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1. Derived functors

QA : K(A)→ D(A) denotes the canonical functor from the homotopy
category of an abelian category A to its derived category.

Let A1, A2 be abelian categories, and set Qi := QAi
.

Let γ : K(A1)→ K(A2) be a ∆-functor.

A right-derived functor (Rγ, ζ) of γ consists of a ∆-functor
Rγ : D(A1)→ D(A2) and a ∆-functorial map ζ : Q2γ → RγQ1 such that
every ∆-functorial map Q2γ → Γ where Γ: K(A1)→ D(A2) takes
quasi-isomorphisms to isomorphisms, factors uniquely as

Q2γ
ζ−→ RγQ1 → Γ.

In other words, in the category whose objects are functorial maps
from Q2γ to variable Γ as above, the map ζ(E ) : Q2γ → RγQ1 is
an initial object, and thus it is unique up to canonical isomorphism.
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Dually:

A left-derived functor (Rγ, ξ) of γ consists of a ∆-functor
Lγ : D(A1)→ D(A2) and a ∆-functorial map ξ : LγQ1 → Q2γ such that
every ∆-functorial map Γ→ Q2γ where Γ: K(A1)→ D(A2) takes
quasi-isomorphisms to isomorphisms, factors uniquely as

Γ→ LγQ1
ξ−→ Q2γ.

Here ξ is a final object in the appropriate category of functorial maps.
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Tensor product

We’ve already seen some right-derived functors, RΓI (−) and RHom(−,−).

Describe next an important example of a left-derived functor.

The tensor product C ⊗R D of two R-complexes is such that

(C ⊗R D)n = ⊕i+j=n C i ⊗R D j,

the differential dn
⊗ : (C ⊗R D)n → (C ⊗R D)n+1 being determined by

dn
⊗(x ⊗ y) = d i

C x ⊗ y + (−1)ix ⊗ d j
D y (x ∈ C i, y ∈ D j).

Fixing D, we get a functor γD := −⊗R D : K(R)→ K(R), that, together
with θ := the identity map of C [1]⊗R D = (C ⊗R D)[1], is a ∆-functor.

There is an isomorphism ρ : γ′C (D) := C ⊗R D −→∼ D ⊗R C = γC D
taking x ⊗ y to (−1)ijy ⊗ x .

There is a then a unique ∆-functor (γ′C , θ
′) such that ρ is ∆-functorial.

The map θ′ : γ′C (D[1]) −→∼ γ′C (D)[1] is not the identity: its restriction to

C i ⊗R D j is multiplication by (−1)i .
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q-flat resolutions

One gets a left-derived functor −⊗
=R D of γD as follows:

An R-complex F is q-flat if for every exact R-complex E
(i.e., HiE = 0 for all i), F ⊗R E is exact too.

Equivalently: the functor F ⊗R − preserves quasi-isomorphism.

(By the exactness of the homology sequence of a triangle, a map of
complexes is a quasi-isomorphism if and only if its cone is exact, and
tensoring with F “commutes” with forming cones.)

For example, any bounded-above (i.e., vanishing above some degree)
flat complex is q-flat.

Every R-complex C has a q-flat resolution, i.e., there is a q-flat complex F
equipped with a quasi-isomorphism F → C . This can be constructed as
a lim−→of bounded-above flat resolutions of truncations of C .

For example, a flat resolution of an R-module M

· · · → F−2 → F−1 → F 0 → M → 0
can be viewed as a q-flat resolution of M (as a complex).
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Left-derived tensor product

After choosing for each C a q-flat resolution FC → C , one shows there
exists a left-derived functor −⊗

=R D of γD with

C ⊗
=R D = FC ⊗R D

If FD → D is a q-flat resolution, there are natural D(R)-isomorphisms

C ⊗R FD ←−∼ FC ⊗R FD −→∼ FC ⊗R D,

so any of these complexes could be used to define C ⊗
=R D.

