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1. Direct and inverse image

Hom•X denotes the sheaf-Hom functor of OX -complexes:

Hom•X (E ,F )(U) := Hom•U(E |U ,F |U) (U ⊂ X open),

the restriction map for U ′ ⊂ U being the obvious one.

This “dynamic” sheafified version of Hom• has a derived functor RHom•,
defined as usual via q-injective resolutions (which always exist!).
Similarly, we have a sheaf-theoretic version of ⊗, and its left-derived
functor ⊗

=
, defined via q-flat resolutions.

We first describe two more examples of derived functors:
right-derived direct image and left-derived inverse image.
Most of the lecture is about the formalism of relations between these two
and RHom• and ⊗

=
—all four of which are central characters in

Grothendieck duality theory.

Once again: details in Notes on Derived Functors and Grothendieck Duality,

to appear, SLN. Available now at < http://www.math.purdue.edu/˜lipman>.
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Direct image

A ringed space is a pair (X ,OX ) with X a topological space and OX a
sheaf of commutative rings.

For a continuous map of topological spaces f : X → Y , the
direct image functor f∗ from (the category of) sheaves on X to
sheaves on Y is such that for any sheaf E on X,

f∗E (U) = E (f −1U) for all open U ⊂ Y .

A map of ringed spaces f : (X ,OX )→ (Y ,OY ) is a pair (f , ϕ) with
f : X → Y a continuous map and ϕ : OY → f∗OX a homomorphism of
sheaves of rings. (Often, OX , OY and ϕ are omitted in the notation.)

Given such an (f , ϕ), and an OX -module (sheaf) E , one uses ϕ to make
the f∗OX -module f∗E into an OY -module. There results a left-exact
additive functor from the abelian category of OX -modules to the abelian
category of OY -modules, that extends in the obvious way to the respective
homotopy categories K(X ) and K(Y ):

f∗ produces a left-exact additive functor from K(X ) to K(Y ).
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Example

Let OX (resp. OY ) be the sheaf of continuous functions on X (resp. Y ).
For any continuous map f : X → Y , and open U ⊂ Y , define

ϕf (U) : OY (U)→ OX (f −1U)

to be composition with f .
Varying U, one gets a homomorphism ϕ : OY → f∗OX of sheaves of rings;
so (f , ϕf ) is a map of ringed spaces.

Similar examples can be constructed by assuming X and Y to be, say,
differentiable (resp. complex, resp. algebraic) manifolds, and all maps and
functions to be differentiable (resp. holomorphic, resp. rational).

Such geometric situations originally motivated the general definition of
maps of ringed spaces.
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Inverse image

f∗ has a right-exact left adjoint f ∗ : OY -modules→ OX -modules.

The stalk of f ∗E at x ∈ X is

(f ∗E )x = EY,fx ⊗OY,fx
OX,x .

There results a functor f ∗ : K(Y )→ K(X ) and an isomorphism

HomK(X )(f ∗E ,F ) = HomK(Y )(E , f∗F ) (E ∈ K(Y ), F ∈ K(X )).

Example

When f : X → Y is the map of affine schemes corresponding to a ring
homomorphism R → S , then the adjoint pair (f ∗, f∗) of functors of
quasi-coherent sheaves corresponds to the adjoint pair of module-functors
(extension of scalars, restriction of scalars).
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Recall: right- and left-derived functors

QA : A → D(A) denotes the canonical functor from an abelian category A
to its derived category.
Let A1, A2 be abelian categories, and set Qi := QAi

.
Let γ : K(A1)→ K(A2) be a ∆-functor.

A right-derived functor (Rγ, ζ) of γ consists of a ∆-functor
Rγ : D(A1)→ D(A2) and a ∆-functorial map ζ : Q2γ → RγQ1 such that
every ∆-functorial map Q2γ → Γ, where Γ: K(A1)→ D(A2) takes
quasi-isomorphisms to isomorphisms, factors uniquely as

Q2γ
ζ−→ RγQ1 → Γ.

