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Introduction

The fundamental existence and base-change theorems for the twisted
inverse image pseudofunctor provide only the skeleton of a living,
breathing theory with many interesting concrete manifestations.

In this lecture we touch on some of the more down-to-earth aspects
of Grothendieck Duality.

All schemes are assumed to be noetherian, and all scheme-maps are
assumed to be finite-type and separated.

We write ⊗ in place of ⊗
=

; and Hom in place of Hom•.

For a scheme-map h, we use the abbreviations

h∗ := Lh∗, h∗ := Rh∗.

And, as should have been noted before:
if φ : A1 → A2 is an exact functor, then its extension takes
quasi-isomorphisms in K(A1) to quasi-isomorphisms in K(A2),
whence to isomorphisms in D(A2). So the natural map is an isomorphism
Q2φ −→∼ RφQ1. In brief: an exact functor is its own derived functor.
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1. Twisted inverse image of derived Hom and ⊗

For a scheme-map f : X → Y , and certain E , F ∈ Dqc(X ), we’ll describe
canonical pseudofunctorial maps

χ(f ,E ,F ) : f ∗E ⊗X f !F → f !(E ⊗Y F ),

ζ(f ,E ,F ) : RHomX (f ∗E, f !F )→ f !RHomY (E, F ).

Recall that the twisted inverse image is defined only on D+
qc .

So for χ to be meaningful, one needs F ∈ D+
qc(Y ) and E ⊗X F ∈ D+

qc(Y ).

Similarly, for ζ one needs F ∈ D+
qc(Y ) and RHomY (E ,F ) ∈ D+

qc(Y ).

(The latter holds whenever F ∈ D+
qc(Y ) and E ∈ D-

c(Y ).)

Note: Both χ and ζ have the form T(f ∗E , f !F )→ f !T(E ,F ).

I don’t know a good reason for this parallelism between ⊗
=

and RHom to hold.
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Transitivity of χ and ζ

Pseudofunctoriality of χ and ζ means that for any X
f−→ Y

g−→ Z ,
the following natural “transitivity” diagrams should commute:

(gf )∗E ⊗ (gf )!F ˜−−−−−−−−→ f ∗g∗E ⊗ f !g !F

χ

y yχ
(gf )!(E ⊗ F ) −̃−→ f !g !(E ⊗ F ) ←−−

χ
f !(g∗E ⊗ g !F ))

RHom
(
(gf )∗E, (gf )!F

) ˜−−−−−−−−→ RHom
(
f ∗g∗E, f !g !F

)
ζ

y yζ
(gf )!RHom

(
E, F

)
−̃−→ f !g !RHom

(
E, F

)
←−−
ζ

f !RHom
(
g∗E, g !F

)
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Defining χ and ζ

For f an open immersion (so f ! = f ∗), χ and ζ are the obvious isomorphisms

f ∗E ⊗ f ∗F −→∼ f ∗(E ⊗ F ), RHom(f ∗E , f ∗F ) −→∼ f ∗RHom(f ∗E , f ∗F )

For f proper, χ is defined to be adjoint to the natural composition
(where the isomorphism comes from projection):

f∗(f ∗E ⊗ f !F ) −→∼ E ⊗ f∗f
!F → E ⊗ F ;

and ζ is defined to be adjoint to the natural composition
(where the isomorphism comes from sheafified f ∗-f∗ duality):

f∗RHom(f ∗E, f !F ) −→∼ RHom(E, f∗f
!F )→ RHom(E, F ).

Now for an arbitrary f , with compactification f = f ◦u, the above
transitivity diagrams (with u in place of f and f in place of g) determine
χ(f , . . . ) and ζ(f , . . . ).

Of course one must show—and this is not trivial—that the result is
independent of the choice of compactification, and pseudofunctorial.

Joseph Lipman (Purdue University) VIII: Fleshing out. February 20, 2009 6 / 24



When is ζ an isomorphism?

Proposition

If E ∈ D-
c(Y ) and F ∈ D+

qc(Y ) then ζ(f ,E ,F ) is an isomorphism

RHomX (f ∗E, f !F ) −→∼ f !RHomY (E, F ).

Proof (partial)

It suffices to treat the case where f is proper.

Use “axiomatic” notation, [A,B ] := RHom(A,B), etc.

{E ∈D-
c(Y ), F ∈D+

qc(Y )}=⇒{f ∗E ∈D-
c(X ), f !F ∈D+

qc(X )}=⇒ [f ∗E, f !F ]∈Dqc(X )

∃ natural isomorphisms, for any G ∈ Dqc(X ):

HomDqc (X )

(
G , [f ∗E , f !F ]

)
−→∼ HomDqc (X )

(
G ⊗ f ∗E , f !F

)
−→∼ HomD(Y )

(
f∗(G ⊗ f ∗E ),F

)
−→∼ HomD(Y )

(
f∗G ⊗ E,F

)
−→∼ HomD(Y )

(
f∗G , [E,F ]

)
−→∼ HomDqc (X )

(
G , f ![E,F ]

)
.

