Lectures on Grothendieck Duality

II: Derived Hom-Tensor adjointness. Local duality.

Joseph Lipman

February 16, 2009

Contents

1	Left-derived functors. Tensor and Tor.	1
2	Hom-Tensor adjunction.	3
3	Abstract local duality.	4
4	Concrete local duality.	5
5	Residues and duality for power series rings.	6

1 Left-derived functors. Tensor and Tor.

1. Derived functors.

 $Q_{\mathcal{A}}: \mathbf{K}(\mathcal{A}) \to \mathbf{D}(\mathcal{A})$ denotes the canonical functor from the homotopy category of an abelian category \mathcal{A} to its derived category.

Let $\mathcal{A}_1, \mathcal{A}_2$ be abelian categories, and set $Q_i := Q_{\mathcal{A}_i}$. Let $\gamma : \mathbf{K}(\mathcal{A}_1) \to \mathbf{K}(\mathcal{A}_2)$ be a Δ -functor.

A right-derived functor $(\mathbf{R}\gamma, \zeta)$ of γ consists of a Δ -functor $\mathbf{R}\gamma \colon \mathbf{D}(\mathcal{A}_1) \to \mathbf{D}(\mathcal{A}_2)$ and a Δ -functorial map $\zeta \colon Q_2\gamma \to \mathbf{R}\gamma Q_1$ such that:

every Δ -functorial map $Q_2 \gamma \to \Gamma$ where $\Gamma: \mathbf{K}(\mathcal{A}_1) \to \mathbf{D}(\mathcal{A}_2)$ takes quasi-isomorphisms to isomorphisms, factors uniquely as

$$Q_2 \gamma \xrightarrow{\varsigma} \mathbf{R} \gamma Q_1 \to \Gamma.$$

In other terms, omitting Qs, in the category whose objects are functorial $\mathbf{D}(\mathcal{A}_2)$ -maps of the form

$$\gamma(E) \to \Gamma(E) \qquad (E \in \mathbf{K}(\mathcal{A}_1))$$

with fixed source $Q_2\gamma$, and target Γ as above, the map $\zeta(E): \gamma(E) \to \mathbf{R}\Gamma(E)$ is an *initial object*—and thus it is *unique up to canonical isomorphism*.

Dually: A left-derived functor $(\mathbf{R}\gamma,\xi)$ of γ consists of a Δ -functor $\mathbf{L}\gamma: \mathbf{D}(\mathcal{A}_1) \to \mathbf{D}(\mathcal{A}_2)$ and a Δ -functorial map $\xi: \mathbf{L}\gamma Q_1 \to Q_2\gamma$ such that:

every Δ -functorial map $\Gamma \to Q_2 \gamma$ where $\Gamma: \mathbf{K}(\mathcal{A}_1) \to \mathbf{D}(\mathcal{A}_2)$ takes quasi-isomorphisms to isomorphisms, factors uniquely as

$$\Gamma \to \mathbf{L}\gamma Q_1 \xrightarrow{\xi} Q_2\gamma.$$

Here ξ is a *final object* in the appropriate category of functorial maps.

Tensor product

We've already seen some right-derived functors, $\mathbf{R}\Gamma_{I}(-)$ and $\mathbf{R}\operatorname{Hom}(-,-)$. Describe next an important example of a left-derived functor. The tensor product $C \otimes_{\mathbb{R}} D$ of two R-complexes is such that

$$(C \otimes_R D)^n = \bigoplus_{i+j=n} C^i \otimes_R D^j,$$

the differential $\delta^n \colon (C \otimes_R D)^n \to (C \otimes_R D)^{n+1}$ being determined by

$$\delta^n(x \otimes y) = d_C^i x \otimes y + (-1)^i x \otimes d_D^j y \qquad (x \in C^i, y \in D^j).$$

Fixing D, we get a functor $\gamma_D := - \otimes_R D : \mathbf{K}(R) \to \mathbf{K}(R)$, that, together with $\theta :=$ the identity map of $C[1] \otimes_R D = (C \otimes_R D)[1]$, is a Δ -functor.

There is an isomorphism $\rho: \gamma'_C(D) := C \otimes_R D \xrightarrow{\sim} D \otimes_R C = \gamma_C D$ taking $x \otimes y$ to $(-1)^{ij} y \otimes x$. There is a then a unique Δ -functor (γ'_C, θ') such that ρ is Δ -functorial.

The map $\theta': \gamma'_C(D[1]) \xrightarrow{\sim} \gamma'_C(D)[1]$ is not the identity: its restriction to $C^i \otimes_R D^j$ is multiplication by $(-1)^i$.

q-flat resolutions

One gets a left-derived functor $- \bigotimes_R D$ of γ_D as follows:

An *R*-complex *F* is q-flat if for every exact *R*-complex *E* (i.e., $H^i E = 0$ for all *i*), $F \otimes_R E$ is exact too. Equivalently: the functor $F \otimes_R -$ preserves quasi-isomorphism.

(By the exactness of the homology sequence of a triangle, a map of complexes is a quasi-isomorphism iff its cone is exact, and tensoring with F "commutes" with forming cones.)

For example, any bounded-above (i.e., cohomology vanishing above some degree) flat complex is q-flat. Every *R*-complex *C* has a q-flat resolution, i.e., a q-flat complex *F* plus a quasi-isomorphism $F \to C$. This can be constructed as a lim of bounded-above flat resolutions of truncations of *C*.

For example, a flat resolution of an R-module M

$$\cdots \to F^{-2} \to F^{-1} \to F^0 \to M \to 0$$

can be viewed as a q-flat resolution of M (as a complex).

Left-derived tensor product

After choosing for each C a q-flat resolution $F_C \to C$, one shows that there exists a left-derived functor $- \bigotimes_R D$ of γ_D with

$$C \underline{\otimes}_R D = F_C \otimes_R D$$

If $F_D \to D$ is a q-flat resolution, there are natural $\mathbf{D}(R)$ -isomorphisms

$$C \otimes_R F_D \xleftarrow{\sim} F_C \otimes_R F_D \xrightarrow{\sim} F_C \otimes_R D_g$$

so any of these complexes could be used to define $C \bigotimes_R D$. Using $F_C \otimes_R F_D$ one can, as before, make $C \bigotimes_R D$ into a Δ -functor of both variables C and D.

As such, it has a universal mapping property as above, but with respect to two-variable functors.

Taking homology produces the (hyper)tor functors $\operatorname{Tor}_i(C, D) = \operatorname{H}^{-i}(C \otimes_R D).$

2 Hom-Tensor adjunction.

Relations between Ext and Tor—in particular, as we'll see, Local Duality—are neatly encapsulated by a derived-category upgrade of the basic adjoint associativity relation between Hom and \otimes .

For R-modules E, F, G, adjoint associativity is the isomorphism

 $\operatorname{Hom}_R(E \otimes_R F, G) \xrightarrow{\sim} \operatorname{Hom}_R(E, \operatorname{Hom}_R(F, G))$

that takes $\phi \colon E \otimes_R F \to G$ to $\phi' \colon E \to \operatorname{Hom}_R(F, G)$ where

$$[\phi'(e)](f) = \phi(e \otimes f) \qquad (e \in E, \ f \in F).$$

More generally, with $\varphi \colon R \to S$ a homomorphism of commutative rings, E, F, S-complexes and G an R-complex, there is an isomorphism of S-complexes

$$\operatorname{Hom}_{R}^{\bullet}(E \otimes_{S} F, G) \xrightarrow{\sim} \operatorname{Hom}_{S}^{\bullet}(E, \operatorname{Hom}_{R}^{\bullet}(F, G))$$
(adj)

that in degree *n* takes a family $(\phi_{ij}: E^i \otimes_S F^j \to G^{i+j+n})$ to the family $(\phi'_i: E^i \to \operatorname{Hom}_R^{i+n}(F, G))$ with $\phi'_i(e) = (\phi'_{ij}(e): F_j \to G^{i+j+n})$ where

$$[\phi'_{ij}(e)](f) = \phi_{ij}(e \otimes f) \qquad (e \in E^i, \ f \in F^j).$$

Derived adjoint associativity

With $\varphi \colon R \to S$ as before, let $\varphi_* \colon \mathbf{D}(S) \to \mathbf{D}(R)$ denote the obvious restriction of scalars functor. For a fixed S-complex E, the functor $\operatorname{Hom}_R^{\bullet}(E,G)$ from R-complexes G to S-complexes has a right-derived functor from $\mathbf{D}(R)$ to $\mathbf{D}(S)$ (gotten via q-injective resolution of G), denoted $\operatorname{\mathbf{RHom}}_{\varphi}^{\bullet}(E,G)$.

If we replace G in (adj) by a q-injective resolution, and F by a q-flat one, then the S-complex $\operatorname{Hom}_{R}^{\bullet}(F,G)$ is easily seen to become q-injective; and consequently (adj) gives a $\mathbf{D}(S)$ -isomorphism

$$\alpha(E, F, G) \colon \mathbf{R}\mathrm{Hom}_{\omega}^{\bullet}(E \otimes_{S} F, G) \xrightarrow{\sim} \mathbf{R}\mathrm{Hom}_{S}^{\bullet}(E, \mathbf{R}\mathrm{Hom}_{\omega}^{\bullet}(F, G))$$

The map α is Δ -functorial. Showing this requires some additional grinding.

Derived Hom-Tensor adjunction

 α does not depend on the choices of resolutions made above: it's canonically characterized by commutativity, for all E, F and G, of the following otherwise natural $\mathbf{D}(S)$ -diagram (where H^{\bullet} stands for Hom^{\bullet}):

$$\begin{split} \mathrm{H}^{\bullet}_{R}(E \otimes F, G) & \longrightarrow \mathbf{R}\mathrm{H}^{\bullet}_{R}(\varphi_{*}(E \otimes F), G) & \longrightarrow \mathbf{R}\mathrm{H}^{\bullet}_{R}(\varphi_{*}(E \otimes F), G) \\ & (\mathrm{adj}) \Big| \simeq & \simeq \Big| \alpha \\ \mathrm{H}^{\bullet}_{S}\big(E, \mathrm{H}^{\bullet}_{R}(F, G)\big) & \longrightarrow \mathbf{R}\mathrm{H}^{\bullet}_{S}\big(E, \mathrm{H}^{\bullet}_{R}(F, G)\big) & \longrightarrow \mathbf{R}\mathrm{H}^{\bullet}_{S}\big(E, \mathrm{R}\mathrm{H}^{\bullet}_{R}(\varphi_{*}F, G)\big) \end{split}$$

Application of the functor H^0 to α yields a functorial isomorphism

$$\operatorname{Hom}_{\mathbf{D}(R)}(\varphi_*(E \boxtimes_S F), G) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{D}(S)}(E, \operatorname{\mathbf{R}Hom}_{\varphi}^{\bullet}(F, G)),$$

Thus, for fixed $F \in \mathbf{D}(S)$, there is a natural adjunction between the functors

 $\varphi_*(-\otimes_S F) \colon \mathbf{D}(S) \to \mathbf{D}(R)$ and $\mathbf{R}\operatorname{Hom}^{\bullet}_R(\varphi_*F, -) \colon \mathbf{D}(R) \to \mathbf{D}(S).$

3 Abstract local duality.

Recall briefly the connection between $\mathbf{R}\Gamma_{I}$ and Koszul complexes.

R is a commutative noetherian ring; $\otimes := \otimes_R$.

 $\mathbf{t} = (t_1, \ldots, t_m)$ is a sequence in R, generating the ideal $I := \mathbf{t}R$.

For $t \in R$, let $\mathcal{K}(t)$ be the complex that in degrees 0 and 1 is the usual map from R to the localization R_t , and that vanishes elsewhere.

For any R-complex C, define the "stable" Koszul complex

$$\mathcal{K}(\mathbf{t}) := \mathcal{K}(t_1) \otimes \cdots \otimes \mathcal{K}(t_m), \qquad \mathcal{K}(\mathbf{t}, C) := \mathcal{K}(\mathbf{t}) \otimes C.$$

Since the complex $\mathcal{K}(\mathbf{t})$ is flat and bounded, hence q-flat, therefore $\mathcal{K}(\mathbf{t}, -)$ takes quasi-isomorphisms to quasi-isomorphisms, and so may—and will—be regarded as a functor from $\mathbf{D}(R)$ to $\mathbf{D}(R)$. Given a q-injective resolution $C \to E_C$ we have for $E = E_C^j$ $(j \in \mathbb{Z})$,

$$\Gamma_{I}E = \ker \left(\mathcal{K}^{0}(\mathbf{t}, E) = E \to \bigoplus_{i=1}^{m} E_{t_{i}} = \mathcal{K}^{1}(\mathbf{t}, E) \right),$$

whence a $\mathbf{D}(R)$ -map

$$\delta(C) \colon \mathbf{R}\Gamma_I C = \Gamma_I E_C \hookrightarrow \mathcal{K}(\mathbf{t}, E_C) \cong \mathcal{K}(\mathbf{t}, C).$$

The following proposition is a key to many properties of Γ_I . (Details in §3 of "Lectures on Local Cohomology...")

Proposition 1. The $\mathbf{D}(R)$ -map $\delta(C)$ is a functorial isomorphism

$$\mathbf{R}\Gamma_I C \xrightarrow{\sim} \mathcal{K}(\mathbf{t}, C).$$

Since $\mathcal{K}(\mathbf{t}, C) = \mathcal{K}(\mathbf{t}, R) \otimes C$ and $\mathcal{K}(\mathbf{t}, R) \cong \mathbf{R}\Gamma_I R$ is q-flat, therefore:

Corollary 2. There is a functorial $\mathbf{D}(R)$ isomorphism

$$\mathbf{R}\Gamma_I C \xrightarrow{\sim} (\mathbf{R}\Gamma_I R) \otimes C.$$

Taking homology, one gets $H_I^i(C)$

 $H^{i}_{I}(C) = H^{i} \mathbf{R} \Gamma_{I} C \cong \operatorname{Tor}_{-i}(\mathbf{R} \Gamma_{I} R, C) \qquad (i \in \mathbb{Z}).$

Local duality

Let J be an S-ideal. Let $\varphi_J^{\#} \colon \mathbf{D}(R) \to \mathbf{D}(S)$ be the functor

$$\varphi_{J}^{\sharp}(G) := \mathbf{R} \operatorname{Hom}_{\varphi}^{\bullet}(\mathbf{R}\Gamma_{J}S, G)$$
$$\cong \mathbf{R} \operatorname{Hom}_{S}^{\bullet}(\mathbf{R}\Gamma_{J}S, \mathbf{R} \operatorname{Hom}_{\varphi}^{\bullet}(S, G)) \qquad (G \in \mathbf{D}(R)),$$

The isomorphism results from setting $E = \mathbf{R}\Gamma_{I}S$ and F = S in the derived adjoint associativity isomorphism

$$\alpha(E, F, G) \colon \mathbf{R}\mathrm{Hom}_{\varphi}^{\bullet}(E \underset{\cong}{\cong} F, G) \xrightarrow{\sim} \mathbf{R}\mathrm{Hom}_{S}^{\bullet}(E, \mathbf{R}\mathrm{Hom}_{\varphi}^{\bullet}(F, G)).$$

For $E \in \mathbf{D}(S)$ and $G \in \mathbf{D}(R)$, one has then functorial $\mathbf{D}(S)$ -isomorphisms

$$\mathbf{R}\mathrm{Hom}_{\varphi}^{\bullet}(\mathbf{R}\Gamma_{J}E, G) \xrightarrow{\sim} \mathbf{R}\mathrm{Hom}_{\varphi}^{\bullet}(E \boxtimes_{S} \mathbf{R}\Gamma_{J}S, G) \xrightarrow{\sim} \mathbf{R}\mathrm{Hom}_{S}^{\bullet}(E, \varphi_{J}^{\sharp}G).$$

Application of the functor $H^0\varphi_*$ produces the local duality isomorphism

 $\operatorname{Hom}_{\mathbf{D}(R)}(\varphi_*\mathbf{R}\Gamma_I E, G) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{D}(S)}(E, \varphi_I^{\sharp}G),$

an adjunction between the functors $\varphi_* \mathbf{R} \Gamma_I$ and φ_I^{\sharp} .

4 Concrete local duality.

Henceforth, all rings are noetherian as well as commutative.

Concrete versions of local duality convey more information about φ_I^{\sharp} .

Suppose, e.g., that S is module-finite over R, and let $G \in \mathbf{D}_{c}(R)$, i.e., each homology module of $G \in \mathbf{D}(R)$ is finitely generated.

Suppose also that $\operatorname{Ext}_{R}^{i}(S,G)$ is a finitely-generated *R*-module for all $i \in \mathbb{Z}$, i.e., $\operatorname{\mathbf{RHom}}_{R}^{\bullet}(\varphi_{*}S,G) \in \mathbf{D}_{\mathsf{c}}(R)$. (This holds, e.g., if $\operatorname{H}^{i}G = 0$ for all $i \ll 0$.)

Then $\operatorname{\mathbf{RHom}}_{\varphi}^{\bullet}(S,G) \in \operatorname{\mathbf{D}_{c}}(S)$, since, as is easily seen,

$$\varphi_* \mathbf{R} \operatorname{Hom}_{\omega}^{\bullet}(S, G) \cong \mathbf{R} \operatorname{Hom}_R(\varphi_* S, G) \in \mathbf{D}_{\mathsf{c}}(R).$$

Now Greenlees-May duality (=Grothendieck duality for the natural map $\operatorname{Spec}(\hat{S}) \to \operatorname{Spec}(S)$, with \hat{S} the *J*-adic completion of *S*), gives

$$\operatorname{\mathbf{R}Hom}_{S}^{\bullet}(\operatorname{\mathbf{R}}\Gamma_{J}S, F)) \cong F \otimes_{S} \hat{S} \qquad (F \in \operatorname{\mathbf{D}}_{\mathsf{c}}(S))$$

In particular:

$$\varphi_{J}^{\sharp}G = \mathbf{R}\mathrm{Hom}_{S}^{\bullet}(\mathbf{R}\Gamma_{J}S, \mathbf{R}\mathrm{Hom}_{\omega}^{\bullet}(S, G)) \cong \mathbf{R}\mathrm{Hom}_{\omega}^{\bullet}(S, G) \otimes_{S} \hat{S}.$$

In particular, for S = R and $\varphi = id$ (the identity map) one gets

$$\operatorname{id}_{J}^{\#}G = G \otimes_{R} \hat{R} \qquad (G \in \mathbf{D}_{\mathsf{c}}(R)).$$

Specialize further to where R is local, $\varphi = \operatorname{id}, J = \mathfrak{m}$, the maximal ideal of R, and $G \in \mathbf{D}_{\mathsf{c}}(R)$ is a normalized dualizing complex, so that in $\mathbf{D}(R), \mathcal{I} := \mathbf{R}\Gamma_{\mathfrak{m}}G$ is an R-injective hull of R/\mathfrak{m} . Then there is a natural isomorphism

$$\mathbf{R}\mathrm{Hom}_{R}^{\bullet}(\mathbf{R}\Gamma_{\mathfrak{m}}E,\mathcal{I}) = \mathbf{R}\mathrm{Hom}_{R}^{\bullet}(\mathbf{R}\Gamma_{\mathfrak{m}}E,\mathbf{R}\Gamma_{\mathfrak{m}}G) \cong \mathbf{R}\mathrm{Hom}_{R}^{\bullet}(\mathbf{R}\Gamma_{\mathfrak{m}}E,G)$$

Substitution into the local duality isomorphism gives, for all $E \in \mathbf{D}(R)$,

$$\mathbf{R}\mathrm{Hom}^{\bullet}_{R}(\mathbf{R}\Gamma_{\mathfrak{m}}E,\mathcal{I}) \xrightarrow{\sim} \mathbf{R}\mathrm{Hom}^{\bullet}_{R}(E,\mathrm{id}^{\sharp}_{J}G) = \mathbf{R}\mathrm{Hom}^{\bullet}_{R}(E,G\otimes_{R}\hat{R}).$$

For $E \in \mathbf{D}_{\mathsf{c}}(R)$ this is just classical local duality, modulo Matlis duality.

More familiar local duality

Applying homology H^{-i} one gets the duality isomorphism

$$\operatorname{Hom}_R(\operatorname{H}^i_{\mathfrak{m}} E, \mathcal{I}) \xrightarrow{\sim} \operatorname{Ext}_R^{-i}(E, G \otimes_R \hat{R}).$$

Suppose R Cohen-Macaulay, i.e., there's an m-primary ideal generated by an R-regular sequence of length $d := \dim(R)$. Then $\operatorname{H}^{i}_{\mathfrak{m}} R = 0$ for $i \neq d$.

Since \hat{R} is *R*-flat, the preceding isomorphism now yields, for $i \neq d$,

$$0 = \operatorname{Ext}_{R}^{-i}(R, G \otimes_{R} \hat{R}) = \operatorname{H}^{-i}\mathbf{R}\operatorname{Hom}^{\bullet}(R, G \otimes_{R} \hat{R}) = \operatorname{H}^{-i}(G \otimes_{R} \hat{R}) = (\operatorname{H}^{-i}G) \otimes_{R} \hat{R}.$$

Hence $H^{-i}G = 0$, so there is a derived-category isomorphism

 $G \cong \omega[d]$, where $\omega := \mathrm{H}^{-d}G$, a canonical module of R.

Thus, when R is Cohen-Macaulay local duality takes the familiar form

$$\operatorname{Hom}_{R}(\operatorname{H}^{i}_{\mathfrak{m}}E,\mathcal{I}) \xrightarrow{\sim} \operatorname{Ext}^{d-i}_{R}(E,\hat{\omega}).$$

5 Residues and duality for power series rings.

Another situation in which φ_J^{\sharp} can be described concretely is when φ is the inclusion of R into a power-series ring $S := R[[\mathbf{t}]] := R[[t_1, \ldots, t_m]]$, and J is the ideal $\mathbf{t}S = (t_1, \ldots, t_m)S$.

There exist an S-module $\hat{\Omega}_{S/R}$ and an R-derivation $d: S \to \hat{\Omega}_{S/R}$ such that (dt_1, \ldots, dt_m) is a free Sbasis of $\hat{\Omega}_{S/R}$, characterized by the universal property that for any finitely-generated S-module M and R-derivation $D: S \to M$ there is a unique S-linear map $\delta: \hat{\Omega}_{S/R} \to M$ such that $D = \delta d$.

Let $\hat{\Omega}^m$ (m > 0) be the *m*-th exterior power of $\hat{\Omega}_{S/R}$, a free rank-one *S*-module with basis $dt_1 \wedge dt_2 \cdots \wedge dt_m$. Then (fact) there is a canonical functorial isomorphism

$$\varphi_J^{\sharp}G \xrightarrow{\sim} G \otimes \hat{\Omega}^m[m] \qquad (G \in \mathbf{D}_{\mathsf{c}}(R)).$$

Residue map

There is a natural surjection

$$\pi \colon (\hat{\Omega}^m)_{t_1 t_2 \cdots t_m} = \mathcal{K}^m(\mathbf{t}, \hat{\Omega}^m) \twoheadrightarrow \mathrm{H}^m \mathcal{K}(\mathbf{t}, \hat{\Omega}^m) = \mathrm{H}^m_J \hat{\Omega}^m$$

For $\nu \in \hat{\Omega}^m$ and nonnegative integers n_1, \ldots, n_m , set

$$\begin{bmatrix} \nu \\ t_1^{n_1}, \dots, t_m^{n_m} \end{bmatrix} := \pi \left(\frac{\nu}{t_1^{n_1} \cdots t_m^{n_m}} \right).$$

Theorem 3. There is a canonical (i.e., depending only on the topological R-algebra S) residue map

$$\operatorname{res}_{S/R} \colon \operatorname{H}^m_J \hat{\Omega}^m \to R,$$

such that

$$\operatorname{res}_{S/R} \begin{bmatrix} dt_1 \cdots dt_m \\ t_1^{n_1}, \dots, t_m^{n_m} \end{bmatrix} = \begin{cases} 1 & \text{if } n_1 = \dots = n_m = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Canonical local duality

As a concrete realization of the abstract local duality theorem, one has, in the preceding situation, an affine version of Serre duality:

Theorem 4. There is, for S-modules E, a canonical functorial isomorphism

 $\operatorname{Hom}_R(\operatorname{H}^m_J E, R) \xrightarrow{\sim} \operatorname{Hom}_S(E, \hat{\Omega}^m)$

that for $E = \hat{\Omega}^m$ takes $\operatorname{res}_{S/R}$ to the identity map of $\hat{\Omega}^m$.

In other words:

The functor $\operatorname{Hom}_R(\operatorname{H}^m_J E, R)$ of S-modules E is represented by $(\hat{\Omega}^m, \operatorname{res}_{S/R})$.

Proofs of the foregoing statements are in "Lectures...," §5.

Wrap-up

It has been illustrated that duality theory is a (gold) coin with two faces, the abstract and the concrete. Typically, concrete theorems are more striking, and harder to prove directly than their abstract counterparts; but passing from abstract to concrete is not easy—it is one of the most challenging aspects of the area.