß es unendlich viele Fundamentaldiskriminanten mlt Klassenzahl 1 gibt. (Diese müssen nach (11) alle Prim-

diskriminanten sein.) Läßt man Nichtfundamentaldiskriminanten zu, so gibt es auf jeden Fall unendlich viele D mit h(D)=1 (Aufgabe 5).

Obwohl man über das genaue Wachstum von h(D) bzw. h(D) $\log \varepsilon_0$ nicht sehr viel mehr als (16) - (18) weiß, kann man für die *Mittel-werte* beweisen, daß sie sich so verhalten, als ob h(D) \sim C|D| $^{1/2}$ bzw. h(D) $\log \varepsilon_0 \sim$ CD $^{1/2}$ wäre. Man hat nämlich für N $\rightarrow \infty$

wo $\zeta(3)$ = 1.20205... der Wert von $\zeta(s)$ an der Stelle s = 3 ist. Diese Beziehungen wurden von Gauß angegeben, ihre Beweise aber erst von Mertens bzw. Siegel veröffentlicht. (Die Bedingung D = 0 (mod 4) rührt daher, daß Gauß nur quadratische Formen ax 2 + bxy + cy 2 mit b gerade studierte. Für die Summen über alle D gelten ähnliche asymptotische Formeln mit 18 statt 42.)

Aufgaben:

- 1. Sei χ ein beliebiger (also nicht unbedingt reeller) Dirichletscher Charakter modulo N. Man zeige, daß die zweite Summe in (4) verschwindet, falls χ gerade ist (d.h. $\chi(-1)=1$) und die erste, falls χ ungerade ist (also $\chi(-1)=-1$). Replace of $\chi(-1)=-1$
- 2. Man zeige, daß $\chi_D(k+\frac{1}{2}D)=-\chi_D(k)$ für $D\equiv 0\pmod 4$ und beweise Satz 4 sowie die Formel $h(D)=\sum\limits_{0\leq k<\frac{|D|}{4}}\chi_D(k)$ (D<0) für diesen Fall.
- Man beweise (11) für negative Fundamentaldiskriminanten mit Hilfe von Satz 4 und Aufgabe 2.
- 4. Man rechne h(D) für -30 < D < 15 aus.
- 5. Für $i \ge 0$ gilt $h(5^{2i+1}) = 1$. (<u>Hinweis</u>: Man verwende Aufgabe 8 d), §8.)
- 6. Sei p eine Primzahl * 1 (mod 4), $\eta = e^{2\pi i/p}$. Seien

$$\eta_{R} = \sum_{R} \eta^{R}$$
 , $\eta_{N} = \sum_{N} \eta^{N}$

wobei $\sum\limits_{R}$ bzw. $\sum\limits_{N}$ Summen über alle quadratischen Reste bzw. Nichtreste bezeichnen. Dann ist nach (5)

$$\eta_R + \eta_N = \sum\limits_{k=1}^{p-1} \eta^k = -1$$
 , $\eta_R - \eta_N = \sum\limits_{k=1}^{p-1} (\frac{k}{p}) \eta^k = \pm \sqrt{p}$

Setzen wir jetzt für jede p-te Einheitswurzel Ç # 1

$$\mathbf{F}_{\mathbf{R}}(\zeta) = \prod_{\mathbf{R}} (1 - \zeta^{\mathbf{R}})$$
,

wobei R über alle quadratischen Reste (mod p) läuft. Man zeige

a)
$$F_R(\zeta) = \sum_{r=0}^{p-1} \alpha_r \zeta^r$$
 mit $\alpha_r \in \mathbf{Z}$.

b) Für $(\frac{k}{p})=1$ ist $F_R(\zeta^k)=F_R(\zeta)$, also $\alpha_{kr}=\alpha_r$ (hier braucht man die lineare Unabhängigkeit von ζ , ζ^2 , ..., ζ^{p-1} , d.h. die Irreduzibilität des Kreisteilungspolynoms $x^{p-1}+x^{p-2}+\ldots+x+1$). Es gibt also Zahlen α_R , $\alpha_N\in \mathbb{Z}$ mit

$$\alpha_r = \alpha_R$$
 für $(\frac{r}{p}) = 1$, $\alpha_r = \alpha_N$ für $(\frac{r}{p}) = -1$.

c) Man schließe

$$F_{R}(\eta) = \frac{S \pm T \sqrt{p}}{2}$$

(mit
$$S$$
 = $2\alpha_{0}$ - α_{R} - α_{N} , T = α_{R} - α_{N} \in Z) und

$$\begin{array}{ll} II \;\; (1-\eta^N) \; = \; F_R(\eta^0) & (N_0 \;\; \text{irgendein Nichtrest}) \\ N \end{array}$$

$$= \frac{S + TVp}{2}$$

d) Man zeige, daß

$$\prod_{k=1}^{p-1} (1 - \eta^k) = p$$

ist (etwa aus $\frac{x^{p}-1}{x-1} = \prod_{k=1}^{p-1} (x - \eta^{k})$), und folgere

$$s^2 - r^2p = 4p$$
, $s = pu$, $r^2 - pu^2 = -4$

mit T, U \in Z (die Pellsche Gleichung $x^2 - py^2 = -4$ hat also eine nichttriviale Lösung!) und

$$\frac{II (1 - \eta^{N})}{\frac{N}{II (1 - \eta^{R})}} = \frac{t + u\sqrt{p}}{2} \text{ mit t, } u \in \mathbb{Z}, t^{2} - u^{2}p = 4, u * 0$$
R

§10 Quadratische Formen und quadratische Zahlkörper

In diesem Paragraphen stellen wir die Haupttatsachen über quadratische Körper zusammen und zeigen, wie die Theorie von binären quadratischen Formen (mindestens, falls die Diskriminante eine Grundzahl ist) mit der Theorie der Ideale in solchen Körpern äquivalent ist. In §11 werden diese Ideen weiterentwickelt, indem die im letzten Paragraphen bewiesenen Sätze über Darstellungsanzahlen vom Standpunkt der Arithmetik in quadratischen Körpern interpretiert werden.

Sei K ein quadratischer Zahlkörper, d.h. K enthält \mathbb{Q} und : \mathbb{Q}] = 2. Dann kann man

$$\zeta = Q(\sqrt{a})$$

두

schreiben mit $d \in \mathbf{Z}$, d keine Quadratzahl. Da $\mathbb{Q}(\sqrt{f^2}d) = \mathbb{Q}(f\sqrt{d}) = \mathbb{Q}(\sqrt{d})$ ist, können wir d als *quadratfrei* voraussetzen. Jede Zahl in \mathbb{K} läßt sich eindeutig schreiben als $\alpha + \beta \sqrt{d}$, mit α , $\beta \in \mathbb{Q}$.

Sei $\mathfrak D\subset K$ der Ring der ganzen Zahlen, d.h. derjenigen Zahlen, die eine Gleichung mit Koeffizienten aus $\mathbb Z$ und höchstem Koeffizienten 1 erfüllen. Es ist leicht, $\mathfrak D$ zu bestimmen: ist $\mathbf x=\alpha+\beta\sqrt{d}\in K$, so ist

$$x^2 - sx + n = 0$$

mit

$$s = x + x' = Sp(x)$$
 die Spur von x un

$$n = xx' = N(x)$$
 die Norm von x;

dabei ist $x' = \alpha - \beta \sqrt{d}$ die Konjugierte von x. Es ist $x \in \mathfrak{D}$ genau dann, wenn s und n in \mathbf{Z} sind, d.h.

$$2\alpha \in \mathbb{Z}$$
, $\alpha^2 - \beta^2 d \in \mathbb{Z}$.

Hieraus schließt man $2\beta \in \mathbb{Z}$ (denn $(2\beta)^2 d = (2\alpha)^2 - \frac{4}{4}(\alpha^2 - \beta^2 d) \in \mathbb{Z}$ und d ist quadratfrei), also $\alpha = \frac{a}{2}$, $\beta = \frac{b}{2}$, $x = \frac{a+b\sqrt{d}}{2}$ mit $a,b \in \mathbb{Z}$, $a^2 - b^2 d = 0 \pmod{4}$. Ist d = 2 oder $d = 3 \pmod{4}$, so ist diese Kongruenz nur erfüllt, wenn a und b gerade, also α und β in \mathbb{Z} sind; ist $d = 1 \pmod{4}$, so ist die Kongruenz zu $a = b \pmod{2}$ äquivalent. Es ist also

(1)
$$\mathfrak{D} = \begin{cases} \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \sqrt{d} , & \text{falls } d = 2, 3 \pmod{4}, \\ \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \frac{1 + \sqrt{d}}{2} , & \text{falls } d = 1 \pmod{4} \end{cases}$$

(die Bezeichnung $M=\mathbb{Z}x+\mathbb{Z}y$ bedeutet im Folgenden, daß x und y eine \mathbb{Z} -Basis für M bilden). Als Diskriminante D von K bezeichnet man das Quadrat der Determinante von $\begin{pmatrix} \alpha & \beta \\ \alpha' & \beta' \end{pmatrix}$, wo α , β eine Basis von b bilden und α' , β' die Konjugierten bezeichnen (eine andere Basiswahl ändert höchstens das Vorzeichen dieser Determinante). Mit der Basis (1) finden wir

$$D = \det \left(\frac{1}{1 - \sqrt{d}}\right)^2 = (-2\sqrt{d})^2 = 4d$$

bzw.

$$D = \det \begin{pmatrix} 1 & \frac{1+\sqrt{\bar{d}}}{2} \\ 1 & \frac{1-\sqrt{\bar{d}}}{2} \end{pmatrix} = (-\sqrt{\bar{d}})^2 = \bar{d} ,$$

also

(2)
$$D = \begin{cases} 4d, \text{ falls } d = 2, 3 \pmod{4}, \\ d, \text{ falls } d = 1 \pmod{4}. \end{cases}$$

Somit sind die in §5 definierten Grundzahlen oder Fundamentaldiskriminanten (# 1) genau die Diskriminanten von quadratischen Zahlkörpern, und jeder solche Körper läßt sich eindeutig als $\mathbb{Q}(\sqrt{D})$, D = Grundzahl, schreiben.

Ein Ideal von & ist eine Untergruppe a c & mit & a = a, d.h.

(3)
$$\lambda \in \mathfrak{D}$$
, $\alpha \in \mathfrak{a} \Rightarrow \lambda \alpha \in \mathfrak{a}$.

Wir betrachten nur Ideale a + {0}. Ein solches hat endlichen Index in \mathfrak{D} ; wir definieren die Norm N(a) als [\mathfrak{D} : a], d.h. als die Ordnung der endlichen Gruppe \mathfrak{D}/a . Die Diskriminante D(a) wird definiert als det $\begin{pmatrix} \alpha & \beta \\ \alpha & \beta \end{pmatrix}^2$, wo α , β eine beliebige Basis für a ist; dann gilt D(\mathfrak{D}) = D und

$$(4) D(a) = N(a)^2 D,$$

wie man mit elementarer linearer Algebra zeigt. Ist $\xi \in \mathfrak{D}$, $\xi + 0$, so ist

$$(\xi) = \{\lambda \xi | \lambda \in \mathfrak{D}\}$$

offenbar ein Ideal; wir nennen (ξ) das von ξ erzeugte ${\it Hauptideal.}$ Ist α , β eine Basis von $\mathfrak D$, so ist $\alpha\xi$, $\beta\xi$ eine Basis für (ξ), und es folgt

$$D((\xi)) = \det \begin{pmatrix} \alpha \xi & \beta \xi \\ \alpha' \xi' & \beta' \xi' \end{pmatrix}^2 = (\xi \xi')^2 \cdot (\alpha \beta' - \alpha' \beta)^2 = N(\xi)^2 D$$

also nach (4)

8

(5)
$$N((\xi)) = |N(\xi)|$$
.

Sind a, b zwei Ideale, so ist das Produktideal ab durch

$$ab = \{ \sum_{i=1}^{r} a_i b_i \mid a_i \in a, b_i \in b, r \in \mathbb{N} \}$$

erklärt (d.h. als das kleinste Ideal, das alle Produkte ab mit a \in 4 und b \in 5 enthält). Es gilt

(6)
$$N(ab) = N(a)N(b)$$
.

Für ein Ideal a und sein Konjugiertes

$$a' = \{x' \mid x \in a\}$$

besteht die Relation

$$(7) aa' = (N(a))$$

(das Produkt von « und «' ist gleich dem von der Norm von « erzeugten Hauptideal).

Es ist nützlich, auch mit gebrochenen Idealen zu arbeiten, d.h. mit Untergruppen von K (statt von \mathfrak{D}), die endlich erzeugt sind und (3) erfüllen. Für jedes gebrochene Ideal a gibt es eine natürliche Zahl n, so daß na ein ganzes Ideal, d.h. ein Ideal im früheren Sinne ist (man wählt eine Basis α , β von a und ein n mit $n\alpha \in \mathfrak{D}$, $n\beta \in \mathfrak{D}$); dann definiert man die Norm von a durch

$$N(a) = \frac{1}{n^2} N(na) \in \mathbb{Q}$$

(das ist unabhängig von der Wahl von n). Die Diskriminante D(a), das Konjugierte a' und das Produkt von zwei gebrochenen Idealen werden wie oben definiert und die Beziehungen (4) und (6) gelten nach wie vor. Ist $\xi \in K$, $\xi \neq 0$, so ist $(\xi) = \{\lambda \xi | \lambda \in \mathfrak{D}\}$ ein gebrochenes Ideal und erfüllt (5). Ab jetzt bedeutet "Ideal" immer "gebrochenes Ideal" ($\{0\}$), falls nicht ausdrücklich von ganzen Idealen gesprochen wird.

Die Multiplikation von Idealen erweitert die von Zahlen: sind ξ , $\eta \in K$, so ist $(\xi)(\eta)=(\xi\eta)$. Infolgedessen gilt für Zahlen ξ , $\eta \in K$

$$\xi \mid \eta$$
 (d.h. $\xi^{-1} \eta \in \mathfrak{D}$) \longrightarrow (η) \subset (ξ)

es gibt ein ganzes Ideal $(\eta) = (\xi)_{\ell}$.

dies ist äquivalent zu chenes Ideal a gilt (in Zeichen Wir können also den Begriff der Teilbarkeit von Zahlen auf Ideale indem wir sagen, daß das Ideal $\mathfrak a$ das Ideal $\mathfrak b$ teiltalb), falls $\mathfrak{b} \subset \mathfrak{a}$. Für eine Zahl $\xi \in \mathbb{K}$ und ein gebrob = at gilt mit einem ganzen Ideal t;

ganzes Ideal, das nur durch & und durch sich selbst teilbar ist), während die analoge Behauptung für Zahlen i.a. nicht stimmt. Z.B. hat dukt von Primidealen geschrieben werden kann (ein Primideal ist ein ideal. Der Witz an den Idealen ist, daß jedes Ideal eindeutig als Pro-Wir schreiben häufig ξ anstatt (ξ) für das von 10 im Körper ℚ(√6) die zwei Zerlegungen ξ erzeugte Haupt-

(9)
$$10 = (4 + \sqrt{6}) \cdot (4 - \sqrt{6}) = 2.5,$$

gemeinsamen Teiler und ein kleinstes gemeinsames Vielfaches haben, es gilt nämlich Idealen rührt daher, daß zwei Ideale 🦸 und 🐧 stets einen größten verses auch in wenn x oder y eine Einheit ist (d.h. eine ganze Zahl, deren Insind, daß sie nur als x \cdot y (x, y $\in \mathfrak{D}$) geschrieben werden können, wobei alle vier Faktoren $4 + \sqrt{6}$, $4 - \sqrt{6}$, 2, 5 in dem Sinne prim D liegt). Die Eindeutigkeit der Primzerlegung bei

(i) a und (i)
$$\leftrightarrow$$
 (i) $a+b$:= { $a+b$ | $a \in a$, $b \in b$ }, all und b|: \leftrightarrow anb|:,

im allgemeinen aber kein Hauptideal. In (9) gilt z.B. samen Vielfachen zweier Zahlen ç führen, sieht man hierdurch auch: die Menge (ξ) (η) also (a,b) = a + b, $[a,b] = a \cap b$. Die Notwendigkeit, Ideale einzuund η ist offenbar ein Ideal, der gemein-

(10)

$$4 - \sqrt{6} = \mathfrak{p} \mathfrak{q}^{\mathfrak{r}}$$

mit den Primidealen

(11)
$$\mathbf{p} = (2, 4 + \sqrt{6}) = \mathbf{z} \cdot 2 + \mathbf{z} \cdot \sqrt{6},$$
$$\mathbf{q} = (5, 4 + \sqrt{6}) = \mathbf{z} \cdot 5 + \mathbf{z} \cdot (4 + \sqrt{6}),$$

wollen jetzt zeigen, was Ideale mit quadratischen Formen zu tun haben. Quadrat eines Primideals ist, während 5 liche Zahl in Primideale zerlegt (z.B., warum in (10) die Zahl also Vorerst eine Definition. ideal mit seinem Konjugierten ist) wird in §11 behandelt werden. Wir (5) $\cap (4+\sqrt{6}) = 5$ # Hauptideal. Die Frage, wie sich eine natürdas Produkt von einem Prim-

ein $\xi \in K$, $\xi = 0$, mit Definition: Zwei gebrochene Ideale 4 und b heißen äquivalent, falls

$$(12) a = (\xi) b$$

 $\xi \in K$ mit $N(\xi) > 0$ gibt, so daß (12) gilt. existiert. Sie heißen äquivalent im engeren Sinne, falls es eine Zahl

der Multiplikation (das inverse Ideal existiert immer, denn nach (7) daß die Abweichung von der eindeutigen Primzahlzerlegung nicht zu groß daß es immer nur endlich viele Äquivalenzklassen von Idealen gibt, so beiten, und die Primzahlzerlegung in £ geren Sinn) ein Hauptideal, also zu 👂 äquivalent; in diesen Körpern ideale im engeren Sinne, d.h. der Ideale (ξ) mit $N(\xi) > 0$). Für Gruppe nach der Untergruppe der Hauptideale (ξ) klassen im engeren Sinn) von Idealen bilden den Quotienten dieser ist $a^{-1} = N(a)^{-1} a^{-1}$), und die Äquivalenzklassen (bzw. Äquivalenznicht eindeutige Primzahlzerlegung. Es wird sich aber herausstellen, keine Hauptideale sind, und wir haben zwar eindeutige Primideal-, aber Körpern - z.B. in unserem Beispiel $\mathfrak{Q}(\sqrt{6})$ oben - gibt es Ideale, die ist es also gleichgültig, ob wir mit Idealen oder nur mit Zahlen areinige Körper - z.B. Anders ausgedrückt: die gebrochenen Ideale bilden eine Gruppe unter $\mathfrak{Q}(\sqrt{5})$, $\mathfrak{Q}(\sqrt{-3})$ - ist jedes Ideal (sogar im enist eindeutig. In anderen (bzw. der Haupt-

lent im engeren Sinne sind, aber es gibt ebenfalls reelle quadratische mit der Eigenschaft, daß in $\mathbb{Q}(\sqrt{d})$ äguivalente Ideale stets äguivaalso die beiden Äquivalenzbegriffe zusammen. Es gibt auch positive d $N(\xi) = \xi \xi' = \xi \overline{\xi} = |\xi|^2$ für komplex konjugierten zahl $\overline{\xi}$ (da Körper, so ist für & & K die Konjugierte Bemerkung: Ist d < 0, d.h. $K = 0(\sqrt{d})$ ein imaginär-quadratischer klasse von Idealen in genau zwei Äquivalenzklassen im engeren Sinne: geschrieben werden können, und in diesem Fall zerfällt jede Äquivalenz-Körper, die Hauptideale haben, welche nicht als (ξ) mit $\xi\xi' > 0$ $\xi + 0$ automatisch positiv. Hier fallen Ճ rein imaginär ist), also ξ' in K gleich der

(13)
$$N(a) | N(\xi) (\xi \in a)$$
,

d.h. die Funktion

$$\phi: a \to Q , \qquad \phi(\xi) = \frac{\xi \xi^1}{N(a)} ,$$

nimmt Werte in z an. Sei α , β eine Basis für a; dann ist $a=z\alpha+z\beta\cong z^2$ und wir können ϕ als Funktion f auf z^2 auffassen:

(14)
$$f(x,y) = \phi(x\alpha + y\beta) = \frac{(x\alpha + y\beta)(x\alpha' + y\beta')}{N(\alpha')}.$$

Das ist eine binäre quadratische Form:

(15)
$$f(x,y) = ax^{2} + bxy + cy^{2}, \ a = \frac{\alpha\alpha^{1}}{N(a)}, \ b = \frac{\alpha\beta^{1} + \alpha^{1}\beta}{N(a)}, \ c = \frac{\beta\beta^{1}}{N(a)};$$

für ihre Diskriminante finden wir

$$b^{2} - 4ac = \frac{(\alpha\beta' + \alpha'\beta)^{2} - 4(\alpha\alpha')(\beta\beta')}{N(\alpha)^{2}} = \frac{(\alpha\beta' - \alpha'\beta)^{2}}{N(\alpha)^{2}}$$
$$= \frac{D(\alpha)}{N(\alpha)^{2}} = D$$

auftreten. Wir nennen eine Basis α , β von α orientiert, falls $\frac{\alpha'\beta-\alpha\beta'}{\sqrt{n}} > 0$ ist (das ist sinnvoll, weil $(\frac{\alpha'\beta-\alpha\beta'}{\sqrt{n}})^2 = \frac{D(\alpha)}{D} = N(\alpha)^2$ die durch (15) definierte binäre quadratische Form bis auf Äquivalenz schen orientierten Basen stets die Determinante +1. Es folgt, daß reell und positiv ist); dann hat die Matrix eines Basiswechsels zwinante +1 definierten, wollen wir durch eine zusätzliche Forderung §8 die Kquivalenz von Formen nur mit Hilfe von Matrizen der Determinach Formel (4). Außerdem ist $a=N(\alpha)/N(\alpha)$ nach (13) ganz und ebenso c, und es folgt dann aus $b^2-4ac=b\in \mathbf{Z}$, daß auch b ganz ist. an unsere Basen erreichen, daß nur solche Matrizen bei Basiswechseln die man aus ϕ mit Hilfe der Basis $lpha_1$, eta_1 erhält, ergibt sich aus wählen, dann sind α_1 , β_1 ten und Diskriminante $\mathcal{D}.$ Wenn wir eine andere Basis (α_1,β_1) von « (im Sinne von §8) nur von « und nicht von der Basiswahl abhängt, (15), indem wir x, y durch px + qy, rx + sy ersetzen. Da wir in mit ps - qr = \pm 1 miteinander verknüpft, und die Form f_1 , f eine binäre quadratische Form mit ganzzahligen Koeffizienund α , β durch eine ganzzahlige Matrix

falls man nur orientierte Basen α , β zuläßt. Wenn wir a durch $(\lambda)_a$ ersetzen, wobei $\lambda \in K$ und $N(\lambda) > 0$ ist, dann ist $(\lambda\alpha, \lambda\beta)$ eine orientierte Basis für $(\lambda)_a$ und $N((\lambda)_a) = \{N(\lambda) \mid N(a) = N(\lambda)N(a)\}$ somit ist die dem Ideal $(\lambda)_a$ zugeordnete Form

ස

$$(\mathbf{x},\mathbf{y}) \mapsto \frac{\mathbf{N}(\mathbf{x}\lambda\alpha+\mathbf{y}\lambda\beta)}{\mathbf{N}((\lambda)|\mathbf{a}|)} = \frac{\mathbf{N}(\lambda)|\mathbf{N}(\mathbf{x}\alpha+\mathbf{y}\beta)|}{\mathbf{N}(\lambda)|\mathbf{N}(\mathbf{a}|)} = \frac{\mathbf{N}(\mathbf{x}\alpha+\mathbf{y}\beta)|}{\mathbf{N}(\mathbf{a}|)}$$

mit f identisch. Wir haben also auf eindeutige Weise *jeder Idealklasse* im engeren Sinne eine Äquivalensklasse von binären quadratischen Formen der Diskuriminante D zugeordnet (positiv-definit, falls D < 0).

