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PREFACE

These notes are intended to serve as an introduction
to the subject of transcendental numbers. They should be
accessible to the advanced undergraduate who knows what is
meant by an algebraic number field K of finite degree over
the rational field GQ‘ , and by the norm from K to dl
of an algebraic integer in K . The maximum principle for
entire analytic functions of a complex variable is used
once, in §7. The proof of one lemma (§11l) is based on
complex integration; however it is indicated there that the
use of integration can be avoided. Power series with complex
coefficients appear several times. Thus, while a first course
in complex analysis is a desirable prerequisite, it is not
absolutely essential,
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INTRODUCTION

The subject of transcendental numbers was launched in
1844 with Liouville'!s discovery of the theorem which is now
known as the Liouville approximation theorem. Liouville's
theorem enabled him to give the first proof that there exist
transcendental numbers, although it should be pointed out,
Legendre had suspected half a century earlier that this might
be the case,

An entirely different approach to the subject was taken
by George Cantor, who published in 1874 his spectacular (at
that time) result on the countability of the set of algebraic
numbers., Along with his discovery that the complex numbers
are uncountable, this showed that almost every number is
transcendental. Cantor's methods were entirely non construc-
tive, being based on his theory of countable and transfinite
numbers, and there was some doubt among his contemporaries as
to their validity. Indeed, the ridicule of Kronecker and his
followers had its effect on Cantor's health, Nowadays, of
course, Cantor's theorem is universally accepted.

It is one thing to construct transcendental numbers; it
is another to investigate the transcendence of a specific
number like e or T or Euler's constant.

In the former situation, the mathematician has consider-
able freedom; in the latter, as E,T, Bell puts it, it is the

mathematician, and not the suspect, who takes orders. Thus
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lit was that Hermite's proof for the transcendence of e (1873)
and Lindemann's proof for the transcendence of W (1882) were
considered to be among the greatest achievements of nineteenth
century mathematics. Even Kronecker indicated, as best he
could, his grudging admiration. He is reported to have asked
Lindemann "of what use is your beautiful proof, since irrational
numbers do not exist?®

In the ensuing years, great interest was attached to
rendering the proofs for the transcendence of e and 7 as
elementary (i.e. as free from the methods of analysis) as
possible, Dozens of proofs were published, each a little more
dependent on the particular properties of the exponential func-
tion than the one before, and therefore a little less capable
of generalization., Over a long period, few new results were
obtained.

New impetus was given to the subject by A. Gelfand and
C.L. Siegel around 1930. Their ideas led to the independent
solutions by Gelfand and Th. Schneider (1934) of Hilbert's
seventh problem, now known as the Hilbert-Gelfand-Schneider
theorem: if a and P are algebraic numbers, «a # 0,1,

B irrational, then aB is transcendental.*

# The question of the nature of logarithms of rational numbers
with respect to a rational base was raised b Euler as early
as 1748 Ee igo in Anal Infini um!, Euler even
states that such logarithms are either rational or transcen-
dental, but the meaning of the word "transcendental®™, as
used in those times, seems unclear,



Among the important results of the last thirty years have
been the classification of transcendental numbers by Mahler
(1932) and later Koksma (1939); Schneider's theorems on ellip-
tic functions and Abelian integrals (1941) and the Thue-Siegel-
Roth theorem on the approximation of algebraic numbers by
rationals (1955).

At present, there remain many unsolved problems, For
instance, it is not known whether any of the following numbers
are transcendental (or even irrational): Euler's constant,
¢(2n+l) , I'(x) for algebraic x #0, +1 , 2,000 o Since
e and T are transcendental, at least one of the numbers
el, et , is transcendental; but neither has ever been proved
irrational., Nor is it known whether or not e and T are
algebraically dependent.

These are not the most important unsolved problems cf.
[Schneider, l], but they are interesting and easy to state,
The answer to any of these problems seems remote., But there
is always hope: Hilbert predicted that the transcendence of
2/2 would be settled only long after the Riemann hypothesis,
and he was proven wrong.

As yet, there seems to be no aspect to the study of
transcendental numbers which could be described as a general
theory. However, there are some methods which are quite
powerful in their own way, and we have tried in these notes
to describe three of them.

Part I, entitled Approximation Methods, deals with
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zroved a theorem (1954) which, in some cases, reduces the
guestion of algebraic independence of transcendental numbers
cver the field of rationals to the much simpler question of
algebraic independence of transcendental functions over the
rield of rational functions. In §12.2, we state without
proof the basic theorem, as well as a generalization of
Lindemann's theorem which is an easy consequence,

The proof (following Mahler) of Lindemannf's theorem
which we give in Part III is by no means the simplest known,
However, it does illustrate some of the principles of Siegel's
method, and it has the added advantage of giving a transcen-

w . .
dence measure for e when ® is algebraic,




I. APPROXIMATION METHODS

§1. The Theorem of Liouville,

1.1 Theorem 1 (Liouville) Let a be an algebraic
number of degree n > 2 ., There is a positive number ¢ |

depending only on a , such that the inequality

o - 81> 1 o

holds for all pairs of rational integers p,q (q # 0) .

Proof. Fix an irreducible polynomial f£(X) of degree n |
with rational integer coefficients, such that f(a) = 0 .

