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Introduction

The formalism of adjoint monoidal pseudofunctors was sketched in the
preceding lecture. It will be used in this lecture as the foundation of a
formal setup for duality theory.

Though we will illustrate mainly in the context of quasi-compact
quasi-separated (e.g., noetherian) schemes, the axiomatic framework
to be described has the usual advantage of underlying, and hence unifying,
several distinct situations, such as affine schemes (local duality) or
noetherian formal schemes.
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1. Formal duality setup

Let there be given, on a category C, a pair (*, *) of
adjoint monoidal closed-category-valued pseudofunctors.

Thus, to each object X ∈ C is associated a

closed category DX , with unit object OX ;

and to each C-map ψ : X → Y ,

adjoint monoidal functors DX

ψ∗←−−→
ψ∗

DY .

There are also, as before, compatibilities—expressed by commutative
diagrams—among adjunction, pseudofunctoriality, and monoidality.

The maps giving the monoidal structure on ψ∗ are denoted

eψ(E ,E ′) : ψ∗E ⊗ ψ∗E ′ → ψ∗(E ⊗ E ′)
(
E ,E ′ ∈ DX

)
,

νψ : OY → ψ∗OX .
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Adjoint to the natural composition

F ⊗ F ′ → ψ∗ψ
∗F ⊗ ψ∗ψ∗F ′

e−→ ψ∗(ψ
∗F ⊗ ψ∗F ′) (F ,F ′ ∈ DY )

(resp. to νψ : OY → ψ∗OX ) we have maps

dψ(F ,F ′) : ψ∗(F ⊗ F ′)→ ψ∗F ⊗ ψ∗F ′,
µψ : ψ∗OY → OX .

For E ∈ DX and F ∈ DY the composite map

p1(E ,F ) : ψ∗E ⊗ F
natural−−−−→ ψ∗E ⊗ ψ∗ψ∗F

e−−→ ψ∗(E ⊗ ψ∗F )

and the map deduced from it by application of the symmetry isomorphism

p2(F ,E ) : F ⊗ ψ∗E
natural−−−−→ ψ∗ψ

∗F ⊗ ψ∗E
e−−→ ψ∗(ψ

∗F ⊗ E )

are called projection maps.
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Axioms

• For X = Y and ψ = 1X the identity map of X ,

(1X )∗ is the identity functor of DX .

• The map µψ is an isomorphism

ψ∗OY −→∼ OX .

• For all F ,G ∈ DY , the map dψ is an isomorphism

ψ∗(F ⊗ G ) −→∼ ψ∗F ⊗ ψ∗G .

• For all E ∈ DX and F ∈ DY the projection maps are isomorphisms

p1 : ψ∗E ⊗ F −→∼ ψ∗(E ⊗ ψ∗F ), p2 : F ⊗ ψ∗E −→∼ ψ∗(ψ
∗F ⊗ E ).

• The functor ψ∗ : DX → DY has a right adjoint ψ#.

So there is a duality isomorphism

HomDY
(ψ∗E , F ) −→∼ HomDX

(E, ψ#F ) (E ∈ DX , F ∈ DY ).
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Example: Commutative algebra

C := opposite of the category of commutative rings.

For R ∈ C, DR := {R-modules}, with the obvious closed structure:
⊗ is the usual tensor product, and [E ,F ] := HomR(E ,F ).

For ψ : S → R (i.e., a ring-homomorphism R → S),
ψ∗ : DS → DR is restriction of scalars:
for any S-module E , ψ∗E is the naturally resulting R-module E ; and
eψ : E ⊗R E ′ → E ⊗S E ′ the natural map.

ψ∗ : DS → DR is extension of scalars:
for any R-module F , ψ∗F is the S-module S ⊗R F .

One verifies that
µψ : S ⊗R R −→∼ S ,

dψ : S ⊗R (F ⊗R G ) −→∼ (S ⊗R F )⊗S (S ⊗R G )

are the usual isomorphisms; and that p1 is the natural R-isomorphism

E ⊗R F −→∼ E ⊗S (S ⊗R F ) (E ∈ DS , F ∈ DR).

Finally, a right adjoint ψ# of ψ∗ is given by ψ#F := HomR(S ,F ).
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Remarks

In the preceding example, one can substitute derived categories and
functors for ordinary ones. Then, at least in the noetherian case, the
existence of the right adjoint ψ# is a consequence of the local duality
isomorphism from Lecture 2, with J the unit ideal:

HomD(R)(ψ∗RΓJ E , G ) −→∼ HomD(S)(E , ψ#
J G ).

One can deal with arbitrary J in a similar way, but at the cost of further
elaborating the basic setup.
Globalizing (as we are about to do in the unit-ideal case) then leads to
duality over formal schemes.
Thus we have a common framework for local and global duality.

Such “topological” generalizations are beyond the scope of the present
lectures. But several papers dealing with formal schemes are available at
math.purdue.edu/˜lipman
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Globalization: Noetherian schemes

C := category of noetherian schemes.1

For any X ∈ C, DX := Dqc(X ), the full subcategory of D(X ) whose
objects are complexes with quasi-coherent homology. Together with the
derived tensor product, this is a monoidal category.

