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1 Left-derived functors. Tensor and Tor.

1. Derived functors.

QA : K(A)→ D(A) denotes the canonical functor from the homotopy category of an abelian category A to
its derived category.
Let A1, A2 be abelian categories, and set Qi := QAi

.
Let γ : K(A1)→ K(A2) be a ∆-functor.

A right-derived functor (Rγ, ζ) of γ consists of a ∆-functor Rγ : D(A1) → D(A2) and a ∆-functorial map
ζ : Q2γ → RγQ1 such that:
every ∆-functorial map Q2γ → Γ where Γ: K(A1) → D(A2) takes quasi-isomorphisms to isomorphisms,
factors uniquely as

Q2γ
ζ−→ RγQ1 → Γ.

In other terms, omitting Qs, in the category whose objects are functorial D(A2)-maps of the form

γ(E)→ Γ(E)
(
E ∈ K(A1)

)
,

with fixed source Q2γ, and target Γ as above, the map ζ(E) : γ(E)→ RΓ(E) is an initial object—and thus
it is unique up to canonical isomorphism.
Dually : A left-derived functor (Rγ, ξ) of γ consists of a ∆-functor Lγ : D(A1)→ D(A2) and a ∆-functorial
map ξ : LγQ1 → Q2γ such that:
every ∆-functorial map Γ → Q2γ where Γ: K(A1) → D(A2) takes quasi-isomorphisms to isomorphisms,
factors uniquely as

Γ→ LγQ1
ξ−→ Q2γ.

Here ξ is a final object in the appropriate category of functorial maps.
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Tensor product

We’ve already seen some right-derived functors, RΓI(−) and RHom(−,−).
Describe next an important example of a left-derived functor.
The tensor product C ⊗R D of two R-complexes is such that

(C ⊗R D)n = ⊕i+j=n Ci ⊗R D j,

the differential δn : (C ⊗R D)n → (C ⊗R D)n+1 being determined by

δn(x⊗ y) = diCx⊗ y + (−1)ix⊗ djDy (x ∈ Ci, y ∈ D j).

Fixing D, we get a functor γD := −⊗RD : K(R)→ K(R), that,
together with θ := the identity map of C[1]⊗R D = (C ⊗R D)[1],
is a ∆-functor.
There is an isomorphism ρ : γ′C(D) := C ⊗R D −→∼ D ⊗R C = γCD taking x⊗ y to (−1)ijy ⊗ x.
There is a then a unique ∆-functor (γ′C , θ

′) such that ρ is ∆-functorial.
The map θ′ : γ′C(D[1]) −→∼ γ′C(D)[1] is not the identity: its restriction to Ci ⊗R D j is
multiplication by (−1)i.

q-flat resolutions

One gets a left-derived functor −⊗
=
RD of γD as follows:

An R-complex F is q-flat if for every exact R-complex E (i.e., HiE = 0 for all i), F ⊗R E is exact too.
Equivalently: the functor F ⊗R − preserves quasi-isomorphism.
(By the exactness of the homology sequence of a triangle, a map of complexes is a quasi-isomorphism iff
its cone is exact, and tensoring with F “commutes” with forming cones.)

For example, any bounded-above (i.e., cohomology vanishing above some degree) flat complex is q-flat.
Every R-complex C has a q-flat resolution, i.e., a q-flat complex F plus a quasi-isomorphism F → C.
This can be constructed as a lim−→of bounded-above flat resolutions of truncations of C.

For example, a flat resolution of an R-module M

· · · → F−2 → F−1 → F 0 →M → 0
can be viewed as a q-flat resolution of M (as a complex).

Left-derived tensor product

After choosing for each C a q-flat resolution FC → C, one shows that there exists
a left-derived functor −⊗

=
RD of γD with

C ⊗
=
RD = FC ⊗R D

If FD → D is a q-flat resolution, there are natural D(R)-isomorphisms

C ⊗R FD ←−∼ FC ⊗R FD −→∼ FC ⊗R D,

so any of these complexes could be used to define C ⊗
=
RD. Using FC ⊗R FD one can, as before,

make C ⊗
=
RD into a ∆-functor of both variables C and D.