The derivative f!'(a) does not vanish; therefore the defini-
tion of the derivative as a limit shows that for some & > 0

£f(p/q) - f(a)
(p/q) - a

<2 |£'(a)l

whenever |(p/q) - a] < & . Now f(p/q) = b/q" with b # 0

a rational integer, and so



1

|£(p/q) - £(a)| = le(p/)} 2 —%
{al

1f |(p/q) - a|l £ 8 , we have therefore

1 = < 2i£(a)| |(p/a) - ai
lql

while if |(p/q) - a| > & then certainly [{(p/q} - a] => 5,P
lal”
In either case (1) holds with
. 1
c = min( > &) g.e.d.

21 £ (a)

We shall give another proof in §2.

1.2 Liouvillets theorem enables us to construct transcen-

dental numbers. We define a Liocuville number to be a non-

~,

rational number a such that for no pair ¢ >0 , n > 2 is
it true that the inequality (1) of theorem 1 holds for ail
rational p/q . It is evident that a Liouville numbe: is real.

Liouvillet!s theorem shows that any Liouville number is trans-

cendental.



We shall have examples of Liouville numbers in a moment,
~“ut first we derive an alternative definition., If §& is a
Tiouville number, then for any positive (rational) integer N

there are actually infinitely many rationals p/q such that

0 < |&-(p/q)] < 1/|q|N ; otherwise, if ¢ > 0 were sufficiently
small, we would have 0 < |&-(p/q)| < c/‘qIN for all p/q .

Suppose, conversely, that §& is a number with the property:

(P) For any positive integer N , there is a rational

number p/q with q = 2 such that

0 < |&-(p/@)] <1/q°

Given ¢ >0 , n> 2 , choose m so that (1/2™) <ec ,

and set N = n+m ; then for suitable p/q

le-(p/a)| <X < L. <=

m
q q

W

Moreover, & is not rational; for if £ were rational,
say E=r/s (s>0), and if 0 < |§-(p/q)] , then choosing

N so that 201> s , we would get

1 1 1
>L > > L



and so £ could not enjoy the property (P) . We see then
that (P) is a characterization of Liouville numbers.,

An example of a Liouville number is

1
¢ = -
oo 10

To see this, set

10Vt

Then
pN w [+¢]
1 1 1 1
0o < ‘c- | = E? < }j ————‘ <
N? k! (N+1)? k N!\N
10 K=N+1 10 10 =0 10 (107°)

Thus ( satisfies (P) .

A similar argument shows that if a > 2 is a positive
(rational) integer, by, < b, <b, < e is a sequence of
positive integers with Ezi (bk+l/bk) = ® , and
{ek}k=0,1,2... is a bounded sequence of positive integers,

then the numbers

pd K = e
PEr e ) o

k=0 a k k=0 k




are Liouville numbers,

1.3 Not all real transcendental numbers are Liouville
numbers; in fact it can be shown that the Liouville numbers
form a set of Lebesgue measure zero, The number T is
transcendental (cf. §9) but not a Liouville number: Mahler

L2

has shown [Mahler, 1] that |m-(p/a)] > q when q 2> 2 .

We shall see in Ch, III that e = 2.71828 ... 1is a non-
Liouville transcendental number. Suffice it for now to
mention the following interesting result, also due to Mahler,
concerning numbers whose decimal expansion can be described

by an explicit formula:

Let f(X) be a non-constant polynomial with rational

coefficients such that f(k) is a positive integer whenever

k is. Then the number represented by the infinite decimal

0.F(1)F(2)F(3)...

(formed by writing the numerals for £(1),f(2),... in

succession after the decimal point) is transcendental, but

is not a Liouville number. [Mahler, 2].

For example, when f(X) = X we get the number

2
0.1 2’3456 78091011 12,..; when f(X) = X ; X




we get 0.1 3 6 10 15 21 ...

§2. A Generalization of Liouville's Theorem

2.1 Liouville's theorem can be thought of as describing
the size of |P(a)| for algebraic a , where P is the
polynomial ¢gX-p with rational integral coefficients p,q .

One may then ask about 1P(a)| for arbitrary polynomials P

d Xd--l +

with rational integer coefficients, say P = aOX + ay

0.0+a 2
d

For such a P , we define the height H = H(P) by

'I (3 = 091’0¢°’d)

H = max |a
- j

J

An estimate for |P(a)| is given by the following theorem

(of which theorem 1 is a corollary).

Theorem 2. Let a be an algebraic number, of degree

d Xd-l

n, and let P =a X" + a +
o 1

eoot ay be a polynomial

with rational integer coefficients, P(a) # 0 . Let H(P)



be the height of P , Then there is a positive number Cy s

depending only on o , such that

d
(c:)
H(P)
Proof. Let the conjugates of ¢ be a1(=a),a2,a3,..a,an ;

and let r = max [ail . Clearly
i

P(a;)
H

§f1+r+r2+...+rd S:(P+1)d

Let b be a positive rational integer such that ba
is an algebraic integer (such b always exist), Then
de(ai) is a non-zero algebraic integer for 1 <i <n ,

_ ,d d d .
so that N = b P(al).b P(az). ces b P(an) is a non-zero

rational integer, and

n-1 _{ N, H H H 1 1
P = 10d G ey Flag) ey’ | 2 fnd © (p)d(aD)
Thus (2) holds with c, = 1 . Lo q.e.d.