A left-derived functor (Rγ, ξ) of γ consists of a ∆-functor
Lγ : D(A1)→ D(A2) and a ∆-functorial map ξ : LγQ1 → Q2γ such that
every ∆-functorial map Γ→ Q2γ, where Γ: K(A1)→ D(A2) takes
quasi-isomorphisms to isomorphisms, factors uniquely as

Γ→ LγQ1
ξ−→ Q2γ.
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Relations between direct- and inverse-image functors

1. Derived adjointness of direct- and inverse-image functors.

The left-exact functor f∗ has a right-derived functor Rf∗, the canonical
map ζ : f∗C → Rf∗C (more precisely, QY f∗C → Rf∗QXC ) being given for
any complex C ∈ D(X ) by applying f∗ to a q-injective resolution C → EC .

The right-exact functor f ∗ has a left-derived functor Lf ∗, the canonical
map ξ : Lf ∗D → f ∗D (more precisely, Lf ∗QY D → QX f ∗D) being given for
any complex D ∈ D(Y ) by applying f ∗ to a q-flat resolution FD → D.

With a little care, one “derives” (f ∗-f∗)-adjointness:

For any ringed-space map f : X → Y ,

Lf ∗ : D(Y )→ D(X ) is left-adjoint to Rf∗, i.e., for E ∈ D(Y ), F ∈ D(X ),

HomD(X )(Lf ∗E ,F ) ∼= HomD(Y )(E ,Rf∗F ). (∗)
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Elaboration

Proposition

Let f : X → Y be a ringed-space map, A ∈ D(Y ), B ∈ D(X ). Write

Hom•X for Hom•D(X ). There is a unique ∆-functorial isomorphism

α : RHom•X (Lf ∗A,B) −→∼ RHom•Y (A,Rf∗B)

such that the following natural diagram in D(X ) commutes:

Hom•X (f ∗A, B) −−−−→ RHom•X (f ∗A, B) −−−−→ RHom•X (Lf ∗A, B)y' '
yα

Hom•Y (A, f∗B) −−−−→ RHom•Y (A, f∗B) −−−−→ RHom•Y (A, Rf∗B).

Moreover, the induced homology map

H0(α) : HomD(X )(Lf ∗A, B) −→∼ HomD(Y )(A, Rf∗B)

is just the adjunction isomorphism (∗).
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Further elaboration (sheafification)

Proposition

There is a unique ∆-functorial isomorphism

α̃ : Rf∗RHom•X (Lf ∗A, B) −→∼ RHom•Y (A, Rf∗B)(
A ∈ D(Y ), B ∈ D(X )

)
such that the following natural diagram commutes:

f∗Hom•X (f ∗A,B) −−−−→ Rf∗RHom•X (f ∗A,B) −−−−→ Rf∗RHom•X (Lf ∗A,B)y' '
yeα

Hom•Y (A, f∗B) −−−−→ RHom•Y (A, f∗B) −−−−→ RHom•Y (A, Rf∗B)

The previous elaboration is obtained from this one by application of the
derived functor RΓ(Y ,−) = RHom•Y (OY ,−).
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Relations between direct- and inverse-image functors (ct’d)

2. Base change I.

To a commutative square of ringed-space maps

X ′
v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

associate θ = θσ : Lu∗Rf∗ → Rg∗Lv∗,

adjoint to the natural composition Rf∗ → Rf∗Rv∗Lv∗ −→∼ Ru∗Rg∗Lv∗.

For affine schemes, σ corresponds to a commutative square of ring-maps

S ′
v̄←−−−− S

ḡ

x xf̄

R ′
σ̄

←−−−−
ū

R

and θσ is the derived upgrade of the usual functorial map

R ′ ⊗R C → S ′ ⊗S C (C ∈M(S)).
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Tor-independence

If
X ′

v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

is a fiber square of concentrated (= quasi-compact, quasi-separated)
schemes then, with Dqc the full subcategory of D whose objects are the
complexes with quasi-coherent homology,

θσ is an isomorphism of functors on Dqc ⇐⇒ σ is tor-independent,

i.e., for all x ∈ X and y ′ ∈ Y ′ such that f (x) = u(y ′) = (say) y ,

Tor
OY,y

i

(
OX,x ,OY ′,y ′

)
= 0 for all i 6= 0.
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Pseudofunctor (a special case of 2-functor)

Formalize behavior of inverse- and direct-image functors w.r.t. composition.