As such, it has a universal mapping property as above, but with respect to two-variable functors.

Taking homology produces the (hyper)tor functors Tori(C,D) = H−i(C ⊗
=
RD).
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2 Hom-Tensor adjunction.

Relations between Ext and Tor—in particular, as we’ll see, Local Duality—are neatly encapsulated by
a derived-category upgrade of the basic adjoint associativity relation between Hom and ⊗.

For R-modules E,F,G, adjoint associativity is the isomorphism

HomR(E⊗R F, G) −→∼ HomR

(
E,HomR(F,G)

)
that takes φ : E ⊗R F → G to φ′ : E → HomR(F,G) where

[φ′(e)](f) = φ(e⊗ f) (e ∈ E, f ∈ F ).

More generally, with ϕ : R→ S a homomorphism of commutative rings, E, F , S-complexes and
G an R-complex, there is an isomorphism of S-complexes

Hom•R(E⊗S F, G) −→∼ Hom•S
(
E,Hom•R(F,G)

)
(adj)

that in degree n takes a family
(
φij : Ei ⊗S F j → Gi+j+n

)
to the family

(
φ′i : E

i → Homi+n
R (F,G)

)
with

φ′i(e) =
(
φ′ij(e) : Fj → Gi+j+n

)
where

[φ′ij(e)](f) = φij(e⊗ f) (e ∈ Ei, f ∈ F j).

Derived adjoint associativity

With ϕ : R→ S as before, let ϕ∗ : D(S)→ D(R) denote the obvious restriction of scalars functor.
For a fixed S-complex E, the functor Hom•R(E,G) from R-complexes G to S-complexes has a right-derived
functor from D(R) to D(S) (gotten via q-injective resolution of G), denoted RHom•ϕ(E,G).
If we replace G in (adj) by a q-injective resolution, and F by a q-flat one, then the S-complex Hom•R(F,G)
is easily seen to become q-injective; and consequently (adj) gives a D(S)-isomorphism

α(E,F,G) : RHom•ϕ(E⊗
=
S F, G) −→∼ RHom•S

(
E,RHom•ϕ(F,G)

)
The map α is ∆-functorial. Showing this requires some additional grinding.

Derived Hom -Tensor adjunction

α does not depend on the choices of resolutions made above: it’s canonically characterized by commutativity,
for all E, F and G, of the following otherwise natural D(S)-diagram (where H• stands for Hom•):

H•R(E ⊗ F, G) −−−→ RH•R(ϕ∗(E ⊗ F ), G) −−−→ RH•R(ϕ∗(E ⊗
=
F ), G)

(adj)

y' '
yα

H•S
(
E,H•R(F, G)

)
−−−→ RH•S

(
E,H•R(F, G)

)
−−−→ RH•S

(
E,RH•R(ϕ∗F, G)

)
Application of the functor H0 to α yields a functorial isomorphism

HomD(R)

(
ϕ∗(E⊗

=
S F ), G

)
−→∼ HomD(S)

(
E,RHom•ϕ(F,G)

)
,

Thus, for fixed F ∈ D(S), there is a natural adjunction between the functors
ϕ∗(−⊗

=
S F ) : D(S)→ D(R) and RHom•R(ϕ∗F,−) : D(R)→ D(S).
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3 Abstract local duality.

Recall briefly the connection between RΓI and Koszul complexes.
R is a commutative noetherian ring; ⊗ := ⊗R.
t = (t1, . . . , tm) is a sequence in R, generating the ideal I := tR.

For t ∈ R, let K(t) be the complex that in degrees 0 and 1 is the usual map from R to the localization Rt,
and that vanishes elsewhere.
For any R-complex C, define the “stable” Koszul complex

K(t) := K(t1)⊗ · · · ⊗ K(tm), K(t, C ) := K(t)⊗C.