Wir zeigen jetzt, daß diese Zuordnung bijektiv ist. Sei

(16)
$$f(x,y) = ax^2 + bxy + cy^2$$
; a, b, $c \in \mathbb{Z}$, $b^2 - 4ac = D$,

eine quadratische Form der Diskriminante D, positiv-definit falls D < O. Weil D eine Fundamentaldiskriminante ist, ist (a,b,c) = 1. Wir setzen zunächst a > O voraus. Seien

(17)
$$w = \frac{b + \sqrt{D}}{2a}$$
, $w' = \frac{b - \sqrt{D}}{2a}$

die Wurzeln der quadratischen Gleichung aw 2 - bw + c = 0, und

$$a = \mathbf{Z} + \mathbf{Z} \mathbf{w} .$$

Wir behaupten, daß α ein gebrochenes Ideal ist. In der Tat: ist $\lambda = \frac{u+v\sqrt{D}}{2} \in \mathfrak{D}$ (u, $v \in \mathbb{Z}$, $u = vD \pmod{2}$) und $\alpha = x + yw \in \mathfrak{a}$, so ist

$$\lambda \alpha = (\frac{u + v\sqrt{b}}{2})(x + \frac{yb + y\sqrt{b}}{2a})$$

$$= \frac{xu}{2} + \frac{ybu}{4a} + \frac{yvD}{4a} + (\frac{xv}{2} + \frac{ybv}{4a} + \frac{uy}{4a}) \sqrt{b}$$

$$= (x \frac{u - vb}{2} - yvc) + (xva + y \frac{u + vb}{2}) w ,$$

was in $\mathbb{Z} + \mathbb{Z}_W$ liegt (b² = D (mod 4a) \rightarrow b = D (mod 2) \rightarrow u = vD = vb (mod 2)). Wegen $\frac{W-W^1}{\sqrt{D}} > 0$ ist die Basis 1, w orientiert. Die Diskriminante von a ist

$$D(a) = \det \begin{pmatrix} 1 & w \\ 1 & w^1 \end{pmatrix}^2 = (w-w^1)^2 = D/a^2$$

und wir erhalten nach (4)

$$N(a) = \frac{1}{a}.$$

$$(x,y) \mapsto \frac{N(x+yw)}{N(a)} = \frac{A + aA' + aY}{1} = f(x,y)$$
.

Wir haben damit ein Ideal konstruiert mit f als zugeordneter quadratischer Form. Ist umgekehrt a ein Ideal mit orientierter Basis α , β und $\alpha\alpha'$ > 0, so ist mit a, b, c wie in (15)

$$\frac{b+\sqrt{D}}{2a} = \frac{\alpha\beta' + \alpha'\beta + N(a)\sqrt{D}}{2\alpha\alpha'}$$

$$= \frac{\alpha\beta' + \alpha'\beta + (\alpha'\beta - \alpha\beta')}{2\alpha\alpha'} = \frac{\beta}{\alpha},$$

also $\mathbb{Z}'+\mathbb{Z}$ $\frac{b+\sqrt{D}}{2a}=\mathbb{Z}+\mathbb{Z}$ $\frac{\beta}{\alpha}=(\alpha^{-1})_a$ zu $_a$ im engeren Sinn äquivalent. Für Formen (16) mit $_a<0$ (dann muß nach Voraussetzung $_D>0$ sein) nehmen wir anstatt (18) das Ideal $_Z\lambda+_Z\lambda w$, wobei $_\lambda\in\mathbb{Q}(\sqrt{D})$ eine Zahl mit negativer Norm ist (etwa $_\lambda=\sqrt{D}$). Dann ist $_\lambda$, $_\lambda$ w eine orientierte Basis, und die diesem Ideal zugeordnete Form ist wieder f. Umgekehrt liefert jedes Ideal $_a$ mit orientierter Basis $_a$, $_\beta$ und

 $\alpha\alpha'$ < 0 eine Form (16) mit a < 0, für die das Ideal $\mathbb{Z}\lambda+\mathbb{Z}\lambda w$ im engeren Sinne zu α äquivalent ist. Wir haben also folgenden Satz be-

SATZ: Sei D + 1 eine Fundamentaldiskriminante und K = $\mathbb{Q}(\sqrt{D})$. Dam gibt es eine bijektive Korrespondenz zwischen den Äquivalenzklassen von binären quadratischen Formen der Diskriminante D (positiv-definit, falls D < 0) und den Äquivalenzklassen in engeren Sinn von Idealen von K. Diese Korrespondenz ordnet dem Ideal $\mathbb{Z}\alpha + \mathbb{Z}\beta$ (mit $\frac{\alpha \cdot |\beta - \alpha\beta \cdot|}{\sqrt{D}} > 0$) die Form (15) zu und ordnet der Form $\mathbb{Z}\alpha^2 + \mathbb{D}xy + \mathbb{C}y^2$ das ($\mathbb{Z}\beta$ ($\mathbb{Z}\beta$) dasselbe Vorzeichen wie a hat. Somit ist die Anzahl der Äquivalenzklassen von Idealen im engeren Sinne gleich der in §8 definierten Klassenzahl h(D) und insbesondere endlich.

Aufgaben

- 1. Man beweise die im Text behaupteten Aussagen (4), (6), (7).
- 2. Man verifiziere (10) und (11) (d.h., daß die als $(2,4+\sqrt{6})$ bzw. $(5,4+\sqrt{6})$ definierten Ideale wirklich die gegebenen Basen besitzen) und auch, daß \mathfrak{p} und \mathfrak{q} Primideale sind und $\mathfrak{q} * \mathfrak{q}^{\dagger}$. (Hinweis: ein Ideal, dessen Norm eine Primzahl ist, ist prim. Warum?)
- 3. Man zeige, daß eine Matrix, die den Übergang zwischen zwei orientierten Basen beschreibt, Determinante +1 hat.
- 4. Man zeige, daß es eine Bijektion zwischen den Äquivalenzklassen von Idealen in K (nicht im engeren Sinne) und den Äquivalenzklassen im weiteren Sinne (vgl. (8.14)) von quadratischen Formen

der Diskriminante D gibt.

a) Für D ■ O oder 1 (mod 4), D kein Quadrat, sei

$$\mathfrak{D}_{D} = \left\{ \frac{a+b\sqrt{D}}{2} \mid a, b \in \mathbb{Z}, a = bD \pmod{2} \right\}.$$

Schreiben wir D = $D_0 r^2$ mit D_0 eine Fundamentaldiskriminante und $r \ge 1$, so ist \mathfrak{D}_D ein Unterring vom Index r im Ring $\mathfrak{D} = \mathfrak{D}_D$ der ganzen Zahlen des quadratischen Körpers $K = \mathfrak{Q}(\sqrt{D})$. Mit den naheliegenden Definitionen von Idealen, Hauptidealen, Kquivalenz usw. in \mathfrak{D}_D gibt es dann eine bijektive Korrespondenz zwischen den Kquivalenzklassen von \mathfrak{D}_D -Idealen im engeren sinne und den Kquivalenzklassen (ebenfalls im engeren Sinne) von quadratischen Formen der Diskriminante D (positiv definit, falls D < 0).

b) Sei K ein quadratischer Körper der Diskriminante D_0 . Für jeden Modul M \subset K (d.h. Untergruppe von Rang 2) ist der Multiplikator

$$\mathfrak{D}(M) = \{x \in K \mid xM \subseteq M\}$$

gleich dem in a) definierten Ring \mathfrak{D}_D für ein geeignetes $D=D_0 r^2$. Im engeren Sinne äquivalente Moduln (d.h. Moduln M und ξM mit $\xi \in K$, $N(\xi)>0$) haben denselben Multiplikator, und es gibt eine bijektive Korrespondenz zwischen den Kquivalenzklassen von Moduln M mit $\mathfrak{D}(M)=\mathfrak{D}_D$ und den Kquivalenzklassen von primitiven quadratischen Formen der Diskriminante D (positiv-definit, falls D < 0).

Bemerkung: Mit Hilfe dieser Korrespondenz kann man einen rein algebraischen Beweis der in Aufgabe 8d), §8, auf analytischem Weg bewiesenen Beziehung $h(D) = \frac{\gamma_D}{\nu_T}(r)$ geben. Dafür werden durch $M \mapsto \delta M$ ($\delta = \delta_D$ der Ring der ganzen Zahlen in K) Abbildungen

{Moduln mit Multiplikator \mathfrak{D}_{D} } \rightarrow {(gebrochene) \mathfrak{D} -Ideale} {Hauptmodukn $\xi\mathfrak{D}_{D}$, $\xi\in K^{*}$ } \rightarrow {Hauptideale $\xi\mathfrak{D}$, $\xi\in K^{*}$ }

definiert, welche surjektiv sind und Kerne der Ordnungen $[(\mathfrak{D}/r\mathfrak{D})^*: (\mathfrak{D}_p/r\mathfrak{D})^*]$ bzw. $[\mathfrak{D}^*: \mathfrak{D}_p^*]$ haben, wobei R* die Gruppe der invertierbaren Elemente eines Rings R bezeichnet. (Eine Skizze des Beweises wird in den Aufgaben 6-11, §7, Kap.II, des am Ende dieses Kapitels zitierten Buchs von Borewicz und

Šafarevič gegeben.) Es ist aber $[\mathfrak{D}^*:\mathfrak{D}^*] = v_r$ und $[(\mathfrak{D}/r\mathfrak{D})^*:(\mathfrak{D}_p/r\mathfrak{D})^*] = \frac{|(\mathfrak{D}/r\mathfrak{D})^*|}{|(\mathbf{Z}/r\mathbf{Z})^*|} = \gamma_{D_0}(r)$ (s. Aufgabe 2, §11).

§11 Die Zetafunktion eines quadratischen Körpers

Die Bedeutung der Riemannschen Zetafunktion kommt von der Formel

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n^{s}} = II (1 - p^{-s})^{-1} \qquad (\sigma > 1) ,$$

die die analytische Formulierung der Tatsache ist, daß sich jede natürliche Zahl auf eindeutige Weise als Produkt von Primzahlen darstellen läßt. Für einen quadratischen Zahlkörper K = $\mathbb{Q}(\sqrt{D})$ wissen wir, daß die entsprechende Behauptung nicht für Zahlen, wohl aber für Ideale gilt, und es ist daher sehr natürlich, dem Körper K die Dirichletsche Reihe

(2)
$$\zeta_{K}(s) = \sum_{\mathbf{a}} \frac{1}{N(\mathbf{a})^{S}}$$

zuzuordnen, wobei die Summe über alle ganzen Ideale (\pm 0) von K läuft (ob diese Reihe einen nichtleeren Konvergenzbereich hat, sei für den Augenblick dahingestellt). Die Funktion (2) nennt man die Dedekindsche Zetafunktion; sie kann für einen beliebigen Zahlkörper definiert werden und hat viele Eigenschaften mit der Riemannschen Zetafunktion (dem Spezialfall K = \oplus) gemeinsam: Konvergenzabszisse σ_0 = 1, einfacher Pol bei s = 1 als einzige Singularität, Funktionalgleichung unter s \rightarrow 1 - s, rationale Werte für s = 0, -1, -2, ... usw. Mit demselben Beweis wie für (1) schließt man aus der eindeutigen Primidealzerlegung, daß

(3)
$$\zeta_{K}(s) = \prod_{p} (1 - N(p)^{-s})^{-1}$$

(Produkt über alle Primideale $\, \mathfrak{p} \,)$, falls eine der beiden Seiten der Gleichung absolut konvergiert.

Wir zeigen jetzt, daß das für $\sigma > 1$ der Fall ist. Jedes Primideal teilt eine natürliche Primzahl p (denn p teilt die natürliche Zahl N(p), also muß p, da es prim ist, einen der Primteiler von N(p) teilen). Dann folgt aus p|p, daß

$$N(p) | N((p)) = pp' = p^2$$
,

also $N(\mathfrak{p})=p$ oder p^2 $(N(\mathfrak{p})=1$ scheidet offensichtlich aus). Wenn

97

$$p = p_1 \cdots p_r$$

die Primidealzerlegung von p (d.h. von dem Hauptideal (p)) in ist, so ist

$$p^2 = N(p) = N(p_1) \dots N(p_r)$$
,

also $r \le 2$, und es gibt zwei Möglichkeiten: $p = p_1 p_2$ mit p_1 , p_2 prim und $N(p_1) = p$ oder p = p mit $N(p) = p^2$. Somit ist

$$\prod_{1} (1-N(*)^{-S})^{-1} = (1-p^{-S})^{-1} \text{ oder } (1-p^{-S})^{-2} \text{ oder } (1-p^{-2S})^{-1}$$
**|P

also

$$\prod_{\substack{p \mid p \\ p \mid p}} |1 - N(p)^{-s}|^{-1} \le (1 - p^{-\sigma})^{-2} ,$$

und $\prod_{\mathfrak{p}} (1 - N(\mathfrak{p})^{-S})^{-1}$ wird im Absolutbetrag durch $\zeta(\sigma)^2$ abgeschätzt, was für $\sigma > 1$ endlich ist; das Produkt (3) und somit auch die Summe (2) sind daher absolut konvergent für $\sigma > 1$.

Wir können (2) auch schreiben als

18 ₽(n)

$$\zeta_{K}(s) = \sum_{n=1}^{\infty} \frac{F(n)}{n^{s}}$$

mit

$$F(n) = \#\{a \mid a \text{ ein ganzes Ideal, } N(a) = n\}$$
,

 $\zeta_{\rm K}(s)$ ist also eine gewöhnliche Dirichletsche Reihe, deren Koeffizienten uns sagen, wie oft eine gegebene Zahl als Norm eines Ideals auftritt. Wir behaupten, daß die Zahl F(n) gleich der Zahl R(n) der nichtäquivalenten Darstellungen von n durch quadratische Formen der Diskriminante D ist. In der Tat, seien A_1 , ..., A_h (h = h(D)) die Äquivalenzklassen von Idealen im engeren Sinn, und sei für jedes i

$$\zeta(A_{\underline{1}}, s) = \sum_{a \in A_{\underline{1}}} \frac{1}{N(a)^{S}}$$

$$a \text{ ganz}$$

die Zetafunktion der Idealklasse A; dann gilt offenbar

$$\zeta_{K}(s) = \sum_{i=1}^{h(D)} \zeta(A_{i},s)$$

$$\zeta(A_i,s) = \sum_{n=1}^{\infty} \frac{F_i(n)}{n^s}$$

und

Wir behaupten, daß $F_1(n)$ gleich der Darstellungsanzahl $R(n,f_1)$ der Zahl n durch die Form f_1 ist, welche unter der in §10 konstruierten Korrespondenz der Idealklasse A_1 entspricht. Daraus wird unsere erste Behauptung wegen $R(n) = \sum\limits_{i=1}^{n} R(n,f_1)$ und $F(n) = \sum\limits_{i=1}^{n} F_1(n)$

Wir machen eine Vorbemerkung. Wegen (10.7) ist die Idealklasse ${\tt A}^{-1}$ der Inversen von Elementen aus einer Idealklasse ${\tt A}$ gleich der Idealklasse ${\tt A}'$ der Konjugierten von Elementen aus ${\tt A}$, also

$$\zeta(A^{-1},s) = \zeta(A',s) = \sum_{\alpha \in A'} \frac{1}{N(\alpha)^{S}}$$

$$\alpha \text{ ganz}$$

$$\sum_{a \in A} \frac{1}{N(a')^S} = \zeta(A,S)$$

$$\alpha \operatorname{ganz}$$

(das letzte wegen $N(\mathfrak{a}^1) = N(\mathfrak{a})$). Sei jetzt \mathfrak{a} ein Ideal, A seine Idealklasse und f die entsprechende quadratische Form. Für $\mathfrak{b} \in A^{-1}$ ist $\mathfrak{a}\mathfrak{b}$ ein Hauptideal im engeren Sinne, also $\mathfrak{a}\mathfrak{b} = (\xi)$ mit $N(\xi) > 0$; umgekehrt liegt für $\xi \in K$ mit $N(\xi) > 0$ das gebrochene Ideal $\mathfrak{b} = (\xi)\mathfrak{a}^{-1}$ in A^{-1} . Das Ideal \mathfrak{b} ist genau dann ganz, wenn $\mathfrak{a} \mid \xi$, d.h. wenn $\xi \in \mathfrak{a}$ gilt. Somit ist die Abbildung

$$\{\xi \in a \mid N(\xi) > 0\} \rightarrow \{b \in A^{-1} \mid b \text{ ganz}\}$$

 $\xi \mapsto (\xi)a^{-1}$

(4)

wohldefiniert und surjektiv. Was ist ihr Kern? Zwei Elemente ξ und ξ_1 haben genau dann dasselbe Bild, wenn $\xi_1 | \xi$ und $\xi | \xi_1$, also $\xi_1 = \varepsilon \xi$ ist mit $\varepsilon \in \mathfrak{D}$, $\varepsilon^{-1} \in \mathfrak{D}$ und $N(\varepsilon) = N(\xi_1)/N(\xi) > 0$. Somit liefert (4) eine Bijektion

(5)
$$\{\xi \in a \mid N(\xi) > 0\}/U_{+} \approx \{b \in A^{-1}, b \text{ ganz}\}$$
,

wobei

$$U_{+} = \{ \varepsilon \in \mathfrak{D} \mid \varepsilon^{-1} \in \mathfrak{D}, N(\varepsilon) = 1 \}$$

die Gruppe der Einheiten positiver Norm ist, die in der Gruppe

$$U = \{\varepsilon \in \mathfrak{D} \mid \varepsilon^{-1} \in \mathfrak{D}\}$$

aller Einheiten den Index 1 oder 2 hat. Unter der Korrespondez (5) ist

$$N(b) = N((\xi)a^{-1}) = N(\xi) N(a)^{-1}$$

Daher gilt

$$\zeta(A,s) = \zeta(A^{-1},s)$$

$$= \sum_{\substack{b \in A^{-1} \\ b \notin A}} \frac{1}{N(b)^{S}}$$

$$= \sum_{\xi \in \mathfrak{a}/U_{+}} \frac{N(\mathfrak{a})^{S}}{N(\xi)^{S}},$$

$$N(\xi) > 0$$

also wegen (10.14)

6)

$$\zeta(\mathbf{A},\mathbf{S}) = \sum_{(\mathbf{x},\mathbf{y}) \in \mathbf{Z}^2/\mathbb{U}_+} \frac{1}{f(\mathbf{x},\mathbf{y})^{\mathbf{S}}}$$
$$f(\mathbf{x},\mathbf{y}) > 0$$

wobei wir « durch die Wahl einer orientierten Basis mit \mathbb{Z}^2 identifiziert haben; die induzierte Operation von \mathbb{U}_+ auf \mathbb{Z}^2 ist dann genau die, unter der wir zwei Lösungen von f(x,y)=n $(n\in\mathbb{N})$ in §8 als äquivalent erklärten. Die rechte Seite von (6) ist also gleich

$$\sum_{n=1}^{\infty} \frac{R(n,f)}{n^s}$$

und die Behauptung ist bewiesen.

Wir werden jetzt für die Zetafunktion von K einen elementaren Ausdruck geben; wegen (3) genügt es, für jede natürliche Primzahl p den Faktor II $(1-N(\mathfrak{p})^{-S})^{-1}$ der Eulerschen Produkt-Entwicklung zu kennen. Wir müssen also untersuchen, wie sich eine Primzahl p in Primideale zerlegt.

Wir hatten schon überlegt, daß grundsätzlich zwei Fälle vorkom-men können - das in Z prime Ideal pZ bleibt entweder in D prim, also

$$= \mathfrak{p} , \qquad N(\mathfrak{p}) = \mathfrak{p}^2 ,$$

(eine solche Primzahl p nennt man *träge*), oder es zerfällt in der Form

$$p = p_1 p_2$$
, $N(p_1) = N(p_2) = p$.