Using FC ⊗R FD one can, as before, make C ⊗
=R D into a ∆-functor of

both variables C and D. As such, it has a initial-object property as above,
but with respect to two-variable functors.

Taking homology produces the (hyper)tor functors

Tori (C ,D) = H−i (C ⊗
=R D).
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2. Hom -Tensor adjunction

Relations between Ext and Tor—e.g., as we’ll see, Local Duality—
are neatly encapsulated by a derived-category upgrade of the basic
adjoint associativity relation between Hom and ⊗.

For R-modules E ,F ,G , adjoint associativity is the isomorphism

HomR(E ⊗R F, G ) −→∼ HomR

(
E , HomR(F,G )

)
that takes φ : E ⊗R F → G to φ′ : E → HomR(F,G ) where

[φ′(e)](f ) = φ(e ⊗ f ) (e ∈ E , f ∈ F ).

More generally, with ϕ : R → S a homomorphism of commutative rings,
E , F , S-complexes and G an R-complex, ∃ an isomorphism of S-complexes

Hom•R(E ⊗S F, G ) −→∼ Hom•S
(
E , Hom•R(F,G )

)
(adj)

that in degree n takes a family
(
φij : E i ⊗S F j → G i+j+n

)
to the family(

φ′i : E i → Homi+n
R (F,G )

)
with φ′i (e) =

(
φ′ij(e) : Fj → G i+j+n

)
where

[φ′ij(e)](f ) = φij(e ⊗ f ) (e ∈ E i , f ∈ F j).
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Derived adjoint associativity

With ϕ : R → S as before, let ϕ∗ : D(S)→ D(R) denote the obvious
restriction of scalars functor.

For a fixed S-complex E , the functor Hom•R(E ,G ) from R-complexes G to
S-complexes has a right-derived functor from D(R) to D(S) (gotten via
q-injective resolution of G ), denoted RHom•ϕ(E ,G ).

If we replace G in (adj) by a q-injective resolution, and F by a q-flat one,
then the S-complex Hom•R(F,G ) is easily seen to become q-injective; and
consequently (adj) gives a D(S)-isomorphism

α(E ,F,G ) : RHom•ϕ(E ⊗
=S F , G ) −→∼ RHom•S

(
E , RHom•ϕ(F,G )

)
The map α is ∆-functorial. Showing this requires some additional grinding.
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Derived Hom -Tensor adjunction

α does not depend on the choices of resolutions made above: it is
canonically characterized by commutativity, for all E , F and G , of the
following otherwise natural D(S)-diagram (where H• stands for Hom•):

H•R(E ⊗ F, G ) −−→ RH•R(ϕ∗(E ⊗ F ), G ) −−→ RH•R(ϕ∗(E ⊗
=

F ), G )

(adj)

y' '
yα

H•S
(
E , H•R(F, G )

)
−−→ RH•S

(
E , H•R(F, G )

)
−−→ RH•S

(
E , RH•R(ϕ∗F, G )

)
Application of the functor H0 to α yields a functorial isomorphism

HomD(R)

(
ϕ∗(E ⊗

=S F ), G
)
−→∼ HomD(S)

(
E , RHom•ϕ(F,G )

)
,

Thus:

For fixed F ∈ D(S), there is a natural adjunction between the functors

ϕ∗(−⊗=S F ) : D(S)→ D(R) and RHom•R(ϕ∗F,−) : D(R)→ D(S).
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3. Abstract local duality

Recall briefly the connection between RΓI and Koszul complexes.

R is a commutative noetherian ring; ⊗ := ⊗R .
t = (t1, . . . , tm) is a sequence in R, generating the ideal I := tR.

For t ∈ R, let K(t) be the complex that in degrees 0 and 1 is the usual
map from R to the localization Rt , and that vanishes elsewhere.
For any R-complex C, define the “stable” Koszul complex

K(t) := K(t1)⊗ · · · ⊗ K(tm), K(t,C ) := K(t)⊗C .