A contravariant pseudofunctor on a category S assigns:
• to each X ∈ S a category X#,

• to each map f : X → Y a functor f # : Y# → X# (with 1# = 1), and

• to each map-pair X
f−→ Y

g−→ Z a functorial “transitivity” isomorphism

df ,g : f #g # −→∼ (gf )#

satisfying d1, g = dg ,1 = identity, and a kind of associativity, namely,

for each triple of maps X
f−→ Y

g−→ Z
h−→W the following commutes:

(hgf )#
df ,hg←−−−− f #(hg)#

dg fh

x xdg,h

(gf )#h# ←−−−−
df,g

f #g #h#
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Pseudofunctor (ct’d)

Covariant pseudofunctor is similarly defined, with arrows reversed, i.e., it
means contravariant functor on Sop.

Examples: Derived inverse-image (contravariant).
Derived direct-image (covariant).

S := category of ringed spaces

X# := D(X )
(
derived category of {OX -modules})

f # := Lf ∗ resp. f# := Rf∗
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Compatibility of pseudofunctoriality and adjointness

For ringed-space maps • f−→ • g−→ •, the following natural diagram of
functors, involving three different “unit” maps and two transitivity
isomorphisms, commutes:

1 −−−−→ f∗f
∗ −−−−→ f∗(g∗g

∗f ∗)y ∥∥∥
(gf )∗(gf )∗ ˜−−−−→ f∗g∗(gf )∗ ˜−−−−→ f∗g∗g

∗f ∗

Equivalently (categorically), the “dual” diagram commutes:

1 ←−−−− g∗g∗ ←−−−− g∗(f ∗f∗g∗)x ∥∥∥
(gf )∗(gf )∗ ˜←−−−− g∗f ∗(gf )∗ ˜←−−−− g∗f ∗f∗g∗

Similar commutativity relations hold with f∗ (resp. f ∗) replaced by
Rf∗ (resp. Lf ∗).
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2. Interaction with ⊗
=
⊗
=
⊗
=

: monoidal categories

Continue to formalize the behavior of the four basic operations.
Axiomatic properties of ⊗

=
are summarized in the following definition:

A symmetric monoidal category

C = (C,⊗,O, α, λ, ρ, γ)

consists of a category C, a “product” functor ⊗ : C× C→ C,
an object O of C, and functorial isomorphisms, with A,B,C in C,

α : (A⊗ B)⊗ C −→∼ A⊗ (B ⊗ C ) (associativity)

λ : O ⊗ A −→∼ A ρ : A⊗O −→∼ A (left and right units)

γ : A⊗ B −→∼ B ⊗ A (symmetry)

such that γ2 = 1 and the following diagrams commute:
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Symmetric monoidal categories (continued)

(A⊗O)⊗ B
α−−−→ A⊗ (O ⊗ B)

ρ⊗1

y y1⊗λ

A⊗ B A⊗ B

O ⊗ A
γ−−−→ A⊗O

λ

y yρ
A A

((A⊗ B)⊗ C )⊗ D
α−−−→ (A⊗ B)⊗ (C ⊗ D)

α−−−→ A⊗ (B ⊗ (C ⊗ D))

α⊗1

y y1⊗α

(A⊗ (B ⊗ C ))⊗ D
α−−−−−−−−−−−−−−−−−−−−−−−→ A⊗ ((B ⊗ C )⊗ D)

(A⊗ B)⊗ C
α−−−→ A⊗ (B ⊗ C )

γ−−−→ (B ⊗ C )⊗ A

γ⊗1

y yα
(B ⊗ A)⊗ C

α−−−→ B ⊗ (A⊗ C )
1⊗γ−−−→ B ⊗ (C ⊗ A)
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Examples

Example

Let S be a commutative ring, let C be the category of S-modules,
let ⊗ be the usual tensor product over S , and let OS := S .