Diesen Fall werden wir weiter unterteilen je nachdem, ob $\mathfrak{p}_1=\mathfrak{p}_2$ ist, also

$$0 = p^2$$
, $N(p) = p$

allgemeinen Beziehung $a' = N(a) a^{-1}$). Welcher der drei Fälle vorheißt p zerlegt). In beiden Fällen ist $\mathfrak{p}_2 = \mathfrak{p}_1'$ (das folgt aus der von K liegt, hängt von dem Wert von $\chi_{\mathbf{D}}(\mathbf{p})$ ab, wo D die Diskriminante (eine solche Primzahl nennt man verzweigt), oder ob $p_1 + p_2$ und $\chi_{\mathbf{D}}$ der in §5 definierte primitive Charakter ist:

SATZ 1: Sei K ein quadratischer Körper und p eine rationale Primzahl. Dann wird die Zerlegung von p im Ring 🔊 der ganzen Zahlen von K wie folgt gegeben:

(7)
$$p = pp', p + p' \leftrightarrow \chi_D(p) = 1,$$

(8)
$$p = p^2 + \chi_D(p) = 0$$
,

$$p = p + \chi_D(p) = -1$$

KOROLLAR: Die Zetafunktion von K hat die Zerlegung

(10)
$$\zeta_{K}(s) = \zeta(s) L(s, \chi_{D})$$
.

ist gegeben durch Die Anzahl der Darstellungen einer natürlichen Zahl n als Norm eines Ideals in Ö

(11)
$$F(n) = \sum_{m \mid n} \chi_{D}(m)$$
.

х_р(р) Beweis: Sei p # 2 (für den Fall p = 2 siehe Aufgabe 1). Dann ist gleich dem Legendre-Symbol $(\frac{D}{P})$.

Sei zunächst p eine verzweigte Primzahl, $p = p^2$, $p = p^1$, $N(p) = Wegen <math>p^2 + p$ gibt es eine Zahl $x = \frac{a+b\sqrt{D}}{2}$, die durch p, aber nicht durch $p^2 + p^2$ auch x + x' und $b\sqrt{D} = x - x'$. Aber teilbar ist. Dann ist x' durch p' = p teilbar, also Ġ

$$pia \Rightarrow p = p^2 | a^2 \Rightarrow p|a,$$

und

$$\mathfrak{p}[bV\overline{D} + p = \mathfrak{p}^2](bV\overline{D})^2 = b^2D + p|b \text{ oder } p|D$$
.

teilbar), folgt hieraus plD, d.h. $\chi_D(p) = 0$. Da p nicht a und b teilen kann (sonst wäre ja x durch p = p^2

verzweigt: Da D oder D/4 quadratfrei ist, gilt p^2ID , d.h. Ist umgekehrt p ein Primteiler der Diskriminante, so ist mit plD₁. Dann folgt aus

$$(\sqrt{D})^2 = (D) = (p)(D_1)$$

Somit ist (8) bewiesen. und $(p,D_1) = 1$, daß die Ideale (p) und (D_1) beide Quadrate sind.

von R hat die Ordnung p - 1. Somit gilt $x^{p-1} = 1$ für jedes $x \in$ Bewiesenen teilt p die Diskriminante nicht. Da N(p) = pper der Ordnung ist der Quotientenring R = D/p von D nach dem Ideal p Sei jetzt p zerlegt, also p = pp' mit p' + p. Nach dem eben p, und die Gruppe R^{\star} der invertierbaren Elemente prim ist,

$$x \in \mathfrak{D}$$
 , $\mathfrak{p}/x \to x^{p-1} = 1 \pmod{\mathfrak{p}}$

können wir diese Formel auf $x = \sqrt{D}$ anwenden und erhalten somit (Analogon zum kleinen Fermatschen Satz). Da pID und daher »IV \widehat{D}

$$D^{\frac{p-1}{2}} = (\sqrt{D})^{p-1} = 1 \pmod{p} .$$

→ pla), also gilt auch ist aber pla zu p|a äquivalent (ϕ |a \Rightarrow p=N(ϕ)|N(a)=a²

$$D^{\frac{p-1}{2}} = 1 \pmod{p}$$

was nach einem bekannten Kriterium zu $(\frac{D}{p})=1$ äquivalent ist. Ist umgekehrt p eine Primzahl mit $(\frac{D}{p})=1$, so wählen wir eine Zahl $x\in \mathbb{Z}$ mit $x^2=D$ (mod p). Wäre $x=\sqrt{D}$ durch p teilbar, # x² - D sprechend $pI(x + \sqrt{D})$. Andererseits ist das Produkt $(x - \sqrt{D})(x + \sqrt{D})$ aussetzungen p * 2 und p/D. Es gilt also p/(x - \sqrt{D}) und entrenz 2VD dieser beiden Elemente teilen, im Widerspruch zu den Vorso müßte $\,p\,$ auch das Konjugierte $\,x\,+\,\sqrt{D}\,$ und daher auch die Diffe-Es folgt, daß p mindestens zwei Primidealfaktoren enthält. Da wir Möglichkeit, daß p zerlegt ist. Damit ist (7) bewiesen. aber schon gesehen haben, daß $p = p^2 + \chi_D(p) = 0$, bleibt nur die dieser beiden Zahlen nach Voraussetzung durch p

von (7) und (8). Damit ist Satz 1 (für p + 2) bewiesen. Da es für die Primidealzerlegung von p sowie für den Wert von jeweils genau drei Möglichkeiten gibt, ist (9) eine Konsequenz

gebenen Regel für die Multiplikation von Dirichletschen Reihen sind die Aussagen (10) und (11) äquivalent. Da F(n) und de multiplikativ sind, brauchen wir (11) nur für Primzahlpotenzen Das Korollar ist jetzt leicht zu beweisen. Wegen der in §2 angenachzuweisen. Es gibt drei Fälle: χ_D(m) bei-

i) Ist $\chi_D(p) = 1$, so ist p = pp', p' + p, N(p) = N(p') = p, und $p^k = N(p^k) = N(p^{k-1} p') = N(p^{k-2} p'^2) = \dots = N(p'^k)$

läßt sich auf genau $\,k\,+\,1\,$ verschiedene Weisen als Norm darstellen, also

$$F(p^{k}) = k + 1 = 1 + 1 + \dots + 1 = \sum_{i=0}^{k} x_{D}(p^{i})$$
.

ii) Ist $\chi_D(p)=0$, so ist $p=\mathfrak{p}^2$, $N(\mathfrak{p})=p$, and $p^k=N(\mathfrak{p}^k)$ hat genau eine Darstellung als Norm, also

$$F(p^{k}) = 1 = \underbrace{1 + 0 + \dots + 0}_{k+1} = \underbrace{\sum_{i=0}^{k}}_{i=0} x_{p}(p^{i})$$

iii) Ist $\chi_D(p)=-1$, so ist $p=\mathfrak{p}$, $N(\mathfrak{p})=p^2$ und $p^{2k}=N(\mathfrak{p}^k)$, während p^{2k+1} gar keine Norm ist, also

$$\mathbf{F}(\mathbf{p}^{k}) = \begin{cases} 1 & (k \text{ gerade}) \\ 0 & (k \text{ ungerade}) \end{cases} = \underbrace{1 - 1 + \dots \pm 1}_{k+1} = \underbrace{1}_{i=0}^{k} \chi_{\mathbf{p}}(\mathbf{p}^{i})$$

Somit ist (11) in allen drei Fällen bewiesen.

Wir können auch (10) direkt beweisen mit Hilfe der Euler-Produkte der beiden Seiten. Wie oben (als wir zeigten, daß $\zeta_{K}(s)$ für $\sigma>1$ konvergiert), schreiben wir

$$\zeta_{\mathrm{K}}(s) \; = \; \Pi \; \left(1 \; - \; \mathrm{N}(\mathfrak{p})^{-S}\right)^{-1} \; = \; \Pi \left(\begin{array}{c} \Pi \\ \mathfrak{p} \mid \mathcal{p} \; 1 - \mathrm{N}(\mathfrak{p})^{-S} \end{array} \right) \; , \label{eq:constraints}$$

wobei » über die Primideale in ø und p über die gewöhnlichen Primzahlen läuft. Mit Satz 1 haben wir:

$$\begin{split} \chi_{D}(p) &= 1 \rightarrow p = p p^{1} \ , \ p + p^{1} \ , \ N(p) = N(p^{1}) = p \\ &\Rightarrow \prod_{p \mid p} \frac{1}{1 - N(p)^{-S}} = \frac{1}{(1 - p^{-S})^{2}} \ , \\ \chi_{D}(p) &= 0 \rightarrow p = p^{2} \ , \ N(p) = p \rightarrow \prod_{p \mid p} \frac{1}{1 - N(p)^{-S}} = \frac{1}{1 - p^{-S}} \ , \\ \chi_{D}(p) &= -1 \rightarrow p = p \ , \ N(p) = p^{2} \rightarrow \prod_{p \mid p} \frac{1}{1 - N(p)^{-S}} = \frac{1}{1 - p^{-2S}} \ , \end{split}$$

also in allen drei Fällen

$$\prod_{p \mid p} \frac{1}{1 - N(p)^{-S}} = \frac{1}{1 - p^{-S}} \cdot \frac{1}{1 - \chi_{D}(p)p^{-S}}$$

Wenn wir diese Gleichungen für alle rationalen Primzahlen p miteinander multiplizieren, erhalten wir (10).

Da wir am Anfang des Paragraphen bewiesen haben, daß die Gesamtanzahl R(n) der Darstellungen einer Zahl n durch Formen der Diskriminante D gleich dem n-ten Koeffizienten F(n) der Dirichletschen Reihe $\zeta_{\rm K}(s)$ ist, erhalten wir aus dem Korollar die Formel

(12)
$$R(n) = \sum_{m \mid n} \chi_{D}(m) ,$$

die in §8 als Satz 2 bewiesen wurde. (Umgekehrt hätten wir Satz 1 aus (12) ableiten können.) In §8 zeigten wir, wie man die Klassenzahlformel

(13)
$$h(D) = \frac{1}{\kappa} L(1, \chi_D)$$

mit

(14)
$$\kappa = \begin{cases} \frac{1}{w} \cdot \frac{2\pi}{\sqrt{|D|}}, & \text{falls } D < 0 \\ \frac{\log \varepsilon_0}{\sqrt{D}}, & \text{falls } D > 0 \end{cases}$$

Formen zu verwenden. Denn aus (10) und den in §4 und §6 bewiesenen E1-Methoden direkt zeigt, daß der Mittelwert der Zahlen R(n,f) der Zahlen R(n) gleich $L(1,\chi_{\overline{D}})$ ist, während man durch geometrische Folge des folgenden Satzes: engeren Sinne) läuft. Die Beziehung (13) ist dann eine unmittelbare Singularität. Andererseits ist aber $\zeta_{K}(s)$ die Summe der h(D) fachen Pol vom Residuum $L(1,\chi_{D})$ an der Stelle s = 1 als einziger morphe Fortsetzung auf die ganze komplexe Ebene besitzt mit einem ein-Funktion $\zeta_{K}(s)$, die für $\sigma>1$ durch (2) definiert ist, eine merogenschaften der Zetafunktion und der L-Reihen folgt sofort, daß die aus dem Korollar zu Satz 1 gewinnen, ohne die Theorie von quadratischer Form f der Diskriminante D gleich k ist. Man kann aber (13) auch (12) erhalten kann, indem man aus (12) schließt, daß der Mittelwert (w die Ordnung der Einheitengruppe U, ϵ_0 tionen $\zeta(A,s)$, wo A über die verschiedenen Idealklassen von die Grundeinheit) aus

SATZ 2: Sei K ein quadratischer Körper der Diskriminante D und A eine Idealklasse (im engeren Sinne) von K. Dann hat die für 0 > 1 durch

(15)
$$\zeta(\mathbf{A},\mathbf{s}) = \sum_{\mathbf{a} \in \mathbf{A}} \frac{1}{N(\mathbf{a})^{\mathbf{S}}}$$

definierte Letafunktion von A eine meromorphe Fortsetzung auf die Halbebene $\sigma > \frac{1}{2}$ mit einem einfachen Pol an der Stelle s=1 als einziger Singularität. Es gilt

(16)
$$\operatorname{res}_{s=1} \zeta(A,s) = \kappa$$
,

wobei κ die durch (14) definierte Zahl bezeichnet, welche von K, aber nicht von der Idealklasse A abhängt.

Wenn wir diesen Beweis der Klassenzahlformel (13) mit dem Beweis in §8 vergleichen, so sehen wir, daß die Grundidee in beiden dieselbe ist, nur daß wir jetzt mit dem Residuum einer Dirichletschen Reihe $\sum_{a_n} \mathbf{n}^{-\mathbf{s}}$ an der Stelle s = 1 statt mit dem Mittelwert $\lim_{N\to\infty} \frac{1}{N}(a_1+\dots+a_N)$ ihrer Koeffizienten arbeiten; für die von uns betrachteten Dirichletschen Reihen sind diese Werte aber gleich (vgl. Aufgabe 3). Wir bemerken auch, daß sich $\zeta(\mathbf{A},\mathbf{s}) = \frac{\kappa}{\mathbf{s}-1}$ tatsächlich auf die ganze komplexe Ebene holomorph fortsetzen läßt; wir haben in Satz 2 nur die Fortsetzbarkeit auf die Halbebene $\sigma > \frac{1}{2}$ behauptet, weil dies sich aus dem schon Bewiesenen leicht herleiten läßt (Aufgabe 4).

C = {gebrochene Ideale von K}/{Hauptideale}

die Gruppe der Idealklassen von K (im engeren Sinne); dies ist eine endliche Gruppe der Ordnung |C|=h=h(D). Ein Idealklassencharakter von K ist ein Charakter auf C im Sinne von §5 oder, was dasselbe ist, eine komplexwertige Funktion χ auf den (gebrochenen) Idealen von K mit den beiden Eigenschaften

a)
$$\chi(ab) = \chi(a) \dot{\chi}(b)$$
 für alle Ideale a, b ;

b)
$$\chi((\alpha)) = 1$$
 für $\alpha \in K$, $N(\alpha) > 0$

Einem solchen Charakter ordnen wir die L-Reihe

$$L_{K}(s,\chi) = \sum_{a} \frac{\chi(a)}{N(a)^{S}}$$

zu, wobei die Summe wie in (2) über die ganzen Ideale « + O von K läuft. Wegen der Multiplikativität a) hat diese L-Reihe eine Euler-Produktentwicklung

$$L_{K}(s,\chi) = II \left(1 - \frac{\chi(\mathfrak{p})}{N(\mathfrak{p})^{S}}\right)^{-1}.$$

Andererseits ist

(17)
$$L_{K}(s,\chi) = \sum_{A \in C} \sum_{a \in A} \frac{\chi(a)}{N(a)^{S}} = \sum_{A \in C} \chi(A) \zeta(A,s)$$

und nach der Orthogonalitätsrelation für Charaktere (der Verallgemeinerung des Korollars zu Satz 3, §5, auf Charaktere auf beliebigen endlichen abelschen Gruppen, deren Beweis wir dem Leser überlassen) umgekehrt

(18)
$$\zeta(A,s) = \frac{1}{h} \sum_{X} \overline{\chi}(A) L_{K}(s,\chi)$$

(Summe über alle Idealklassencharaktere χ). Es ist also gleichbedeutend, die Funktionen $\zeta(A,s)$ oder die L-Reihen $L_K(s,\chi)$ zu studieren; die ersteren sind häufig für analytische und die letzteren für arithmetische Untersuchungen geeigneter.

Aus (17) und Satz 2 folgt, daß $L_K(s,\chi)$ eine meromorphe Fortsetzung auf $\sigma > \frac{1}{2}$ hat und dort mit der eventuellen Ausnahme eines einfachen Pols bei s = 1 holomorph ist. Wegen (16) und der genannten Orthogonalitätsrelationen ist

$$\operatorname{res}_{s=1} L_{K}(s,\chi) = \sum_{A \in C} \chi(A) \kappa = \begin{cases} h\kappa & (\chi = \chi_{0}) \\ 0 & (\chi * \chi_{0}) \end{cases}$$

 $(\chi_0=\text{Hauptcharakter})$, d.h. $L_K(s,\chi)$ ist für χ + χ_0 holomorph, während $L_K(s,\chi_0)$ = $\zeta_K(s)$ einen Pol mit Residuum hk bei s = 1 hat. Es gilt dann

SATZ 3: Für jeden nichttrivialen Idealklassencharakter χ ist $L_K(1,\chi)$ + 0.

Der Beweis ist analog zu dem in §6 gegebenen Beweis für Dirichletsche Charaktere: zunächst ist die Funktion

$$\mathbf{F}(\mathbf{s}) = \prod_{\chi \in \mathcal{C}} \mathbf{L}_{\mathbf{K}}(\mathbf{s}, \chi) = \zeta_{\mathbf{K}}(\mathbf{s}) \prod_{\chi \neq \chi_0} \mathbf{L}_{\mathbf{K}}(\mathbf{s}, \chi)$$

wegen

$$\log F(s) = h \sum_{\substack{\mathfrak{p} \text{ Primideal} \\ \mathbf{r} \geq 1 \\ \mathfrak{p}^{\mathbf{r}} \text{ Hauptideal}}} \frac{1}{\mathbf{r}} N(\mathfrak{p})^{-\mathbf{r}s}$$

für reelles s > 1 reell und \geq 1, woraus folgt, daß L_K (1, χ) für höchstens einen nichttrivialen Charakter χ verschwinden kann, welcher reell sein muß; für χ reell leitet man aus L_K (1, χ) = 0 mit Hilfe der Funktion $\frac{\zeta_K(s)}{\zeta_K(2s)}$ einen Widerspruch her (in §12 werden wir für reelle χ eine Formel für L_K (s, χ) angeben, woraus L_K (1, χ) + 0 ebenfalls folgt).

Wir erwähnen, daß, genau wie im Falle $K=\mathbb{Q}$, die Werte $L_{K}(1,\chi)$

in die Formeln für die Klassenzahlen gewisser Erweiterungen von I (der sog. Klassenkörper) eingehen.

KOROLLAR: Sei D eine Fundamentaldiskriminante. Dann stellt jede quadratische Form der Diskriminante D unendlich viele Primzahlen dar.

(Das Korollar gilt für beliebige primitive Formen, deren Diskriminante kein Quadrat ist, aber für den allgemeinen Beweis muß man statt Idealklassencharakteren die sog. Ringklassencharaktere benutzen.)

Beweis: Wieder wegen der Orthogonaltitätsrelationen ist

$$\sum_{\mathfrak{p}^{\mathbf{r}} \in \mathbf{A}} \frac{1}{\mathbf{r}} \, \mathbf{N}(\mathfrak{p})^{-\mathbf{r}\mathbf{s}} = \frac{1}{\mathbf{h}} \sum_{\chi \in \widehat{\mathbf{C}}} \overline{\chi}(\mathbf{A}) \, \log \, \mathbf{L}_{K}(\mathbf{s}, \chi) \qquad (\text{Re}(\mathbf{s}) > 1)$$

für jedes A ε C. Wegen des Satzes sind die Glieder mit χ # χ_0 auf der rechten Seite für s \to 1 beschränkt, während

$$\log L_{K}(s,\chi_{0}) = \log \zeta_{K}(s) = \log \frac{1}{s-1} + O(1)$$
 $(s \to 1)$.

Andererseits ist auf der linken Seite die Summe über alle $\mathfrak p$ und $\mathfrak r$ mit r>1 oder $N(\mathfrak p)=p^2$ wegen $\sum\limits_{n=1}^\infty n^{-2}<\infty$ ebenfalls für $s\to 1$ beschränkt, also

$$\sum_{\substack{\mathfrak{p} \in \mathbf{A} \\ \mathfrak{p})}} \mathbf{N(\mathfrak{p})}^{-\mathbf{S}} = \frac{1}{\mathbf{h}} \log \frac{1}{\mathbf{s} - 1} + O(1) \qquad (\mathbf{s} \to 1) .$$

Für eine rationale Primzahl p ist aber die Anzahl der $\mathfrak{p} \in A$ mit $N(\mathfrak{p}) = p$ gleich der Anzahl der Darstellungen von p durch die Form f, die unter der Korrespondenz von §10 der Idealklasse A entspricht. Damit haben wir nicht nur das Korollar, sondern die schärfere Aussage

bewiesen. Ist p durch f darstellbar, so ist R(p,f) gleich 1 oder 2 je nachdem, ob A = A' øder nicht, d.h. je nachdem, ob die Form $f(x,y) = ax^2 + bxy + cy^2$ unter $SL_2(\mathbf{Z})$ zu der Form $ax^2 - bxy + cy^2$ äquivalent ist (solche Formen heißen ambig) oder nicht. Definieren wir die Dirichletsche Dichte einer Menge \mathfrak{P} von Primzahlen als

$$\delta(\mathfrak{Y}) = \lim_{s \to 1} \left(\sum_{p \in \mathfrak{Y}} p^{-s} \right) / \left(\log \frac{1}{s-1} \right)$$

(falls der Limes existiert), so können wir das Ergebnis etwas bildhafter so formulieren: die Menge der Primzahlen, die durch f darstellbar sind, besitzt eine Dirichletsche Dichte, und zwar $\frac{1}{2h(D)}$

oder $\frac{1}{h(D)}$ je nachdem, ob f ambig ist oder nicht.

Aufgaben:

1. Man beweise Satz 1 für p=2, d.h. 2 ist zerlegt, falls D=1 (mod 8), träge, falls D=5 (mod 8), und verzweigt, falls D=0 (mod 4).

Hinweis: Ist D = 4d mit d = 2 bzw. 3 (mod 4), so ist x = \sqrt{d} bzw. $x = 1 + \sqrt{d}$ in x0 und $2!x^2$, 2!x; also ist 2 verzweigt. Ist umgekehrt $2 = y^2$ verzweigt, aber D = 1 (mod 4), so kann man aus y|x und 2!x wie im Falle einer ungeraden Primzahl einen Widerspruch herleiten. Ist D = 5 (mod 8), so kann man aus 2!N(x) auch 2!x ableiten, also ist 2 träge. Ist aber D = 1 (mod 8), so ist $\frac{1+\sqrt{D}}{2}$ nicht durch 2 teilbar, hat aber gerade Norm, und 2 kann nicht träge sein.