2.2 In the special case d =1 , i,e, when P has the



form qX-p , and H = max(|p|,|q]) , theorem 2 states

C
laa-p| > ;E%I (3)

We may deduce Liouville's theorem (theoren 1) as follows:
If H = |q| , then (3) gives la-(p/a)} > ca/lqln .

¢ |a-(p/@)] > 1, then |a-(p/a)] > 1/1al™ .
If H = |p| and also la-(p/q)] £1 , then

IP/QIn—l S'(l+|a|)n—1 = Y (say), and combining this with
(3), we get

la K l g qu |pi®t = quTa

In any case, theorem 1 holds with ¢ = min(1, ca/Y) o

§3. Anothe eneralizatio
3.1 There is a close connection between theorems
concerning lP(a)l (cf. theorem 2) and theorems concerning
the approximation of a by other algebraic numbers. Let §

be an algebraic number of degree d with minimum polynomial




P = aon + alxd_l +t...t aq > the a. being chosen so as to

be relatively prime rational integers (i.e., P is irreduc-

ible in £ [X]). The height of € , H(E) is then

defined to be the height of P (cf. §2) . H(E) is a

positive rational integer. i

Theorem 3. For any algebraéic number o of degree

n , there is a positive number Ea , depending only on a ,

such that whenever & # q is an algebraic number of degree

4 and height H(E) , then

(e
la - E| > = (L)
H(E)
Proof. Since q has only finitely many conjugates, we

may assume that & is not a conjugate of a . Then

P(a) # 0 , where P is the minimum polynomial of & , with
coefficients a, chosen as above so that H(E) = H(P) = H
(say). Theorem 2 gives an inequality

d

(c.)
|P(a)] > ;H%I— (5)

We may also assume that B = |a-&| <1/d , since




10,

otherwise (L) holds with Ea =1/2 . On comparing (5) with
a suitable upper bound for |P(a)| , involving g, we will

get (L). To find such an upper bound, we use the Taylor

expansion.

p(a) = P(8) + (a=©PT(E) + 37 (a-€) 2P (E)+.. .+ ﬁg(a-g)dp(d)(g)

Since, for 0<j=<d,

pld)(g) = d(d-l)...(d-j+1)ao§d‘5+(d-1)(a-z)...(d-j)algd'j‘l +
eest j!aj
we have
l’%—)ﬂl < 1g]973 + 1gjddt + L+ 1 < yd-3
Hd

where Y =2 ¥ lal 21 + (1/4) + |al >1+]8] (since

]a—%] < 1/d). Also, p(g) = 0 . Hence

Ip(@)| < pua i Iy pfma® 4F 4 Lo puat

<nyd(Bd v (B2 4 (B + (Y
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< nyd, %Q (1 +

o =
+

<yt 24 (6)

where the second-last inequality holds because (pd/Y) < 1/2

i{recall that Bd <1 and Y > 2). Combining (5) and (6),

. we get

q.€.do.

§,. Construction of Transcendental Numbers

L.1 With the aid of theorem 3 it is now possible

to find many new transcendental numbers by generalizing the
construction of Liouville numbers given in §1.2. If a 1is

an algebraic number whose conjugates are al(=a),a2,..o,ad

then we set .

E]
i
8
- P
]
)
e
3
i

min 1ail (i = 1,2,.005d)
i




12,

Theorem 4. Let a be an algebraic number with

ra1 > 1 . The power series

[e0]
Z\)
Pa) = ) Ay
v=0 ¢

represents an entire function which assumes a transcendental
value at every algebraic number x # 0 ,
The proof makes use of a relation between the numbers
B and H(B) associated with an algebraic number B .
A rational integer q > 0 is called a denominator for 8

if qB is an algebraic integer.

Lemma . Let P be an algebraic number of degree d
and height H(P) , and let q be -a denominator for § .

Then H(B) Sf2dqd rETd .

Proof. Let Bl(=B)’BZ’°°“’Bd be the conjugates of B .,
Then qBj is an algebraic integer for each j , and the

polynomial

d
(aX-qB;) (qX-qB,) ... (aX-gB,) = Z b, x47V (7
V=0
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has rational integer coefficients; it follows immediately that

H(B) < max lbv] . Multiplying out the left hand side of (7),

we see that for all Vv ,

q.e.d.

. V . .
byl < a? (TRl <2%%° B

We turn now to the proof of theorem L, F(z) is obviously

entire. Let x # 0 be an algebraic number, and set

For all sufficiently large V ,

v+1 v
X < 1 X

l ‘(V+1)!l 2 Vi
a a

and it follows that

m+1
P S
a(m+l)!

0 < |F(x) - Fo(x)| <2 (8)

for sufficiently large m .

F (x) is algebraic of degree <4 = [dl(x,a):dQ:L

S

RS




If also F(x)
gives a lower bound for

with the inequality (8).

is algebraic, then we shall see that theorem 3

|F(x) - F (x)| which is incompatible

The final conclusion must be that

F(x) is not algebraic.
Suppose then that F(x) is algebraic, of degree n , If
p is a common denominator for x and (1/a) , then pm,,pmg
is a denominator for Fm(x) ; moreover,
© v

fx]

[F_(x)] < E (o] V! =Y (say)
v=0
4
and so the lemma gives
_ d, m mt.d.d m}
H = H(F_(x)) <2 (p.p 7)Y =< Y1P
where Yl = Zde sy Py < p2d . Let m be so large that
F(x) # Fm(x) (cf. (8)). Theorem 3, with a = F(x),
£ = Fm(x), €q = ®F(x) = © » shows now that
d d Y
c c — 2
[F(x) - Fm(X)1 > (H )" > ( mlyn T m! (9)
m Y1P1 Py

_d n - n
where Y, = ¢ /Y1 >0 , and P, = P -

14,
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Comparison of (9) with (8) leads to the inequality

y
1 2 1 m?}
> > (yg)
m+l\m!? : m+l ° m! 3
(Ja|™) 2 x| o)
for a suitable positive Y3 not depending on m . Since

|la] > 1 , such an inequality cannot hold for large m .