There results an isomorphism [f ∗E , f !F ] −→∼ f ![E,F ].
Is this isomorphism the same as ζ?

Joseph Lipman (Purdue University) VIII: Fleshing out. February 20, 2009 7 / 24



Interlude: coherence in categories

Answering the preceding question is a highly recommended exercise.
One has to show that some big diagram commutes.

Doing this will reveal some of the wealth of the axiomatic setup—a setup
that was based on Grothendieck’s notion of six operations.

And the tedium involved may foster appreciation for one of the intriguing
(at least to me) questions arising out of the theory. Namely,

Is there a “coherence” theorem guaranteeing that all diagrams
of a certain form, built up from the axioms, must commute?

Or an algorithm for deciding whether or not such diagrams commute?

Or, at least, could one train a computer to become an expert assistant
in the task?
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When is χ an isomorphism?

The story for χ is more complex.

First, some definitions:

For f : X → Y , an OX -complex E is f -perfect if it has coherent homology
and is D(f −1OY )-isomorphic to a bounded flat f −1OY -complex.
(f −1OY is the sheaf of rings on X whose stalk at x ∈ X is OY, f x .)

E is perfect if it is 1X -perfect. This turns out to be equivalent to saying
that each x ∈ X has an open neighborhood U such that the restriction E |U
is D(U)-isomorphic to a bounded complex of finite-rank free OU -modules.

One shows that:

The map f has finite tor-dimension ⇐⇒ OX is f -perfect.

So (in the noetherian context) maps of finite tor-dimension are often
called perfect maps.

The next result says that “χ an isomorphism” characterizes perfect maps.
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2. Perfect maps

Recall: schemes are noetherian, and scheme-maps are separated, of finite type.

Theorem

For any scheme-map f : X → Y , the following conditions are equivalent.

(i) The map f is perfect.

(ii) The complex f !OY is f -perfect.

(iii) f !OY ∈ D-
c(X ), and ∀E ∈ D+

qc(Y ), χ(f , E,OY ) is an isomorphism

f ∗E ⊗ f !OY −→∼ f !E .

(iii)′ For every perfect F ∈ D(Y ), f !F is f -perfect; and ∀E ,F ∈ D(Y )

such that F and E ⊗ F are in D+
qc(Y ), χ(f , E,F ) is an isomorphism

f ∗E ⊗ f !F −→∼ f !(E ⊗ F ).

(iv) The functor f ! : D+
qc(Y )→ D+

qc(X ) is bounded.

A proof is in the reference notes. (Theorem 4.9.4).
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Perfect maps and f !O

Using transitivity, one sees that on the category of perfect maps,
χ(f ,E,O) gives a pseudofunctorial isomorphism

f #E := f ∗E ⊗ f !OY −→∼ f !E
(
E ∈ D+

qc(Y )
)
,

where, for a composition X
f−→ Y

g−→ Z of perfect maps, the canonical
isomorphism f #g#F −→∼ (gf )#F (F ∈ D+

qcZ ) is the natural composition

f ∗(g∗F ⊗ g !OZ )⊗ f !OY −→∼ f ∗g∗F ⊗ (f ∗g !OZ ⊗ f !OY )

−→∼
1⊗χ

f ∗g∗F ⊗ f !g !OZ −→∼ (gf )∗F ⊗ (gf )!OZ

So the pseudofunctor f # is determined by the family of f -perfect complexes f !OY

(f a perfect map) plus a family of isomorphisms f ∗g !OZ ⊗ f !OY −→∼ (gf )!OZ

(that satisfies, with respect to triple compositions, a condition left to the reader).

The point is that for perfect maps the theory of f ! is determined by f ∗ and
the behavior of complexes of the form f !O.
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Base change

For example, for any independent square

X ′
v−−−−→ X

g

y yf

Y ′

σ

−−−−→
u

Y

the identification, via χ, of f ! and f # transforms the base-change map βσ to

v∗f #E = v∗f ∗E ⊗ v∗f !OY → g∗u∗E ⊗ g !u∗OY = g∗u∗E ⊗ g !OY ′ = g#u∗E ,

a map which is determined by the base-change map v∗f !OY → g !u∗OY .
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3. Pseudo-Cohen-Macaulay maps

With all this in mind we will now examine some specific kinds of perfect
maps (Cohen-Macaulay, Gorenstein, regular immersion, smooth).

Suppose for simplicity that schemes are connected.

For a scheme-map f : X → Y , the lowest-degree nonvanishing cohomology
of f !OY is called the canonical sheaf of f .
This coherent OX -module is denoted ωf .

As an instance of a general fact about derived categories, one has:

If ωf = Hd(f !OY ) is the only nonvanishing cohomology of f !OY then

there is a natural D(X )-isomorphism f !OY −→∼ ωf [−d ].

As before, for perfect f the theory of the pseudofunctor f ! reduces to
the theory of f !OY . This leads one to focus on the following class of maps.

Definition

A scheme-map f : X → Y is pseudo-Cohen-Macaulay if f is perfect and

for some d , f !OY is D(X )-isomorphic to ωf [−d ].
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Example (Cohen-Macaulay maps)

f is pseudo-Cohen-Macaulay and OX and ωf are both (f −1OY )-flat ⇐⇒
f is flat and the fibers of f are Cohen-Macaulay varieties.

Such maps are called Cohen-Macaulay.

Example (Gorenstein maps)

f is called Gorenstein if f is pseudo-Cohen-Macaulay and ωf is an
invertible OX -module.

A flat map f is Gorenstein ⇐⇒ the fibers of f are Gorenstein varieties.

So flat Gorenstein maps are Cohen-Macaulay.

Example (Smooth maps)

Smooth maps, being flat, with smooth fibers, are Gorenstein.

For a smooth map f , with d-dimensional fibers, ωf
∼= Ωd

f , the d-th
exterior power of the sheaf of relative Kähler differentials (see below).
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4. Finite maps

Let X be a scheme, and Aqc(X ) the abelian category of quasi-coherent
OX -modules. There is a natural functor

D(Aqc(X ))→ Dqc(X ),

which is in fact an equivalence of categories.

For a scheme-map f : X → Y , therefore, one can think of f ! as being

a right adjoint of Rf∗ : D(Aqc(X ))→ D(Aqc(Y )).
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f ! for finite maps

Any ringed-space map f : (X ,OX )→ (Y ,OY ) factors naturally as

(X ,OX )
f−→ Y := (Y , f∗OX )

ψ−→ (Y ,OY ).

If f is a finite scheme-map, then f∗ is an exact functor that induces
an equivalence of categories from Aqc(X ) to the category Aqc(Y ) of

quasi-coherent f∗OX -modules. Hence, f being flat, f
∗

= Lf
∗

is
right-adjoint to Rf∗ = f∗ : D(Aqc(X ))→ D(Aqc(Y )).

So if Ψ is a right adjoint of Rψ∗ : D(Aqc(Y ))→ D(Aqc(Y )) then

f
∗
◦Ψ is a right adjoint of Rf∗ = Rψ∗Rf ∗ : D(Aqc(X ))→ D(Aqc(Y )).

Such a Ψ =: RHomψ(f∗OX ,−) is gotten by right-deriving

the functor Homψ(f∗OX ,−) that takes a quasi-coherent OY -module F

to the quasi-coherent Of∗OX
-module HomY (f∗OX ,F ).

This assertion is local, where it just means (as in Lecture 2) that for a
ring-homomorphism ϕ : R → S , the derived restriction-of-scalars functor ϕ∗
has the right adjoint RHomϕ(S ,−).
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5. Regular immersions; fundamental local isomorphism

Preliminaries: Let Y be a scheme and I a quasi-coherent OY -ideal.
Any exact OY -sequence P → OY → OY/I → 0 gives rise to an isomorphism
P/IP −→∼ I/I 2. Taking P to be flat, one gets a natural isomorphism

ψ : TorOY
1 (OY/I, OY/I ) −→∼ I/I 2.

Tensor product of resolutions makes ⊕i≥0 TorOY

i (OY/I, OY/I ) into an
alternating graded OY -algebra; so by the universal property of exterior algebras,
one deduces from ψ−1 a canonical graded-algebra homomorphism

⊕i≥0

∧i (I/I 2
)
−→ ⊕i≥0 TorOY

i

(
OY/I, OY/I

)
.

Locally, for a quasi-coherent OY -projective resolution P• → OY/I, ∃ natural maps

Ext i (ι∗OX ,OY) −→∼ H i (Hom(P• ,OY))

−→∼ H i (Hom(P• ⊗OY/I,OY/I ))

−→ Hom(H i (P• ⊗OY/I ),OY/I )

−→∼ Hom(TorOY

i (OY /P, OY /P),OY/I )

−→ Hom(
∧i(I/I 2

)
, OY/I

)
(i ≥ 0).
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Fundamental homomorphisms

This composed map is independent of the choice of P• . Hence one can
paste to get natural global maps, the fundamental homomorphisms

λi : Ext i
OY

(ι∗OX ,OY ) −→ HomOY

(∧i(I/I 2
)
, OY/I

)
(i ≥ 0).
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Regular immersions

A regular immersion ι : X ↪→ Y , of codimension n, is an isomorphism of X
onto a closed subscheme of Y defined by an ideal I that is locally generated
by a regular sequence of length n. Note that then ι∗OX = OY/I, and

I/I 2 is a locally free OY/I-module of rank n.