Example

Let (X ,OX ) be a ringed space, C := D(X ) (derived category of
{OX -modules}), ⊗ := ⊗

=X (derived tensor product over X ), and O := OX .

The first example requires a few straightforward verifications.

For the second example, verifications are slightly less straightforward—
one has to work with q-flat resolutions of OX -complexes.
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Symmetric monoidal functors

Let X, Y be symmetric monoidal categories.

A symmetric monoidal functor f ∗ : X→ Y is a functor f∗ : X→ Y together
with two functorial maps

f∗A⊗ f∗B −→ f∗(A⊗ B)

OY −→ f∗OX

(where ⊗ is in X or in Y, as appropriate), compatible with α, λ, γ
(and hence ρ), in that the following natural diagrams commute:
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Symmetric monoidal functors (continued)

(f∗A⊗ f∗B)⊗ f∗C −−−−→ f∗(A⊗ B)⊗ f∗C −−−−→ f∗((A⊗ B)⊗ C )

α

y yf∗(α)

f∗A⊗ (f∗B ⊗ f∗C ) −−−−→ f∗A⊗ f∗(B ⊗ C ) −−−−→ f∗(A⊗ (B ⊗ C ))

f∗OX ⊗ f∗A −−−−→ f∗(OX ⊗ A) f∗A⊗ f∗B −−−−→ f∗(A⊗ B)x yf∗(λX ) γY

y yf∗(γX )

OY ⊗ f∗A −−−−→
λY

f∗A f∗B ⊗ f∗A −−−−→ f∗(B ⊗ A)

Example

1. Let f : R → S be a ring homomorphism, and let f∗ be the “restriction
of scalars” functor from {S-modules} to {R-modules} (see above),
monoidalized by the obvious maps.
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Examples (continued)

2. Let f : (X ,OX )→ (Y ,OY ) be a map of ringed spaces, and f∗ the
direct-image functor from {OX -modules} to {OY -modules}, monoidalized
by the map e : f∗A⊗ f∗B −→ f∗(A⊗ B) obtained by passage to associated
sheaves from the obvious composed presheaf map (where U ⊂ X is open)

(f∗A)(U)⊗(f∗B)(U) = A(f −1U)⊗B(f −1U)→ (A⊗B)(f −1U) = f∗(A⊗B)(U).

One shows that e is adjoint to the natural composition

f ∗(f∗A⊗ f∗B) −→∼ f ∗f∗A⊗ f ∗f∗B → A⊗ B.

3. For f as in 2, one has the right-derived direct image functor
Rf∗ : D(X )→ D(Y ), monoidalized by the map

Rf∗A⊗= Rf∗B → Rf∗(A⊗
=

B)

adjoint to the natural composition

Lf ∗(Rf∗A⊗= Rf∗B) −→∼ Lf ∗Rf∗A⊗= Lf ∗Rf∗B → A⊗
=

B

with Lf ∗(C ⊗
=

D) −→∼ Lf ∗C ⊗
=

Lf ∗D defined via q-flat resolutions of C , D.
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Monoidality and Pseudofunctoriality

Now suppose we have a covariant pseudofunctor on a category C,
assigning a monoidal category X∗ to each object X in C and a monoidal
functor f∗ : X∗ → Y∗ to each map f : X → Y in C.