To make it closed, set [E ,F ] := QXRHom(E ,F ), where
QX is a right adjoint to the inclusion functor DX ↪→ D(X ).

(Existence of such a right adjoint—a derived quasi-coherator —is a very
special case of the duality theorem to be discussed later.)

Indeed, using derived adjoint associativity, one has, for all E ,F ,G ∈ DX ,

HomDX

(
E ⊗

=
F , G

)
= HomD(X )

(
E ⊗

=
F , G

)
∼= HomD(X )

(
E ,RHom(F ,G )

)
∼= HomDX

(
E ,QXRHom(F ,G )

)
.

1Much of what follows applies, with some elaborations, to arbitrary quasi-compact
quasi-separated schemes.
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Noetherian schemes (continued)

For each f : X → Y in C, one shows that Rf∗Dqc(X ) ⊂ Dqc(Y );2 we
denote the resulting functor simply by f∗ : DX → DY .

Also, one shows (easily) that Lf ∗Dqc(Y ) ⊂ Dqc(X ); we denote the
resulting functor simply by f ∗ : DY → DX .

As in the main example of the preceding lecture, this gives us an
adjoint pair of closed-category-valued pseudofunctors.

The first three of the above axioms are easy to check.

The fourth, that the projection maps are isomorphisms, will be
discussed below.

The fifth, one of the basic facts of duality theory, is the
existence of a right adjoint for Rf∗,
to be discussed in a subsequent lecture.

2Showing that E ∈ Dqc(X ) =⇒ Rf∗E ∈ Dqc(Y ) involves only standard arguments
when H iE = 0 for all i � 0, but is somewhat trickier otherwise.
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2. Projection isomorphisms

Theorem

Let f : X → Y be a map of noetherian schemes, F ∈ Dqc(X ),
G ∈ Dqc(Y ). Then the projection maps are isomorphisms

p1 : (Rf∗F )⊗
=
G −→∼ Rf∗(F ⊗= Lf ∗G ), p2 : G ⊗

=
Rf∗F −→∼ Rf∗(Lf

∗G ⊗
=
F ).

Sketch of proof

A key fact is that Rf∗ : Dqc(X )→ Dqc(Y ) is a bounded-above functor:
there is an integer d such that for all E ∈ Dqc(X ) and all n ∈ Z,

H i (E ) = 0 for all i ≥ n =⇒ H i (Rf∗E ) = 0 for all i ≥ n + d .

This is shown by induction on the least number of affines covering X and Y .

Turning to the theorem, we treat only p1. (p2 can be handled similarly,
or by symmetry.)
The question is local on Y , so we may assume Y affine.
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Sketch of proof (continued)

Suppose first that both F and G are bounded-above complexes. Then
boundedness of Rf∗ implies that the source and target of

p1 : (Rf∗F ) ⊗
=

G −→∼ Rf∗(F ⊗= Lf ∗G ) ,

are, for fixed F , bounded-above functors of G .
This allows us to use inductive “way-out” methods to reduce the question
to where G is a single free OY -module G 0, whence Lf ∗G is isomorphic to
the free OX -module f ∗G 0.
One verifies that everything in sight commutes with direct sums, so we
have a further reduction to the case G = OY .
In that case, p1 is isomorphic to the identity map of Rf∗F .

The unbounded case requires additional considerations, omitted here.
(Full details in the reference notes.)

Remark: An example in the reference notes shows that quasi-coherence
of homology is necessary for the theorem to hold.
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3. Independent squares

We describe a certain class of commutative squares which will play an
important role later on, in connection with a fundamental
base-change theorem for the right adjoint of Rf∗.

Recall that to a commutative C-square

X ′
v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

one associates the map θ = θσ : u∗f∗ → g∗v
∗,

adjoint to the natural composition

f∗ → f∗v∗v
∗ −→∼ u∗g∗v

∗.

Similarly, one has the map
θ′σ : f ∗u∗ → v∗g

∗
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Example

In the commutative algebra situation, σ corresponds to a commutative
square of ring-maps

S ′
v̄←−−−− S

ḡ

x xf̄

R ′
σ̄

←−−−−
ū

R

and θσ is the usual functorial map, for S-modules M,

R ′ ⊗R M → S ′ ⊗S M,

while θ′σ is the usual functorial map, for R ′-modules N,

S ⊗R N → S ′ ⊗R′ N.

In the more significant scheme-theoretic context, with u∗ standing for Lu∗,
f∗ for Rf∗. . . , one replaces M and N by q-flat quasi-coherent complexes.
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Künneth map

For a commutative C-square X ′
v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

setting h := fv = ug , define the functorial Künneth map

ησ(E ,F ) : u∗E ⊗ f∗F → h∗(g
∗E ⊗ v∗F ) (E ∈ DY ′ ,F ∈ DX )

to be the natural composition

u∗E⊗f∗F → h∗h
∗(u∗E⊗f∗F )→ h∗(g

∗u∗u∗E⊗v∗f ∗f∗F )→ h∗(g
∗E⊗v∗F ).