2. Sei K ein quadratischer Körper der Diskriminante D, & der Ring der ganzen Zahlen in K und r eine natürliche Zahl. Dann ist die Ordnung der Gruppe (&/r&)* der invertierbaren Elemente des Restklassenrings &/r& durch

$$|(\mathfrak{D}/\mathfrak{rD})^*| = \phi(\mathfrak{r}) \gamma_{\mathbf{D}}(\mathfrak{r})$$

gegeben, wo $\phi(\mathbf{r}) = |\langle \mathbf{Z}/\mathbf{r}\mathbf{Z}\rangle^*|$ die Eulersche Funktion ist und $\gamma_{\mathrm{D}}(\mathbf{r}) = \mathbf{r}$ II $(1 - \frac{\chi_{\mathrm{D}}(\mathbf{p})}{\mathbf{p}})$. (Vgl. die Bemerkung zu Aufgabe 5, §10.)

- 3. Sei $\sum\limits_{n=1}^{\infty} c_n \, n^{-S}$ eine Dirichletsche Reihe mit Konvergenzabszisse $\sigma_0 < 1$. Dann ist das Produkt von $\sum\limits_{n=1}^{\infty} c_n \, n^{-S} \, \text{mit} \, \zeta(s)$ eine Dirichletsche Reihe mit folgender Eigenschaft: der Mittelwert der Koeffizienten existiert und ist gleich dem Residuum an der Stelle s=1 der meromorphen Fortsetzung der durch diese Reihe definierten Funktion, also gleich $\sum\limits_{n=1}^{\infty} c_n \, (\text{Vgl. den Beweis vom Satz 4, §8, wo } c_n = \chi_D(n), \, \sigma_0 = 0.)$
- 4. Man beweise Satz 2, indem man die Beziehung $\zeta(s,A) = \sum_{n=1}^{\infty} \frac{R(n,f)}{ns}$ (f die Form, die A entspricht) benutzt und den Beweis von Satz 4, §8, verfeinert, um die Formel

$$\sum_{n=1}^{N} R(n,f) \sim \kappa N$$

durch die präzisere Formel

$$\sum_{n=1}^{N} R(n,f) = \kappa N + O(\sqrt{N})$$

zu ersetzen.

§12 Geschlechtertheorie

gibt, und daß deren Anzahl h(D) eine gar nicht leicht zu bestimmen-Äquivalenzklassen von Formen mit einer gegebenen Diskriminante D daß es im allgemeinen mehrere (allerdings nur endlich viele) der Determinante 1 ineinander übergeführt werden können, und sahen, wir zwei Formen äquivalent, falls sie durch eine ganzzahlige Matrix In §8 haben wir binäre quadratische Formen studiert. Dabei nannten quadratischen Charakteren gegeben und gezeigt, daß ihre Anzahl gleich die rational äquivalent sind (d.h. durch eine Matrix von rationalen kenntnis, daß das entsprechende Problem für rationale Äquivalenz leichde Zahl ist. Zu den schönsten Entdeckungen von Gauß gehört die Erschlechter wirklich grober ist als die vorher von uns betrachtete Tatsache, die wir schon in §9 erwähnten. Daß die Einteilung in 2^{t-1} ist, wo t die Anzahl der in D enthaltenen Primfaktoren be-Geschlechter der Formen mit Diskriminante D mit Hilfe von gewissen zahlen mit der Determinante 1 ineinander überführbar sind) zum selter ist und vollständig gelöst werden kann. Man sagt, daß zwei Formen, Klasseneinteilung, sieht man anhand des folgenden Beispiels: die Formen zeichnet. Insbesondere ist h(D) stets durch 2^{t-1} Geschlecht gehören. Gauß hat eine vollständige Beschreibung der teilbar, eine

$$f(x,y) = x^2 + xy + 6y^2$$

 $g(x,y) = 2x^2 + xy + 3y^2$

der Diskriminante -23 sind sicherlich nicht äquivalent, da f die zahl 1 ganzzahlig darstellt (mit x = 1, y = 0) und g das nicht tut $(g(x,y) = 2(x + \frac{1}{4}y)^2 + \frac{23}{8}y^2 > 1$ für x, y ganz und nicht beide 0), aber man kann f in g überführen durch Anwendung der Transformation $\binom{1/2}{-3/2}\binom{1/2}{1/2}$ der Determinante 1.

Wir wollen in diesem Paragraphen die Hauptresultate der Gaußschen Geschlechtertheorie herleiten, wobei wir mit Idealklassen statt mit

Formen arbeiten. Hierbei wählen wir eine andere Definition der Geschlechter als die oben angegebene (für die Äquivalenz der beiden Definitionen s. Aufgabe 1). Wir führen alle Überlegungen für beliebige quadratische Körper - reell sowie imaginär - durch.

Sei also K ein quadratischer Körper der Diskriminante D und C die Gruppe der Idealklassen von K. (Wir fassen Idealklassen immer im engeren Sinne auf.) Wir hatten am Ende von §11 gemerkt, daß die multiplikativen, komplexwertigen Funktionen auf Idealen, welche auf der Hauptidealklasse den Wert 1 annehmen, genau die Charaktere von C sind, d.h. die Homomorphismen $\chi\colon C\to \mathfrak{C}^*$. Unter diesen Funktionen zeichnen wir die aus, die reellwertig sind, d.h. die Homomorphismen

$$X: C \rightarrow \{\pm 1\}$$
,

und nennen sie die *Geschlechtscharaktere*. Wir sagen, daß zwei Idealklassen \mathbb{A}_1 und \mathbb{A}_2 zu demselben *Geschlecht* gehören, falls $\chi(\mathbb{A}_1)=\chi(\mathbb{A}_2)$ für alle Geschlechtscharaktere χ . Da offensichtlich

$$\chi(C) \subset \{\pm 1\} \implies \chi(A)^2 = 1 \qquad \text{für alle } A \in C$$

$$(1) \qquad \longmapsto \chi(A^2) = 1 \qquad \text{für alle } A \in C$$

$$\iff \chi(A_1 A_2^2) = \chi(A_1) \quad \text{für alle } A_1 A_2 \in C$$

ist diese Definition zur folgenden äquivalent: zwei Klassen A_1 , A_2 ε gehören zum gleichen Geschlecht genau dann, wenn A_1 und A_2 sich um ein Quadrat in der Gruppe C unterscheiden. Die Geschlechter bilden also eine Gruppe, die zu C/C^2 isomorph ist, wo C^2 die Untergruppe $\{A^2 \mid A \in C\}$ von C bezeichnet; die Geschlechtscharaktere bilden die hierzu duale Gruppe C/C^2 (vgl. §5). Insbesondere ist die Anzahl der Geschlechter gleich der Anzahl der Geschlechtscharaktere und ist eine Potenz von 2. Das Einselement der Gruppe der Geschlechter ter nennt man das Hamptgeschlecht; nach (1) besteht dieses Geschlecht aus den Quadraten der Idealklassen, d.h. ein Ideal a gehört genau dann zum Hauptgeschlecht, wenn $A = (\lambda)$ $A = (\lambda)$ und eine Zahl $A \in K$ mit $A = (\lambda)$ $A = (\lambda)$ $A = (\lambda)$ $A = (\lambda)$

Diese Definition der Geschlechter als Äquivalenzklassen von Idealklassen modulo den Quadraten wirkt vielleicht etwas künstlich. Daß der Begriff doch sehr natürlich ist, sieht man aus folgendem Ergebnis.

SATZ 1: i) Zwei (gebrochene) Ideale 4,6 gehören genau dann zum gleichen Geschlecht, wenn es eine Zahl $\lambda \in K$ positiver Norm gibt mit

(2)
$$N(a) = N(\lambda) N(b) .$$

10

Example KER (VE), Integers form UFD. N(VE))=6.

But no lek has horm 6, since a2-6622602

has no solution. (Assume (a, b, c)=1, 3/2 =>3/6226

>> 3/6 and 5/6). So (VE) not in principal genus

11) Eine natürliche Zahl n ist genau dam Norm einer Zahl aus K, wenn n die Norm eines ganzen Ideals aus dem Hauptgeschlecht ist.

Beweis: i) Die Behauptung in einer Richtung ist trivial: Sind 4 und 6 in demselben Geschlecht, so ist nach dem oben Gesagten

$$\mathbf{a} = (\mu) \epsilon^2 \mathbf{b}$$

mit , ein Ideal aus K und μ \in K eine Zahl positiver Norm; dann ist

$$N(a) = |N(\mu)| N(\epsilon)^2 N(b) = N(\mu N(\epsilon)) N(b)$$

also gilt (2) mit $\lambda = \mu N(\epsilon)$. Nehmen wir jetzt umgekehrt an, daß (2) gilt; wir wollen zeigen, daß a im Geschlecht von b liegt. Indem wir a durch ab ersetzen, können wir b = (1) annehmen, d.h. es genügt, die Implikation

(3)
$$N(a) = N(\lambda)$$
 ($\lambda \in K$) \Rightarrow $a \in Hauptgeschlecht$

nachzuweisen. Ersetzen wir a durch $(\lambda^{-1})_a$, so können wir sogar $\lambda=1$ annehmen, d.h. N(a)=1. Wir behaupten:

(4)
$$N(a) = 1 \rightarrow 3$$
 ganzes Ideal b mit $a = b/b'$

Dies impliziert dann (3), da $\mathfrak{b}/\mathfrak{b}' = N(\mathfrak{b})^{-1} \mathfrak{b}^2$ offensichtlich zum Hauptgeschlecht gehört.

Um (4) einzusehen, schreiben wir die Primidealzerlegung des (gebrochenen) Ideals 4 hin, wobei wir zwischen den Primfaktoren p_1 mit $p_1^1 * p_1$ (d.h. $N(p_1) = p_1$ mit p_1 eine zerfallende Primzahl) und den Primfaktoren q_1 mit $q_1^2 = q_1^1$ (d.h. $N(q_1) = q_1^{1/2}$ mit q_1^2 verzweigt und $q_1^2 = q_1^2$ oder q_1^2 träge und $q_1^2 = q_1^2$ unterscheiden:

$$\mathbf{a} = \begin{pmatrix} \prod_{i} \mathbf{a}_{i} & \mathbf{b}_{i}^{i} & \mathbf{b}_{i} \\ \mathbf{1} & \mathbf{b}_{i}^{i} & \mathbf{b}_{i}^{i} \end{pmatrix} \begin{pmatrix} \prod_{i} \mathbf{a}_{j}^{i} \end{pmatrix} \qquad (\mathbf{a}_{i}, \mathbf{b}_{i}, \mathbf{c}_{j} \in \mathbb{Z}) .$$

Dann folgt aus $1=N(a)=\Pi p_1^{a_1+b_1}\Pi q_j^{1-C_j}$ und der eindeutigen Primzahlzerlegung in \mathbb{Q} , daß $a_1+b_1=0$ für alle i und $c_j=0$ für alle j, und somit ist (4) mit $b=\Pi p_1^{b_1}\Pi p_1^{b_1}$ bewiesen. $a_1>0$ $b_1>0$

ii) Wieder ist eine Richtung trivial: Ist n=N(a) mit a im Hauptgeschlecht, so ist nach (2) mit b=(1) auch n die Norm einer Zahl λ \in K. Ist umgekehrt $n=N(\lambda)$, λ \in K, so schreibt man (λ) als a/b mit a und b teilerfremde ganze Ideale aus K; dann folgt aus

 $N(\mathfrak{b}) \mid N(\mathfrak{a})$ und $(\mathfrak{a},\mathfrak{b})=1$ mit demselben Argument wie für (4), daß $\mathfrak{b}' \mid \mathfrak{a}$, also $\mathfrak{a}=\mathfrak{b}'\mathfrak{c}$ ist mit \mathfrak{c} ganz. Dann ist

$$n = N(\lambda) = N(a/b) = N(b')(b) = N(c)$$

und (liegt wegen (3) im Hauptgeschlecht.

Für spätere Zwecke schreiben wir gleich das Analogon von (4) für Zahlen:

(5)
$$\lambda \in K$$
, $N(\lambda) = 1$ \rightarrow $\exists \mu \in \mathfrak{D}$ mit $\lambda = \mu/\mu'$.

Der Beweis ist einfach: man wählt $\mu = \lambda + 1$.

Der eben bewiesene Satz soll den Unterschied zwischen Idealklassen (im engeren Sinne) und Geschlechtern verdeutlichen: Für Ideale 4,6 hat man

 \mathfrak{a} , \mathfrak{b} in derselben Idealklasse \Longrightarrow $\mathfrak{a}=(\lambda)\mathfrak{b}$, $N(\lambda)>0$,

a , b in demselben Geschlecht \longrightarrow $N(a) = N((\lambda)b)$, $N(\lambda) > 0$;

für $n \in \mathbb{N}$ hat man N((n+6))=2, bet $2C \neq a^2+3b^2$ (resource (a, b) $a \in \mathbb{N}$

 $n=N(\mathfrak{a}), \mathfrak{a} \text{ ganz, } \mathfrak{a} \in \text{Hauptidealklasse} \longrightarrow n=N(\lambda) \text{ , } \lambda \in \mathfrak{D} \text{ } \lambda \in \mathfrak{A} \text{ }$

Wir kommen jetzt zum Hauptergebnis dieses Paragraphen, der Klassifikation aller Geschlechtscharaktere. Wir erinnern an einige Tatsachen aus Teil I: Jeder Fundamentaldiskriminante D ist ein reeller, primitiver Charakter χ_D (modulo |D|) zugeordnet. Jede Diskriminante D läßt sich eindeutig als Produkt von Primdiskriminanten schreiben, d.h. von Fundamentaldiskriminanten, die nur eine Primzahl enthalten. Ist D = D₁ ... D_t die Zerlegung von D als Produkt von Primdiskriminanten, so ist χ_D das Produkt der entsprechenden χ_D . Wir bezeichnen die L-Reihe L(s, χ_D) mit L_D(s); für D = 1 ist χ_D trivial und L_D(s) = ζ (s), während man für D + 1, also D die Diskriminante eines quadratischen Körpers K, die Beziehung

(6)
$$\zeta_{\mathbf{K}}(\mathbf{s}) = \zeta(\mathbf{s}) L_{\mathbf{D}}(\mathbf{s})$$

hat. Mit dieser Terminologie gilt:

SATZ 2: Sei D die Diskriminante des quadratischen Körpers K. Es gibt eine bijektive Korrespondens zwischen den Geschlechtscharakteren von K und den Zerlegungen D = D'D" von D als Produkt von zwei Fundamentaldiskriminanten (wo-

bei die Zerlegungen $D=D'\cdot D''$ und $D=D''\cdot D'$ als gleich angesehen werden, und die Zerlegungen $D=1\cdot D$ bzw. $D=D\cdot 1$ erlaubt sind). Der der Zerlegung $D=D'\cdot D''$ entsprechende Geschlechtschurakter ist für Prinideale durch

(7)
$$\chi(\mathfrak{p}) = \begin{cases} \chi_{D_1}(N\mathfrak{p}), falls (N\mathfrak{p}, D^1) = 1, \\ \chi_{D_1}(N\mathfrak{p}), falls (N\mathfrak{p}, D^1) = 1, \end{cases}$$

und für beliebige Ideale durch

(8)
$$\chi(\mathfrak{p}_1^{1} \dots \mathfrak{p}_k^{n}) = \chi(\mathfrak{p}_1)^{1} \dots \chi(\mathfrak{p}_k)^{n_k} \quad (\mathfrak{p}_i \text{ Primideale, } n_i \in \mathbb{Z}) ,$$

definiert. Die L-Reihe von χ ist durch die Formel

(9)
$$L_{K}(s,\chi) = L_{D_{1}}(s) L_{D_{1}}(s)$$

gegeben.

Für D' = 1, D" = D ist $\chi = \chi_0$ und $L(s,\chi) = \zeta_k(s)$; in diesem Fall reduziert sich (9) auf (6).

KOROLLAR: Die Gruppe C/C^2 ist zu $(\mathbf{Z}/2\mathbf{Z})^{t-1}$ isomorph, wo t die Anzahl der verschiedenen Primteiler von D bezeichnet. Insbesondere ist die Klassenzahl h(D) durch 2^{t-1} teilbar, und h(D) ist genau darn ungerade, wenn D eine Primdiskriminante ist.

Beweis des Korollars: Sei $D=D_1 \dots D_t$ die Zerlegung von D als Produkt von Primdiskriminanten; dann hat D genau 2^{t-1} Zerlegungen als $D^t \cdot D^u$, da diese genau den Zerlegungen der Menge $\{D_1, \dots, D_t\}$ als disjunkte Vereinigung von zwei Mengen (ohne Rücksicht auf die Reihenfolge dieser Mengen) entsprechen. Andererseits wissen wir, daß die Anzahl der Geschlechtscharaktere gleich der Ordnung der Gruppe C/C^2 ist; da diese Gruppe abelsch ist und den Exponenten 2 hat, ist sie zu $(\mathbb{Z}/2\mathbb{Z})^T$ isomorph für ein geeignetes r, und dann gilt $2^T|h(D)$ und $r > 0 \longrightarrow 2|h(D)$ (h(D) = |C|). Nach dem Satz gibt es aber gleich viele Geschlechtscharaktere wie Diskriminantenzerlegungen, also ist

Beweis des Satzes: Nachzuweisen ist,

- daß die durch (7) und (8) definierte Funktion auf Idealen wohldefiniert und ein Geschlechtscharakter ist,
- ii) daß für diesen Charakter die Beziehung (9) gilt,
- iii) daß die $2^{\mathsf{t-1}}$ so konstruierten Charaktere verschieden sind, und

- iv) daß sämtliche Geschlechtscharaktere auf diese Weise entstehen.
- i) Wenn $\mathfrak p$ ein Primideal und $D=D'\cdot D''$ ein Zerlegung wie im Satz ist, so ist $N(\mathfrak p)$ eine Primzahlpotenz und (D',D'')=1, also gilt $(N\mathfrak p,D')=1$ oder $(N\mathfrak p,D'')=1$ (oder beides). Wir müssen verifizieren, daß die beiden Werte in (7) übereinstimmen, falls $(N\mathfrak p,D'')=1$ und $(N\mathfrak p,D'')=1$, d.h., falls $N(\mathfrak p)$ zu D teilerfremd ist. Dann gibt es nach Satz 1, §11, zwei Möglichkeiten: entweder ist $N\mathfrak p=\mathfrak p^2$, $N\mathfrak p=\mathfrak p^2$, $N\mathfrak p=\mathfrak p$, $N\mathfrak p=\mathfrak p$, $N\mathfrak p=\mathfrak p$, $N\mathfrak p=\mathfrak p$. Im ersten Fall ist

$$\chi_{D_{1}}(N_{p}) = \chi_{D_{1}}(p^{2}) = \chi_{D_{1}}(p)^{2} = 1 = \chi_{D_{1}}(N_{p})$$

und die beiden Definitionen (7) stimmen überein; im zweiten Fall ist

$$\chi_{D^{\dagger}}(N\mathfrak{p})\chi_{D^{\dagger\prime}}(N\mathfrak{p}) = \chi_{D^{\dagger}}(\mathfrak{p})\chi_{D^{\prime\prime}}(\mathfrak{p}) = \chi_{D}(\mathfrak{p}) = 1$$
 ,

also $\chi_{D^1}(N_p) = \chi_{D^m}(N_p)$, und wieder ist (7) widerspruchsfrei. Wegen der eindeutigen Primidealzerlegung in K definiert dann (8) die Funktion χ eindeutig für alle Ideale $_a$ + O. Es bleibt nur zu zeigen, daß $\chi(_a)$ = 1 für ein Hauptideal $_a$, d.h.

(10)
$$\chi((\lambda)) = 1 \qquad (\lambda \in K, N(\lambda) > 0) ;$$

da χ offensichtlich multiplikativ ist und nur die Werte ± 1 annimmt, ist es dann ein Geschlechtscharakter.

In (10) können wir λ & D annehmen, da jede Zahl aus K Quotient zweier ganzer Zahlen ist. Wir beweisen (10) erst unter der Annahme, daß $N(\lambda)$ zu D' (oder D") teilerfremd ist. Dann folgt aus (7) und (8), daß

$$\chi((\lambda)) = \chi_{D}, (N(\lambda))$$
.

Sei D' = II D_i die Zerlegung der Fundamentaldiskriminante in Primdiskriminanten. Dann ist χ_{D^1} das Produkt der Charaktere χ_{D^1} (das soll der Leser verifizieren!), also genügt es, für jedes i

$$\chi_{D_{\underline{i}}}(N(\lambda)) = 1$$
 ($\lambda \in \mathfrak{D}$, λ zu $D_{\underline{i}}$ teilerfremd)

zu zeigen. Hierbei ist entweder $D_1 = \pm p = 1 \pmod 4$ mit p prim, oder $D_1 = -4$, 8 oder -8 (siehe Teil I, §5). Im ersten Fall ist

$$\lambda = \frac{a+b\sqrt{D}}{2} \qquad (a, b \in \mathbb{Z})$$

 $X_{D_{\underline{1}}}(N(\lambda)) = X_{D_{\underline{1}}}(\frac{a^2}{4}) = 1.$ $Y_{D_{\underline{1}}}(N(\lambda)) = X_{D_{\underline{1}}}(\frac{a^2}{4}) = 1.$ $W(\lambda) = \frac{a^2 - b^2 D}{4} = \frac{a^2}{4} \pmod{p}$, pla,

also

$$\chi_{D_{\dot{1}}}(N(\lambda)) = \chi_{D_{\dot{1}}}(\frac{a^2}{4}) = 1$$
.

