
Lectures on Grothendieck Duality

VIII: Some flesh on the skeleton.

Joseph Lipman

February 20, 2009

Contents

1 Twisted inverse image of derived Hom and ⊗. 2

2 Perfect maps. 4

3 Pseudo-Cohen-Macaulay maps. 5

4 Finite maps. 5

5 Regular immersions; fundamental local isomorphism. 6

6 Smooth maps 7

7 The concrete approach to duality. 8

Introduction

The fundamental existence and base-change theorems for the twisted inverse image pseudofunctor provide
only the skeleton of a living, breathing theory with many interesting concrete manifestations.

In this lecture we touch on some of the more down-to-earth aspects of Grothendieck Duality.

All schemes are assumed noetherian, and all scheme-maps are finite-type and separated.

We write ⊗ in place of ⊗
=

; and Hom in place of Hom•.

Also, for a scheme-map h, we use the abbreviations h∗ := Lh∗, h∗ := Rh∗.
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1 Twisted inverse image of derived Hom and ⊗.

For a scheme-map f : X → Y , and certain E, F ∈ Dqc(X), there exist canonical pseudofunctorial maps

χ(f,E, F ) : f∗E ⊗X f !F → f !(E ⊗Y F ),

ζ(f,E, F ) : RHomX(f∗E, f !F )→ f !RHomY (E, F ).

Recall that the twisted inverse image is defined only on D+
qc . So for χ to be meaningful, one needs F ∈ D+

qc(Y )
and E ⊗X F ∈ D+

qc(Y ).

Similarly, for ζ one needs F ∈ D+
qc(Y ) and RHomY (E,F ) ∈ D+

qc(Y ). (The latter holds whenever
F ∈ D+

qc(Y ) and E ∈ D-
c(Y ).)

Note: Both χ and ζ have the form T(f∗E, f !F )→ f !T(E,F ).

I don’t know a good reason for this parallelism between ⊗
=

and RHom to hold.

Transitivity of χ and ζ

Pseudofunctoriality of χ and ζ means that for any X
f−→ Y

g−→ Z,
the following natural “transitivity” diagrams commute:

(gf)∗E ⊗ (gf)!F ˜−−−−−−−−→ f∗g∗E ⊗ f !g!F

χ

y yχ
(gf)!(E ⊗ F ) −̃−−→ f !g!(E ⊗ F )

χ←−−− f !(g∗E ⊗ g!F ))

RHom
(
(gf)∗E, (gf)!F

) ˜−−−−−−−−→ RHom
(
f∗g∗E, f !g!F

)
ζ

y yζ
(gf)!RHom

(
E, F

)
−̃−−→ f !g!RHom

(
E, F

) ζ←−−− f !RHom
(
g∗E, g!F

)
Defining χ and ζ

For f an open immersion (so f ! = f∗), χ and ζ are the obvious isomorphisms

f∗E ⊗ f∗F −→∼ f∗(E ⊗ F ), RHom(f∗E, f∗F ) −→∼ f∗RHom(f∗E, f∗F )

For f proper, set χ := the adjoint to the natural composition (where the isomorphism comes from projection):

f∗(f∗E ⊗ f !F ) −→∼ E ⊗ f∗f !F → E ⊗ F ;

and ζ := the adjoint to the natural composition (where the isomorphism comes from sheafified f∗-f∗ duality):

f∗RHom(f∗E, f !F ) −→∼ RHom(E, f∗f !F )→ RHom(E, F ).

Now for an arbitrary f , with compactification f = f◦u, the above transitivity diagrams
(with u in place of f and f in place of g) determine χ(f, . . . ) and ζ(f, . . . ).

Of course one must show—and this is not trivial—that the result is
independent of the choice of compactification, and pseudofunctorial.
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When is ζ an isomorphism?

Proposition 1. If E ∈ D-
c(Y ) and F ∈ D+

qc(Y ) then ζ(f,E, F ) is an isomorphism RHomX(f∗E, f !F ) −→∼ f !RHomY (E, F ).

Proof (partial). It suffices to treat the case where f is proper.
Use “axiomatic” notation, [A,B ] := RHom(A,B), etc.

E∈D-
c(Y ), F ∈D+

qc(Y ) =⇒ f∗E∈D-
c(X), f !F ∈D+

qc(X) =⇒ [f∗E, f !F ]∈Dqc(X).
There are natural isomorphisms, for any G ∈ Dqc(X):

HomDqc (X)

(
G, [f∗E, f !F ]

)
−→∼ HomDqc (X)

(
G⊗ f∗E, f !F

)
−→∼ HomD(Y )

(
f∗(G⊗ f∗E), F

)
−→∼ HomD(Y )

(
f∗G⊗ E,F

)
−→∼ HomD(Y )

(
f∗G, [E,F ]

)
−→∼ HomDqc (X)

(
G, f ![E,F ]

)
.