L.2 A more general type of entire function taking
transcendental values at algebraic x # 0 is described in
theorem 5 below., The proof, being quite similar to that of
theorem L, will be left as an exercise (except for the

following remark:

o]

if I a,vxV is an entire function, then
=0
logla,l
1lim ]avll/v =0, i.e. lim **";-!~ = - @) ,
V= AV o o]

Theorem 5. Let K be an algebraic number field, of

finite degree over the rationals, and let
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be a power series with non-vanishing coefficients a, € K

such that

layql
1) 1im —F .

voo o a,]

2) There is a sequence bysby,b of positive

2,000

rational integers such that for each v the
numbers aobv, albv"°"avbv are algebraic

integers (i.e. bv is a common denominator for

aO’al""’aV) and such that

— =logla.. .|
lim vt | o
log bv

V-

Then G(z) represents an entire function, and G(x)

is transcendental for all algebraic x # 0 such that

@0
z lavxvl converges (in particular for all algebraic
v=0

x = 0 such that (1/[x]) > 1lim r;;]l/v ) .

Vo
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§5. The Thue-Si -Roth T

5.1 The construction of transcendental numbers has
depended so far on two things:

a) An approximation theorem setting restrictions on the
approximability of one algebraic number by another,

b) The construction of a sequence of algebraic numbers
which converges so rapidly to its limit that the pestrictions
imposed by a) are violated, unless the limit is transcendental.

If the appriximation theorem can be improved, new trans-
cendental numbers can be constructed by means of sequences
which con#erge,loss rapidly than those previously required.

’In 1955, K,F, Roth proved the following theorem, known

for historical reasons as the Thue-Siegel-Roth theorem,

Theorem 6. If a 1is an algebtaic number, and € > 0 ,

then the inequality

le - 31> 3

holds for all but a finite number of rational numbers p/q .




A more general statement, which improves theorem 3, has

*
been given by LeVeque in [LeVeque, 2].

Theorem 6!, Let @ be an algebraic number, For any
€ >0 , the number of elements § 1lying in a fixed number

field K (of finite degree), and satisfying

la-€] < —L——
(g)2+€

is at most finite.
We do not give the proof, which, though elementary, is
long and intricate [see e.g. Leveque, 2]. However we can

illustrate our opening remarks by pointing out that theorem

w
1
6 gives the transcendence of L — . The proof, left
k=0 3
10
as an exercise, is almost the same as that given in §1.2 to

03]

show that z i, is a Liouville number, with theorem 6
k=0 10" °

replacing theorém 1.

Similarly if a > 2 is a positive (rational) integer,

b, <b, <b, <b

0 1 2 3 <... 1is a sequence of positive integers

b
with lim §+1 > 2
k—o k

, and {ek}k=0,1,2... is a bounded

% A more exotic version of Roth's theorem can be found in

S. Lang!s book Diophantine Geometry (Interscience, 1962).

18.




sequence of positive integers, then

(oo} k o e
21:‘1")’— and Z'—b'k

=

are transcendental, This is clearly an improvement on the
corresponding statement in §1.2.

These examples can be generalized as in §4. Using
Theorem 6', the reader who has proved theorem 5 (§4) will
have no difficulty in checking that for a given algebraic

x # 0 , theorem 5 remains true when the assumption

- ~|loglay,|

lim = @ is replaced by the weaker condition
V=00 log bv

__ -loglay,|

Tim Lo s alk(x): QD .

vo  'log|b|

5.2 Another process of convergence which should be
mentioned is that of continued fractions. {See e.g. LeVeque

[1] for notation and results). Let

be an infinite continued fraction, the a, being positive

rational integers. € is an irrational number., If pk/qk

19.




is the k-th convergent to § , (i.e. pk/qk = a, + gl: ;L: +
1 2
R %“) then
k
P
k< —1— (10)
° R a 2
k+1 9 k

Suppose that the aj increase so rapidly with k that

log a
—_ +
k~o log q;

> 2

Tt follows immediately from (10) (and the fact that q 2

for k > 1) that £ is a Liouville number,
Here again Roth's theorem gives a better result: if

log ap+1
1lim —— > 0 (11)
k~® log q;

then £ is transcendental.

Example: If b is a positive integer, let a, = bz o

Since qq4 < 1, q; = 2y » and q 4y = ak+lqk+qk—l (k > 0) ,

condition (11) is easily verified; thus

is transcendental.

