
x3 + y3 + z3 6= 0

Theorem 1 (Fermat—with first known proof by Euler). No integers x, y, z
with xyz 6= 0 satisfy x3 + y3 + z3 = 0.

Proof. We may assume that x, y, and z are pairwise coprime.
If xyz is not divisible by 3, then the equation has no solution even in Z/(9),

where every nonzero cube is ±1. Suppose then, without loss of generality,
that 3|z.

We will work in the UFD R := Z[ζ] with ζ = (−1 + i
√

3 )/2, a root of the
polynomial X2 +X + 1 (so that ζ3 = 1). The complex conjugate ζ̄ is

ζ̄ = ζ2 = −(1 + ζ).

The norm of a+ bζ ∈ R (a, b ∈ Z) is

N(a+ bζ) := (a+ bζ)(a+ bζ̄) = a2 − ab+ b2 ≥ 0.

One has

N(r1r2) = N(r1)N(r2) (r1, r2 ∈ R). (1.1)

It follows that the units in R are those a + bζ whose norm is 1, easily seen
to be the six elements ±1, ±ζ and ±ζ2 = ∓(1 + ζ).

The norm of

π := 1− ζ
is

N(π) = (1− ζ)(1− ζ2) = 3.

Since 3 is prime in Z, (1.1) implies then that 1− ζ is prime in R.
For a, b ∈ Z, a+ bζ ≡ a+ b (mod π), so the natural map Z/(3)→ R/(π)

is a surjection of fields, hence an isomorphism.

Now it is more than enough to show that the equation

x3 + y3 = u(πkz)3 (1.2)

has no solution in R with u a unit, k ≥ 1, x, y, and z pairwise coprime and
xyz not divisible by π.

We will show that:

(i) if there is a solution, then k ≥ 2; and
(ii) if there is a solution with k ≥ 2, then there is also a solution when k

is replaced by k − 1.
Together, these two statements clearly imply that there is no solution.

So let x, y, z, u, and k ≥ 2 be as in (1.2). We can write

x = a0 + a1π, y = b0 + b1π,

where ai and bi are in Z and 3 does not divide a0b0. (Recall that π does not
divide xy). Then for any j ≥ 0,

ζjy = (1− π)j(b0 + b1π) ≡ b0 + (b1 − jb0)π (mod π2).
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Note that π2 = −3ζ. Pick j so that a1 + b1 − jb0 ≡ 0 (mod 3). Then, after
replacing y by ζjy in a solution of (1.2) we may assume that

x+ y ≡ a0 + b0 (mod 3).

It follows that for any i ≥ 0,

x+ ζiy = x+ y − (1− ζi)y ≡ x+ y ≡ a0 + b0 (mod π).

Then

0 ≡ x3 + y3 = (x+ y)(x+ ζy)(x+ ζ2y) ≡ (a0 + b0)
3 (mod π),

whence 3 divides the rational integer a0 + b0. Thus π2 divides x+ y and π4

divides x3 + y3, making k ≥ 2, as asserted in (i).
Since (x, y) = 1, therefore for 0 ≤ i < j < 3, (x+ ζiy)/π and (x+ ζjy)/π

are relatively prime: any common factor would divide their difference

ζi − ζj

π
· y = ζi

1− ζj−i

1− ζ
· y = (unit) · y,

and also would divide x+ ζjy, hence would divide x as well as y.
Consequently,

x+ ζy = πe1t
3
1

x+ ζ2y = πe2t
3
2

x+ y = πe0π
3`t30

where the ei are units, the ti are pairwise coprime and not divisible by π,
and ` = k − 1. Since

(x+ ζy) + ζ(x+ ζ2)y = (1 + ζ)(x+ y)

therefore
e1t

3
1 + ζe2t

3
2 = e0(1 + ζ)π3`t30,

so that, since ` ≥ 1,

t31 + ζ

(
e2
e1

)
t32 =

e0
e1

(1 + ζ)π3`t30 ≡ 0 (mod 3). (1.3)

But
t3i = (say) (ai + biζ)3 ≡ a3i + b3i 6= 0 (mod 3),

where the inequality holds because π doesn’t divide ti. So there is a rational
integer n such that n(a32 + b32) ≡ 1 (mod 3); and after multiplying (1.3)
by n we see that the unit ζe2/e1 is a rational integer mod 3. Checking this
condition for each of the six units shows that ζe2/e1 = ±1, and so (1.3)
establishes (ii). �


