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1. Grothendieck Duality.

First, a couple of definitions:

For a scheme X, D+
c (X) (resp. D+

qc(X)) is the full subcategory
of the derived category D(X) with objects those complexes whose
homology sheaves are coherent (resp. quasi-coherent) and are zero
in sufficiently large negative degree.

A (contravariant) pseudofunctor (or 2-functor) on a category S
assigns to each X ∈ S a category X#, to each map f : X → Y a
functor f ] : Y# → X# (with 1] = 1), and to each map-pair

X
f−→ Y

g−→ Z a functorial isomorphism

df,g : f ]g] → (gf)]

satisfying d1,g = dg,1 = identity, and “associativity”: for any

X
f−→ Y

g−→ Z
h−→W , the following diagram commutes.

(hgf)] df,hg←−−−− f ](hg)]

dgf,h

x
xf]dg,h

(gf)]h] ←−−−−
df,g

f ]g]h].

Example: S=rings, X#=X-modules, f ] =restriction of scalars.
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Duality Theorem. On the category S of finite-type maps of
separated noetherian schemes, ∃ a D+

qc-valued pseudofunctor (−)!

(i.e., X ! := D+
qc(X) ∀X ∈ S) which is uniquely determined

up to isomorphism by the properties that it restricts to the
usual inverse-image pseudofunctor (−)* on the subcategory of
étale maps, that if p is a proper map the functor p! is right-
adjoint to Rp∗—pseudofunctorially: for proper X

q−→ Y
p−→ Z,

q!p! −→∼ (pq)! is adjoint to the natural composition

R(pq)∗q!p! −→∼ Rp∗Rq∗q!p! −→ Rp∗p! −→ 1,

and that for any fiber square σ in S

X ′ j′
−−−−→ X

p′
y

yp

Y ′ −−−−→
j

Y

with j étale and p proper, the natural functorial isomorphism

([) j′∗p! = j′ !p! −→∼ (pj′)! = (jp′)! −→∼ p′ !j! = p′ !j∗

is the base-change map βσ associated to σ, i.e., the map adjoint
(see above) to the natural composition

Rp′∗j
′∗p! −→∼ j∗Rp∗p! → j∗.
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Steps in Proof. First show that Rp∗ has a right adjoint p!, see
Deligne [6] (uses special adjoint functor thm.), or Neeman [13]
(uses Brown Representability). Since R(−)∗ is a pseudofunctor
on the category opposite to S, one makes this adjunction pseudo-
functorial by defining q!p! −→∼ (pq)! as in the statement. Can
factor finite-type map f as f = pj, p proper, j an open immersion
(Nagata’s compactificaton theorem), and then set f ! := j∗p!.

Check: f ! independent (up to canonical isomorphism) of fac-
torization, and has all asserted properties. One needs to show
that βσ is an isomorphism, at least when j is an open immersion,
a statement which is equivalent to sheafified proper duality : for
E ∈ Dqc(X) and F ∈ Dqc(Y ), the natural composite map

Rp∗RHomX(E, p!F )→ RHom(Rp∗E,Rp∗p!F )

→ RHom(Rp∗E, F )

is an isomorphism; this provides the glue for pasting together the
two—a priori unrelated—pseudofunctors (−)! (for proper maps)
and (−)* (for open immersions, and a posteriori for étale maps).

A complete proof requires category-theoretic verification of
many commutativities.

Grothendieck’s first strategy for treating arbitrary proper
maps was different: it was based on pseudofunctorial properties
of dualizing complexes. We will return to this.
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Remarks.

1. The fundamental base-change theorem states that βσ is an
isomorphism whenever the maps p and j are tor-independent.

For a proof, without noetherian hypotheses, see [8, Chap. 4]).
2. The approach in [7] to duality for projective maps is to treat

separately several distinctive special situations, such as smooth
maps, finite maps, and regular immersions (local complete in-
tersections), where f ! has a nice explicit description; and then
to do the general case by pasting together special ones via some
remarkable compatibilities, involving e.g., differential forms (fun-
damental local homomorphism, residue isomorphism, . . . ). These
concrete manifestations of duality motivate and enliven the sub-
ject; but there’s no time for them today.

3. Various approximations to the Duality Theorem (cover-
ing most important situations) have been known for decades, see,
e.g., [7, p. 383, 3.4] (many missing or incorrect details of which are
treated in [3].) At present, however, the proofs of the theorems,
as stated here, seems to need, among other things, a compactifi-
cation theorem of Nagata, that any finite-type separable map of
noetherian schemes factors as an open immersion followed by a
proper map, a fact whose lengthy proof was not well-understood
before the appearance of [10] and [4]; and even modulo that theo-
rem, I am not aware of any really complete, detailed exposition in
print of the proofs of duality or of base change (in full generality)
prior to the recent one by Nayak [11].
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2. Formal schemes, quick review.

A, noetherian ring, complete w.r.t. ideal I. Formal spectrum

Spf(A, I) := { prime ideals p ⊃ I }
Zariski topology, structure sheaf O (sheaf of topological rings)
such that for any basic open subset

D(f) = { p ∈ Spf(A, I) | f /∈ p }, (f ∈ A)

one has

Γ
(
D(f),O)

= I-adic completion of the localization Af .

Examples.

• If A is a complete local ring, maximal ideal m, then Spf(A, m)
is a one-point space, with structure sheaf A.

• Spf
(
A, (0)

)
is just the usual Spec(A).

Formal scheme: glue together finitely many formal spectra,
i.e., it’s a noetherian topological space with a sheaf of topological
rings, locally isomorphic to a formal spectrum.

Grothendieck’s upgrade of Zariski’s “holomorphic functions.”



7

Examples.

• An ordinary noetherian scheme (X,OX), OX regarded with
discrete topology.
• Completion of such an (X,OX) w.r.t. a coherent OX -ideal I :

topological space is Supp(OX/I), structure sheaf is lim←−n OX/In.

The topology of the structure sheaf of a formal scheme X is
determined by an ideal of definition I (unique up to radical)
which pastes together all the local I’s defining the topologies on
the open formal spectra ⊂ X .

A map of formal schemes f : X → Y is a map of topologi-
cally ringed spaces—so if I and J are ideals of definition of X
and Y , respectively, then JOX ⊂

√I; and there results a map of
ordinary schemes f0 : (X,OX/I)→ (Y,OY /J ).

For example, if X and Y are ordinary schemes, then I = (0),
J = (0), and f0 = f .

Terminology:

f is adic if
√JOX =

√I.
f is pseudo-xxx if f0 is xxx. (xxx=proper, or finite type, or ...).
f is xxx if it is pseudo-xxx and adic.

For example, the natural map of one-point formal schemes
Spf

(
C[[t]], (t)

)→ Spf
(
C, (0)

)
is pseudo-proper, but not proper.
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Motivation for formal schemes:
(A) Cf. role of complete rings in commutative algebra.
(B) Unifies local and global duality in one context (see below).

Proper duality for formal schemes. For any proper map
f : X → Y of formal schemes, Rf∗ : D+

c (X) → D+
c (Y ) has a

right adjoint.

This is not a straightforward consequence of duality for
ordinary schemes. It comes out of a more general pseudo-proper
duality theorem [1, §8] via “Greenlees-May Duality,” a general-
ization of local duality which first arose in algebra, but turns out
to be closely related to duality for the canonical (pseudo-proper)
map of formal schemes X̂ → X where X̂ is a completion of a
formal scheme X along a closed subscheme.

G-M duality, treated quite generally in [2], is used above in
the following special form [1, Prop. 6.2.1]: on a formal scheme X,
consider the torsion functor associating to any OX -module its
submodule of sections annihilated by some open OX -ideal, and
denote its derived functor by ΓΓΓ . (When X is an ordinary scheme,
(0) is the only open ideal, so ΓΓΓ is the identity functor). Then:

For all E ∈ D(X) and F ∈ Dc(X), the natural map ΓΓΓE → E
induces an isomorphism

RHom(E, F ) −→∼ RHom(ΓΓΓE, F ).
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Problem. Don’t know if can extend, as for ordinary schemes,
to a pseudofunctor over all pseudo-finite-type separable maps,
because not known if every such map compactifies, i.e., factors as
an open immersion followed by a pseudo-proper map.

But at least one can extend to the category of all composites
of (any number of ) compactifiable maps and étale maps. This
has been done by Nayak [11, §7], who needed to invent pasting
techniques different than those of Deligne (which require com-
pactifications of maps).

3. Dualizing complexes and Grothendieck Duality.

For a formal scheme X , a dualizing OX -complex R is one s.t.
(i) R is D(X)-isomorphic to a bounded injective complex,

with coherent homology, and
(ii) the natural map is an isomorphism OX −→∼ RHom•(R, R).

For ordinary schemes, this is just the classic definition. More
generally, if κ : X̂ → X is a completion map and R is dualizing
on X, then κ∗R is dualizing on X̂.

Not every formal scheme has a dualizing complex. For exam-
ple, a homologically bounded R ∈ Dc(X) is dualizing iff X has
finite dimension and ∀x ∈ X , Rx is dualizing on Spec(OX,x)—
whence OX,x is a homomorphic image of a Gorenstein ring.

But any finite-dimensional formal scheme admitting a com-
pactifiable map to a finite-dimensional locally Gorenstein formal
scheme does have a dualizing complex.
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If R is dualizing then the dualizing functor DR := Hom(−, R)
is an involutive auto-antiequivalence of Dc(X).

What this amounts to is that for any F ∈ Dc(X)—not just
for F = OX as in the above definition—the natural map is an
isomorphism

F −→∼ DRDRF.

Also have “Affine Duality”: with Dt
R(−) := RHom(−,ΓΓΓR),

for any F ∈ Dc(X) the natural map is an isomorphism

F −→∼ Dt
RDt

RF.

For example, if X = Spf(A, m) is, as before, the formal spec-
trum of a complete local ring, so that OX -modules are just
A-modules, then a dualizing OX -complex is just a dualizing
A-complex in the usual commutative-algebra sense.

Moreover, ΓΓΓR is an injective hull of the residue field A/m, and
affine duality is just Matlis duality.

The study of dualizing complexes on formal schemes was
started, I believe, by Yekutieli—with a technically different
formulation—in the mid 90s, and further developed in [1, §2.5].
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Relation to Duality Theorem.

The relation between dualizing complexes and the duality
pseudofunctor (−)! is rooted in:

Proposition. Let f : X → Y be a pseudo-proper map of formal
schemes or a finite-type map of separable noetherian schemes,
and let R be a dualizing OY -complex. Then with Rf := f !R,

(i) Rf is a dualizing OX -complex.
(ii) There is a functorial isomorphism

f !E −→∼ DRf
Lf∗DRE

(
E ∈ D+

c (Y )
)
.

This suggests the idea behind Grothendieck’s first strategy for
approaching duality for not-necessarily-projective maps (see p. 4).
Indeed, the main thrust of [7, Chap. 6 and first half of Chap. 7]
(many details of which are filled in and clarified in [3, §§3.1–3.4])
is to prepare for the proof of a (somewhat restricted) Duality
Theorem by constructing a “coherent system” of dualizing com-
plexes, in the following sense:
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Definition. A Dualizing Complex on a formal scheme Y is a
map associating to each formal-scheme map f : X → Y a du-
alizing complex Rf on X, to each open immersion u : U → X a
D(U)-isomorphism βf,u : u∗Rf −→∼ Rfu, and to each proper map
g : X ′ → X a D(X)-map τf,g : Rg∗Rfg → Rf , subject to:

(a) (Transitivity for β) If v : V → U is an open immersion,
then the following natural diagram commutes:

v∗u∗Rf ˜−−−−→ (uv)∗Rf

v∗βf,u

y
yβf,uv

v∗Rfu
βfu,v−−−−→ Rfuv

(b) (Duality) The pair (Rfg, τf,g) represents the functor

HomD(X)(Rg∗E, Rf ) : D+
c (X ′)→ D+

c (X),

that is, the natural composite map

HomD(X′)(E, Rfg) −→ HomD(X)(Rg∗E, Rg∗Rfg)
via τ−−−→ HomD(X)(Rg∗E, Rf )

is an isomorphism. Further (transitivity for τ), if h : X ′′ → X ′ is
proper then the following diagram commutes:

Rg∗Rh∗Rfgh ˜−−−−→ R(gh)∗Rfgh

Rg∗τfg,h

y
yτf,gh

Rg∗Rfg

τf,g−−−−→ Rf
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(c) (Local nature of τ .) In a fiber square
V

v−−−−→ Z

h

y
yg

U −−−−→
u

X

if g (hence h) is proper and u (hence v) is an open immersion,
then the following natural diagram commutes:

u∗Rg∗Rfg ˜−−−−−−−−−−−−−−→ Rh∗v∗Rfg

u∗τf,g

y '
yRh∗βfg,v

u∗Rf ˜−−−−→
βf,u

Rfu ←−−−−τfu,h

Rh∗Rfuh = Rh∗Rfgv

Example. If R is a dualizing OY -complex, associate to each
map f : X → Y the dualizing OX -complex Rf := f !R, to each
open immersion u : U → X the identity map of u∗Rf = Rfu,
and to each proper map g : X ′ → X the natural composite map
τ = τf,g : Rg∗(fg)!R −→∼ Rg∗g!f !R→ f !R.

The idea is to “reverse this example.”



14

Theorem. Let S be a subcategory of the category of ordinary
schemes such that if Y ∈ S then Y has a Dualizing Complex.
Then there is on S a D+

c -valued pseudofunctor ! which has the
properties listed in the Duality Theorem, with D+

c in place of D+
qc.

Moreover, with this !, any Dualizing Complex (R, β, τ) on Y
for which R1Y is isomorphic to a given dualizing OY -complex R
is isomorphic (in the obvious sense) to the one in the preceding
example.

Idea of proof: Define f ! for f : X → Y by

f !E = DY
f Lf∗DY

1 E
(
E ∈ D+

c (Y )
)

where, after choosing a Dualizing Complex (RY, βY, τY ) on
each Y , we set DY

f (−) := HomX(−, RY
f ). Then check!!

The second assertion is based on a standard uniqueness prop-
erty of dualizing complexes [7, p. 266, Thm. 3.1].

Remarks. This theorem says less than the Duality Theorem: the
restriction to S of the pseudofunctor in that theorem satisfies this
one. But for formal schemes, a similar approach does give results
not as yet otherwise obtainable (see below).

The real difficulty in this approach lies in the construction of
Dualizing Complexes, as in [7, Chaps. 6 and 7].

Recently, Yekutieli and Zhang have exploited the notion of
“rigid dualizing complex,” first used by Van den Bergh in non-
commutative algebra, to produce an elegant new approach to the
construction of Dualizing Complexes on schemes of finite type
over a fixed finite-dimensional regular one (see ArXiv).
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4. A Cousin-complex pseudofunctor on formal schemes.

In [7], the first major step (Chapter 6) toward existence of
Dualizing Complexes is the construction of a pseudofunctor on
finite-type scheme-maps of bounded fiber dimension, taking val-
ues in categories of residual complexes. The second (Chapter 7)
establishes the duality property (b) of Dualizing Complexes.

A residual OX -complex is one isomorphic to a direct sum of
the injective hulls of the residue fields at the points of x ∈ X,
and having coherent homology. More precisely, any OX,x-module
is to be regarded as a sheaf constant on the closure of x, and 0
elsewhere.

On a formal scheme which has a dualizing complex, if R is
a residual complex then R := RHom(ΓΓΓOX ,R) is dualizing, and
in D(X), R ∼= ΓΓΓR. There results an equivalence of categories

Q : {Residual complexes} ≈→ {Dualizing complexes}.
A quasi-inverse, the Cousin functor E, will now be described.
A codimension function on a formal scheme X is a function

d : X → Z such that d(x′) = d(x)+1 whenever x′ is an immediate
specialization of x (i.e., the closure {x′} is a maximal irreducible
subscheme of {x} ). For example, if R is a residual complex,
and x ∈ X has residue field k(x), there is a unique integer d(x)
such that for all i 6= d(x), Exti(k(x),Rx) = 0; and this defines a
codimension function.
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A formal scheme having a codimension function must be
catenary. And any catenary formal scheme which is biequi-
dimensional does have a codimension function.