20,
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IT. SCHNEIDER'S THEOREM

§6. em f Th m

6.1 We have already examined, in theorem 5, entire

functions f(z) = avzv in which certain arithmetic restric-

~tions were placed on the coefficients a, » i.e, on the deriva-
tives of £ at 0 (since a, = (l/VZ)f(V)(O)) .
Schneider's theorem, in the form in which it will appear

- here, deals with two meromorphic functions f and f2 , and

1
2 number of points Z13Zps+0052, . Arithmetic conditions are

imposed on the derivatives of fl and f at each of the

2
points 21529540052, . These restrictions on fl and f2
are, then, of a local nature. Global restrictions are placed
on fl and fz in the form of a limitation on their order of

growth (definition below). The theorem states that if all

these restrictions are sufficiently numerous, or sufficiently

stringent, then fl and fz are ﬂlgghnﬂigﬂle_dgpgndgnn over

the rationals, Put another way: if fl and fz are algebraic-

ally independent over the rationals, then m 1is bounded by some
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finite constant (depending on the nature of the restrictions).
In typical applications (cf. §9) of Schneider's theorem

a certain number £ is assumed to be algebraic; this assump-

tion imposes restrictions on two functions which are known not

to be algebraically dependent, thereby violating Schneider's

theorem., The contradiction establishes the transcendency of

g .

6.2 Before stating the theorem, we recall some defini-
tions, The notation "f(z) = 0(glz|)" describes the following
situation: g(x) is a positive real-valued functicn defined
for all real x>0 3 f is a function defined on some un-

bounded set of complex numbers; and for some constant C
l£(z)] < cgl]z]) for all =z € S .

An entire function f is said to be of order < p

P =
(where p 2> 0) if f(z) = O(eizi ) . A meromorphic function

2 3

" Thus order measures the growth of {f(z)] for |z} = » by

comparing log(max| f(z)l% (which is known to be a convex
z|=r

function of r) with r? for various ¢ >0 ., It is known
that if f(z) = I a\)zv, then inf {p} = 1im _’._;V...,-C!PQ_T
V=0 ord(f)<p V=0

We shall not use this fact.



:mmm always be written as a quotient f = g/h of entire
‘fwimns, h having zeros only at the poles of f . Under
circumstances, we say that ord(f) < p if ord(g) <o
ord(h) < p . (The notation is self-explanatory.)

#ecall that for an algebraic number a , lal is the

mwwmw&st among the absolute values of the conjugates of a .

5.3 Theorem 7 (Schneider). Let fl(z), fz(z) be
wmetions meromorphic in the whole plane, and having order

& . Let ZysZgseresZy be distinct points at which neither
. nor f., has a pole For Vv =1,2 let f(o)( ) = £ .(z,)

o*£ (2)
zx) = (k = 1,2,...) .
dz 2=z,

Assume that all the f&k)(zx) for Vv =1,2 ;
%=1,2,...,m ; k = 0,1,2,... ; lie in a field K of finite

. dmgree s over the rationals,

Assume further that there is a positive integer b such

that

bk+1f£k) (zk) is an algebraic integer in K for all

23.

v, A,k (1)




and an 1N > 0 such that
[fik)(zx)i = 0(k™)  for each v,aA (2)

Then if f and f are algebraically independent

1 2

over the rationals, we have

m<p (hsn- 20+ 2s + 1) (2)

6.4 Before proceeding with the proof, we derive a
preliminary arithmetic result concerning linear homogeneous
equations. The reader who wishes to go on directly to the

proof need only take note of the statement of lemma 1b below,

Lemma la. A homogeneous linear system

X, =0 i=1,2,..0,M

with N >M > 1 , and with rational integer coefficients,
has a non-trivial solution in rational integers xj such

that, for all j ,

x| <1+ gy (8D (a)

[NEN
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Erpof. We shall assume B > 0 , since otherwise the lemma
is trivial,

Let X be a positive integer. To each of the (2X+1)N
integral N-tuples (wy,w,,...,wy) with le[ <X
ii =1,2,...,N) , there is associated the integral M-tuple
ivl,vz,...,vm) defined by

N
v. = & b w. (i = 1,2,...,M)

i ij 3
j=1

Since Ivil < NBX , at most (2NBX + l)M of these

¥-tuples can be distinct. Thus if

(2xBx + 1M < (2x + ¥ (b)

 ‘#hen two of the M-tuples must coincide, say those correspond-

imz to the distinct N-tuples (w'l,w'z,...,w’N) R
%w”l,w“z,...,w"N) , and so the system (a) has a non-trivial

spluti . ith ] < 2% iz, x. = w?'.-w",
soplution X w {xJI < , viz i § i

5‘%‘ = 1,2,000,N) .

If we can find an X satisfying (b) and such that

M/(N- _
<1+ (NB)J/(N M) we are done. For X = [% + %(NB)M/(N M)]




2.¢
(n[ Jv denotes, as usual, "greatest integer') we have
2% > 2(% + ’12' (np)'/ Ny
whence (2X + 1) > (NB)M/(N“M) and
(2x + 1)N > (NB)M(zx + 1)M > (2NBX + 1)M
q.e.d.

Lemma 1b. A homogeneous linear system

N
X ainj = 0 i=1,2,...,M (c)

j=1

whose coefficients a4 are algebraic integers, not all zero,
in a field K of finite degree s over GQ , and for which
N > xM , has a non-trivial solution in rational integers X4

such that

sM/(N-sM)

[x;] < 20vNA) (i =1,2,...,N)

where A = max ‘aijl , and Y 1is a constant depending only on
i,3

K .

Proof. The algebraic integers aij may be represented in
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the form

ijk%k (d)

~with rational integers biik s (ul,uz,...,us) being a fixed

.

integral basis for K . For this reason, the system (c) is

| equivalent to a system of sM equations

=
o

fﬁmr some constant Y ,
To find Y , we recall that the bilinear form
.¥! —> Trace(xy) from KxX into @Q is non-degenerate,

» that there are elements VisVgseea, Vo of K satisfying

]

z#ce (u VT) ) (Kronecker delta). It follows from (d)

CT

b..k = Trace (ai.v

Yk T g e(aij)’e(vk)

€ runs through the automorphisms of K/GQ . Hence



1¥.

S
B S ( z {Vkl)A qoeo{]o

§7. Proof of the theorem.

7.1 The strategy of the proof is as follows. Let
P = P(X,Y) be a polynomial in two variables, with undeter-
mined rational integer coefficients, and of undetermined
degree. We try to determine the coefficients in such a way
that, while remaining within certain bounds, they give the
function F(z) = P(fl(z),fz(z)) zeros of a high order,

depending on the degree of P , at the points =z This

A C
step turns out to be a straightforward application of
lemma 1b (§6.4).

Once the existence of such coefficients is demonstrated,
the local conditions (1) and (2) of §6.3 yield a lower bound

for the first non-vanishing derivative of F at (Such

Zl e
a derivative exists since fl and fz are assumed to be

algebraically independent). Then a global argument gives an

upper bound involving m . Comparing these two bounds, and



#tting the degree of P tend to infinity, we obtain the

iwzired bound on m ,

7.2 To carry out the first step, let r be a rational

inteqgral multiple of 2sm , and let

t = rz/ZSm (L)
Let
r i ].
F(z) =i,§=1 cijfl(Z)fé(z) (5)

the ci_j being certain rational integers, as yet unknown.,
%e shall require F(z) to have a zero of order at least

t at each zy s i.e.

P (z,) = o {k =

anl in fact we shall see that this requirement is fulfilled

with certain integers Cij , not all zero, satisfying

oy | < ste(1/2v00e &

where 0 is a number independent of r and t .

;o
28 .5

Y
3

}
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The requirement (6), in view of (5), is

k
A

([

0,1,2,.».,t"l (L)

r . .
_ iqdy (k) _
Ly =, © cij(flfz) (z,) =0 { 1,2,0..,m

(L) is a system of mt homogeneous linear equations
in the r? unknowns i Before applying lemma 1b (§6.54)
we must examine the coefficients of this system. By the

product formula for differentiation, (fifg)(k)(zk) may be

expressed as a sum of (i+j)k terms, each of which has the

form
f(kl) f(kz) f(ki)f(ki+l)f(ki+2) (ki+j)( )
1 1 1 2 2 ceeky zy
with ky + k, tooot kg o= kK .

By condition (2) of theorem 7 (§6.3), and the definition

(L) of t , it follows that, for some constants ¥;,Y, »

P . TK K K.
Kk .k it 1 2
(fif%)( )(zX{] < (i+3) Yi J k, © Kk,

Nk, +k, Fo. otk )

< Yg ct/2 M (3)

Also, condition (1) of theorem 7 shows that




it
_ bl itk

ingy (k) . . K
25 4k (£5£5,) (ZX) is an integer of (9)

172

so that the system (L) 1is equivalent to the system

r

i+itk -0 {§=0,1,.°a,t—1 (L')

Lea = 335kn %ij =1,2, 000,

b KA

i,3=0

in which the coefficients ai3kA are algebraic integers

.

satisfying

i+j+k .t (1/2+Mt t  (1/2+n)t
!aijkxl <b Yo t < Y3 t

for a suitable constant Y3 R

Now with N = r2 , M = mt (so that N > sM and

sM/(N-sM) = 1) 1lemma 1lb assures the existence of rational
integers 5 satisfying (L') , (hence satisfying (L)),
and such that

+ +n;
| <2y »2 Yg t(1/2 mnt < 6tt(l/z nt

‘cij

for some constant 6 , as desired.

7.3 Suppose F(q)(zl) is a non-vanishing derivative

of the function F at z; , So that q=>t . We can




astimate lF(g)(zl)l from below in the following way. By

%), (7), and (8) of §7.2, we have
Since r = J2sm tl/z and t < q , we get

!F(q)(zl)‘ < o q(1+2ﬂ)q

 #ere, and for the remainder of {7, a = a(q) denotes a

positive function of q which grows more slowly than any

positive power of qq ; i,e., a is such that for any

, 1lim (a(q)/a" =0 .
q”’CD

£>0

It follows that

(q) g
(q) [NormK 'Q (F (zl));
lF q (zl)l 2 as_lq(1+2n)q(s-1)
1

+
By (5) and (9) of §7.2, we see that b2t qF(q)(zl)
i/ a non-zero algebraic integer. The norm of such an

integer is 2> 1 in absolute value; thus

( S
|Normy /3 F q)(ﬁ” 2 J(2r+a)s

31.
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() ()] > SIEDICRP (10)

2

7.4 Now we seek an upper bound for ]F(q)(zl)] under
the further condition that F has zeros of order 2> q at

each F cannot vanish identically if f1 and f

Zy - 2

are algebraically independent, since at least one of the

integers c, g (ef. (5), §7.2) does not vanish. Hence there

is an integer q 2> t such that F has a zero of order 2> q

, while at some z (which we may as well assume

at each 2z X

X

to be zq ) F has a zero of order precisely q . So the

above condition may be assumed without loss of generality.

