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Introduction

We have treated the right adjoint ××× of R(−)∗ for quite general maps.
But for non-proper maps this pseudofunctor may be of limited interest.

Grothendieck Duality is basically about a D+
qc-valued pseudofunctor ! over the category of separated

finite-type maps of noetherian schemes, agreeing with ××× on proper maps, but, unlike ×××, agreeing with
the usual inverse-image pseudofunctor * on open immersions (more generally, on separated étale maps);
and also compatible in a suitable sense with flat base change.

The existence and uniqueness (up to isomorphism) of this remarkable twisted inverse-image pseudofunctor
is the first fundamental theorem to be discussed in this lecture; and its behavior vis-à-vis flat base change
is the second.

Conventions

As before, we assume throughout that all schemes are noetherian,

For a scheme-map h, we write the abbreviation h∗ for  Lh∗.
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1 Nagata’s compactification theorem.

A key point here is Nagata’s compactification theorem:

Theorem 1. Any finite-type separated map f : X → Y of noetherian schemes factors as f = fu with
f proper and u an open immersion.

Remarks. 1. Any such f is called a compactification of f .
2. For quasi-finite f , the theorem is essentially Zariski’s Main Theorem.
3. Nagata’s original paper appeared in 1962. The theorem is a hard one, and for a long time, his proof was
not well-understood. But now there are several expositions, the most recent one, by Brian Conrad, having
appeared in 2007 (J. Ramanujan Math. Soc., see references in reference notes.)
4. In 2008, Suresh Nayak extended Nagata’s theorem—and hence the twisted inverse image—to
essentially finite-type separated maps. (arXiv:0809.1201).

2 Characterizaton of the twisted inverse image.

Theorem 2. On the category Sf of finite-type separated maps of noetherian schemes there is a
D+

qc-valued pseudofunctor ! uniquely determined up to isomorphism by the following three properties.

(i) The pseudofunctor ! restricts on the subcategory of proper maps to a right adjoint of the
derived direct-image pseudofunctor.
(ii) The pseudofunctor ! restricts on the subcategory of étale maps to the usual inverse-image pseudofunctor *.
(iii) For any fiber square in Sf

• v−−−−→ •

g

y yf
•

σ

−−−−→
u

•

with f, g proper, and u, v étale, the base-change map βσ (previously defined) equals the natural composite
isomorphism

v∗f ! = v!f ! −→∼ (fv)! = (ug)! −→∼ g!u! = g!u∗.

Proof strategy

In view of (i) and (ii), the obvious way to define f ! is to compactify f, say f = fu, and set
f ! := f ! ◦u∗.

The point is then to show, using flat base change for proper maps, that this definition is essentially indepen-
dent of the chosen compactification, and that the result is pseudofunctorial and satisfies (iii).

The argument is based on a general method of Deligne for pasting together two pseudofunctors on subcate-
gories of a given one.

To deal both with existence and (later) with base change for the twisted inverse image, a formalization of
some basic features of base change will be useful.
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3 Base-change setups.

A base-change setup B
(
S,P, F, !, *, (βσ)σ∈�

)
consists of the following data (a)–(d), subject to

conditions (1)–(3):
(a) Subcategories P and F of a category S, each containing every object of S.
(b) Contravariant pseudofunctors ! on P and * on F, such that for all objects X ∈ S,

the categories X! and X* coincide.
(c) A class � of commutative S-squares, called distinguished squares:

• v−−−−→ •

g

y yf (f, g ∈ P; u, v ∈ F).

•

σ

−−−−→
u

•

(d) For each distinguished σ(u, g, f, v), an isomorphism of functors

βσ : v∗f ! −→∼ g!u∗.

(1) If two commutative S-squares

• v−−−−→ •

g

y yf
•

σ

−−−−→
u

•

• v1−−−−→ •

g1

y yf1
•

σ1

−−−−→
u1

•

are isomorphic, then σ is distinguished⇔ σ1 is distinguished.

(2) For every P-map f (resp. F-map u), the square

• 1−−−−→ •

f

y yf
•

σ

−−−−→
1

•

resp.

• u−−−−→ •

1

y y1

•

σ

−−−−→
u

•

is distinguished.