Since the complex K(t) is flat and bounded, hence q-flat, therefore K(t,−) takes quasi-isomorphisms to
quasi-isomorphisms, and so may—and will—be regarded as a functor from D(R) to D(R).
Given a q-injective resolution C → EC we have for E = EjC (j ∈ Z),

ΓIE = ker
(
K0(t, E) = E → ⊕mi=1 Eti = K1(t, E)

)
,

whence a D(R)-map
δ(C ) : RΓIC = ΓIEC ↪→ K(t, EC) ∼= K(t, C ).

The following proposition is a key to many properties of ΓI .
(Details in §3 of “ Lectures on Local Cohomology. . . ” )

Proposition 1. The D(R)-map δ(C) is a functorial isomorphism

RΓIC −→∼ K(t, C ).

Since K(t, C) = K(t, R)⊗ C and K(t, R) ∼= RΓIR is q-flat, therefore:

Corollary 2. There is a functorial D(R) isomorphism

RΓIC −→∼ (RΓIR)⊗
=
C.

Taking homology, one gets Hi
I(C) = HiRΓIC ∼= Tor−i(RΓIR,C) (i ∈ Z).

Local duality

Let J be an S-ideal. Let ϕ#
J : D(R)→ D(S) be the functor

ϕ#
J (G) := RHom•ϕ(RΓJ S,G)

∼= RHom•S
(
RΓJ S,RHom•ϕ(S,G)

) (
G ∈ D(R)),

The isomorphism results from setting E = RΓJ S and F = S in the derived adjoint associativity isomorphism

α(E,F,G) : RHom•ϕ(E⊗
=
S F, G) −→∼ RHom•S

(
E,RHom•ϕ(F,G)

)
.

For E ∈ D(S) and G ∈ D(R), one has then functorial D(S)-isomorphisms

RHom•ϕ(RΓJ E, G) −→∼ RHom•ϕ(E⊗
=
S RΓJ S, G) −→∼

α
RHom•S

(
E, ϕ#

JG
)
.

Application of the functor H0ϕ∗ produces the local duality isomorphism

HomD(R)(ϕ∗RΓJ E, G) −→∼ HomD(S)(E, ϕ#
JG),

an adjunction between the functors ϕ∗RΓJ and ϕ#
J .
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4 Concrete local duality.

Henceforth, all rings are noetherian as well as commutative.
Concrete versions of local duality convey more information about ϕ#

J .
Suppose, e.g., that S is module-finite over R, and let G ∈ Dc(R), i.e., each homology module of G ∈ D(R)
is finitely generated.
Suppose also that ExtiR(S,G) is a finitely-generated R-module for all i ∈ Z, i.e., RHom•R(ϕ∗S,G) ∈ Dc(R).
(This holds, e.g., if HiG = 0 for all i� 0.)
Then RHom•ϕ(S,G) ∈ Dc(S), since, as is easily seen,

ϕ∗RHom•ϕ(S,G) ∼= RHomR(ϕ∗S,G) ∈ Dc(R).

Now Greenlees-May duality (= Grothendieck duality for the natural map Spec(Ŝ) → Spec(S), with Ŝ the
J-adic completion of S), gives

RHom•S
(
RΓJS, F )

)∼= F ⊗S Ŝ
(
F ∈ Dc(S)

)
.

In particular:

ϕ#
JG = RHom•S

(
RΓJS,RHom•ϕ(S,G)

)∼= RHom•ϕ(S,G)⊗S Ŝ.

In particular, for S = R and ϕ = id (the identity map) one gets

id#
JG = G⊗R R̂

(
G ∈ Dc(R)

)
.