Since the complex K(t) is flat and bounded, hence q-flat, K(t,−) takes
quasi-isomorphisms to quasi-isomorphisms and so may—and will—be
regarded as a functor from D(R) to D(R).
Given a q-injective resolution C → EC we have for E = E j

C ( j ∈ Z),

ΓI E = ker
(
K0(t,E ) = E → ⊕m

i=1 Eti
= K1(t,E )

)
,

whence a D(R)-map

δ(C ) : RΓI C = ΓI EC ↪→ K(t,EC ) ∼= K(t,C ).
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RΓI and Koszul, continued

The following proposition is a key to many properties of ΓI .
(Details in §3 of “ Lectures on Local Cohomology. . . ” )

Proposition

The D(R)-map δ(C ) is a functorial isomorphism

RΓI C −→∼ K(t,C ).

Since K(t,C ) = K(t,R)⊗ C and K(t,R) ∼= RΓI R is q-flat, therefore:

Corollary

There is a functorial D(R) isomorphism

RΓI C −→∼ (RΓI R)⊗
=

C .

Taking homology, one gets:

Hi
I (C ) = HiRΓI C

∼= Tor−i (RΓI R,C ) (i ∈ Z).
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Local duality

Let J be an S-ideal. Let ϕ#
J : D(R)→ D(S) be the functor

ϕ#
J (G ) := RHom•ϕ(RΓJ S ,G )

∼= RHom•S
(
RΓJ S ,RHom•ϕ(S ,G )

) (
G ∈ D(R)),

the isomorphism being derived by setting E = RΓJ S and F = S in the
derived adjoint associativity isomorphism

α(E ,F,G ) : RHom•ϕ(E ⊗
=S F , G ) −→∼ RHom•S

(
E , RHom•ϕ(F,G )

)
.

For E ∈ D(S) and G ∈ D(R), one has then functorial D(S)-isomorphisms

RHom•ϕ(RΓJ E , G ) −→∼ RHom•ϕ(E ⊗
=S RΓJ S , G ) −→∼

α
RHom•S

(
E , ϕ#

J G
)
.

Application of the functor H0ϕ∗ produces the local duality isomorphism

HomD(R)(ϕ∗RΓJ E , G ) −→∼ HomD(S)(E , ϕ#
J G ),

an adjunction between the functors ϕ∗RΓJ and ϕ#
J .
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4. Concrete local duality

Henceforth, all rings are noetherian as well as commutative.

Concrete versions of local duality convey more information about ϕ#
J .

Suppose, for example, that S is module-finite over R, and let G ∈ Dc(R),
i.e., each homology module of G ∈ D(R) is finitely generated. Suppose
also that ExtiR(S ,G ) is a finitely-generated R-module for all i ∈ Z, i.e.,
RHom•R(ϕ∗S ,G ) ∈ Dc(R). (This holds, e.g., if HiG = 0 for all i � 0.)

Then RHom•ϕ(S ,G ) ∈ Dc(S), since, as is easily seen,

ϕ∗RHom•ϕ(S ,G ) ∼= RHomR(ϕ∗S ,G ) ∈ Dc(R).

Now Greenlees-May duality (= Grothendieck duality for the natural map

Spec(Ŝ)→ Spec(S), with Ŝ the J-adic completion of S), gives

RHom•S
(
RΓJ S ,F )

)∼= F ⊗S Ŝ
(
F ∈ Dc(S)

)
.

In particular:

ϕ#
J G = RHom•S

(
RΓJ S ,RHom•ϕ(S ,G )

)∼= RHom•ϕ(S ,G )⊗S Ŝ .
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Concrete local duality, continued

More in particular, for S = R and ϕ = id (the identity map) one gets

id#J G = G ⊗R R̂
(
G ∈ Dc(R)

)
.

Specialize further to where R is local, ϕ = id, J = m, the maximal ideal
of R, and G ∈ Dc(R) is a normalized dualizing complex (exists if R is a
homomorphic image of a Gorenstein local ring), so that in D(R),
I := RΓmG is an R-injective hull of the residue field R/m.