We say this is a monoidal pseudofunctor if for every composition

X f−→ Y
g−→ Z , the following natural diagrams commute, for all A,B ∈ X∗ :

OZ −−−−→ (gf )∗OXy y
g∗OY −−−−→ g∗f∗OX

(gf )∗A⊗ (gf )∗B −−−−−−−−−−−−−−−−−−−−−→ (gf )∗(A⊗ B)

'
y y'

g∗f∗A⊗ g∗f∗B −−−−→ g∗(f∗A⊗ f∗B) −−−−→ g∗f∗(A⊗ B)
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3. Adjoint monoidal pseudofunctors

Assume further that each of the symmetric monoidal functors f∗ has a
left adjoint f ∗ : Y∗ → X∗.
There are then natural maps, for all A, B ∈ Y∗,

f ∗(A⊗ B)→ f ∗A⊗ f ∗B, f ∗OY → OX

adjoint respectively to the two maps

A⊗ B → f∗f
∗A⊗ f∗f

∗B → f∗(f ∗A⊗ f ∗B), OY → f∗OX ,

that, one shows, make the opposite functor

(f ∗)op : (Y∗)op → (X∗)op

monoidal.
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Adjoint monoidal pseudofunctors (continued)

There is, furthermore, a unique way to make these f ∗ into a
contravariant pseudofunctor with X∗ = X∗ for all X ∈ C and such that for

all • f−→ • g−→ • in C, the following diagram commutes.

1 −−−−→ f∗f
∗ −−−−→ f∗(g∗g

∗f ∗)y ∥∥∥
(gf )∗(gf )∗ ˜−−−−→ f∗g∗(gf )∗ ˜−−−−→ f∗g∗g

∗f ∗

(We saw this diagram before, as a natural expression of the relation between

adjunction and pseudofunctoriality.)

Such a family of pairs (f ∗, f∗) is called an

adjoint pair of monoidal pseudofunctors.

One could (but we won’t) add further conditions relating to ∆-structures.
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4. Further interaction, with Hom: closed categories

A closed category is a symmetric monoidal category R as above,
together with a functor, called internal hom:

[−,−] : Rop × R→ R

(where Rop is the dual category of R) and a functorial isomorphism

π : HomR(A⊗ B, C ) −→∼ HomR(A, [B,C ]) .

Example

X a ringed space, R := D(X ), ⊗ := ⊗
=

, [−,−] := RHom•(−,−).

For π use the sheafified version of RHom•–⊗
=

adjunction.

We assume further, axiomatically, that

ν : f ∗(E ⊗R F )→ f ∗E ⊗S f ∗F is an isomorphism.

This holds in the example, and also in most other cases of interest.
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Example: commutative algebra

Let S be a ring and R := M(S). For S-modules E and F , let ⊗ be the
usual tensor product, and [E ,F ] := HomS(E ,F ).
This makes M(S) into a closed category.
For a ring homomorphism f : R → S , let f∗ and f ∗ be the module-functors
restriction and extension of scalars. There results an adjoint pair of
monoidal closed-category-valued pseudofunctors

For a ring homomorpism f : R → S , one has, as before, S-module maps

S ← f ∗R, f ∗E ⊗S f ∗F
ν←− f ∗(E ⊗R F ) (E ,F ∈ R).

with ν adjoint to the natural composite map

E ⊗R F → f∗f
∗E ⊗R f∗f

∗F
µ−→ f∗(f ∗E ⊗S f ∗F ).

In fact (check!) , ν is just the standard isomorphism

S ⊗R (E ⊗R F ) −→∼ (E ⊗R S)⊗S (F ⊗R S).

Ditto (without explicit mention) for what follows.
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Example: Ringed spaces

Here is the focal point of this lecture, summarizing the
basic relations among four “Grothendieck operations.”
It underlies all of the sequel.

Let C be the category of ringed spaces. For each object X ∈ C, set
X∗ = X∗ := D(X ) (the derived category of the category of OX -modules),
a closed category with ⊗:= ⊗

=
and [−,−]:= RHom(−,−).

For X
f−→ Y in C, write

f ∗ for Lf ∗ : Y∗ → X∗,

f∗ for Rf∗ : X∗ → Y∗ .

There results an adjoint pair of monoidal closed-category-valued
pseudofunctors on C.
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5. Let the games begin

The formalism of adjoint monoidal closed-category-valued pseudofunctors
which we have introduced to study relations among the four basic
operations is very rich. Relations among operations are expressed by
commutativity of diagrams of maps constructed from the axioms.
Many such diagrams force themselves on you when, for example, you delve
into Grothendieck duality theory. Here we just scratch the surface.