Specialize further to where R is local, ϕ = id, J = m, the maximal ideal of R, and G ∈ Dc(R) is a
normalized dualizing complex, so that in D(R), I := RΓmG is an R-injective hull of R/m.
Then there is a natural isomorphism

RHom•R(RΓmE, I ) = RHom•R(RΓmE,RΓmG) ∼= RHom•R(RΓmE,G)

Substitution into the local duality isomorphism gives, for all E ∈ D(R),

RHom•R(RΓmE, I ) −→∼ RHom•R(E, id#
JG) = RHom•R(E, G⊗R R̂).

For E ∈ Dc(R) this is just classical local duality, modulo Matlis duality.

More familiar local duality

Applying homology H−i one gets the duality isomorphism

HomR(Hi
mE, I ) −→∼ Ext−iR (E,G⊗R R̂).

Suppose R Cohen-Macaulay, i.e., there’s an m-primary ideal generated by an R-regular sequence
of length d := dim(R). Then Hi

mR = 0 for i 6= d.
Since R̂ is R-flat, the preceding isomorphism now yields, for i 6= d,

0 = Ext−iR (R, G⊗R R̂) = H−iRHom•(R, G⊗R R̂) = H−i(G⊗R R̂) = (H−iG)⊗R R̂.

Hence H−iG = 0, so there is a derived-category isomorphism
G ∼= ω[d ], where ω := H−dG, a canonical module of R.

Thus, when R is Cohen-Macaulay local duality takes the familiar form

HomR(Hi
mE, I ) −→∼ Extd−iR (E, ω̂).
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5 Residues and duality for power series rings.

Another situation in which ϕ#
J can be described concretely is when ϕ is the inclusion of R into a power-series

ring S := R[[t]] := R[[t1, . . . , tm]], and J is the ideal tS = (t1, . . . , tm)S.

There exist an S-module Ω̂S/R and an R-derivation d : S → Ω̂S/R such that (dt1, . . . , dtm) is a free S-
basis of Ω̂S/R, characterized by the universal property that for any finitely-generated S-module M and
R-derivation D : S →M there is a unique S-linear map δ : Ω̂S/R →M such that D = δd.

Let Ω̂m (m > 0) be the m-th exterior power of Ω̂S/R , a free rank-one S-module with basis dt1∧dt2 · · ·∧dtm.
Then (fact) there is a canonical functorial isomorphism

ϕ#
JG −→∼ G⊗ Ω̂m[m]

(
G ∈ Dc(R)

)
.

Residue map

There is a natural surjection

π : (Ω̂m)t1t2···tm = Km(t, Ω̂m) � HmK(t, Ω̂m) = Hm
J Ω̂m

For ν ∈ Ω̂m and nonnegative integers n1, . . . , nm, set[
ν

tn1
1 , . . . , tnm

m

]
:= π

(
ν

tn1
1 · · · t

nm
m

)
.

Theorem 3. There is a canonical (i.e., depending only on the topological R-algebra S) residue map

resS/R : Hm
J Ω̂m → R,

such that

resS/R

[
dt1 · · · dtm
tn1
1 , . . . , tnm

m

]
=

{
1 if n1 = · · · = nm = 1,
0 otherwise.

Canonical local duality

As a concrete realization of the abstract local duality theorem, one has, in the preceding situation,
an affine version of Serre duality:

Theorem 4. There is, for S-modules E, a canonical functorial isomorphism

HomR(Hm
J E,R) −→∼ HomS(E, Ω̂m)

that for E = Ω̂m takes resS/R to the identity map of Ω̂m.

In other words:
The functor HomR(Hm

J E,R) of S-modules E is represented by (Ω̂m, resS/R).

Proofs of the foregoing statements are in “Lectures. . . ,” §5.

Wrap-up

It has been illustrated that duality theory is a (gold) coin with two faces, the abstract and the concrete.
Typically, concrete theorems are more striking, and harder to prove directly than their abstract counterparts;
but passing from abstract to concrete is not easy—it is one of the most challenging aspects of the area.
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