(3) (Horizontal transitivity.) If the square σ0 = σ2◦σ1 (with g deleted)

• v1−−−−→ • v2−−−−→ •
h

y g

y yf
•

σ1

−−−−→
u1

•

σ2

−−−−→
u2

•

as well as its constituents σ2 and σ1 are all distinguished, then the corresponding natural diagram of functorial
maps commutes:

(v2v1)∗f !
βσ0−−−−−−−−−−−−−−−−→ h!(u2u1)∗

'
y y'

v∗
1
v∗

2
f ! −−−−→

v∗1βσ2

v∗
1
g!u∗2 −−−−→βσ1

h!u∗1u
∗
2.

Similarly for transitivity vis-á-vis vertical juxtaposition of squares.
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Examples.

(A) (Pseudofunctors as base-change setups.)

Let S be a category, take P = F := S, let ! = * be a contravariant pseudofunctor on S,
let � :={all commutative squares in S}, and for any such square σ, let

βσ : v∗f∗ −→∼ (fv)∗ = (ug)∗ −→∼ g∗u∗

be the isomorphism naturally associated with the pseudofunctor *.
For this

(
S,P, F, !, *, (βσ)σ∈�

)
, conditions (1)–(3) are easily checked.

(B) B
(
Sf ,P,E,×××, *, (βσ)σ∈�

)
, with:

• Sf := {finite-type separated scheme-maps},

• P ⊂ Sf := {proper maps}, with D+
qc-valued duality pseudofunctor !!! ;

• E ⊂ Sf := {étale maps}, with D+
qc-valued duality pseudofunctor ∗∗∗

where u∗ :=  Lu∗ for any E-map u;

• � := {fiber squares σ(u, g, f, v) with f, g ∈ P, (u, v) ∈ E};

• βσ : v∗f× → g×u∗ := the corresponding base-change isomorphism.

More strategy

To be able to apply Deligne’s pasting arguments to prove the theorem, we’ll need to enlarge this last B to a
setup B

(
Sf ,P,E,×××, *, (β′σ)σ∈�′

)
where �′ consists of all commutative Sf -squares σ(u, g, f, v) with

f, g proper and u, v étale.
That means we have to extend βσ to all σ ∈ �′, while maintaining transitivity.
In fact we will extend to an even larger class of squares:

Admissible squares

In the category of schemes, an admissible square is a commutative square

X ′
v−−−−→ X

(∗) g

y yf {
u, v flat;

f, g finite-type separated

Y ′ −−−−→
u

Y
such that in the associated diagram

X ′
i−−−−→ X ×Y Y ′

q1−−−−→ X

q2

y yf
Y ′ −−−−→

u
Y

(where q1, q2 are the projections, q1i = v and q2i = g) the map i is étale.

Example: Any commutative (∗) with u and v étale is admissible.
That’s because a map which is étale remains so after any base change, and if qi and i are both étale then
so is i, see [EGA IV, §17].
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4 Flat base change for the twisted inverse image.

Theorem 3. Let S be the category of separated maps of noetherian schemes.

Let Sf ⊂ S be the subcategory of finite-type maps, and ! the D+
qc-valued twisted inverse-image pseudofunctor

on Sf ⊂ S.

Let F ⊂ S be the subcategory of flat maps, and * the usual D+
qc-valued inverse-image pseudofunctor on F.

Let � be the class of admissible S-squares.
Then there is a unique base-change setup B

(
S,Sf , F, !, *, (βσ)σ∈�

)
such that the following conditions hold

for any σ(u, g, f, v) ∈ �.
(i) If σ is a fiber square with f proper then βσ is the base-change isomorphism.
(ii) If f (hence g)—is étale, so that f ! = f∗ and g! = g∗, then βσ is the natural isomorphism v∗f∗ −→∼ g∗u∗.

(iii) If u (hence v)—is étale, so that u∗ = u! and v∗ = v!, then βσ is the natural isomorphism v!f ! −→∼ g!u!.

In other words:

The theorem says there is essentially one way to associate to each admissible square of noetherian schemes

• v−−−−→ •

g

y yf
•

σ

−−−−→
u

•

(with f and g finite-type separated maps, u and v flat), a functorial isomorphism βσ : v∗f ! → g!u∗ that
satisfies horizontal and vertical transitivity, and that for certain special admissible squares is the isomorphism
specified by conditions (i)—(iii).