• There is a functorial map f∗[A,B ] −→ [f∗A, f∗B ]
corresponding under π to the composed map

f∗[A,B ]⊗ f∗A
µ−→ f∗

(
[A,B ]⊗ A

) f∗tAB−−−→ f∗B .

where tAB is the counit map associated to ⊗ - [ , ] adjunction.

• For fixed A the functorial isomorphism ν : f ∗(C ⊗ A)→ f ∗C ⊗ f ∗A
induces a conjugate “internal adjunction” isomorphism on right adjoints,

namely [A, f∗B ] ←−∼
ξ

f∗[f
∗A,B ].

For ringed spaces get the “sheafified elaboration” of Rf∗-Lf ∗ adjunction.
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• There is a functorial map f ∗[A,B ] −→ [f ∗A, f ∗B ], adjoint to

[A,B ] −→ [A, f∗f
∗B ]

ξ−1

−−→ f∗[f
∗A, f ∗B ] .

A first step in getting familiar with such maps is to interpret them in the
commutative model—modules over rings—where they all turn out to be
standard maps. Of course we are interested also in other contexts...

Here’s an instructive example, involving all four operations.
Working through it is a key to the motivation behind this lecture.

Example (Exercise)

Establish (from axioms) a natural commutative diagram

f ∗
(
f∗[f
∗F , G ]⊗ F

)
−−−−→ f ∗

(
[F , f∗G ]⊗ F

)
−−−−→ f ∗f∗Gy y

f ∗f∗[f
∗F , G ]⊗ f ∗F −−−−→ [f ∗F , G ]⊗ f ∗F −−−−→ G

Interpret this in the context of rings.
For comparison, work directly in the ringed-space derived-category context,
using the definitions of the operations via resolutions.
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Projection map

Here is another ubiquitous character.

For any f : X → Y in C, E ∈ X∗, F ∈ Y∗, one has the composite
projection map

p(E ,F ) : f∗E ⊗ F −→ f∗E ⊗ f∗f
∗F −→ f∗(E ⊗ f ∗F ).

We’ll assume, axiomatically, that p is an isomorphism.

This assumption holds in the most interesting models.

For example, in the commutative-algebra context, where f : R → S is a
ring-homomorphism, E an S-module and F an R-module, p(E ,F ) is just
the usual isomorphism E ⊗R F −→∼ E ⊗S (S ⊗R F ). (Check!)

More generally, in the context of quasi-compact quasi-separated
scheme-maps and quasi-coherent complexes, p turns out to be an
isomorphism (next lecture).
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Interaction of Projection and Base Change

Example (Exercise)

For a commutative C-square with h = fv = ug ,X ′
v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

θ = θσ : u∗f∗ → g∗v
∗ adjoint to f∗ → f∗v∗v

∗ −→∼ u∗g∗v
∗, and

C ∈ Y∗ = Y∗, D ∈ X∗ = X∗, the following diagram commutes:

u∗C ⊗ u∗f∗D
ν←−−−− u∗(C ⊗ f∗D)

u∗(p)−−−−→ u∗f∗(f ∗C ⊗ D)

1⊗θ
y yθ

u∗C ⊗ g∗v
∗D g∗v

∗(f ∗C ⊗ D)

p

y yν
g∗(g∗u∗C ⊗ v∗D) ˜−−−−→ g∗(h∗C ⊗ v∗D) ˜←−−−− g∗(v∗f ∗C ⊗ v∗D)

Joseph Lipman (Purdue University) III: Adjoint monoidal pseudofunctors. February 17, 2009 31 / 31


	Derived direct- and inverse-image pseudofunctors.
	Interaction with tensor product: symmetric monoidal categories.
	Adjoint monoidal pseudofunctors.
	Further interaction, with Hom1mu: closed categories.
	Let the games begin.

