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1 Left-derived functors. Tensor and Tor.

1. Derived functors.

Qa: K(A) — D(A) denotes the canonical functor from the homotopy category of an abelian category A to
its derived category.

Let Ay, Ay be abelian categories, and set Q;:= Q) 4,.

Let v: K(A;) — K(A2) be a A-functor.

A right-derived functor (R, () of v consists of a A-functor Rvy: D(A;) — D(Az) and a A-functorial map
(: Q2v — Ry(@Q; such that:

every A-functorial map Qoy — I" where I': K(A;) — D(As) takes quasi-isomorphisms to isomorphisms,

factors uniquely as ¢
Qyy = RyQy — T
In other terms, omitting @s, in the category whose objects are functorial D(As)-maps of the form
v(E) ->T(E) (E€K(A)),

with fixed source @27, and target I as above, the map ((F): v(E) — RI'(E) is an initial object—and thus
it is unique up to canonical isomorphism.

Dually: A left-derived functor (R+, ) of + consists of a A-functor Ly: D(A;) — D(A3) and a A-functorial
map &: LyQ1 — Q2 such that:

every A-functorial map I' — Qo where I': K(A;) — D(As) takes quasi-isomorphisms to isomorphisms,

factors uniquely as ¢
I' = LyQ1 = Q27.

Here € is a final object in the appropriate category of functorial maps.



Tensor product

We've already seen some right-derived functors, RI}(—) and RHom(—, —).
Describe next an important example of a left-derived functor.
The tensor product C' @z D of two R-complexes is such that

(C R D)n = Ditj=n C? Rr Dj,
the differential 6": (C ®r D)™ — (C @ D)"*! being determined by
Moy =dizoy+ (-1)Vzodly (zeC ye D).

Fixing D, we get a functor v,:= — ®r D: K(R) — K(R), that,

together with 6:= the identity map of C[1] ®r D = (C ®g D)[1],

is a A-functor.

There is an isomorphism p: 75(D):=C ®r D =~ D ®r C = D taking 2 ®@y to (—1)"y ® z.
There is a then a unique A-functor (7, ¢’) such that p is A-functorial.

The map 0: v.(D[1]) == ~74(D)[1] is not the identity: its restriction to C* ® D7 is

7

multiplication by (—1)".

g-flat resolutions

One gets a left-derived functor — ®g D of v, as follows:
An R-complex F' is g-flat if for every exact R-complex E (i.e., H'E = 0 for all i), F ®p E is exact too.

Equivalently: the functor F Qg — preserves quasi-isomorphism.
(By the exactness of the homology sequence of a triangle, a map of complexes is a quasi-isomorphism iff
its cone is exact, and tensoring with F' “commutes” with forming cones.)

For example, any bounded-above (i.e., cohomology vanishing above some degree) flat complex is g-flat.

Every R-complex C has a g-flat resolution, i.e., a g-flat complex F' plus a quasi-isomorphism F — C.
This can be constructed as a 1i_>mOf bounded-above flat resolutions of truncations of C.

For example, a flat resolution of an R-module M
s F?2 S PP FY S M -0

can be viewed as a g-flat resolution of M (as a complex).

Left-derived tensor product

After choosing for each C' a g-flat resolution Fo — C, one shows that there exists
a left-derived functor — ®g D of v, with

CQ®rD=Fc®rD
If Fp — D is a g-flat resolution, there are natural D(R)-isomorphisms

so any of these complexes could be used to define C' ®g D. Using Fo ®r Fp one can, as before,
make C ® rD into a A-functor of both variables C' and D.

As such, it has a universal mapping property as above, but with respect to two-variable functors.

Taking homology produces the (hyper)tor functors | Tor;(C, D) = H™*(C ®r D).




2 Hom-Tensor adjunction.

Relations between Ext and Tor—in particular, as we’ll see, Local Duality—are neatly encapsulated by
a derived-category upgrade of the basic adjoint associativity relation between Hom and ®.

For R-modules F, F, G, adjoint associativity is the isomorphism
Homg(E ®g F, G) = Hompg(E, Homg(F,G))
that takes ¢: E®r F — G to ¢': E — Hompg(F, G) where
[$'(©)(f)=dlexf) (e€E, feF).

More generally, with ¢: R — S a homomorphism of commutative rings, E, F', S-complexes and
G an R-complex, there is an isomorphism of S-complexes

Homp(E ®g F, G) = Hom%(E, Homp,(F, G)) (adj)
that in degree n takes a family (¢;;: E' ®g F7 — G'F7) to the family (¢;: E' — Hom'{"(F,G)) with
$1() = (01;(): Fy — GF7+7) where

[06;()](f) = dijle@ f)  (e€ B, feF).
Derived adjoint associativity

With ¢: R — S as before, let ¢, : D(S) — D(R) denote the obvious restriction of scalars functor.

For a fixed S-complex F, the functor Homg (E, G) from R-complexes G to S-complexes has a right-derived
functor from D(R) to D(S) (gotten via g-injective resolution of G), denoted RHom,(E, G).

If we replace G in (adj) by a g-injective resolution, and F' by a g-flat one, then the S-complex Homp, (F, G)
is easily seen to become g-injective; and consequently (adj) gives a D(S)-isomorphism

a(E, F,G): RHomg,(F ®s F, G) —~ RHom (E, RHom},(F, G))
The map « is A-functorial. Showing this requires some additional grinding.

Derived Hom -Tensor adjunction

a does not depend on the choices of resolutions made above: it’s canonically characterized by commutativity,
for all F, F and G, of the following otherwise natural D(S)-diagram (where H® stands for Hom®):

HR(E® F,G) —— RHR(p.(E®F),G) — RHy(p.(EQF),G)

lz zla

HY (B, Hy(F,G)) — RH§(E,Hi(F,G)) — RHE(E,RHR(p.F, G))
Application of the functor H° to « yields a functorial isomorphism
HOH]D(R) (gﬁ*(E @5 F), G) - HomD(S) (E, RHom;(F, G)),

Thus, for fixed F' € D(5), there is a natural adjunction between the functors
¢u(— @5 F): D(S) = D(R) and RHomp(p.F,—): D(R) — D(S).



3 Abstract local duality.

Recall briefly the connection between RI; and Koszul complexes.
R is a commutative noetherian ring; ® == Qg.
t = (t1,...,1,) is a sequence in R, generating the ideal I:= tR.

For t € R, let K(t) be the complex that in degrees 0 and 1 is the usual map from R to the localization Ry,
and that vanishes elsewhere.
For any R-complex C| define the “stable” Koszul complex

Kt)=K{t)® @ K(tm), Kt C)=K{t)®C.

Since the complex K(t) is flat and bounded, hence g-flat, therefore K(t,—) takes quasi-isomorphisms to
quasi-isomorphisms, and so may—and will—be regarded as a functor from D(R) to D(R).

Given a g-injective resolution C' — E¢ we have for E = EJC (jen),
LE =ker(K't,E)=FE — &, E, =K'(t,E)),

whence a D(R)-map
6(C): RIC =T} Ec — K(t, Ec) 2 K(t,C).

The following proposition is a key to many properties of Ij.
(Details in §3 of “Lectures on Local Cohomology...” )

Proposition 1. The D(R)-map 6(C) is a functorial isomorphism

RI;C = K(t,C).
Since K(t,C) = K(t, R) ® C and K(t, R) = RI} R is g-flat, therefore:
Corollary 2. There is a functorial D(R) isomorphism

RI,C - (RL;R)®C.

Taking homology, one gets | H%(C') = H'RI,C = Tor_;(RI} R, C) (1 €Z).

Local duality
Let J be an S-ideal. Let ¢f : D(R) — D(S) be the functor

¢/ (G):= RHom{,(RI} S, G)
= RHomg (RI; S,RHom} (S, G)) (G € D(R)),
The isomorphism results from setting &/ = RIS and ' = S in the derived adjoint associativity isomorphism
a(E, F,G): RHom, (E®s F, G) = RHom§ (E, RHom},(F, G)).
For E € D(S) and G € D(R), one has then functorial D(S)-isomorphisms
RHomg,(RT} E, G) -~ RHom}(E s RI} S, G) —» RHomg(E, ¢} G).
Application of the functor H¢, produces the local duality isomorphism

Hompg) (¢RI E,G) =~ Homps)(E, ¢/ G),

an adjunction between the functors ¢RI} and ¢f.



4 Concrete local duality.

Henceforth, all rings are noetherian as well as commutative.
Concrete versions of local duality convey more information about ¢f.

Suppose, e.g., that S is module-finite over R, and let G € D¢(R), i.e., each homology module of G € D(R)
is finitely generated.

Suppose also that Ext% (S, G) is a finitely-generated R-module for all i € Z, i.e., RHom% (.S, G) € D¢(R).
(This holds, e.g., if H'G = 0 for all i < 0.)

Then RHomg, (5, () € Dc(S), since, as is easily seen,
¢.RHomg, (S, G) = RHompg(¢.S,G) € Dc(R).

Now Greenlees-May duality (= Grothendieck duality for the natural map Spec(S) — Spec(S), with S the
J-adic completion of ), gives

RHom$ (R} S, F))2 F®sS  (F € Dc(9)).

In particular:

¢}G = RHom$ (RIS, RHom}, (S, G))~ RHom{, (S, G) ®s 5.

In particular, for S = R and ¢ = id (the identity map) one gets
idjG=G®rR (G €DR)).
Specialize further to where R is local, ¢ = id, J = m, the maximal ideal of R, and G € Dc(R) is a

normalized dualizing complex, so that in D(R), Z:= RI,,G is an R-injective hull of R/m.
Then there is a natural isomorphism

RHom$(RI, E,7) = RHom%,(RT, E, RT,,G) = RHom$ (R, E, G)

Substitution into the local duality isomorphism gives, for all E € D(R),

RHom%(RI, E,7) =~ RHom}(F,id}G) = RHomy(E, G ®r R).

For E € Dc(R) this is just classical local duality, modulo Matlis duality.

More familiar local duality

Applying homology H™* one gets the duality isomorphism
Homp(H: E,T) = Extz'(E,G @r R).

Suppose R Cohen-Macaulay, i.e., there’s an m-primary ideal generated by an R-regular sequence
of length d:= dim(R). Then H; R = 0 for i # d.
Since R is R-flat, the preceding isomorphism now yields, for ¢ # d,
0 = Extz'(R, G ®g R) = H'RHom*(R,G ®x R) =H (G ®r R) = (H'G) ®r R.
Hence H'G = 0, so there is a derived-category isomorphism
G = w[d], where w:= H %@, a canonical module of R.

Thus, when R is Cohen-Macaulay local duality takes the familiar form

Hompg(H: F,T) - Extg '(E, o).




5 Residues and duality for power series rings.

Another situation in which ¢f can be described concretely is when ¢ is the inclusion of R into a power-series
ring S:= R[[t]]:= R[[t1,...,tn]], and J is the ideal tS = (t1,...,t)S.

There exist an S-module QS/R and an R-derivation d: S — QS/R such that (dti,...,dt,) is a free S-
basis of QS/ R, characterized by the universal property that for any finitely-generated S-module M and
R-derivation D: S — M there is a unique S-linear map 0: {2g/r — M such that D = dd.

Let O™ (m > 0) be the m-th exterior power of QS/R, a free rank-one S-module with basis dt; Adts - - - Adt,,.

Then (fact) there is a canonical functorial isomorphism

elG =5 GeQ"[m] (G € D(R)).

Residue map

There is a natural surjection
T (™) tget,, = K™ (6, Q™) — HTE (8, 0™) = HPQ™

For v € Q™ and nonnegative integers ni, ..., n.,, set

14 L 14
e T\ )

Theorem 3. There is a canonical (i.e., depending only on the topological R-algebra S) residue map

resg/R: HTQ"’ — R,

such that
res dt;---dt,, | )1 ifng=-=npy=1,
S/R [ A 0 otherwise.

Canonical local duality

As a concrete realization of the abstract local duality theorem, one has, in the preceding situation,
an affine version of Serre duality:

Theorem 4. There is, for S-modules E, a canonical functorial isomorphism
Homp(H}'E, R) > Homg(E, Q™)
that for E = Q™ takes resg/r to the identity map of Qm.

In other words:

The functor Homp(H}'E, R) of S-modules E is represented by (2™, resg, ).
Proofs of the foregoing statements are in “Lectures...,” §5.
Wrap-up

It has been illustrated that duality theory is a (gold) coin with two faces, the abstract and the concrete.

Typically, concrete theorems are more striking, and harder to prove directly than their abstract counterparts;
but passing from abstract to concrete is not easy—it is one of the most challenging aspects of the area.
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