 $d = 3 \pmod{4}$ bzw. $d = 2 \pmod{8}$ bzw. $d = 6 \pmod{8}$ und λ als Falls $D_i = -4$ bzw. 8 bzw. -8 ist, schreiben wir D als 4d mit $m + n\sqrt{d}$ mit m, $n \in \mathbb{Z}$. Dann erhalten wir:

$$D_{\underline{1}} = -4 \rightarrow N(\lambda) = m^2 - n^2 d , d = 3 \pmod{4}$$

 \rightarrow N(λ) = 0 , 1 , 2 (mod 4)

 $N(\lambda) = 1 \pmod{4}$

$$- \chi_{-4}(N(\lambda)) = 1 .$$

$$D_{\underline{i}} = 8 \rightarrow N(\lambda) = m^2 - n^2 d$$
, $d = 2 \pmod{8}$

$$+ N(\lambda) = 0$$
, 1, 2, 4, 6, 7 (mod 8)

 \rightarrow N(λ) = 1 , 7 (mod 8)

$$\star \chi_8(N(\lambda)) = 1 .$$

=
$$-8 \rightarrow N(\lambda) = m^2 - n^2 d$$
, $d = 6 \pmod{8}$

$$+N(\lambda) = 0$$
, 1, 2, 3, 4, 6 (mod 8)

 $+ N(\lambda) = 1$, 3 (mod 8)

wobei wir $2\mbox{\it IN}(\lambda)$ benutzt haben. Damit ist (10) bewiesen, falls das Ideal (λ) zu D' oder D" teilerfremd ist

Sei jetzt $\lambda \in \mathfrak{D}$ beliebig: wir schreiben (λ) als

$$(1) = p_1 \cdots p_n b$$

wobei die Primideale \mathfrak{p}_j Teiler von D sind und \mathfrak{b} zu D teilerfremd ist. Für jedes j wählen wir ein Ideal \mathfrak{a}_j in der Idealklasse von \mathfrak{p}_j^{-1} , das zu D teilerfremd ist (dies ist immer möglich: s. Aufgabe 2). Dann ist für jedes j das Produkt \mathfrak{p}_j aj ein Hauptideal, das entweder zu D' oder zu D" teilerfremd ist (da es nur einen Primfaktor enthält, der in D aufgeht), also ist nach dem bereits

$$\chi(p_j, a_j) = 1$$
 $(j = 1, ..., r)$.

Wegen

$$(\lambda) = (\mathfrak{p}_1 \ a_1) \dots (\mathfrak{p}_r \ a_r) (\mathfrak{b} a_1^{-1} \dots a_r^{-1})$$

ist auch $\mathfrak{ba}_1^{-1} \ldots \mathfrak{a}_{\Gamma}^{-1}$ ein Hauptideal, und weil dieses Ideal zu teilerfremd ist, gilt

$$\chi(\mathfrak{b}_{a_1}^{-1} \cdots a_r^{-1}) = 1$$
.

Die Behauptung (10) folgt aus den letzten drei Gleichungen

ii) Wir wollen jetzt Gleichung (9) beweisen. Das Euler-Produkt

(12)
$$L_{K}(s,\chi) = \prod_{\mathfrak{p}} \left(1 - \frac{\chi(\mathfrak{p})}{N(\mathfrak{p})^{S}}\right)^{-1} = \prod_{\mathfrak{p}} \prod_{\mathfrak{p} \mid \mathfrak{p}} \left(1 - \frac{\chi(\mathfrak{p})}{N(\mathfrak{p})^{S}}\right)^{-1}$$

zweite über Primideale », die p teilen). Die Euler-Produkte von (das erste Produkt läuft über alle rationalen Primzahlen p, das

(13)
$$L_{D_{1}}(s)L_{D_{1}}(s) = I \left(1 - \frac{\chi_{D_{1}}(p)}{p^{s}}\right)^{-1} \left(1 - \frac{\chi_{D_{1}}(p)}{p^{s}}\right)^{-1} .$$

(12) und (13) übereinstimmen. Wir zeigen, daß für jede Primzahl p die entsprechenden Faktoren in

Fall 1: $\chi_D(p) = 1$, p = pp'. Hier ist p zu D' und zu D" teiler-

$$\chi(\mathfrak{p}) = \chi_{D^{\mathfrak{p}}}(N\mathfrak{p}) = \chi_{D^{\mathfrak{p}}}(p) = \chi_{D^{\mathfrak{p}}}(p)$$

und ebenfalls $\chi(\mathfrak{p}') = \chi_{D^n}(\mathfrak{p})$, also

$$\underset{\mathfrak{p} \mid p}{\mathbb{I}} \left(1 - \frac{\chi(\mathfrak{p})}{N(\mathfrak{p})^S} \right)^{-1} = \left(1 - \frac{\chi_{D^{\mathfrak{p}}}(\mathfrak{p})}{\mathfrak{p}^S} \right)^{-1} \left(1 - \frac{\chi_{D^{\mathfrak{p}}}(\mathfrak{p})}{\mathfrak{p}^S} \right)^{-1}.$$

Fall 2: $\chi_D(p) = -1$, p = p. Hier ist $N(p) = p^2$, also $\chi(p) = 1$; and ererseits ist $\chi_{D^+}(p) \chi_{D^+}(p) = \chi_D(p) = -1$, also ist eine der Zahlen $\chi_{D^+}(p)$, $\chi_{D^+}(p)$ gleich +1 und die andere gleich -1, also

$$\frac{\Pi}{\mathfrak{p} \mid p} \left(1 - \frac{\chi(\mathfrak{p})}{N(\mathfrak{p})^{S}} \right)^{-1} = \left(1 - \frac{1}{p^{2S}} \right)^{-1} = \left(1 - \frac{1}{p^{S}} \right)^{-1} \left(1 + \frac{1}{p^{S}} \right)^{-1}$$

$$= \left(1 - \frac{\chi_{D^{+}}(\mathfrak{p})}{p^{S}} \right)^{-1} \left(1 - \frac{\chi_{D^{+}}(\mathfrak{p})}{p^{S}} \right)^{-1} .$$

117

Fall 3: $\chi_D(p) = 0$, $p = p^2$. Hier teilt p entweder D' oder D''. Wenn etwa p|D'', ist (p,D') = 1, also mach (7) ist $\chi(p) = \chi_{D'}(p)$. Dann gilt

$$\prod_{\substack{p \mid p}} \left(1 - \frac{\chi(p)}{N(p)^{S}} \right)^{-1} = \left(1 - \frac{\chi_{D^{1}}(p)}{p^{S}} \right)^{-1} \\
= \left(1 - \frac{\chi_{D^{1}}(p)}{p^{S}} \right)^{-1} \left(1 - \frac{\chi_{D^{11}}(p)}{p^{S}} \right)^{-1}$$

das letztere wegen χ_{D} "(p) = 0.

ten und χ_i der der Zerlegung $D = D_1 \cdot \cdot \cdot D_t$ zugeordneten und χ_i der der Zerlegung $D = D_1 \cdot \cdot D_{i-1}D_{i+1} \cdot \cdot \cdot D_t$ zugeordnete Charakter. Dann ist für eine allgemeine Zerlegung $D = D' \cdot D''$ mit $D'' = D_1 \cdot \cdot \cdot D_1$ der entsprechende Charakter χ gleich $\chi_1 \cdot \cdot \cdot \chi_1 \cdot M$ ilden eine Gruppe, die Charaktere, die wir schon konstruiert haben, bilden eine Gruppe, die von $\chi_1, \cdot \cdot \cdot \cdot \chi_t$ erzeugt wird, wobei die Relationen $\chi_1^2 = 1$ und $\chi_1 \cdot \cdot \cdot \cdot \chi_t = 1$ gelten. Wir müssen zeigen, daß es zwischen den χ_1 keine weiteren Relationen gibt, d.h., daß der Charakter χ , den wir einer Zerlegung D = D'D'' zugeordnet haben, nur dann der triviale Charakter ist, wenn D' = 1 oder D'' = 1. Aber das folgt unmittelbar aus (9): wenn D' und D'' beide 1 sind, so sind die Funktionen $L_{D'}(s)$ und $L_{D''}(s)$ auch keinen Pol bei 1 sind, so kann nicht der triviale Charakter sein.

iv) Wie wir schon im Beweis des Korollars gesehen haben, gibt es genau 2^r Geschlechtscharaktere, wo $2^r = |C/C^2|$. Wir müssen also zeigen, daß $r \le t = 1$.

Sei Sq: C \rightarrow C die Abbildung, die eine Idealklasse auf ihr Quadrat schickt, dann hat man die exakte Folge

$$0 \to I \to C \xrightarrow{Sq} C \to C/C^2 \to 0$$

mit I = Ker(Sq). Da die Gruppen alle endlich sind, folgt $|I| = |C/C^2|$ d.h. es gibt gleich viele Idealklassen, deren Quadrat trivial ist, wie es Äquivalenzklassen modulo Quadraten gibt. Für A \in C hat man wegen $A^{-1} = A^{-1}$

$$A \in I \longrightarrow A^2 = 1 \longrightarrow A = A^{-1} \longrightarrow A = A^{T}$$
.

Die Idealklassen, die gleich ihren konjugierten Klassen sind, nennt man ambig (sie entsprechen den am Ende von §11 definierten ambigen

Formen). Wir wollen zeigen, daß es höchstens $2^{\mathsf{t-1}}$ solche Idealklassen gibt.

Zunächst bemerken wir, daß jede ambige Idealklasse ein Ideal a mit a' = a enthält. Dies folgt aus (5): Sei zunächst a ε A beliebig; dann ist a' ε A' = A in derselben Idealklasse wie a, also a' = (\lambda)_a mit \lambda \in K, N(\lambda) = 1. Nach (5) ist dann \lambda = \mu/\mu' mit \mu \in \mathbb{O}, wobei wir auch N(\mu) > O erreichen können (ist K imaginär, so ist dies sowieso erfüllt; ist K reell, so wählen wir \lambda positiv also \mu' = \lambda\mu'^2 > O). Dann ist das Ideal (\mu)a \in A gleich seinem Konjugierten.

Wir wählen also in der ambigen Idealklasse A ein Ideal a mit a' = a. Durch Multiplikation mit einer geeigneten rationalen Zahl können wir erreichen, daß a ein ganzes Ideal und außerdem primitiv ist (d.h. durch keine natürliche Zahl > 1 teilbar). Aber es gibt in K überhaupt nur 2^t ganze, primitive, ambige Ideale, nämlich die Produkte

(14)
$$p_1^{\pm 1} \dots p_t^{\pm t}$$
 $(i_1, \dots, i_t \in \{0, 1\})$,

wobei \mathfrak{p}_1 (i = 1,...,t) das (eindeutig bestimmte) Primideal bezeichnet, das in D_1 aufgeht. In der Tat: ein solches Ideal a ist weder durch ein Primideal \mathfrak{p} mit $\mathfrak{p}=(p)$, p träge, teilbar (weil dann a durch die natürliche Zahl p teilbar wäre), noch kann in a ein Primideal \mathfrak{p} mit $\mathfrak{p}+\mathfrak{p}'$, $\mathfrak{p}\mathfrak{p}'=(p)$ vorkommen (da dann aus $\mathfrak{p}'|\mathfrak{a}'=(p)$ somit enthält a lauter verzweigte Primideale und zwar jeweils höchstens zur ersten Potenz ($\mathfrak{p}^2=\mathfrak{p}-\mathfrak{p}^2/\mathfrak{a}$). Jede ambige Idealklas-se \mathfrak{p} se \mathfrak{p} \mathfrak{p} enthält also mindestens eins der \mathfrak{p} Ideale (14). Hieraus folgt schon, daß $\mathfrak{p}^2 \leq \mathfrak{p}^2$ ist; wenn wir unter den \mathfrak{p}^2 Idealen (14) ein einziges Ideal $\mathfrak{q}+\mathfrak{p}^2$ in finden können, das in der Hauptidealklasse liegt, so folgt sogar $\mathfrak{p}^2 \leq \mathfrak{p}^2$ und wir sind fertig. (Da wir schon wissen, daß $\mathfrak{p}^2 \geq \mathfrak{p}^2$ ist, kann es natürlich unter den Idealen (14) auch nicht mehr als ein solches \mathfrak{q} geben.)

Ist D < 0, so folgt aus

$$p_1 \cdots p_t^2 = \prod_{p \mid D} p = \begin{cases} D, \text{ falls } D = 1 \pmod{4} \\ 2d, \text{ falls } D = 4d, d = 3 \pmod{4} \\ d, \text{ falls } D = 4d, d = 2 \pmod{4}, \end{cases}$$

daß man die Relation

$$(\sqrt{D}) = \mathfrak{p}_1 \dots \mathfrak{p}_{t}, \text{ falls } D = 1 \pmod{4}$$

(15)
$$(\sqrt{d}) = \nu_2 \dots \nu_{t-1} \text{ falls } D = 4d, d = 3 \pmod{4}$$

$$(\sqrt{d}) = \mathfrak{p}_1 \dots \mathfrak{p}_t$$
, falls $D = 4d$, $d = 2 \pmod{4}$

hat, wobei wir im zweiten Fall die \mathfrak{p}_1 so numeriert haben, daß \mathfrak{p}_1 der Primteiler von 2 ist. Da die linke Seite von (15) jeweils ein Hauptideal ist, haben wir unsere nichttriviale Relation unter den \mathfrak{p}_1 in C gefunden.

Für D > 0 gelten die Gleichungen (15) auch, aber die linke Seite braucht kein Hauptideal im engeren Sinne mehr zu sein, da \sqrt{D} (bzw. \sqrt{d}) negative Norm hat. Falls die Grundeinheit ε von K negative Norm hat, ist das Hauptideal (\sqrt{D}) bzw. (\sqrt{d}) durch die Zahl $\varepsilon\sqrt{D}$ bzw. $\varepsilon\sqrt{d}$ erzeugt, welche positive Norm hat; somit liefert (15) wieder die verlangte Relation. Falls der Körper K reell ist und die Grundeinheit ε positive Norm hat (also $\varepsilon\varepsilon'=1$), setzen wir $\mu=(\varepsilon-1)\sqrt{D}$ und finden

also $(\mu') = (\mu)$. Wir schreiben (μ) als $n\mathfrak{a}$, wobei n eine natürliche Zahl und \mathfrak{a} primitiv ist. Wegen $\mathfrak{a}' = \mathfrak{a}$ muß sich \mathfrak{a} unter den Idealen (14) befinden. Aber \mathfrak{a} kann nicht 1 sein, denn aus $(\mu) = (n)$ würde

 $\mu' = -\varepsilon' \sqrt{D} + \sqrt{D} = (1 - \varepsilon^{-1}) \sqrt{D} = \varepsilon^{-1} \mu ,$

$$\mu = \pm n \varepsilon^{\mathbf{r}} \qquad (\mathbf{r} \in \mathbf{Z})$$

und daher

$$\varepsilon = \frac{\mu}{\mu''} = \frac{n\varepsilon^{T}}{n\varepsilon^{-T}} = \varepsilon^{2}$$

folgen, ein Widerspruch. Die Gleichung $\alpha=(n^{-1}\mu)$ liefert die gesuchte nicht-triviale Relation unter den Idealklassen $\mathfrak{p}_1,\ldots,\mathfrak{p}_t$. Damit ist Satz 2 bewiesen.

Aus $C/C^2 \simeq (\mathbb{Z}/2\mathbb{Z})^{t-1}$ und dem Struktursatz für endliche abelsche Gruppen folgt, daß die Gruppe C/C^4 ($C^4 = \{A^4, A \in C\}$) zu $(\mathbb{Z}/2\mathbb{Z})^{t-1-s} \times (\mathbb{Z}/4\mathbb{Z})^s$ isomorph ist, wobei die Zahl s zwischen 0 und t-1 liegt und durch

$$2^{S} = \#\{A \in C \mid A^{2} = 1, A = B^{2} \text{ für ein } B \in C\}$$

bestimmt wird, d.h. $2^S=$ Ordnung von Ker(Sq) \cap Im(Sq). Für die Gruppen Ker(Sq) und Im(Sq) haben wir aber eine genaue Beschreibung gefunden: die Idealklassen aus Ker(Sq) werden durch die Ideale (14)

vertreten, und zwar jeweils genau zweimal, während Im(Sq) aus den A \in C mit $\chi(A)$ = 1 für alle Geschlechtscharaktere χ (oder nur $\chi_1(A)$ = 1 für alle i) besteht. Wir können also s bestimmen, indem wir die Werte der χ_1 auf den Idealen (14) berechnen. Das Ergebnis läßt sich wie folgt formulieren: sei $\epsilon_{\dot{1}\dot{j}}$ \in **Z/2** für 1 \leq 1, j \leq t durch

$$(-1)^{\epsilon_{ij}} = \chi_{i}(\mathfrak{p}_{j}) = \begin{cases} \chi_{D_{i}}(\mathfrak{p}_{j}), & \text{falls } i \neq j \\ \mathbb{II} \chi_{D_{k}}(\mathfrak{p}_{i}), & \text{falls } i = j \end{cases}$$

 $(p_j = N(p_j))$ definiert; dann ist t-1-s der Rang der Matrix $(\epsilon_{ij})_{1\leq i,j\leq t}$ über dem Körper $\mathbf{Z}/2\mathbf{Z}$.

Aufgaben:

- 1. Man zeige mit Hilfe von Satz 1: unter der Korrespondenz zwischen Idealklassen in K und Äquivalenzklassen von quadratischen Formen der Diskriminante D gehören zwei Idealklassen genau dann demselben Geschlecht an, wenn die entsprechenden Formen rational (d.h. durch eine Matrix aus $\mathrm{SL}_2(\mathfrak{Q})$) ineinander überführbar sind.
- 2. Man beweise: in jeder Idealklasse gibt es Ideale, die zu einem vorgegebenen Ideal teilerfremd sind. (Dies folgt natürlich aus der am Ende von §11 bewiesenen Existenz unendlich vieler Primideale in jeder Idealklasse, soll hier aber elementar gezeigt werden.)
- 3. Man verifiziere die am Ende des Paragraphen gemachten Behauptungen über $\mathrm{C/C}^4$ und folgere:

$$h(D) = \pm 1 \pmod{4} \iff D = -4, +8, -8, +p, -q,$$

$$h(D) = 2 \pmod{4} \implies D = +4q, \pm 8p \quad (p = 5 \pmod{8}), +8q,$$

$$+pp'$$
 $((\frac{p'}{p}) = -1)$,
 $-pq$ $((\frac{q}{p}) = -1)$, $+qq'$,

wobei p bzw. q Primzahlen \blacksquare 1 bzw. \blacksquare 3 (mod 4) bezeichnen. Damit ist h(D) modulo 4 in allen Fällen außer D = +p, D = -q bestimmt.

<u>Bemerkung</u>: Wegen des Wilsonschen Satzes ist $[(\frac{q-1}{2})!]^2 = 1 \pmod q$ für $q = 3 \pmod 4$, also $(\frac{q-1}{2})! = \pm 1 \pmod q$, während $[(\frac{p-1}{2})!]^2 = -1 \pmod p$ für $p = 1 \pmod 4$, also $(\frac{p-1}{2})! = \pm t_0/2 \pmod p$, wobei (t_0, u_0) die kleinste positive Lösung von $t^2 - pu^2 = -4$ ist. Die Bestimmung von h(D) modulo 4 wird dann durch

$$h(-q) = 1 \pmod{4} \leftrightarrow (\frac{q-1}{2})! = -1 \pmod{q}$$
 oder $q = 3$

(Mordell, Amer. Math. Monthly 68 (1961), 145-146) bzw

$$h(+p) = 1 \pmod{4} \iff (\frac{p-1}{2})! = -t_0/2 \pmod{p}$$

(Chowla, Proc. Nat. Acad. Sci. USA 47 (1961), 878) vervollständigt. Der Leser mag versuchen, die erste dieser Gleichungen mit Hilfe von Satz 4, §9, zu beweisen.

§13 Reduktionstheorie

In §§8-9 bestimmten wir die Anzahl der Äquivalenzklassen von Formen mit gegebener Diskriminante sowie die Anzahl der inäquivalenten Darstellungen einer natürlichen Zahl durch die Gesamtheit dieser Formen (nicht aber durch die einzelnen Formen). Neben diesen Anzahlen will man aber effektive Algorithmen haben, um

- a) eine endliche Menge von Formen mit gegebener Diskriminante anzugeben, welche mindestens einen Vertreter jeder Äquivalenzklasse enthält,
- b) zu entscheiden, ob zwei gegebene Formen äquivalent sind,
- c) eine endliche Menge von Darstellungen einer gegebenen Zahl durch eine gegebene Form anzugeben, welche mindestens einen Vertreter jeder Äquivalenzklasse von Darstellungen enthält, und
- d) zu entscheiden, ob zwei gegebene Darstellungen einer Zahl durch eine Form äquivalent sind.

Frage a) wurde in §8, Satz 1, beantwortet, indem gezeigt wurde, daß man von einer beliebigen Form durch Anwendung von Transformationen der Gestalt

(1)
$$S_{n} = \begin{pmatrix} n & 1 \\ -1 & 0 \end{pmatrix} : ax^{2} + bxy + cy^{2} + (an^{2} - bn + c)x^{2} + (2an - b)xy + ay^{2}$$

nach endlich vielen Schritten zu einer Form ax²+bxy+cy² mit

2)

<u>-|a| < b</u>

≤ lal ≤ lcl

gelangt und daß es nur endlich viele solche Formen mit gegebener Diskriminante gibt.