Atz , F(z) has the Taylor expansion
= ——= (g +
F(z) ! (z-24) s
so that

F(q)(zl) _ qlF(z) |

(z-2z)4 1 __
1 z=z;

The hypotheses of theorem 7 include the existence of
entire functions h;,h, , of order <, with h;(z;) #0,

hz(zl) # 0 , and such that h,f,, h,f, are entire functions

32,
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srder < p ., If i = hihg , then clearly UF is an entire

> q at the 2z, . Thus, setting

amorion with zeros of order \

A{z)F(z)
G(z) = —
I (z-z,)"
2 z-z,

w#& see that G 1is an entire function, and that

m q
qt T (zq-2z,)"
=g T A

H(zl)

16D (2] = [6(z))]

a3qq It remains to

[

The second factor is of the type
#ind an upper bound for lG(zl)l .

Either by Cauchy's integral formula, or by the maximum

wrinciple,

|G(zl)|.5 [2?:R|G(z)]

For all R > 1 + max 1ZA‘ , when {z| =R

for any R > lzl[ .
A

m .
- #he denominator | 1 (z—zk)ql of |G(z)] is 2 (CR)mq , C
=1

_%esing some positive number not depending on R .

As for the numerator |H(z) F(z)| , we see by (5) and

¢7) of §7.2, in conjunction with the fact that hl’hz’hlfl’

f, are all of order < p , that there is a constant Cq




such that for |z] =R,
P
|[H(z)F(z)| < Pzétt(1/2+n)t(C1eR )27

Combining the preceding estimates, we find
P
+
q(s/z ™ g 2rR

(a) ¢5
IF 9 (zl)l < qu (11)

Take R = ql/Zp . If r is sufficiently large, then
t is large, and since q >t , R will be large enough so

that all the preceding estimates are valid. (11) becomes

IF(q)(Zl)l < o q(3/2+n—(m/2¢)q (12)

This is the estimate we were after.

7.5 Allowing r to tend to infinity, we see that the
estimates (10) (§7.3) and (12) (§7.4) must held simultaneously

for arbitrarily large values of q . This is possible only if
3/2 + m - (m/2p) 2 -(1 + 2m)(s-1)

m < p(hsn - 2m + 258 + 1) q.e.d
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§8. A Useful Consequence

8.1 In applications of Schneider's theorem, the
functions fl and fz are often such that the local arith-

metic conditions (1) and (2) (§6.3) of that theorem can be

deduced from analytic properties of fl and fz s for 3
example from the fact that they satisfy a certain kind of
differential equation.

Suppose for instance that f(z) is a meromorphic func-

tion which satisfies a differential relation of the form

U | p(n) _ope(n1) g(n-2) oy gy
dz

]

where P 1is a polynomial in n variables with coefficients
which are algebraic numbers, Let z, be a point such that
(n-1) .
f(zo),f'(zo),...,f (zo) are all algebraic numbers.
Let K be the field generated over the rationals by the
coefficients of P and by the numbers
(n-1) .
f(zo),f'(zo),...,f (zo) . Let U be an open neighbourhood
of z, on which f is defined and analytic., Finally, let
(n-1)

fl’fZ”"’fn be the restrictions to U of f,f',...,f

respectively, Then we have:




(i) K is an algebraic number field, of finite degree.
(ii) The fi(z) are functions defined and analytic on
an open neighbourhood U of the point z, .

(1i1) £,(z), £,(z.),..., £ (2)) all lie in K .
(iv) The derivation d/dz maps the ring

K[fl,fz,...,fn] into itself.

We shall see nowbthat if K is a number field and

fl(z),fz(z),...,fn(z) are given functions such that (i),(ii),

(iii),(iv) are satisfied, then each £, satisfies all the

(1ocal) hypotheses of Schneider's theorem at z .

(iv) says that there exist polynomials
PisPoyee, P € K[X),X,5 005X 1 (X{,X,,...,X  are indeter-

n

minates) such that

df;
£', = 45 = Pi(fl,fz,qpo,fn) .

Let D be the K-derivation of K[xl,xz,.,agxn] into
itself such that DXi = Pi" For any polynomial

Q€ K[X1,X2,...,Xn] we have

N .
DQ = L Q9 p | (13)

36.
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(This equation may be taken as the definition of D ). If

glz) = Q(fl(z),fz(z),...,fn(z)) , we see immediately that

k
k d g k
g( ) - i -0 Q(fl,fz,...,fn) k = 0,1,2,...
so that, by(iii), g(k)(zo) € K for all k > 0 . For the

special case g = f this is one of the conditions of

\) 5
Schneider's theorem,

Now let

d = max(deg Q , deg P,, deg P,,...,deg Pn)

where "deg" stands for total degree. Let b be an integer
such that, if a is any coefficient of Q or of one of the

P, , and if ay + a, too.toa <d , then

2 29

n . .
b(afl £,7 oo £ (zo)) is an integer of K .

+
An easy induction on k shows that bk leQ(fl(zo)’°°°’fn(zo)) =

= bk+1g(k)(zo) is an integer of K (k = 0,1,2,...) . For

= f this is condition (1) of Schneider's theorem.