There results an isomorphism [f∗E, f !F ] −→∼ f ![E,F ].
Is this isomorphism the same as ζ?

Interlude: coherence in categories.

Answering the preceding question is a highly recommended exercise.
One has to show that some big diagram commutes.

Doing this will reveal some of the wealth of the axiomatic setup—a setup based on Grothendieck’s notion of
six operations.

And the tedium involved may foster appreciation for one of the intriguing (at least to me) questions arising
out of the theory. Namely,

Is there a “coherence” theorem guaranteeing that all diagrams
of a certain form, built up from the axioms, must commute?

Or an algorithm for deciding whether or not such diagrams commute?

Or, at least, could one train a computer to become an expert assistant
in the task?

When is χ an isomorphism?

The story for χ is more complex.
First, some definitions:
For f : X → Y , an OX -complex E is f-perfect if it has coherent homology and is D(f−1OY )-isomorphic to
a bounded flat f−1OY -complex.
(f−1OY is the sheaf of rings on X whose stalk at x ∈ X is OY,f x.)

E is perfect if it is 1X -perfect. This is equivalent to saying that each x ∈ X has an open neighborhood U
such that the restriction E|U is D(U)-isomorphic to a bounded complex of finite-rank free OU -modules.

One shows that:
The map f has finite tor-dimension ⇐⇒ OX is f-perfect.
So (in the noetherian context) maps of finite tor-dimension are often called perfect maps.

The next result says that “χ an isomorphism” characterizes perfect maps.
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2 Perfect maps.

Recall: schemes are noetherian, and scheme-maps are separated, of finite type.

Theorem 2. For any scheme-map f : X → Y , the following conditions are equivalent.
(i) The map f is perfect.
(ii) The complex f !OY is f-perfect.
(iii) f !OY ∈ D-

c(X), and for all E ∈ D+
qc(Y ), χ(f, E,OY ) is an isomorphism

f∗E ⊗ f !OY −→∼ f !E.

(iii)′ For every perfect F ∈ D(Y ), f !F is f-perfect; and ∀E,F ∈ D(Y ) such that F and E ⊗ F are
in D+

qc(Y ), χ(f, E, F ) is an isomorphism

f∗E ⊗ f !F −→∼ f !(E ⊗ F ).

(iv) The functor f ! : D+
qc(Y )→ D+

qc(X) is bounded.

A proof is in the reference notes. (Theorem 4.9.4).

Perfect maps and f !O

Via transitivity, one sees that on the category of perfect maps, χ(f,E,O) is a pseudofunctorial isomorphism

f#E := f∗E ⊗ f !OY −→∼ f !E
(
E ∈ D+

qc(Y )
)
,

where, for a composition X
f−→ Y

g−→ Z of perfect maps, the canonical isomorphism

f#g#F −→∼ (gf)#F (F ∈ D+
qcZ)

is the natural composition

f∗(g∗F ⊗ g!OZ)⊗ f !OY −→∼ f∗g∗F ⊗ (f∗g!OZ ⊗ f !OY )

−→∼
1⊗χ

f∗g∗F ⊗ f !g!OZ −→∼ (gf)∗F ⊗ (gf)!OZ

So the pseudofunctor f# is determined by the family of f -perfect complexes f !OY (f a perfect map) plus a family
of isomorphisms f∗g!OZ ⊗ f !OY −→∼ (gf)!OZ (that satisfies, with respect to triple compositions, a condition left to
the reader).

The point is:
For perfect maps the theory of f ! is determined by f∗ and the behavior of complexes of the form f !O.

Base change

For example, for any independent square
X ′

v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

the identification, via χ, of f ! and f# transforms the base-change map βσ to

v∗f#E = v∗f∗E⊗ v∗f !OY → g∗u∗E⊗ g!u∗OY = g∗u∗E⊗ g!OY ′ = g#u∗E,

a map which is determined by the base-change map v∗f !OY → g!u∗OY .
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3 Pseudo-Cohen-Macaulay maps.

With all this in mind we will now examine some specific kinds of perfect maps (Cohen-Macaulay, Gorenstein,
regular immersion, smooth).
Suppose for simplicity that schemes are connected.
For a scheme-map f : X → Y , the lowest-degree nonvanishing cohomology of f !OY is called the
canonical sheaf of f . This coherent OX -module is denoted ωf .
As an instance of a general fact about derived categories, one has:
If ωf = Hd(f !OY ) is the only nonvanishing cohomology of f !OY then there is a natural D(X)-isomorphism

f !OY −→∼ ωf [−d ].

As before, for perfect f the theory of the pseudofunctor f ! reduces to the theory of f !OY . This leads one to
focus on the following class of maps.

Definition 3. A scheme-map f : X → Y is pseudo-Cohen-Macaulay if f is perfect and for some d, f !OY is
D(X)-isomorphic to ωf [−d ].

Example 4 (Cohen-Macaulay maps). f is pseudo-Cohen-Macaulay and OX and ωf are both (f−1OY )-flat
⇐⇒ f is flat and the fibers of f are Cohen-Macaulay varieties.
Such maps are called Cohen-Macaulay.

Example 5 (Gorenstein maps). f is called Gorenstein if f is pseudo-Cohen-Macaulay and ωf is invertible.
A flat map f is Gorenstein ⇐⇒ the fibers of f are Gorenstein varieties.
So flat Gorenstein maps are Cohen-Macaulay.

Example 6 (Smooth maps). Smooth maps, being flat, with smooth fibers, are Gorenstein.
For a smooth map f, with d-dimensional fibers, ωf ∼= Ωdf , the d-th exterior power of the sheaf of relative
Kähler differentials (see below).

4 Finite maps.

Let X be a scheme, and Aqc(X) the abelian category of quasi-coherent OX -modules. There is a natural
functor D(Aqc(X))→ Dqc(X), which is in fact an equivalence of categories.
For a scheme-map f : X → Y , therefore,
one can think of f ! as being a right adjoint of Rf∗ : D(Aqc(X))→ D(Aqc(Y )).

f ! for finite maps

Any ringed-space map f : (X,OX)→ (Y,OY ) factors naturally as

(X,OX)
f−→ Y := (Y , f∗OX)

ψ−→ (Y,OY ).

If f is a finite scheme-map, then f∗ is an exact functor that induces an equivalence of categories from Aqc(X)
to the category of quasi-coherent f∗OX -modules.
Hence, f being flat, f∗ = Rf∗ : D(Aqc(X))→ D(Aqc(Y )) has the right adjoint Lf ∗ = f

∗.

So if Ψ is a right adjoint for Rψ∗ : D(Aqc(Y ))→ D(Aqc(Y )) then f
∗Ψ is a right adjoint of

Rf∗ = Rψ∗Rf∗ : D(Aqc(X))→ D(Aqc(Y )).

Such a Ψ =: RHomψ(f∗OX ,−) is gotten by right-deriving the functor Homψ(f∗OX ,−) that takes a quasi-
coherent OY -module F to the quasi-coherent Of∗OX

-module HomY (f∗OX , F ).
This assertion is local, where it just means (as in Lecture 2) that for a ring-homomorphism ϕ : R → S, the
derived restriction-of-scalars functor ϕ∗has the right adjoint RHomϕ(S,−).
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5 Regular immersions; fundamental local isomorphism.

Preliminaries: Let Y be a scheme and I a quasi-coherent OY -ideal.
Any exact OY -sequence P → OY → OY /I → 0 gives rise to an isomorphism P/IP −→∼ I/I2.
Taking P to be flat, one gets a natural isomorphism

ψ : TorOY
1 (OY /I, OY /I ) −→∼ I/I2.

Tensor product of resolutions makes ⊕i≥0 TorOY
i (OY /I, OY /I ) into an alternating graded OY -algebra; so by

the universal property of exterior algebras, one deduces from ψ−1 a canonical graded-algebra homomorphism

⊕i≥0

∧i(I/I2
)
−→ ⊕i≥0 TorOY

i

(
OY /I, OY /I

)
.

Locally, for a quasi-coherent OY -projective resolution P• → OY /I, there are natural maps

Exti(ι∗OX ,OY ) −→∼ Hi(Hom(P• ,OY ))

−→∼ Hi(Hom(P• ⊗OY /I,OY /I ))

−→ Hom(Hi(P• ⊗OY /I ),OY /I )

−→∼ Hom(TorOY
i (OY /P, OY /P ),OY /I )

−→ Hom(
∧i(I/I2

)
, OY /I

)
(i ≥ 0).

The composition is independent of the choice of P• . Hence one can paste to get natural global maps, the
fundamental homomorphisms

λi : ExtiOY
(ι∗OX ,OY ) −→ HomOY

(∧i(I/I2
)
, OY /I

)
(i ≥ 0).