Im Falle D < O können wir die Absolutbetragszeichen in (2) weglassen (da wir nur positiv difinite Formen betrachten) und außerdem im Falle a = c annehmen, daß b \geq O ist (da ax²+bxy+ay² zu ax²-bxy+ay² äquivalent ist). Wir nennen eine positiv definite Form ax²+bxy+cy² reduziert, falls

dann ist jede positiv definite Form zu einer reduzierten äquivalent. Umgekehrt behaupten wir, daß die reduzierten positiv definiten Formen paarweise indquivalent sind; dies gibt nicht nur einen praktischen Weg zur Berechnung der Klassenzahlen negativer Diskriminanten, sondern auch eine Antwort auf Frage b) für definite Formen, nämlich, daß zwei definite Formen genau dann äquivalent sind, wenn sie zur selben reduzierten Form führen. Um die Behauptung zu beweisen, bemerken wir erst, daß für eine reduzierte Form f und $x,y \in \mathbb{Z}$, (x,y) * (0,0),

(4)
$$f(x,y) = ax^2 + bxy + cy^2 \ge a(x^2 - |xy| + y^2) \ge a$$

gilt, also ist der erste Koeffizient a von f die kleinste durch f dargestellte Zahl. Eine Matrix $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z})$ führt aber f in eine Form f' mit erstem Koeffizienten a' =f(α,γ) über; ist also f' auch reduziert, so muß a' gleich a sein und daher (wenn man die Fälle mit Gleichheit in (4) betrachtet)

(falls c>a)
$$\alpha=\pm 1$$
 , $\gamma=0$ (falls c=a>b) $\alpha=\pm 1$, $\gamma=0$ oder $\alpha=0$, $\gamma=\pm 1$ (falls c=a=b) $\alpha=\pm 1$, $\gamma=0$ oder $\alpha=0$, $\gamma=\pm 1$ oder $\alpha\gamma=-1$

Im ersten Fall ist $\begin{pmatrix} \alpha & \beta \\ 0 & 1 \end{pmatrix} = \pm \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$, also ist der zweite Koeffizient b' von f' gleich b + 2\beta a, und aus -a < b, b' \(\leq \) a folgt \(\beta = 0 \) und f' = f. In den anderen zwei Fällen sieht man ebenfalls leicht, daß f' = f; in diesen Fällen braucht die Matrix $\begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix}$ nicht unbedingt gleich $\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ zu sein, da die reduzierten Formen ax 2 + ay 2 und ax 2 + axy + ay 2 zusätzliche Automorphismen haben.

Für definite Formen sind die Fragen c) und d) auch sehr leicht zu beantworten. Wegen der Identitäten

$$f(x,y) = a(x + \frac{b}{2a}y)^2 + \frac{|D|}{4a}y^2 = \frac{|D|}{4c}x^2 + c(\frac{b}{2c}x + y)^2$$

haben wir nämlich die a priori Schranken $|x| \le \sqrt{4nc/|D|}$ und $|y| \le \sqrt{4na/|D|}$ für die Lösungen von f(x,y) = n, womit c) beantwortet

klasse (dies ist durch Ungleichungen für die Koeffizienten gar nicht men zu definieren. Dann erhält man zwar immer noch nicht - wie im deman andere Ungleichungen als (2) oder (3) wählen, um reduzierte Forkann. Um eine befriedigende Antwort auf a) und b) zu erhalten, muß man die Kquivalenzen zwischen diesen Formen nicht leicht beschreiben wieder eine Antwort auf a), aber diese ist jetzt unbefriedigend, weil Form hat. Zwar liefern die Formen, deren Koeffizienten (2) erfüllen, Argumente in der Darstellung einer gegebenen Zahl durch eine gegebene der Übergangsmatrizen zwischen zwei gegebenen Formen oder für die schwieriger, weil man keine a priori Schranken für die Koeffizienten definiten Formen in sich selbst durch definieren wir eine Transformation T von der Gesamtheit aller inzu erreichen), wohl aber eine vollständige Beschreibung der Äquivafiniten Fall - genau einen reduzierten Vertreter für jede Kquivalenzlenzen zwischen reduzierten Formen. Um das Ergebnis zu formulieren, Im Falle von indefiniten Formen sind die Probleme a)-d) viel

(5) If
$$= S_n f$$
, $n \in \mathbb{Z}$, $n > \frac{b + \sqrt{D}}{2a} > n - 1$,

mit S_n wie in (1), wobei a, b, c die Koeffizienten von f sind und \sqrt{D} die positive Wurzel von $D=b^2-4ac$ bezeichnet. Wir nennen eine indefinite Form $ax^2+bxy+cy^2$ reduziert, falls

Dann gilt:

SATZ 1: Sei D > O, D kein Quadrat. Dann gibt es nur endlich viele reduzierte Formen der Diskriminante D. Jede Form der Diskriminante D wird durch endlich viele Anwendungen der Transformation T in eine reduzierte Form überführt. Die Transformation T führt reduzierte Formen in reduzierte über; somit zerfällt die Menge der reduzierten Formen in disjunkte Zykel. Jede Äquivalenz zwischen reduzierten Formen erhält man durch Iteration von T; insbesondere sind zwei reduzierte Formen dann und nur dann äquivalent, wenn sie zum selben Zykel gehören.

<u>Beispiel:</u> Um festzustellen, ob die Form $x^2 - 6xy + 3y^2$ der Diskriminante 24 zu ihrer Negativen äquivalent ist, wenden wir die Transformation T wiederholt auf beide an und erhalten

$$\begin{bmatrix} -1, 6, -3 \end{bmatrix}$$

$$\begin{bmatrix} 1, -6, 3 \end{bmatrix}$$

$$\begin{bmatrix} 2, 4, -1 \end{bmatrix}$$

$$\begin{bmatrix} 3, 6, 1 \end{bmatrix}$$

$$\begin{bmatrix} 3, 6, 1 \end{bmatrix}$$

$$\begin{bmatrix} 5, 8, 2 \end{bmatrix}$$

$$\begin{bmatrix} 1, 6, 3 \end{bmatrix}$$

$$\begin{bmatrix} 2, 8, 5 \end{bmatrix}$$

$$\begin{bmatrix} 1, 6, 3 \end{bmatrix}$$

$$\begin{bmatrix} 2, 8, 5 \end{bmatrix}$$

$$\begin{bmatrix} 5, 12, 6 \end{bmatrix}$$

123

wobei wir die Form $ax^2 + bxy + cy^2$ mit [a,b,c] bezeichnet haben und $f \xrightarrow{\Pi_b} f^*$ bedeutet, daß $f^* = Tf = S_n f$. Da wir in verschiedenen Zykeln landen, sind die Formen inäquivalent. Außerdem kann man nachprüfen, daß sich alle reduzierten Formen der Diskriminante 24 in einem der beiden Zykel befinden, also h(24) = 2.

Beweis des Satzes: Sei [a,b,c] eine reduzierte Form und k=b-2a Dann ist

$$D - k^2 = b^2 - 4ac - (b-2a)^2 = 4a(b-a-c) > 0$$
.

Die reduzierten Formen sind also die Formen

(7)
$$[a,k+2a,k+a-\frac{D-k^2}{4a}]$$
 mit $|k|<\sqrt{D}$, $k^2=D\pmod{4}$, $a\left|\frac{D-k^2}{4}\right|$, $a>\frac{\sqrt{D}-k}{2}$,

und dies ist offenbar eine endliche Menge. Damit ist die erste Behauptung bewiesen.

hauptung bewiesen. Sei jetzt f = [a,b,c] eine beliebige Form der Diskriminante und Tf = f* = [a*,b*,c*] ihr Bild unter T, also

U

(8)
$$a^* = an^2 - bn + c$$
, $b^* = 2an - b$, $c^* = a$

mit

(9)
$$\frac{b+\sqrt{D}}{2a} = n - \theta , 0 < \theta < 1.$$

Durch Substitution von (9) in (8) erhält man

$$a^* = a\theta^2 + \theta \sqrt{D}$$
, $b^* = 2a\theta + \sqrt{D}$, $c^* = a$.

Aus den ersten dieser Gleichungen folgt

d.h. unter wiederholter Anwendung von T wächst a so lange, bis es positiv wird, und bleibt dann positiv; wegen c* = a wird c nach höchstens einer weiteren Anwendung von T ebenfalls positiv. Da es nur endlich viele natürliche Zahlen unter einer gegebenen Zahl gibt, gelangt man nach endlich vielen weiteren Anwendungen von T zu einer Form f = [a,b,c], für deren Nachfolger a* \geq a gilt. Für diese Form folgt aus (10)

$$0 \le a^* - a = \theta \sqrt{D} - a(1-\theta^2)$$

< $(1+\theta)(\sqrt{D}-a(1-\theta)) = \frac{1+\theta}{1-\theta}(b^*-a^*-c^*)$,

also ist der Nachfolger f * von f reduziert und die zweite Behauptung des Satzes bewiesen.

Die dritte Behauptung beweist man analog: für eine reduzierte Form f = [a,b,c] haben wir schon gesehen, daß $|b-2a| < \sqrt{D}$, also

(11)
$$\frac{b+\sqrt{D}}{2a} > 1$$
, $\frac{b-\sqrt{D}}{2a} < 1$.

Somit ist die Zahl n in (9) mindestens 2 und es gilt

$$\frac{\sqrt{D}}{a} = n - \theta - \frac{b - \sqrt{D}}{2a} > 1 - \theta ,$$

also

$$b^* - a^* - c^* = (1-\theta)(\sqrt{D}-a(1-\theta)) > 0$$
;

da wir schon wissen, daß a* und c* positiv sind, ist die Form If = [a*,b*,c*] wieder reduziert. Da die Menge der reduzierten Formen endlich ist, folgt, daß diese Menge unter der Operation von T in Zykel zerfällt. Es bleibt nur noch zu zeigen, daß es genau einen Zykel zu jeder Kquivalenzklasse von Formen gibt und daß sämtliche Kquivalenzen zwischen reduzierten Formen aus demselben Zykel durch Iteration von T entstehen.

Seien also f=[a,b,c] und f'=[a',b',c'] zwei reduzierte Formen der Diskriminante D und $A=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(\mathbb{Z})$ eine Matrix, die f in f' überführt. Aus der Formel (8.6) für die Koeffizienten von f' erhält man

$$a' = f(\alpha, \gamma)$$
 , $c' = f(\beta, \delta)$, $a' + c' - b' = f(\alpha - \beta, \gamma - \delta)$.

Da f' reduziert ist, sind die ersten beiden Zahlen positiv und die letzte negativ. Insbesondere ist γ + δ (sonst wäre f(α - β , γ - δ) positiv); indem wir ggf. A durch -A ersetzen, können wir annehmen, daß

(12)
$$\delta > \gamma$$
.

Wir unterscheiden jetzt drei Fälle, je nach dem Vorzeichen von γ . Fall I: γ = 0. Dann ist f' gleich f und A = Id. Aus $1 = \alpha \delta - \beta \gamma = \alpha \delta$ und (12) folgt nämlich $\alpha = \delta = 1$, also

$$f(\beta,1) = f(\beta,\delta) > 0 > f(\alpha-\beta,\gamma-\delta) = f(\beta-1,1) .$$

Diese Ungleichungen implizieren aber $\beta=0$, denn für ein quadratisches Polynom $\phi(x)$ kann es höchstens eine ganze Zahl n mit $\phi(n-1)$ < 0 < $\phi(n)$ geben.

Fall II: γ < 0. In diesem Fall behaupten wir, daß f' aus f durch wiederholte Anwendung von T entsteht und daß A das Produkt der entsprechenden Matrizen S_n ist. Sei nämlich f* = S_n f (n wie in (5)) das Bild von f unter T und

$$A^* = \begin{pmatrix} \alpha^*, \beta^* \\ \gamma^*, \delta^* \end{pmatrix} = S_n^{-1} A = \begin{pmatrix} -\gamma & -\delta \\ \alpha + n\gamma & \beta + n\delta \end{pmatrix}$$

die Matrix, die f* in f' überführt. Die Matrix A* erfüllt wieder (12) (es ist nämlich $\alpha^* - \beta^* = \delta - \gamma > 0$, und wegen $f(\alpha^* - \beta^*, \gamma^* - \delta^*) < C$ haben $\alpha^* - \beta^*$ und $\gamma^* - \delta^*$ entgegengesetzte Vorzeichen). Wenn wir zeigen können, daß $\gamma < \gamma^* \le 0$, so folgt unsere Behauptung mit vollständiger Induktion: in der Folge $\gamma < \gamma^* < \gamma^{**} < \cdots \le 0$ muß irgendwann ein $\gamma^* \cdots *$ Null sein, und dann ist nach Fall I $f^* \cdots * = f'$ und die entsprechende Übergangsmatrix $A^* \cdots *$ die Identität. Wir müssen also die Ungleichungen $\gamma < \alpha + n\gamma \le 0$ oder

$$(13) n-1 < \frac{\alpha}{-\gamma} \le n$$

beweisen. Wegen $f(\alpha,\gamma) > 0 > f(\alpha-\beta,\gamma-\delta)$ hat das Polynom $f(x,-1) = ax^2 - bx + c$ bei $\frac{\alpha}{-\gamma}$ einen positiven und bei $\frac{\alpha-\beta}{-\gamma+\delta}$ einen negativen Wert; außerdem ist $\frac{\alpha}{-\gamma}$ größer als $\frac{\alpha-\beta}{-\gamma+\delta}$. Es folgt, daß die größere Wurzel von f(x,-1) = 0 zwischen diesen Zahlen liegt, also

$$\frac{\alpha-\beta}{-\gamma+\delta} < \frac{b+\sqrt{D}}{2a} < \frac{\alpha}{-\gamma}$$
.

Wegen $n-1<\frac{b+\sqrt{D}}{2a}$ folgt hieraus sofort die erste der Ungleichungen (13). Für die zweite bemerken wir, daß aus $\frac{\alpha}{-\gamma}>n$ und $n>\frac{b+\sqrt{D}}{2a}$ die Ungleichungen $\frac{\alpha-\beta}{-\gamma+\delta}< n<\frac{\alpha}{-\gamma}$ folgen würden, also $-\alpha\gamma+\beta\gamma< n\gamma(\gamma-\delta)<-\alpha\gamma+\alpha\delta$, im Widerspruch zur Bedingung $\alpha\delta-\beta\gamma=1$. Fall III: $\gamma>0$. In diesem Fall behaupten wir, daß f aus f' durch wiederholte Anwendung von T entsteht (d.h. man muß den Zykel im anderen Sinn durchlaufen) und daß A das Produkt der entsprechenden Matrizen S_n^{-1} ist. Da $A^{-1}=\begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$ einen negativen dritten Ko-

$$\frac{\alpha}{-\gamma} < \frac{b - \sqrt{D}}{2a} < 1 , \alpha > -\gamma .$$

Damit ist die letzte Behauptung des Satzes bewiesen.

brüche verbunden. Wir beschreiben jetzt diesen Zusammenhang. Satz 1 und sein Beweis sind sehr eng mit der Theorie der Ketten-

bezeichnen mit $[[n_0, n_1, \dots, n_S]]$ den endlichen Kettenbruch Seien n_0 , n_1 , n_2 , ... ganze Zahlen mit n_1 , n_2 , ... ≥ 2 . Wir

 n_0 , n_1 , ... mit $n_0 \in \mathbb{Z}$, n_1 , n_2 , ... $\in \{2,3,\ldots\}$. Unter dieser Korres $w_{1+1} = \frac{1}{n_1 - w_1}$ setzt. Somit gibt es eine eindeutige Korrespondenz wicklung $w = [[n_0, n_1, n_2, \dots]]$ mit $n_1 \in \mathbb{Z}$ und $n_1, n_2, \dots \ge 2$, indem man $n_0 = [w] + 1$, $w_1 = \frac{1}{n_0 - w}$ und induktiv $n_1 = [w_1] + 1$, zwischen der Menge der reellen Zahlen w und der Menge der Folgen umgekehrt hat jede reelle Zahl w eine eindeutige Kettenbruchent-Existenz leicht nachzuweisen ist. Dieser Limes ist eine reelle Zahl; und mit $[[n_0, n_1, n_2, \dots]]$ den Limes $\lim_{s\to\infty} [[n_0, n_1, \dots, n_s]]$, dessen

- i) w $\in \mathbb{Q} \iff$ ab einem bestimmten Punkt sind alle n_i gleich 2;
- ${f z} \, \longleftrightarrow \, {f ab} \, {f einem} \, {f bestimmten} \, {f Punkt} \, {f wiederholen} \, {f sich} \, {f die} \, {f n_i} \, {f periodisch}$ alle $i \geq i_0$; (d.h. es gibt Zahlen $r \ge 1$ und $i_0 \ge 0$, so daß $n_{i+r} = n_i$ für ii) ${f w}$ erfüllt eine quadratische Gleichung mit Koeffizienten in
- rein periodisch (d.h. $n_{i+r} = n_i$ positiver Diskriminante ist 🕶 die Kettenbruchentwicklung von w ist $ax^2 - bx + c = 0$, wobei [a,b,c] eine reduzierte quadratische Form (111) w 1st die größere Wurzel der quadratischen Gleichung für alle $i \geq 0$.

eine quadratische Form der Diskriminante D > O tungen ii) und iii) ist in Satz 1 enthalten. Sei nämlich f = [a,b,c] sogar trivial, da [[2,2,2,...]]=1). Die Richtung "→" der Behaup-Die erste Behauptung ist leicht zu beweisen (in der Richtung "+"

(14)
$$w = \frac{b+\sqrt{D}}{2a}, w' = \frac{b-\sqrt{D}}{2a}$$

entwicklung von w haben: ist $f_{i} = [a_{i}, b_{i}, c_{i}]$ (i≥0) das Bild von f unter T^{i} , also $f_{0} = f$, $f_{1} = f^{*}$, $f_{i+1} = Tf_{i} = S_{n}f_{i}$ mit $n_{i} = \begin{bmatrix} b_{i} + \sqrt{D} \\ 2a_{i} \end{bmatrix} + 1 = \begin{bmatrix} w_{i} \end{bmatrix} + 1$, dann gilt $w_{i} = n_{i} - \frac{1}{w_{i+1}}$ und folglich $w_{i} = w_{i} - \frac{1}{w_{i+1}}$ und $w_{i} = w_{i} - \frac{1}{w_{i}}$ und $w_{i} =$ mit $\delta > \gamma$ und $\gamma < 0$ eine Matrix in $SL_2(\mathbb{Z})$, welche die reduzierte geeignetes r und alle i \geq i_0 . Bevor wir die andere Richtung von n = [w] + 1 und $w = n - \frac{1}{w^*}$, womit wir den Anfang der Kettenbruchder Transformation T und w^* analog zu w definiert, so ist die Wurzeln von f(x,-1) = 0. Ist $f^* = S$ f das Bild von f unter eignetes s (vgl. Fall II des Beweises oben) in die Sprache der Kettenbrüche übertragen läßt; ist z.B. $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ Satz 1, über die Äquivalenzen zwischen reduzierten Formen, sich gut ii) und iii) beweisen, bemerken wir, daß auch der letzte Teil von sich periodisch wiederholen, insbesondere also $n_{i+r} = n_i$ für ein duziert gibt und daß die f_1 für $i \ge i_0$ alle reduziert sind und Form f in eine reduzierte Form f' überführt, so gilt für ein ge-

$$f' = r^{s+1}f$$
, $A = s_n s_n \dots s_n$, $\frac{\alpha}{-\gamma} = [[n_0, n_1, \dots, n_s]]$.

Für eine allgemeine, d.h. nicht notwendig reduzierte Form f, deren zugehörige Wurzel w die Kettenbruchentwicklung

(15)
$$w = [[n_0, n_1, \dots, n_{i_0-1}, \overline{n_{i_0}, n_{i_0+1}, \dots, n_{i_0+r-1}}]]$$

besitzt (wobei der Strich über n_1 , ..., n_{j_0+r-1} bedeutet, daß die Zahlen sich periodisch wiederholen und daß r die kürzeste Periode ist), so folgt aus Satz 1, daß die Automorphismengruppe von f durch

16)
$$v_f = \{\pm s_n s_n \dots s_{n_0-1} (s_n \dots s_{n_0+r-1})^N s_{n_1-1}^{-1} \dots s_{n_0}^{-1} | N \in \mathbb{Z} \}$$

gegeben ist.

nämlich w eine Zahl mit einer rein periodischen Kettenbruchentwickw ist eine Wurzel der quadratischen Gleichung $\gamma w^2 + (\alpha - \delta) w^2 = 0$. Die bruchentwicklung (15) und ist $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ eine beliebige Matrix aus der Menge (16) mit N + O (also $A + \pm Id$), so gilt $w = \frac{\alpha W - \beta}{-\gamma W + \delta}$, d.h. oben. Die erste ist leicht. Hat nämlich die reelle Zahl w die Ketten lung der Länge r, so ist w Wurzel einer quadratischen Form f; für zweite ist eine formale Konsequenz von der ersten und von Satz 1. Ist Wir beweisen jetzt die Richtung "•" der Behauptungen ii) und iii)

genügend großes N ist nach Satz 1 die Form TNF reduziert, hat aber eine Wurzel mit derselben Kettenbruchentwicklung wie w. Wir geben aber einen anderen, kettenbruchtheoretischen Beweis, der auf einer Tatsache von unabhängigem Interesse basiert: ist w eine Zahl mit einer reinperiodischen Kettenbruchentwicklung und w' die konjugierte Zahl (wir wissen bereits, daß w quadratisch ist), so gilt

(17)
$$w = [[n_0, \dots, n_{r-1}]] \quad \frac{1}{w^r} = [[n_{r-1}, \dots, n_0]] .$$

Wegen $n_1 \geq 2$ folgen aus (17) für eine Zahl w mit rein periodischer Kettenbruchentwicklung die Ungleichungen

(18)
$$W > 1$$
, $0 < W' < 1$,

die damit äquivalent sind, daß die quadratische Form mit den Wurzeln w und w' reduziert ist (vgl. (11)). Um (17) einzusehen, setzen wir die Folge $\{n_{\underline{1}}\}$ durch $n_{\underline{1+r}}=n_{\underline{1}}$ (Vi Ξ) periodisch fort und setzen für alle 1

$$\mathbf{x}_{\perp} = 1/[[\mathbf{n}_{\perp-1}, \mathbf{n}_{\perp-2}, \dots, \mathbf{n}_{\perp-r}]]$$

Dann gilt $\frac{1}{x_{1+1}} = n_1 - x_1$ oder $x_1 = n_1 - \frac{1}{x_{1+1}}$, also erfullt x_0 die quadratische Gleichung

$$n_0 = n_0 - \frac{1}{n_1 - \frac{1}{n_{r-1} - \frac{1}{x_0}}}$$

Dies ist aber dieselbe Gleichung, die w erfüllt, und da \mathbf{x}_0 wegen \mathbf{x}_0 < 1 < w nicht gleich w sein kann, muß \mathbf{x}_0 = w' gelten, was zu beweisen war.