W.r.t. a cod’n function d, a Cousin complex G• is one such
that in each degree n there is an isomorphism

Gn −→∼ ⊕d(x)=n G(x)

where each G(x) is an OX,x-module (regarded as a sheaf, see
above) supported at the maximal ideal. The subtlety lies in the
boundary maps, which are made up of “residues.”

For example, any residual complex is a Cousin complex w.r.t.
its associated codimension function.

To each OX -complex C ∈ D(X) there is associated, functo-
rially, a Cousin complex E(C) such that E(C)(x) = H

d(x)
x (C),

where Hx is the derived functor of the functor of sections with
support in the closure of x. (In the cases of most interest here, this
turns out to be the same as algebraic local cohomology.) More
precisely, E(C) is the E1 term of the spectral sequence associated
to the filtration of X defined by d.

If C is a Cousin complex, there is a natural isomorphism
C −→∼ EQ(C).
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Reference [9] is devoted to the construction (based ultimately
on local properties of residues), and the initial study of, a
pseudofunctor (−)# on the category Fc of pseudo-finite-type maps
of formal schemes with codimension functions, taking values in
the corresponding categories of Cousin complexes.

This generalizes [7, Chap. 6] in several ways: it makes sense
for all Cousin complexes, but does take residual complexes to
residual complexes; and it is defined for maps in Fc, not just for
maps (with bounded fiber dimension) of ordinary schemes.

The pseudofunctor (−)# is an ordinary-complex approxima-
tion to the derived-category torsion duality functor ΓΓΓ (−)!. It
is got by gluing local candidates, whose definition uses that
maps are locally (smooth) ◦ (closed immersion). For smooth
maps, one “Cousinifies” the relation f !E = Lf∗E ⊗ Ωtop

f , and
for closed immersions g : X ↪→ Y , one Cousinifies the relation
g!E = RHom(g∗OX , E).

Details (100 pages or more) omitted here.
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The relation between (−)# and ΓΓΓ (−)! is nailed down by Sastry
in [14]. He proves:

1. For any composite f : X → Y of compactifiable maps, and
any Cousin OY -complex C, there is a canonical pseudofunctorial
map Qf#C → ΓΓΓf !C, which becomes an isomorphism upon appli-
cation of the Cousin functor E; and which is itself an isomorphism
if f is flat or C is injective.

2. (Duality for Cousin complexes.) For a pseudo-proper
f : X → Y , and a Cousin OY -complex F , f#F represents the
functor Hom(f∗C, F ) of Cousin OX -complexes C.

3. (Recall that (−)# takes residual complexes to residual com-
plexes, so, via equivalence, can be thought of as taking dualizing
complexes to dualizing complexes.)

On the category of pseudo-finite-type maps of formal schemes
admitting a dualizing complex there is a pseudofunctor (−)(!)

such that (modulo technicalities):
(a) For f : X → Y , if R is any dualizing complex on Y then

f (!) = Df#R Lf∗DR.

(b) If f is a composite of compactifiable maps, then f (!) ∼= f !,
where the latter is Nayak’s version of the dualizing functor.
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It was to the preceding item 3 that I referred earlier when I said
that the Dualizing-Complexes approach affords duality results
not otherwise obtainable—Sastry’s results can be applied to some
maps which are not composites of compactifiable ones.

All is properly explained in Contemporary Math 375.

Finally, here is a striking result due to Yekutieli and Zhang
for ordinary schemes (where ΓΓΓ = identity), generalized to formal
schemes in [9] and [12]:

On a formal scheme which has a dualizing complex, let R
be a residual complex, with corresponding codimension func-
tion d. Then duality w.r.t. R, i.e., the functor Hom•(−,R),
is an antiequivalence from the category Ac(X) of coherent OX -
modules to the category of d-Cousin complexes G such that
RHom(ΓΓΓOX ,G) has coherent homology. A quasi-inverse is the
functor H0Hom•(−,R).
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