$$
x^{3}+y^{3}+z^{3} \neq 0
$$

Theorem 1 (Fermat-with first known proof by Euler). No integers x, y, z with $x y z \neq 0$ satisfy $x^{3}+y^{3}+z^{3}=0$.

Proof. We may assume that x, y, and z are pairwise coprime.
If $x y z$ is not divisible by 3 , then the equation has no solution even in $\mathbb{Z} /(9)$, where every nonzero cube is ± 1. Suppose then, without loss of generality, that $3 \mid z$.

We will work in the UFD $R:=\mathbb{Z}[\zeta]$ with $\zeta=(-1+i \sqrt{3}) / 2$, a root of the polynomial $X^{2}+X+1$ (so that $\zeta^{3}=1$). The complex conjugate $\bar{\zeta}$ is

$$
\bar{\zeta}=\zeta^{2}=-(1+\zeta)
$$

The norm of $a+b \zeta \in R(a, b \in \mathbb{Z})$ is

$$
N(a+b \zeta):=(a+b \zeta)(a+b \bar{\zeta})=a^{2}-a b+b^{2} \geq 0
$$

One has

$$
\begin{equation*}
N\left(r_{1} r_{2}\right)=N\left(r_{1}\right) N\left(r_{2}\right) \quad\left(r_{1}, r_{2} \in R\right) \tag{1.1}
\end{equation*}
$$

It follows that the units in R are those $a+b \zeta$ whose norm is 1 , easily seen to be the six elements $\pm 1, \pm \zeta$ and $\pm \zeta^{2}=\mp(1+\zeta)$.

The norm of

$$
\pi:=1-\zeta
$$

is

$$
N(\pi)=(1-\zeta)\left(1-\zeta^{2}\right)=3 .
$$

Since 3 is prime in \mathbb{Z}, (1.1) implies then that $1-\zeta$ is prime in R.
For $a, b \in \mathbb{Z}, a+b \zeta \equiv a+b(\bmod \pi)$, so the natural map $\mathbb{Z} /(3) \rightarrow R /(\pi)$ is a surjection of fields, hence an isomorphism.

Now it is more than enough to show that the equation

$$
\begin{equation*}
x^{3}+y^{3}=u\left(\pi^{k} z\right)^{3} \tag{1.2}
\end{equation*}
$$

has no solution in R with u a unit, $k \geq 1, x, y$, and z pairwise coprime and xyz not divisible by π.

We will show that:
(i) if there is a solution, then $k \geq 2$; and
(ii) if there is a solution with $k \geq 2$, then there is also a solution when k is replaced by $k-1$.

Together, these two statements clearly imply that there is no solution.
So let x, y, z, u, and $k \geq 2$ be as in (1.2). We can write

$$
x=a_{0}+a_{1} \pi, \quad y=b_{0}+b_{1} \pi,
$$

where a_{i} and b_{i} are in \mathbb{Z} and 3 does not divide $a_{0} b_{0}$. (Recall that π does not divide $x y$). Then for any $j \geq 0$,

$$
\zeta^{j} y=(1-\pi)^{j}\left(b_{0}+b_{1} \pi\right) \equiv b_{0}+\left(b_{1}-j b_{0}\right) \pi\left(\bmod \pi^{2}\right)
$$

Note that $\pi^{2}=-3 \zeta$. Pick j so that $a_{1}+b_{1}-j b_{0} \equiv 0(\bmod 3)$. Then, after replacing y by $\zeta^{j} y$ in a solution of (1.2) we may assume that

$$
x+y \equiv a_{0}+b_{0} \quad(\bmod 3) .
$$

It follows that for any $i \geq 0$,

$$
x+\zeta^{i} y=x+y-\left(1-\zeta^{i}\right) y \equiv x+y \equiv a_{0}+b_{0} \quad(\bmod \pi) .
$$

Then

$$
0 \equiv x^{3}+y^{3}=(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \equiv\left(a_{0}+b_{0}\right)^{3} \quad(\bmod \pi),
$$

whence 3 divides the rational integer $a_{0}+b_{0}$. Thus π^{2} divides $x+y$ and π^{4} divides $x^{3}+y^{3}$, making $k \geq 2$, as asserted in (i).

Since $(x, y)=1$, therefore for $0 \leq i<j<3,\left(x+\zeta^{i} y\right) / \pi$ and $\left(x+\zeta^{j} y\right) / \pi$ are relatively prime: any common factor would divide their difference

$$
\frac{\zeta^{i}-\zeta^{j}}{\pi} \cdot y=\zeta^{i} \frac{1-\zeta^{j-i}}{1-\zeta} \cdot y=(\text { unit }) \cdot y,
$$

and also would divide $x+\zeta^{j} y$, hence would divide x as well as y.
Consequently,

$$
\begin{aligned}
x+\zeta y & =\pi e_{1} t_{1}^{3} \\
x+\zeta^{2} y & =\pi e_{2} t_{2}^{3} \\
x+y & =\pi e_{0} \pi^{3 \ell} t_{0}^{3}
\end{aligned}
$$

where the e_{i} are units, the t_{i} are pairwise coprime and not divisible by π, and $\ell=k-1$. Since

$$
(x+\zeta y)+\zeta\left(x+\zeta^{2}\right) y=(1+\zeta)(x+y)
$$

therefore

$$
e_{1} t_{1}^{3}+\zeta e_{2} t_{2}^{3}=e_{0}(1+\zeta) \pi^{3 l} t_{0}^{3},
$$

so that, since $\ell \geq 1$,

$$
\begin{equation*}
t_{1}^{3}+\zeta\left(\frac{e_{2}}{e_{1}}\right) t_{2}^{3}=\frac{e_{0}}{e_{1}}(1+\zeta) \pi^{3 \ell} t_{0}^{3} \equiv 0 \quad(\bmod 3) . \tag{1.3}
\end{equation*}
$$

But

$$
t_{i}^{3}=(\text { say })\left(a_{i}+b_{i} \zeta\right)^{3} \equiv a_{i}^{3}+b_{i}^{3} \neq 0 \quad(\bmod 3),
$$

where the inequality holds because π doesn't divide t_{i}. So there is a rational integer n such that $n\left(a_{2}^{3}+b_{2}^{3}\right) \equiv 1(\bmod 3)$; and after multiplying (1.3) by n we see that the unit $\zeta e_{2} / e_{1}$ is a rational integer mod 3 . Checking this condition for each of the six units shows that $\zeta e_{2} / e_{1}= \pm 1$, and so (1.3) establishes (ii).