Wir haben diesen Paragraphen mit vier Fragen über quadratische Formen und Darstellungen von Zahlen durch Formen begonnen, die im definiten Fall alle leicht zu lösen waren. Für den indefiniten Fall wurden die beiden Fragen nach einem Verfahren zur Bestimmung der Kquivalenzklassen von Formen durch Satz 1 beantwortet. Die Antwort auf die beiden Fragen (nach der Beschreibung der Kquivalenzklassen von Darstellungen einer natürlichen Zahl durch eine indefinite Form) wird durch den folgenden Satz gegeben, der sich im Unterschied zu Satz 1 nicht in der klassischen Literatur zu befinden scheint.

SATZ 2: Set $\{f_1,\dots,f_T\}$ der in Satz 1 konstruierte 2ykel der reduzierten Rormen in der Äquivalenzklasse einer indefiniten quadratischen Form f. und set n. einer natürliche Zahl. Dann ist jede Darstellung von n. durch f. zu genau einer Darstellung n. = $f_1(x,y)$ mit $1 \le i \le r$, x > 0, $y \ge 0$ äquivalent. (Hierbei bedeutet Äquivalenz von Darstellungen n = f(x,y) = f'(x',y') durch verschiedene Formen f. und f', daß es eine Matrix gibt, die f. in f' und (x,y) in (x',y') überführt; um einen vollen Satz von Darstellungen von n. durch f. selbst zu erhalten, müssen wir auf jede Darstellung im Satz eine Matrix anwenden, welche f_1 in f. überführt.)

Wir bemerken, daß die Koeffizienten von $\mathbf{f_1} = [a_1,b_1,c_1]$ positiv sind und daher für eine Darstellung n = $\mathbf{f_1}(\mathbf{x},y)$ mit \mathbf{x} und y nichtnegativ die a priori Abschätzungen $\mathbf{x} \leq \sqrt{n/a_1}$, $y \leq \sqrt{n/c_1}$ bestehen; es gibt also nur endlich viele solche Darstellungen, und diese lassen sich effektiv (und sogar leicht) bestimmen.

Beweis: Wir numerieren die f_1 so, daß $f_{1+1} = Tf_1 = S_{n_1}f_1$, also $f_1(x,y) = a_1(x+yw_1)(x+yw_1')$ mit

$$w_{\underline{i}} = \frac{b_{\underline{i}} + \sqrt{D}}{2a_{\underline{i}}} = [[n_{\underline{i}}, n_{\underline{i+1}}, \dots, n_{\underline{i+r-1}}]] = n_{\underline{i}} - \frac{1}{w_{\underline{i+1}}}$$

(hierbei ist i modulo r zu verstehen, also $f_{1+r}=f_1$, $n_{1+r}=n_1$, $w_{1+r}=w_1$ für alle i $\in \mathbb{Z}$). O.B.d.A. können wir annehmen, daß f gleich f_0 (= f_r) ist. Von einer gegebenen Darstellung

$$n = f(x_0, y_0)$$

ausgehend erhalten wir unendlich viele äquivalente Darstellungen

$$n = f_{\underline{1}}(x_{\underline{1}}, y_{\underline{1}}) \quad (\underline{1} \in \mathbf{Z})$$

$$\min \left(\begin{array}{c} x_{1} \\ y_{1} \end{array} \right) = S_{n_{1}} \binom{x_{1+1}}{y_{1+1}}, \text{ Sei } \xi_{1} = x_{1} + y_{1}w_{1}; \text{ dann ist (19) zu } n = a_{1}\xi_{1}\xi_{1}^{2}$$

$$(\xi_{1}^{1} \text{ die Konjugierte von } \xi_{1}) \text{ äquivalent. Insbesondere haben } \xi_{1} \text{ und }$$

$$\xi_{1}^{2} \text{ dasselbe Vorzeichen, das wegen }$$

(20)
$$\xi_{\underline{1}} = x_{\underline{1}} + y_{\underline{1}} (n_{\underline{1}} - \frac{1}{w_{\underline{1}+1}}) = \frac{1}{w_{\underline{1}+1}} \xi_{\underline{1}+1}$$

von i unabhängig ist. Da $(x,y)\mapsto (-x,-y)$ ein Automorphismus von fist und wir uns nur für die Äquivalenzklassen von Darstellungen interessieren, können wir annehmen, daß dieses Vorzeichen positiv ist, also ξ_1 , $\xi_1^1>0$. Wegen (20) und $w_1>1>w_1^1>0$ gilt

$$\frac{\xi_1}{\xi_1} < \frac{\xi_{1+1}}{\xi_{1+1}}, \lim_{t \to \infty} \frac{\xi_1}{\xi_1} = \infty, \lim_{t \to -\infty} \frac{\xi_1}{\xi_1} = 0,$$

also gibt es genau ein i E % mit

(21)
$$\frac{\xi_1}{\xi_1} \ge 1 > \frac{\xi_{1-1}}{\xi_{1-1}}.$$

Aber $\xi_1-\xi_1'$ ist gleich $y_1(w_1-w_1')$ und w_1-w_1' ist positiv, also ist $\xi_1/\xi_1'\geq 1$ zu $y_1\geq 0$ äquivalent und entsprechend $\xi_{1-1}/\xi_{1-1}'<1$ zu $x_1=-y_{1-1}>0$. Somit ist $n=f_1(x_1,y_1)$ für das durch (21) definierte i die zu $n=f(x_0,y_0)$ äquivalente Darstellung, deren Existenz im Satz behauptet wird. Die Eindeutigkeit folgt aus der Eindeutigkeit von i in (21) und der Tatsache, daß die volle Automorphismengruppe von f von -Id und $\prod_{i=1}^r S_n$ erzeugt wird. Damit ist Satz 2 bewiesen.

Die Aussage von Satz 2 gibt die Formel

$$R(n,f) = \sum_{\substack{i \pmod{r} \ x,y \in \mathbb{Z} \\ x>0,y>0 \\ f_i(x,y)=n}} 1 \quad (n \in \mathbb{N})$$

für die in §8 betrachteten Darstellungsanzahlen R(n,f). Aus §10 wissen wir, daß $\sum\limits_{n=1}^{\infty}$ R(n,f)n^{-s} = $\zeta(A,s)$, wobei A die Idealklasse ist, die unter der dort aufgestellten Korrespondenz der Form f entspricht. Satz 2 ist also zu der Identität

$$\zeta(A,s) = \sum_{\substack{i \pmod r}} \sum_{\substack{x,y \in \mathbb{Z} \\ x>0,y \geq 0}} \frac{1}{f_i(x,y)^s} \quad (\text{Re}(s) > 1)$$

 $\tt aguivalent. Es wird sich als bequemer herausstellen, die Bedingungen an x und y durch die symmetrischeren Bedingungen$

$$x \ge 0$$
, $y \ge 0$, $(x,y) + (0,0)$

zu ersetzen; da die Dastellungen $n=f_1(x,0)$ und $n=f_{1+1}(0,x)$ aber äquivalent sind, werden die Darstellungen mit x=0 oder y=0 dadurch zweimal gezählt. Satz 2 ist also zu folgendem Satz über Dirichletsche Reihen äquivalent:

SATZ 21: Sei A eine Idealklasse in einem reell-quadratischen Körper. Dann gilt

$$\zeta(A,s) = \sum_{f} Z_{f}(s)$$
 (s ε C, Re(s) > 1),

wobei die Summation über den Lykel von reduzierten Formen f läuft, welcher der

Klasse A entspricht, und $z_f(s)$ durch

(22)
$$Z_{f}(s) = \sum_{x,y>0} \frac{1}{f(x,y)^{S}}$$

$$+ \frac{1}{2} \sum_{x>0} \frac{1}{f(x,0)^{S}} + \frac{1}{2} \sum_{y>0} \frac{1}{f(0,y)^{S}}$$
 (Re(s) > 1)

definiert wird.

Dieser Satz wird im nächsten Paragraphen benutzt werden, um $\zeta(A,0)$ zu berechnen.

Aufgaben:

 Man beweise das Analogon zu Satz 1 für Äquivalenzklassen im weiteren Sinne von indefiniten Formen, wobei "reduziert" jetzt durch die Ungleichungen

(23)
$$W > 1$$
, $O > W' > -1$ $(W = \frac{b + \sqrt{b}}{2a})$

(statt (17)) definiert wird und T durch die Transformation

(24)
$$T^{+}f = S^{+}_{m}f$$
, $S^{+}_{m} = {m \choose 1}$, $m < \frac{b + \sqrt{b}}{2a} < m + 1$

zu ersetzen ist. Man führe dieses Reduktionsverfahren für das Beispiel nach Satz 1 (also Äquivalenz von [1,-6,3] und [-1,6,-3], jetzt im weiteren Sinne) aus.

2. Man zeige die Äquivalenz des Reduktionsverfahrens von Aufgabe 1 mit der Entwicklung von w in einen Kettenbruch der Gestalt

$$w = [[m_0, m_1, \dots]]^+ := m_0 + \frac{1}{m_1 + \frac{1}{m_2 + \cdots}}$$

mit $m_1 \in \mathbb{Z}$, $m_1 \ge 1$ für $i \ge 1$: Die Folge $\{m_1\}$ ist für jede quadratische Irrationalität w nach einem bestimmten Punkt periodisch und ist genau dann rein periodisch, wenn w (23) erfüllt.

 Man zeige, daß der Übergang zwischen den beiden Sorten von Kettenbrüchen durch

$$[[m_0, m_1, m_2, \dots]]^+ = [[m_0+1, 2, \dots, 2, m_2+2, 2, \dots, 2, m_4+2, \dots]]$$

$$[m_1 \in \mathbf{Z}, m_1, m_2, \dots \ge 1)$$

gegeben wird.

- 4. Man zeige mit Hilfe von Aufgabe 3, daß eine Idealklasse im weiteren Sinne gleich einer Idealklasse im engeren Sinne ist oder in zwei solche zerfällt, je nachdem, ob die Länge s der zugehörigen Kettenbruchperiode [[m₁,m₂,...,m_S]][†] ungerade oder gerade ist.
- 5. Man bestimme die Zykel von reduzierten Formen (im engeren sowie im weiteren Sinne) für alle positiven Diskriminanten < 30.

§14 Werte von Zetafunktionen bei s = 0, Kettenbrüche und Klassenzahlen

Das Ziel dieses Paragraphen ist der Beweis der beiden folgenden Ergebnisse, die als schöne Anwendung eine Beziehung zwischen Klassenzahlen imaginärquadratischer Zahlkörper und Kettenbruchentwicklungen reellquadratischer Zahlen haben werden.

SATZ 1: Sei f(x,y) eine indefinite quadratische Form mit positiven Koeffizienten und $\mathbf{Z}_{\mathbf{f}}(s)$ die für $\mathrm{Re}(s) > 1$ durch Gleichung (22), §13, definierte Zetafunktion. Dann läßt sich $\mathbf{Z}_{\mathbf{f}}(s)$ auf die Halbebene $\mathrm{Re}(s) > -\frac{1}{2}$ bis auf einen einfachen Pol bei s=1 holomorph fortsetzen und es gilt:

$$Z_f(0) = \frac{1}{24} \left(\frac{b}{a} + \frac{b}{c} - 6 \right)$$
.

SATZ 2: Sei A eine Idealklasse in einem reellquadratischen Zahlkörper und $\mathbf{n}_1,\dots,\mathbf{n}_r$ ($\mathbf{n}_1\geq 2$) die Zahlen aus der minimalen Periode der Kettenbruchentwicklung der größeren Kurzel irgendeiner Form aus der Äquivalenzklasse, welche A entspricht. Dann gilt für die Zetafunktion der Idealklasse A

$$\zeta(A,0) = \frac{1}{12} \sum_{i=1}^{r} (n_i - 3)$$
.

Satz 2 ist eine leichte Folgerung aus Satz 1 und der Ergebnissen von §13. Aus letzteren folgt nämlich, daß (bei passender Numerierung) die reduzierten Formen aus der der Idealklasse A entsprechenden Äguivalenzklasse von Formen durch

$$f_1(x,y) = a_1 x^2 + b_1 xy + c_1 y^2$$
, $\frac{b_1 + \sqrt{D}}{2a_1} = [[n_1, n_{1+1}, \dots, n_{1+r-1}]]$

gegeben werden (wir denken uns die Numerierung periodisch fortgesetzt also $n_{i+r}=n_i$, $f_{i+r}=f_i$). Aus Satz 3 von §13 und Satz 1 folgt dann unter Verwendung der Periodizität

$$\zeta(A,0) = \int_{1=1}^{L} Z_{f_{1}}(0)$$

$$= \frac{1}{24} \sum_{i=1}^{K} \left(\frac{b_{1}}{a_{1}} + \frac{b_{1}}{c_{1}} - 6 \right)$$

$$= \frac{1}{24} \sum_{i=1}^{K} \left(\frac{b_{1}}{a_{1}} + \frac{b_{i+1}}{c_{i+1}} - 6 \right)$$

Wegen $f_{1+1} = S_{n_1} f_1$ ist aber $c_{1+1} = a_1$, $b_{1+1} = 2n_1 a_1 - b_1$ (vgl. §13, (1)), also $\frac{b_1}{a_1} + \frac{b_{1+1}}{c_{1+1}} = 2n_1$, womit Satz 2 bewiesen ist.

Zum Beweis von Satz 1 verwenden wir das allgemeine Ergebnis über analytische Fortsetzung und spezielle Werte von Dirichletschen Reihen. das in §7 als Satz 1 formuliert wurde (bzw. die in der zweiten Bemerkung danach formulierte Ergänzung, falls die Koeffizienten von finicht ganz, sondern nur reell sind). Dieser Satz besagt in unserem Fall: falls die Funktion

$$V_{f}(t) = \sum_{x,y>0} e^{-f(x,y)t} + \frac{1}{2} \sum_{x>0} e^{-f(x,0)t}$$

$$+\frac{1}{2}\sum_{y>0} e^{-f(0,y)t}$$
 (t > 0)

für t \rightarrow 0 eine asymptotische Entwicklung der Gestalt

(1)
$$v_f(t) \sim \frac{c}{t} + c_0 + c_1 t + \dots$$
 $(t \to 0)$

besitzt, so ist $z_{\underline{f}}(s)$ meromorph auf ganz ${\bf C}$ fortsetzbar, $z_{\underline{f}}(s)$ - $\frac{c}{s-1}$ ist ganz und $z_{\underline{f}}(-n) = (-1)^n n! C_n$ (Y $n \ge 0$). Aus seinem Beweis sehen wir allerdings, daß es für die schwächere Aussage von Satz 1 (aṇalytische Fortsetzbarkeit nur bis Re(s) = $-\frac{1}{2}$ und Wert bei s = 0) genügt, die schwächere asymptotische Formel

(2)
$$V_{f}(t) = \frac{C}{t} + C_{0} + O(t^{\frac{2}{2}})$$

mit irgendeinem C und mit $C_0=\frac{1}{24}(\frac{b}{a}+\frac{b}{c}-6)$ zu beweisen. In der Tat gilt (1); da wir uns aber nur für den Wert von $Z_{\underline{f}}(0)$ interessieren, werden wir uns mit dem schwächeren Resultat (2) begnügen.

Um die volle asymptotische Formel für $V_{\underline{f}}(t)$ zu erhalten, benutzt man die sogenannte Euler-Maclaurin Summationsformel, oder vielmehr eine Verallgemeinerung von ihr auf Funktionen von zwei Variablen, welche ein allgemeines Rezept zur Berechnung von Summen der Gestalt $\sum_{i=1}^{n} F(x,y)$ liefert. Da wir aber nur das schwächere Ergebnis (2) x,y>0

im Sinne haben, werden wir nur die ersten Glieder aus dieser Summations

formel benutzen, wodurch unser Beweis allerdings einen etwas künst-

Funktion auf $[0,\infty) \times [0,\infty)$. Für x, $y \ge 1$ bilden wir den Ausdruck Sei also F(u,v) irgendeine glatte und im Unendlichen sehr kleine

$$G(x,y) = \frac{1}{4}[F(x,y)+F(x-1,y)+F(x,y-1)+F(x-1,y-1)] - \int_{x-1}^{x} \int_{y-1}^{y} F(u,v)dudv$$

$$+ \frac{1}{12} \int_{\mathbf{x}-1}^{\mathbf{x}} \left[F_{\mathbf{v}}(\mathbf{u}, \mathbf{y}-1) - F_{\mathbf{v}}(\mathbf{u}, \mathbf{y}) \right] d\mathbf{u} + \frac{1}{12} \int_{\mathbf{y}-1}^{\mathbf{y}} \left[F_{\mathbf{u}}(\mathbf{x}-1, \mathbf{v}) - F_{\mathbf{u}}(\mathbf{x}, \mathbf{v}) \right] d\mathbf{v}$$

so sieht man, daß die Ableitungen von F bis zur zweiten Ordnung in F(u,v) in dem Viereck x-1 $\leq u \leq x$, y-1 $\leq v \leq y$ in eine Taylorreihe klein und besonders leicht summierbar ist. Entwickelt man nämlich diesem Ausdruck sind so gewählt, daß G(x,y) gleichzeitig besonders (3) wegfallen (z.B. ist G identisch O, falls F ein Polynom vom Grad < 2 ist); andererseits haben wir $F_{u}(u,v) = \frac{\partial F}{\partial u}(u,v)$, $F_{v}(u,v) = \frac{\partial F}{\partial v}(u,v)$. Die Koeffizienten in

$$\sum_{x=1}^{\infty} \sum_{y=1}^{\infty} G(x,y) = \frac{1}{4}F(0,0) + \frac{1}{2} \sum_{x>0} F(x,0) + \frac{1}{2} \sum_{y>0} F(0,y) + \sum_{x,y>0} F(x,y)$$

$$-\int_{0}^{\infty} \int_{0}^{\infty} F(u,v) du dv + \frac{1}{12} \int_{0}^{\infty} F_{V}(u,0) du + \frac{1}{12} \int_{0}^{\infty} F_{U}(0,v) dv .$$

$$-f(u,v) t$$

Wendet man diese Formel auf die Funktion $F_t(u,v) = e^{-f(u,v)t}$ an, so findet man für die entsprechende Funktion G_t

$$\sum_{\mathbf{x}, \mathbf{y} > 0} G_{\mathbf{t}}(\mathbf{x}, \mathbf{y}) = \frac{1}{4} + V_{\mathbf{f}}(\mathbf{t}) - \int_{0}^{\infty} \int_{0}^{\infty} e^{-\mathbf{f}(\mathbf{u}, \mathbf{v}) t} du dv$$

$$- \frac{bt}{12} \int_{0}^{\infty} u e^{-au^{2}t} du + \int_{0}^{\infty} v e^{-cv^{2}t} dv$$

$$= V_{\mathbf{f}}(t) - \frac{c}{t} - c_{0}$$

$$= V_{\underline{f}}(t) - \frac{C}{t} - C_0$$

$$= V_{\underline{f}}(t) - \frac{C}{t} - C_0$$

$$\text{mit } C = \int\limits_{0}^{\infty} \int\limits_{0}^{\infty} e^{-f(u,v)} du dv \quad \text{und } C_0 = \frac{1}{24}(\frac{b}{a} + \frac{b}{c}) - \frac{1}{4}. \quad \text{Um (2) zu beweisen,}$$

$$\text{missen wir also nur noch zeigen, daß} \quad \sum\limits_{x,y>0}^{\infty} G_{\underline{t}}(x,y) = \mathbf{O}(t^{-\frac{1}{2}}) \quad \text{für}$$

$$t \to 0.$$

und F sowie ihre beiden ersten Ableitungen in dem Vierech F = P + F, wobei P ein Polynom vom Grad ≤ 2 in u und v ist "anderlichen" haben wir nämlich für feste x, y ≥ 1 eine Zerlegung Dies ist aber sehr leicht. Nach dem Taylorschen Satz (in zwei Ver-

 $x-1 \le u \le x$, $y-1 \le v \le y$ durch absolute Konstanten mal

$$M_{F}^{(3)}(x,y) = \max_{\substack{x-1 \leq u \leq x \\ y-1 \leq v \leq y}} \max_{\substack{0 \leq i \leq 3 \\ y-1 \leq v \leq y}} \left| \frac{\partial_{F}^{3}(u,v)}{\partial u^{\frac{1}{3}} \partial v^{\frac{3}{3}-\frac{i}{4}}} \right|$$

 $\mathbf{O}(t^2)$ und damit die analytische Fortsetzung von $\mathbf{Z}_{\mathbf{f}}$ bis $\mathrm{Re}(\mathbf{s}) = -1$ Grad ≤ 2 berechnet; für $F(u,v) = u^2$ ist z.B. $G(x,y) = \frac{1}{2}[x^2 + (x-1)^2] - \frac{1}{3}[x^3 - (x-1)^3] + \frac{1}{6}[(x-1)-x] = 0$. Tatsächlich der Taylorentwicklung von F im Punkt $(x-\frac{1}{2},y-\frac{1}{2})$, so gilt $|\widetilde{F}| \leq \frac{1}{6} \frac{M_F^{(3)}}{F}$, $|\widetilde{F}_U|$, $|\widetilde{F}_V| \leq \frac{1}{2} \frac{M_F^{(3)}}{F}$ in dem Viereck.) Andererseits abgeschätzt werden. (Wählt man für P z.B. den quadratischen Anteil $F_{t}(u,v) = e^{-f(u,v)t} = F_{1}(u\sqrt{t},v\sqrt{t})$ an. Dann haben die dritten Ableiwird. Wir wenden dies auf die spezielle Funktion liefern.) Hieraus folgt, daß G(x,y) ebenfalls durch eine absolute Konstante $(\frac{1}{2}$, falls man P wie oben wählt) mal $M_F^{(3)}(x,y)$ abgeschätzt verschwindet G für alle Polynome F vom Grad ≤ 3, wie man ebenso schnell verifizieren, indem er diesen Ausdruck für die 6 Monome vom quadratische Polynome identisch verschwindet. (Der Leser kann dies ist, wie schon bemerkt, der Ausdruck (3) so beschaffen, daß er für leicht verifiziert; diese stärkere Aussage würde (2) mit O(t) statt tungen von F₁ die Gestalt

(Polynom von Grad ≤ 3 in u,v) $\times F_1$

und daher die von F_{t} die Gestalt

 $t^{2} \times (\text{Polynom vom Grad} \leq 3 \text{ in u}/\overline{t}, \text{ v}/\overline{t}) \times F_{t}$

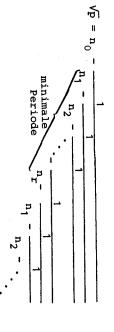
also

$$(3)_{\{x,y\}} \leq K \max_{i+j \leq 3} x^{i} y^{j} t^{\frac{3+i+j}{2}} e^{-f(x-1,y-1)t}$$

Damit ist Satz 1 bewiesen.

dessen Beweis aber sämtliche algebraischen und analytischen Hilfsmittel, die in diesem Buch entwickelt wurden, eingehen Wir schließen mit einem Ergebnis, das rein arithmetisch ist, in

SATZ 3: Sei



die Kettenbruchentwicklung der Quadratuurzel einer Primzahl $p = 3 \pmod 4$, p + 3, für die Alassenzahl im weiteren Sinne von $\mathfrak{Q}(\sqrt{p})$ gleich 1 ist. Dann ist die Klassenzahl von $\mathfrak{Q}(\sqrt{-p})$ gleich $\frac{1}{3}(n_1 + \dots + n_r) - r$.