5 Enlargement of base-change setups.

As has been indicated, the fundamental existence and base-change theorems for the twisted inverse image are
proved via two kinds of abstract pasting theorems, one for pseudofunctors and one for base-change setups.

In general terms, pasting of data given on two subcategories of a category is done by making a fairly
obvious construction which uses “compactifications” of maps—factorizations f = fu where f and u are
in the respective subcategories, and then checking via numerous commutative diagrams that the result is
independent of the choice of compactification, and has all the desired properties.

For example, to construct βσ for an admissible σ(u, g, f, v), compactify f to decompose σ as follows:

• i−−−−→ • q−−−−→ •
u2

y yu1

• w−−−−→

σ0

•

g

y yf
•

σ

−−−−→
u

•

(σ)

where the two squares are fiber squares, f and g are proper, u1 and u2 are open immersions (hence étale),
i is étale, and u, w, q are flat.
If the base-change theorem is to hold, then βσ must be the natural composed isomorphism

g!u∗ −→∼ i!u!
2 g

!u∗ −→∼
i!u!

2βσ
i!u!

2w
∗f

!
= i∗u∗2w

∗f
! −→∼ i∗q∗u∗1f

! −→∼ v∗u!
1f

! −→∼ v∗f !.
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Is this composed map independent of the choice of compactification, and transitive?
The answer is, of course, ”yes”. But for the most part, details of the proof are not very suitable for a lecture;
they can be found in the reference notes.

Example of enlargement.

Just to illustrate, in the rest of this lecture, we’ll sketch some techniques for enlarging base-change setups.
Recall the base-change setup B = B

(
Sf ,P,E,×××, *, (βσ)σ∈�

)
with:

• Sf := {finite-type separated scheme-maps},

• P ⊂ Sf := {proper maps}, with D+
qc-valued duality pseudofunctor !!! ;

• E ⊂ Sf := {étale maps}, with D+
qc-valued duality pseudofunctor ∗∗∗

where u∗ :=  Lu∗ for any E-map u;

• � := {fiber squares σ(u, g, f, v) with f, g ∈ P, (u, v) ∈ E};

• βσ : v∗f× → g×u∗ := the corresponding base-change isomorphism.

The problem is to extend βσ to a larger class of σ; more precisely, to enlarge B to a setup B
(
Sf ,P,E,×××, *, (β′σ)σ∈�′

)
where �′ consists of all commutative Sf -squares σ(u, g, f, v) with f, g proper and u, v étale.

We approach this problem axiomatically.

Special subcategories

For a setup B
(
S,P,E, !, *, (βσ)σ∈�

)
, a subcategory A ⊂ S is special if for any maps i : X → Y in A,

g : X ′ → X in P, and v : X ′ → X in E, � contains the squares

X ′
1−−−−→ X ′

g

y yig
X −−−−→

i
Y

X ′
v−−−−→ X

1

y yi
X ′ −−−−→

iv
Y

Example 4. For the preceding example, the category A whose maps are all the open-and-closed immersions
is special. Indeed, since i is a monomorphism, the above squares are fiber squares.

A simple deduction
After fixing a special subcategory A, we call its maps special.
For any special map i : X → Y , βi : i! −→∼ i∗ is the isomorphism βτ associated to the distinguished square

X
1−−−−→ X

1

y yi
X

τ

−−−−→
i

Y

Proposition 5. Let A be a special subcategory of B
(
S,P,E, !, *, (βσ)σ∈�

)
. Then the βi give a pseudofunc-

torial isomorphism of the restrictions of ! and * to A.

So, for instance, if i is an open-and-closed immersion then i∗ is right-adjoint—pseudofunctorially—to Ri∗.
(This fact can easily be shown directly; the foregoing relates it to base change.)
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Proof. For pseudofunctoriality of the isomorphism βi, apply (3) and (2) in the definition of setup to

X

1

y

1−−−−→ X
1−−−−→ X

i

y yi
Y

1−−−−→ Y

1

y yj
X −−−−→

i
Y −−−−→

j
Z

to see that the left and right halves of the following diagram commute:

(ji)! (ji)!
βji−−−−→ (ji)∗

'
y '

y y'
i!j! −−−−→

i!βj
i!j∗ −−−−→

βi
i∗j∗

Additional conditions

For the basic enlargement result, we impose additional mild conditions on B
(
S,P,E, !, *, (βσ)σ∈�

)
and its

special subcategory A. These conditions are easily verified for the (proper, ètale, fiber-square) setup we are
most interested in at present.