Regular immersions

A regular immersion ι : X ↪→ Y , of codimension n, is an isomorphism of X onto a closed subscheme of Y
defined by an ideal I that is locally generatedby a regular sequence of length n.
Note that then ι∗OX = OY /I, and I/I2 is a locally free OY /I-module of rank n.

Using (locally) the Koszul complex on such a generating sequence as a
projective OY -resolution of OY /I, one sees that ι is a perfect map, with

ι!OY = ι∗RHomY (ι∗OX ,OY ) ∼= ι∗ExtnOY
(ι∗OX ,OY )[−n] =: ωι [−n].

Moreover, one sees that the above map λn is an isomorphism

ExtnOY
(ι∗OX ,OY ) −→∼ HomOY

(∧n(I/I2
)
, OY /I

)
.

This is often called the fundamental local isomorphism.

In conclusion:

Any regular immersion f : X ↪→ Y of codimension n is a Gorenstein map, with invertible canonical sheaf

ωf
∼= f∗HomOY

(∧n(I/I2
)
, OY /I

)
where I is the kernel of the natural surjection OY � f∗OX .

6



6 Smooth maps

Theorem 7. Let f : X → Y be smooth, of relative dimension n, i.e., flat, with fibers that are n-dimensional
nonsingular varieties.
Then f is a Gorenstein map, with

f !OY ∼= ωf [n] ∼= Ωnf [n],

the invertible sheaf Ωnf being the n-th exterior power of the sheaf Ωf of relative Kähler differentials.

Proof (Verdier). Consider the commutative diagram

X
δ−−−−→ X ×Y X

π1−−−−→ X

π2

y yf
X −−−−→

f
Y

with π1, π2 the projections, and δ the diagonal (so that πiδ = 1X).
The map δ is a regular immersion of codimension n; and if I is the kernel of OX×Y X � δ∗OX then
Ωf = δ∗

(
I/I2

)
. Flat base change, and the preceding results on regular immersions, yield isomorphisms

OX = (π2δ)
!OX ∼= δ!π!

2f
∗OY ∼= δ!π∗1f

!OY ∼= δ!OX×Y X ⊗ δ∗π∗1f !OY
∼= δ∗HomOY

(∧n(I/I2
)
, OY /I

)
[−n]⊗ δ∗π∗1f !OY

∼= δ∗HomOX

(
Ωnf , OX

)
[−n ]⊗ f !OY .

Tensoring throughout with Ωnf [n] gives the desired conclusion.

Concrete pseudofunctoriality

For smooth maps X
f−→ Y

g−→ Z, of respective relative dimensions n and m, there are canonical D(X)-
isomorphisms

f !OY ⊗ f∗g!OZ −→∼ f !g!OZ −→∼ (gf)!OZ .

Via the above isomorphisms f !OY −→∼ Ωnf [n] and g!OZ −→∼ Ωmg [m], one deduces an isomorphism

Ωnf ⊗ f∗Ωmg −→∼ Ωn+m
gf .

There is also a concrete isomorphism with the same source and target, that looks locally—for suitable xi
and yj—like

dx1dx2 · · · dxn ⊗ dy1dy2 · · · dym 7→ dx1dx2 · · · dxndy1dy2 · · · dym.

Are these two isomorphisms the same?—Yes, but why?
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7 The concrete approach to duality.

A proof for the preceding “Yes,” based on a different approach to duality theory, is sketched in Hartshorne’s
classic Residues and Duality, starting on p. 388. Filling in all the details could be a formidable task.

His approach is “bottom up” (concrete ↗ abstract) rather than
“top down” (abstract ↗ concrete). This is Grothendieck’s initial way, worked out in Residues and Duality,
with many clarifications and corrections in Conrad’s Grothendieck Duality and Base Change (SLN 1750).
One starts with the above concrete realizations of f ! for smooth and for finite maps, proves the appro-
priate duality theorems for them, then pastes together locally using factorizations of arbitrary maps as
smooth ◦finite; and finally pastes together locally defined duality data—not directly, which isn’t always pos-
sible in derived categories, but via the theory of dualizing complexes, a theory we have not had time to discuss.
Carrying this program out requires the verification of a very large number of nontrivial compatibilities among
diverse maps. Working through it all reveals many riches hidden behind the unifying abstract facade.

Conclusion

As indicated by the discussion of “concrete pseudofunctoriality” for smooth maps, passing between the
concrete and abstract theories, in either direction, is challenging—and rewarding. Negotiating that passage
adds much to the fascination of duality theory.
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