Using (locally) the Koszul complex (concentrated in degrees from −n to 0)
on such a generating sequence as a projective OY -resolution of OY/I,
one sees that ι is a perfect map, with

ι!OY = ι∗RHomY (ι∗OX ,OY ) ∼= ι∗Extn
OY

(ι∗OX ,OY )[−n] =: ωι [−n].

Moreover, the above fundamental homomorphism λn is an isomorphism

Extn
OY

(ι∗OX ,OY ) −→∼ HomOY

(∧n(I/I 2
)
, OY/I

)
.

This is often called the fundamental local isomorphism.
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In conclusion:

Any regular immersion f : X ↪→ Y of codimension n is a Gorenstein map,
with invertible canonical sheaf

ωf
∼= f ∗HomOY

(∧n(I/I 2
)
, OY/I

)
where I is the kernel of the natural surjection OY � f∗OX .
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6. Smooth maps

Theorem

Let f : X → Y be smooth, of relative dimension n, i.e., flat, with fibers
that are n-dimensional nonsingular varieties.

Then f is a Gorenstein map, with

f !OY
∼= ωf [n] ∼= Ωn

f [n],

the invertible sheaf Ωn
f being the n-th exterior power of the sheaf Ωf of

relative Kähler differentials.
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Proof (Verdier)

Consider the commutative diagram

X
δ−−−−→ X ×Y X

π1−−−−→ X

π2

y yf

X
f−−−−→ Y

with π1, π2 the projections, and δ the diagonal (so that πi δ = 1X ).

The map δ is a regular immersion of codimension n; and if I is the kernel
of OX×Y X � δ∗OX then Ωf = δ∗

(
I/I 2

)
. Flat base change, and the

preceding results on regular immersions, yield isomorphisms

OX = (π2δ)!OX
∼= δ!π!

2f ∗OY
∼= δ!π∗1f !OY

∼= δ!OX×Y X ⊗ δ∗π∗1f !OY

∼= δ∗HomOY

(∧n(I/I 2
)
, OY/I

)
[−n]⊗ δ∗π∗1f !OY

∼= δ∗HomOX

(
Ωn

f , OX

)
[−n ]⊗ f !OY .

Tensoring throughout with Ωn
f [n] gives the desired conclusion.
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Concrete pseudofunctoriality

For smooth maps X
f−→ Y

g−→ Z , of respective relative dimensions n and m,
there are canonical D(X )-isomorphisms

f !OY ⊗ f ∗g !OZ −→∼ f !g !OZ −→∼ (gf )!OZ .

Via the above isomorphisms f !OY −→∼ Ωn
f [n] and g !OZ −→∼ Ωm

g [m],
one deduces an isomorphism

Ωn
f ⊗ f ∗Ωm

g −→∼ Ωn+m
gf .

There is also a concrete isomorphism with the same source and target,
that looks locally—for suitable xi and yj—like

dx1dx2 · · · dxn ⊗ dy1dy2 · · · dym 7→ dx1dx2 · · · dxndy1dy2 · · · dym.

Are these two isomorphisms the same?

Yes, but why?
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6. The concrete approach to duality

A proof based on a different approach to duality theory is sketched in
Hartshorne’s classic Residues and Duality, starting on p. 388.
Filling in all the details could prove to be a formidable task.

His approach is “bottom up” (concrete ↗ abstract) rather than

“top down” (abstract ↗ concrete). This is Grothendieck’s initial way,

worked out in Residues and Duality, with many clarifications and corrections
in Conrad’s Grothendieck Duality and Base Change (SLN 1750).

One starts with the above concrete realizations of f ! for smooth and for
finite maps, proves the appropriate duality theorems for them,
then pastes together locally using factorizations of arbitrary maps as
smooth ◦ finite; and finally pastes together locally defined duality data—
not directly, which isn’t always possible in derived categories, but via the
theory of dualizing complexes, a theory we have not had time to discuss.

Carrying this program out requires the verification of a very large number
of nontrivial compatibilities among diverse maps. Working through it all
reveals many riches hidden behind the unifying abstract facade.
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Conclusion

As indicated by the discussion of “concrete pseudofunctoriality” for
smooth maps, passing between the concrete and abstract theories, in
either direction, is challenging—and rewarding. Negotiating that passage
adds much to the fascination of duality theory.
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