Example

1. When X = X ′ = Y , and v , g are identity maps (so that u = f ), then

η = ef : f∗E ⊗ f∗F → f∗(E ⊗ F ).

2. When X = Y , X ′ = Y ′, and f , g , are identity maps (so that u = v),
η = p1 : u∗E ⊗ F → u∗(E ⊗ u∗F ).

Joseph Lipman (Purdue University) IV: Basic duality setup. February 17, 2009 15 / 21



Example

In the commutative algebra situation, σ corresponds to a commutative
square of ring-maps

S ′
v̄←−−−− S

ḡ

x xf̄

R ′
σ̄

←−−−−
ū

R

and ησ is the usual functorial map, for R ′-modules M, and S-modules N,

M ⊗R N → (M ⊗R′ S
′)⊗S ′ (S ′ ⊗S N).

In the corresponding scheme-theoretic context, with u∗ standing for Lu∗,
f∗ for Rf∗. . . , one replaces M and N by q-flat quasi-coherent complexes.
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Equivalent definitions of independence

Theorem

Let X ′
v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

be a fiber square of quasi-compact quasi-separated schemes (i.e.,
σ commutes and the associated map X ′ → Y ′ ×Y X is an isomorphism).
Set h := fv = gu. The following conditions are equivalent—and when they
hold we say that σ is an independent square:

(i) For all E ∈ Dqc(X ), θσ is an isomorphism

Lu∗Rf∗E −→∼ Rg∗Lv∗E.

(i)′ For all F ∈ Dqc(Y ′), θ′σ is an isomorphism

Lf ∗Ru∗E −→∼ Rv∗Lg∗E.

(ii) For all E ∈ Dqc(X ) and F ∈ Dqc(Y ′), ησ is an isomorphism

Ru∗E ⊗ Rf∗F −→∼ Rh∗(Lg∗E ⊗ Lv∗F ).
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Theorem-definition (continued)

X ′
v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

(iii) The square σ is tor-independent, that is, for all pairs of points
y ′ ∈ Y ′, x ∈ X such that y := u(y ′) = f (x),

Tor
OY,y

i (OY ′, y ′ , OX,x) = 0 for all i > 0.

or, equivalently, for any affine open neighborhood Spec(A) of y and

affine open sets Spec(A′) ⊂ u−1Spec(A), Spec(B) ⊂ f −1Spec(A),

TorAi (A′, B) = 0 for all i > 0.

Remarks. (a) Condition (iii) holds if either f or u is flat.

(b) When f and g are identity maps, then of course (iii) holds, and so the
implication (iii)⇒ (ii) amounts to saying that the projection map p1 is an
isomorphism. But actually this latter fact is used in proving (iii)⇒ (ii).
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Outline of proof

That either (i) or (i)′ implies (ii) results from commutativity of the
following natural diagram, for any E ∈ Dqc(Y ′) and F ∈ Dqc(X ), the
proof of which is a formal exercise on adjoint monoidal pseudofunctors:

u∗(E ⊗ u∗f∗F ) ˜←−−−−p1
u∗E ⊗ f∗Fyη

˜−−−−→p2
f∗(f

∗u∗E ⊗ F )

u∗(1⊗θ)

y yf∗(θ′⊗1)

u∗(E ⊗ g∗v
∗F ) f∗(v∗g

∗E ⊗ F )

u∗(p2)

y' '
yf∗(p1)

u∗g∗(g
∗E ⊗ v∗F ) ˜−−−−→ h∗(g

∗E ⊗ v∗F ) ˜←−−−− f∗v∗(g
∗E ⊗ v∗F )
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Proof outline (continued)

For the rest, one first treats the case where all the schemes in σ are affine.
To reduce to this case, by means of suitable affine covers, one needs to
know that the conditions (i), (i)′, and (ii) are local. For this, one needs the
behavior of independence under “concatenation of squares”:

For each one of the following C-diagrams, assumed commutative,

X ′′
v1−−−−→ X ′

v−−−−→ X

h

y g

y yf

Y ′′

σ1

−−−−→
u1

Y ′

σ

−−−−→
u

Y

Z ′
w−−−−→ Z

g1

y yf1

X ′
v−−−−→

σ1

X

g

y yf

Y ′

σ

−−−−→
u

Y

if σ and σ1 satisfy (i) (resp. (i)′, resp. (ii)) then so does the rectangle σ0

enclosed by the outer border.
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Proof outline (continued)

This is shown via transitivity relations for θ, θ′ and η. For instance, the θs
for σ, σ1 and σ0 are related by commutativity, for any G ∈ DX , of the
following C-diagram, a formal consequence of previously stated axioms:

(uu1)∗f∗G
θσ0(G)

−−−−−−−−−−−−−−−−−−−−→ h∗(vv1)∗G

'
y y'

u∗1u
∗f∗G −−−−−→

u∗1 θσ(G)
u∗1g∗v

∗G −−−−−→
θσ1(v

∗G)
h∗v
∗
1 v
∗G

X ′′
v1−−−−→ X ′

v−−−−→ X

h

y g

y yf

Y ′′

σ1

−−−−→
u1

Y ′

σ

−−−−→
u

Y
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