(4) In the following S-diagrams, suppose that u1 ∈ E (resp. f1 ∈ P).

• v1−−−−→ • v2−−−−→ •

h

y g

y yf
•

σ1

−−−−→
u1

•

σ2

−−−−→
u2

•

• w−−−−→ •
g1

y yf1
• v−−−−→

σ1

•

g2

y yf2
•

σ2

−−−−→
u

•

In either diagram, if σ2 is a fiber square and the composed square σ2σ1 is in �, then σ1 ∈ �.
(5) If the S-square σ(u, g, f, v)

X ′
v−−−−→ X

g

y yf
Y ′ −−−−→

u
Y

is in �, and u (resp. f) is special then so is v (resp. g).

(6) If the above σ(u, g, f, v) is in � then so is any fiber square with the same u and f,

X ′′ −−−−→ Xy yf
Y ′ −−−−→

u
Y

and furthermore, the resulting map X ′ → X ′′ is special.
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Remark. Let µ : X ′ → X ′′ be an isomorphism and consider the following fiber squares, the first of which
is, by (2), distinguished:

X ′′
1−−−−→ X ′′

1

y y1

X ′′ −−−−→
1

X ′′

X ′
µ−−−−→ X ′′

µ

y y1

X ′′ −−−−→
1

X ′′

From (6) it follows that µ is special. Thus every isomorphism is special.

Proposition 6 (Enlargement). Under the preceding assumptions on B
(
S,P,E, !, *, (βσ)σ∈�

)
and A,

there is a unique base-change setup B′ = B′A = B
(
S,P,E, !, *, (β′σ)σ∈�′

)
such that :

(i) A commutative square
X ′

v−−−−→ X

g

y yf
Y ′ −−−−→

u
Y

is in �′ if and only if there is a fiber square in �

X ′′ −−−−→ Xy yf
Y ′ −−−−→

u
Y

such that the resulting map X ′ → X ′′ is special. (Hence � ⊆ �′; and every fiber square in �′ is in �.)

(ii) For every σ ∈ � ⊆ �′ it holds that βσ = β′σ.

This Proposition does not yet suffice for our purposes, since for the proper, étale, fiber-square B, it only
gives βσ for diagrams which decompose as

• i−−−−→ • q1−−−−→ •

q2

y yf
• −−−−→

u
•

where the square is a fiber square and i an open-and-closed immersion, whereas we need the result more
generally for where i is étale.

But the following Corollary provides a second enlargement to reach the desired situation:
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Corollary 7. In the Proposition, let A′ be a subcategory of S such that for every map i : X → Y ∈ A′ the
diagonal map δi : X → X ×Y X is in A.
Assume further that for any fiber square σv,f,g,u in S, if u (resp. f) is in A′ then so is v (resp. g). Then :
(i) A′ is B′-special; and conditions (4)-(6) hold for (B′,A′). Thus it is meaningful to set B′′ := (B′)′A′ .
(ii) If a fiber square σ(u, g, f, v) with u ∈ A′ is in �, then any commutative σv′,f,g′,u with v′ ∈ A′ and
g′ ∈ P is B′′-distinguished.

The proofs of the Proposition and its Corollary consist mainly of verifying formally the commutativity of a
number of suitably chosen diagrams, some of them rather large.

Example 8. The diagonal of a separated étale map is an open-and-closed immersion; and maps which are
étale (resp. proper) remain so after arbitrary base change [EGA IV, §17].
Therefore the category A′ of proper étale maps satisfies the hypotheses of the Corollary with respect to the
(proper, étale, fiber-square) setup B and its special subcategory A of open-and-closed maps.
The resulting setup B′′ is then the sought-after unique enlargement of B (i.e., the one where all commutative
σ(u, g, f, v) with f, g proper and u, v étale are distinguished).

To review: Construct B′, the enlargement of B via its special subcategory of open-and-closed immersions,
then get B′′ as the enlargement of B′ via its special subcategory of étale maps.
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