Als Beispiele für den Satz haben wir

 $h(-163) = \frac{1}{3}(5+2+2+4+3+6\times2+3+10\times2+3+10\times2+3+6\times2+3+4+2+2+5+26) - 35 = 1$

Wie in §9 erwähnt, ist die Primzahl 163 die größte Zahl p mit h(-p)=1; dagegen ist die Klassenzahl von $\mathfrak{Q}(\sqrt{+p})$ vermutlich für unendlich viele, jedenfalls für viele Tausende Primzahlen p = 3 (mod 4) gleich 1, so daß der Satz nicht leer ist. Daß die Kettenbruchentwicklung von \sqrt{p} die im Satz behauptete Gestalt hat (also rein periodisch nach dem ersten Glied, übrigens mit $n_r=2n_0$) folgt daraus, daß die Zahl $w=\sqrt{p}+n_0=\sqrt{p}+[\sqrt{p}]+1$ die Ungleichungen (18) aus §13

Beweis des Satzes: Wir werden Satz 2 auf Geschlechtscharaktere anwenden. Ist X irgendein Charakter auf der Idealklassengruppe C (im engeren Sinne) eines reellquadratischen Körpers K, so liefert Satz 2 die analytische Fortsetzung von der L-Reihe

$$\mathbf{L}_{\mathbf{K}}(\mathbf{s},\chi) = \sum_{\mathbf{a}} \frac{\chi(\mathbf{a})}{\mathbf{N}(\mathbf{a})} = \sum_{\mathbf{A} \in \mathbf{C}} \chi(\mathbf{A}) \zeta(\mathbf{A},\mathbf{s}) \qquad (\text{Re}(\mathbf{s}) > 1)$$

auf die punktierte Halbebene $\{s\in \mathbb{C}\mid \operatorname{Re}(s)>-\frac{1}{2},\ s+1\}$ und gibt ihren Wert bei s=0 als eine endliche Summe

(4)
$$L_{K}(O,\chi) = \frac{1}{12} \sum_{A \in C} \chi(A) \sum_{i=1}^{r(A)} (n_{i}(A) - 3)$$

der Diskriminante von K als Produkt zweier Diskriminanten D' und θ ε C die aus den Hauptidealen (λ) mit $N(\lambda)$ < O bestehende Idealdenn in diesem Fall gilt $\chi(\theta)=+1$ und daher $\chi(A\theta)=\chi(A)$, wobei und wir haben $L_{K}(0,\chi)$ = 0. (Dies folgt allerdings auch aus (4), $\mathbf{L_{D^{"}}}(0)$ gleich Null (beide, falls D' und D" ungleich 1 sind) nach dem Korollar in §7 mindestens einer der Werte L_{D} , (0) und und L_{D"}(0) in §7 berechnet. Falls $\mathbf{L}_{\mathbf{K}}$ (0, χ): nach dem Hauptsatz von §12 entspricht χ einer Zerlegung χ ein Geschlechtscharakter ist, haben wir schon einen Ausdruck für an, wobei $\{n_{\underline{i}}(A)\}_{1\leq \underline{i}\leq r(A)}$ der A zugehörige Zykel ist. Wenn aber von §7 und Gleichung (9) (Satz 3) von §9 dagegen D' und D" negativ sind, so haben wir aus Gleichung (8) klasse bezeichnet. Beim Übergang von A nach $r(\underline{A})$ das Vorzeichen der Invarianten und es gilt $I_K(s,\chi) = I_{D_1}(s)I_{D_1}(s)$, andererseits wurden $I_{D_1}(0)$ ַם $(n_{1}(A)-3)$; s. Aufgabe 3.) Falls und D" positiv sind, ist 0A ändert sich aber

$$L_{D'}(0) = -\frac{1}{|D'|} \sum_{n=1}^{|D'|-1} \chi_{D'}(n)n = \frac{h(D')}{\frac{1}{2}w(D')}$$

wobei h(D') die Klassenzahl und

$$\mathbf{w}(\mathbf{D}^{1}) = \begin{cases} 6 & (\mathbf{D}^{1} = -3) \\ 4 & (\mathbf{D}^{1} = -4) \\ 2 & (\mathbf{D}^{1} < -4) \end{cases}$$

die Anzahl der Einheiten des Körpers $\mathbb{Q}(\sqrt{\mathbb{D}^T})$ bezeichnen, also

(5)
$$L_{K}(O_{r}X) = \frac{h(D^{1})}{\frac{1}{2}w(D^{1})} \frac{h(D^{n})}{\frac{1}{2}w(D^{n})}.$$

gerade sein muß). Seien E (= Hauptklasse) und Lösung hat, oder auch dadurch, daß h(4p) nach dem Korollar in §12 sen, daß die Pellsche Gleichung $x^2-py^2=-4$ für oder h = 2h₀; hier ist die Möglichkeit h = h₀ gleich 4p und die Idealklassenzahl im engeren Sinne gleich 2 ist merken wir erst, daß für þ besonders einfachen Spezialfall darstellt. Um ihn zu gewinnen, beliche Inhalt von Satz 3, wovon die gegebene Formulierung nur einen $\chi_1(\theta)$ = -1; da es nach dem Hauptsatz von §12 auch zwei Geschlechtstrivialen Charakter χ_0 und den Charakter χ_1 mit $\chi_1(E)=1$, Idealklassengruppe. Auf dieser Gruppe gibt es nur zwei Charaktere, der (nach Voraussetzung ist nämlich $h_0(p) = 1$, und es gilt immer $h = h_0$ Die Gleichheit der rechten Seiten von (4) und (5) ist der eigentwie im Satz die Diskriminante von $\mathfrak{Q}(\sqrt{p})$ dadurch ausgeschlos-Θ $p = 3 \pmod{4}$ keine die Elemente der

charaktere gibt, welche den Zerlegungen $4p = 1 \times 4p$ und $4p = -4 \times -1$ entsprechen, müssen diese χ_0 bzw. χ_1 sein und wir haben

$$\zeta(E,s) + \zeta(\theta,s) = L_K(s,\chi_0) = \zeta(s) L_{4p}(s) ,$$

$$\zeta(E,s) - \zeta(\theta,s) = L_K(s,\chi_1) = L_{-4}(s) L_{-p}(s) ,$$

als nach dem bereits Gesagten

$$\zeta(E,0) + \zeta(\theta,0) = 0$$
,
 $\zeta(E,0) - \zeta(\theta,0) = \frac{h(-4)}{\frac{1}{2} \times 4} \times \frac{h(-p)}{\frac{1}{2} w(-p)} = \frac{1}{2} h(-p)$

(hier brauchen wir p + 3 !). Es gilt also h(-p) = 4 ζ (E,0), und nach Satz 2 ist dies gleich $\frac{1}{3}\sum_{i=1}^{r}(n_i-3)$ mit n_i wie in der Formulierung von Satz 3. Damit ist der Beweis von Satz 3 zu Ende. Vergleicht man allerdings die Bemerkungen nach Satz 3 in §9, so sieht man, daß (5) zwar richtig, von uns aber nur bis aufs Vorzeichen bewiesen worden ist (weil das Vorzeichen der Gaußschen Summe nie bestimmt wurde). Dasselbe gilt also auch für die Formel in Satz 3 hier, die allerdings dadurch nichts an Nützlichkeit einbüßt, weil Klassenzahlen ja von Natur aus positiv sind; wir wollten aber nicht durch Absolutbetragszeichen um den Ausdruck $\frac{1}{3}\sum_{i=1}^{r}n_i$ - r die Schönheit des Satzes beeinträchtigen.

Aufgaben

- 1. Man zeige, daß das Residuum von $Z_f(s)$ ($f = ax^2 + bxy + cy^2$, a, b, c > 0, $D = b^2 4ac > 0$) an der Stelle s = 1 gleich $\frac{1}{2\sqrt{D}}$ log $\frac{W}{W^1}$ ist, wobei w, $w' = \frac{b \pm \sqrt{D}}{2a}$ die Wurzeln von $ax^2 bx + c = 0$ sind.
- 2. Sei A eine Idealklasse in einem reellquadratischen Zahlkörper K und seien w_1, \ldots, w_r die größeren Wurzeln der reduzierten Formen aus dem entsprechenden Zykel. Man zeige, daß $\prod_{i=1}^{r} w_i = \varepsilon$, wobei ε die Grundeinheit (mit Norm +1) von K bezeichnet. Zusammen mit Aufgabe 1 und Satz 3 von §13 liefert dies einen neuen Beweis von Satz 2, §10.

. Sei x eine reelle Zahl mit der Kettenbruchentwicklung

$$\mathbf{x} = [[a_1 + 3, 2, \dots, 2, a_3 + 3, 2, \dots, 2, \dots]] \quad (a_1 \ge 0) \cdot a_2 - \text{mal}$$

Man zeige, daß die Zahl $\frac{x-1}{x-2}$ die Kettenbruchentwicklung

$$\frac{x-1}{x-2} = \{ \{ \{ 2, \dots, 2, a_2 + 3, 2, \dots, 2, a_4 + 3, \dots \} \} \}$$

$$a_1 - \text{mal}$$

$$a_3 - \text{mal}$$

hat und folgere aus dieser Aussage und Satz 2 die Gleichung

$$\zeta(A,0) = -\zeta(A\theta,0) ,$$

wobei A eine Idealklasse im engeren Sinne in einem reellquadratischen Körper K ist und A θ die aus allen Idealen

$$(\lambda)a$$
 $(a \in A, \lambda \in K, N(\lambda) < 0)$

bestehende Idealklasse bezeichnet. Insbesondere verschwindet $\zeta(A,0)$ für alle A, falls die Idealklasseneinteilungen im engeren Sinne zusammenfallen, d.h. falls K eine Einheit der Norm -1 besitzt.

Literatur zu Teil II

Fast die ganze Theorie, die im zweiten Teil dieses Buchs entwickelt wurde, geht (mindestens im Prinzip) auf Gauß' Disquisitiones Arithmeticae (Arithmetische Untersuchungen) zurück; ihre deutsche Übersetzung sowie der Aufsatz Über den Zusammenhang zwischen der Anzahl der Klassen, in welche die bindren Formen zweiten Grades zerfallen, und ihrer Determinante sind in

C.F. Gauß, *Untersuchungen über höhere Arithmetik*, Göttingen 1889 (Neuauflage Chelsea 1965)

enthalten. Man soll sie unbedingt angucken. Modernere Darstellungen verschiedener Teile dieser Theorie findet man in

- S.I. Borewicz, I.R. Šafarevič, *Zahlentheorie*, Birkhäuser Verlag, Basel und Stuttgart, 1966
- E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Leipzig 1923 (Neuauflage Chelsea 1970)
- E. Landau, Vorlesungen über Zahlentheorie (3 Bände), Leipzig 1927 (Neuauflage Chelsea 1969)
- A. Scholz, B. Schoeneberg, Einführung in die Zahlentheorie, Sammlung Göschen, Band 1131, Walter de Gruyter, Berlin 1961

sowie in den am Ende von Teil I angeführten Büchern von Davenport und Siegel (Teil II), und zwar im Einzelnen wie folgt:

	(88)	men	sche For-	Quadrati-	
		(888,9)	formel	Klassenzahl-	
pern (§§10,11)	schen Kör-	quadrati-	hang mit	Zusammen-	
		(§12)	theorie	Geschlechter-	

11. Teil
§§29,44-45,53
Kap. III, §8

Die Reduktionstheorie und ihr Zusammenhang mit periodischen Kettenbrüchen gehen auch auf Gauß zurück (Art. 183-205 der *Disquisitiones*) und wird auch in §31-32 von Scholz-Schoeneberg behandelt. Die hier gegebene Darstellung (§13) weicht von der üblichen ab.

Die am Ende von §13 beschriebene Zerlegung der Zetafunktion einer Idealklasse in einem reellquadratischen Körper mit Hilfe der Reduktionstheorie wurde in der Arbeit

D. Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975) 153-184

eingeführt und ihre Anwendung auf die Berechnung der Werte dieser Zetafunktionen bei s=0 (Sätze 1 und 2 von §14) in

D. Zagier, Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs, Journées Arithmétiques de Caen, Astérisque 41-42 (1977) 135-151

angegeben, wo auch die Werte an negativen ganzzahligen Stellen bestimmt werden. Für die Übertragung dieser Methode auf Zetafunktionen beliebiger total-reeller Zahlkörper siehe

T. Shintani, On evaluation of seta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. U. Tokyo 23(1976) 393-417.

Die Werte von $\zeta(A,0)$ im quadratischen Fall kannte man schon vorher durch die Arbeiten von C. Meyer, der sie mit Hilfe einer auf Hecke zurückgehenden Integraldarstellung von $\zeta(A,s)$ mittels sog. Dedekindscher Summen ausgedrückt hat. Über diese Arbeiten wird im o.a. Artikel A Kronecker limit formula ... sowie im ersten Kapitel von

C.L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute, Bombay 1961

berichtet. Der Zusammenhang zwischen den in Meyers Formel auftretenden Dedekindschen Summen und Kettenbrüchen wurde von F. Hirzebruch und dem Autor bemerkt; insbesondere wurde Satz 3, §14, von Hirzebruch als Korollar des Meyerschen Satzes entdeckt. Siehe hierzu den Bericht

D. Zagier, Nombres de classes et fractions continues, Journées Arithmétiques de Bordeaux, Astérisque 24-25 (1975) 81-97.

Sachverzeichnis

•	Hauptmodul	Hauptideal	Hauptgeschlecht	Hauptcharakter		Grundzahl	Grundform	Geschlechtscharakter	 von Idealklassen 	Geschlecht von Formen	umme	Ganze Zani	funktion		Fundamentaldiskriminante	Faltung		•	te te	ktion	,	Summationsformel	Einheit		Körpers	 eines quadratischen 	 einer quadratischen Form 	Diskriminante eines Ideals		! .	Ω	Dirichletsche Reihe	-, mideraner	•	•	•	•	-, gerader	ceines		-, eigentlicher	-, Dirichletscher	Charakter	- Selliteii	O		asymptotische Entwicklung				- von Idealen	ianren	Abelsches Summationsver-	
	95	88	109	ယ		38	59	109	109	108	u	0	16-18		38	9		<u>ω</u>	19	14,35	10-11	л Л	90	3	ä	2	59	88	ω		2	_	,	л U) () (ب ا ا	37	52	37	33	37	34		ţ) , ,	1	48	62	58	91	91	ı	Δ.	
-, Koeffizienter	, Grundeinheit einer	-, Dis		, -, Gesamtanzahl	, -, Anzahl	Zahlen durch	 , Darstellungen von 	, binäre	, Automorphismus einer	enz zwis		ł	Produktideal	Primideal	Primdiskriminante	barkeit der 57,63,	Pellsche Gleichung, Lös-		orientierte Basis		_	Norm eines Ideals	-, sereng	Ę	- Multiplikator eines		- Umkehrformel	Möbiussche Funktion	Mellin Transformation	•		Landauscher Satz	charak	-, runktronaryrerendy von	Dirichianalaleichung		•	konjugiertes Ideal	Zahl	_	en Sinn		cher	Kettenbruch 12	IdealKlassengruppe	Idealklassencharakter	-, Teilbarkeit	-, Norm eines	-, konjugiertes	•	, ganzes	- Diskriminante eines	æ	12000
57	65	59	66	63	63	58-63		57	62	20,02	אכ	•	ŏ	90	40 0	71,			91		87	& &	ā	3 6	100	ט פ) 1 N		22		36	7	104	Ç	ת - ע	33,41 41)	8	87	72,79	62	60,61	127	126,131	-	104	100	α	80	89	89	88	9 6	χο χο

zerlegt Zetafunktion, Dedekindsche -, Hurwitzsche -, einer Idealklasse -, Riemannsche	/erdoppelungsformel verzweigt	träge	Spur Stirlingsche Formel	ct Ö	quadratische Form, negativ- definite -, positiv-definite -, primitive -, primitive -, reduzierte quadratischer Zahlkörper -, Diskriminante eines -, ganze Zahlen in einem
100 96 54 97	21 100	99	87 23	30 6,24 29-30 29,32	61 61 61 1,122 87 88 88

Symbolverzeichnis

E	U _f	Sp(x)	SL ₂ (z)	o t	R(n,f)	R* (n)	R(n)	r(n)	0(x)	o(x)	N (&)	N (x)	$\mathbf{L_{D}(s)}$	$L(s,\chi)$	հ ₀ (D)	h (D)	ь Б	D(a)	d(n)	$\mathbf{B}_{\mathbf{n}}(\mathbf{x})$	B B
63	62	87	59	120	63	66	63	14	Vorwort	Vorwort	88	87	111	41	62	61	31	88	9	51	25
	ω(n)	× ₀	X _D (n)	φ(n)	τ (n)	σ _k (n)	ρ(n)	II (x)	ν(n)	H	μ(n)	λ (n)	$z_{f}(s)$	$\zeta_{\mathbf{K}}(\mathbf{s})$	ζ(A,s)	ζ(s,a)	ζ(s)	0 ³	Γ(x)	$\gamma_{D}(x)$	Y
	14	35	38	14	10	10	44	16	13	74	12	13	131	96	97	54	6	65	17,18	74	19
										, [m, om]]	''0u]]	, 'u'' 'u']]	R _	(3)	×,	a(b	ရာ	f~g	[x]	# 0	IC!
				-]] ⁺ 7 131	n ₁ ,,n ₁]] 127	,n _s]] 126	89	88	87	36	33	Vorwort	Vorwort	Vorwort	ICI Vorwort

Springer-Verlag Berlin Heidelberg New York

W. Scharlau, H. Opolka

Von Fermat bis Minkowsk

Eine Vorlesung über Zahlentheorie und ihre Entwicklung

1980. 13 Abbildungen, 3 Tabellen. XI, 224 Seiten DM 32,-ISBN 3-540-10086-5

Inhaltsübersicht: Die Anfänge. – Fermat. – Euler. – Lagrange. – Legendre. – Gauß. – Fourier. – Dirichlet. – Von Hermite bis Minkowski. – Ausblick: Reduktionstheorie. – Namen- und Sachverzeichnis.

"Dieses aus einer Vorlesung für Studenten des Lehramtes entstandene Buch zeichnet die Entwicklung der Zahlentheorie vom 17. Jahrhundert bis zum Beginn des 20. Jahrhunderts nach. ...

Wie von den Verfassern im Vorwort betont, geht es weniger um eine systematische Wissensvermittlung als darum, Interesse an zahlentheoretischen Fragestellungen, Entwicklungen und Zusammenhängen zu wecken. Deshalb wird der historische Weg in die Zahlentheorie eingeschlagen, und die benötigten Vorkenntnisse sind denkbar gering gehalten. Auf gut 200 Seiten erfährt der Leser klassische Methoden und Ergebnisse u.a. über Summen von Quadraten, Kettenbrüche, Gaußsche Summen, Dirichletsche L-Reihen, Klassenzahlen, Gitterpunktabschätzungen. Verbindungen zu anderen Gebieten der Mathematik werden freigelegt. Viele biographische Anmerkungen, ausführliche Motivationen und Literaturhinweise begleiten und ergänzen die Darstellung.

Hier liegt ein engagiert geschriebenes, zur weiteren Beschäftigung mit Zahlentheorie anregendes Buch vor, dem ein großer Leserkreis zu wünschen ist."

Zentralblatt für Mathematik

P. Ribenboim

13 Lectures on Fermat's Last Theorem

1979. 1 portrait, 3 tables. XVI, 302 pages. Cloth DM 48,-ISBN 3-540-90432-8

Contents: The Early History of Fermat's Last Theorem. – Recent Results. – B. K. = Before Kummer. – The Naive Approach. – Kummer's Monument. – Regular Primes. – Kummer Exits. – After Kummer, a New Light. – The Power of Class Field Theory. – Fresh Efforts. – Estimates. – Fermat's Congruence. – Variations and Fugue on a Theme. – Epilogue. – Index of Names. – Subject Index.

specialist as well, particularly as the freshness and estimates based on diophantine approxiapproaches are covered, including such of the style of the original lectures has been prevarious highly ingenious attempts to prove standable mathematical description of the served in the printed version. The book is, however, accessible to the nonimportant part of the history of their subject find the 13 Lectures an inspiring account of an in attempting to solve it. Number theorists wil lem and the incredible variety of methods used multi-facetness of a single mathematical probmation. The book is a unique testimonial to the modern methods as the use of class field theory Fermat's last theorem. All significant the Institut Henri Poincaré, gives a fully under-This book, based on the author's lectures at