Then there is a natural isomorphism

RHom•R(RΓmE , I ) = RHom•R(RΓmE ,RΓmG ) ∼= RHom•R(RΓmE ,G )

Substitution into the local duality isomorphism gives, for all E ∈ D(R),

RHom•R(RΓmE, I ) −→∼ RHom•R(E , id#J G ) = RHom•R(E , G ⊗R R̂).

For E ∈ Dc(R) this is just classical local duality, modulo Matlis duality.
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More familiar local duality

Applying homology H−i one gets the duality isomorphism

HomR(Hi
mE , I ) −→∼ Ext−i

R (E ,G ⊗R R̂).

Suppose R Cohen-Macaulay, i.e., there’s an m-primary ideal generated by
an R-regular sequence of length d := dim(R). Then Hi

mR = 0 for i 6= d .

Since R̂ is R-flat, the preceding isomorphism now yields, for i 6= d ,

0 = Ext−i
R (R, G ⊗R R̂) = H−iRHom•(R, G ⊗R R̂) = H−i (G ⊗R R̂)

= (H−iG )⊗R R̂.

Hence H−iG = 0, so there is a derived-category isomorphism G ∼= ω[d ]
where ω := H−dG , a canonical module of R.

Thus, when R is Cohen-Macaulay local duality takes the familiar form

HomR(Hi
mE , I ) −→∼ Extd−i

R (E , ω̂).
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5. Residues and duality for power series rings

Another situation in which ϕ#
J can be described concretely is when ϕ is the

inclusion of R into a power-series ring S := R[[t]] := R[[t1, . . . , tm]], and
J is the ideal tS = (t1, . . . , tm)S .

There exist an S-module Ω̂S/R and an R-derivation d : S → Ω̂S/R such
that (dt1, . . . , dtm) is a free S-basis of Ω̂S/R , characterized by the

universal property that for any finitely-generated S-module M and
R-derivation D : S → M there is a unique S-linear map δ : Ω̂S/R → M
such that D = δd .

Let Ω̂m (m > 0) be the m-th exterior power of Ω̂S/R , a free rank-one
S-module with basis dt1 ∧ dt2 · · · ∧ dtm.

Then (fact) there is a canonical functorial isomorphism

ϕ#
J G −→∼ G ⊗ Ω̂m[m]

(
G ∈ Dc(R)

)
.
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Residue map

There is a natural surjection

π : (Ω̂m)t1t2···tm = Km(t, Ω̂m) � HmK(t, Ω̂m) = Hm
J Ω̂m

For ν ∈ Ω̂m and nonnegative integers n1, . . . , nm, set[
ν

tn1
1 , . . . , t

nm
m

]
:= π

(
ν

tn1
1 · · · t

nm
m

)
.

Theorem

There is a canonical (i.e., depending only on the topological R-algebra S)
residue map

resS/R : Hm
J Ω̂m → R,

such that

resS/R

[
dt1 · · · dtm

tn1
1 , . . . , t

nm
m

]
=

{
1 if n1 = · · · = nm = 1,

0 otherwise.
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Canonical local duality

As a concrete realization of the abstract local duality theorem, one has,
in the preceding situation, an affine version of Serre duality:

Theorem

There is, for S-modules E , a canonical functorial isomorphism

HomR(Hm
J E ,R) −→∼ HomS(E , Ω̂m)

that for E = Ω̂m takes resS/R to the identity map of Ω̂m.

In other words:

The functor HomR(Hm
J E ,R) of S-modules E is represented by (Ω̂m, resS/R).

Proofs of the foregoing statements are in “Lectures. . . ,” §5.
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Wrap-up

It has been illustrated that duality theory is a (gold) coin with two faces,
the abstract and the concrete.

Typically, concrete theorems are more striking, and harder to prove directly
than their abstract counterparts; but passing from abstract to concrete is
not easy. Indeed, it is one of the most challenging aspects of the area.
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