99

AV s

It remains to be shown that {g(k)(zo)l = O(krk) for



some N> 0 . For this purpose, we recall the notion of

domination of polynomials., Let R = z a, Mg s =L
o (¢}
n

be two polynomials, with complex coefficients, in

variables Xl’xz"°“’xn , the MO being the various mono-

mials in these variables. We say that S dominates R

and write R < <8 if, for all o , B, 1is real and

If r = deg R , then R < <C{1 + X; + Xy Fo0.7 xn)p
for some C > 0 ; in particular, if Plstgooaan are as
above, there is a B > 0 and a positive integer h such

+
)k 1 . Note

that for all i Pi < <B(1 + X, +X, tToo.t Xn

1 2

also that B— < <rC(l + X, + X, *ooot X

r-1
oX. )
i

. It is
easily checked that the relation of domination is preserved

under addition and multiplication. Illence, by (13),

yrth
DR < < nrCB(1 + Xy + X, To.0t xn)

It follows, by induction on k that

pKR < < anBk(r)(r+h)ooa(r+(k—1)h)(l+X1+X2+ao,+Xn)P+kh

K o N + r+kh
< <cg kE(1 + X; + Xy Fooo X))

for some Cp >0 .
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Applying this result to the particular case R = Q ,

we see that

[ )| = [o%ace, (), en 0, (2]

ko, = = ==y1,r +kh
STCQ k1(1 + lfl(zo)] + lfz(zo)1+aag+1fn(zo)])
Since k! kak , we conclude that

;(k)(zo)l = O(knk) for any m > 1 .,

For g = f,, , this is condition (2) of §6.3.
Note, finally, that if condition (3) of §6.3 holds for

all n>1, then m < p(6s-1).

8.2 In light of the foregoing discussion;, Schneider's

theorem implies the following [cf. Lang, 11:

Theorem 7', Let fl(z),fz(z),oo.,fn(z) be functions
meromorphic in the whole plane, and of order < p . Let K
be an algebraic number field, of finite degree s , and
suppose that the derivation d/dz maps the ring

K[fl,fz,...,fn] into itself,
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Let ZysZyseessZy be distinct points,; at which no fv
has a pole, and assume that £ (Zl) €EK (v=1,2,...,n ;
;kzlyzsoeogm)o

If some two of fl’fz""’fn are algebraically indepen-

dent over the rationals, themn m < p(6s-1).

8.3 A1l our applications of theorem 7' will be to sets
cf functions for which, in addition to the proeoperties of
theorem 7°, a certain type of addition theorem helds. To

cover all cases, we state:

Theorem 8. Let K be a number field of finite degree
over Q0 . Let fl(z)sfz(z),n..,fn(z) (n > 2) be functicns
meromorphic in the whole plane and of order < p < = |
Suppese that the derivation d/dz maps the ring
KEfl,fz,n.o,fn] into itself, and that some two ¢f the fi
are algebraically independent over K ., Assume further that

there exist rational functions R, € K(XI,XZ,,OO,XH,YI,szOOO’YH)‘

(i =1,2,...,n) such that, for all x,y , and i = 1,2,...,n ,

fi(x+y) = Ri(fl(x),fz(x),aoa,fn(x)gfl(Y)sz(Y)svoosfn(Y))




{we do not exclude the possibility that fi(x+y) = o) ,
Then, for any a distinct from zero and from the poles

of the fi , at least one of the numbers
£1(a),f,(a), ..., £ (a)

is transcendental over K .,
[The meaning of the Ri may be made clearer by an
example: take K = Q , fl(z) =z, fz(z) = cos(z), fS(Z) =

= sin(z) , Ry = X +Y;, R, = X,Y,-X,Y5, R

5 = XY + XY, .
Theorem 8 is an immediate consequence of theorem 7!,
for if all the numbers fi(a) are algebraic, we may suppose
without loss of generality that they lie in K , and then
because of the Ri the same is true of all the numbers

£.(da) (i =1,2,...,n; A =1,2,3,...) those finitely many

3 being omitted for which la 1is a pole of one of the fi .

§9. Applications

9.1 Some classical results on transcendence are

special cases of theorem 8, As a first example, take




L2,

= = z p—3 =
fl(z) z , fz(z) eZ , K = Q . Here we may set R = XY,

R2= X2Y2 . If the functions z , eZ were algebraically

dependent, there would be an identity

2 P_(e?) + 2”71 Py(e®) ...t Pp(e”) = O (14)

the P, being polynomials with coefficients in K , P £ O .
Choosing a & such that Po(eg) # 0 , and setting

2 = E + 2umi (p = 0,1,2,...) in (14), we find that all the
numbers & + 2umi are roots of the polynomial znPo(eg) +

+ znmlPl(eg) +,..+ Pn(eg) . This is absurd. Thus, the

conditions of theorem 8 are satisfied and we have:

a

For any a # O , at least one of a, e is transcendental.

In particular (for a=1) e is transcendental. Since

B = elOg B we have: for algebraic B8 # 0 any non-zero

value of log B is transcendental. When B = 1 , this gives:
m is transcendental.
(For a generalization of these results (and of many of
those in this section) to arbitrary "group varieties" cf. 5

[Lang; 11.)
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As a further consequence: if B # 0 is an algebraic
number, and if ®(z) is any function defined on a subset
S of the complex plane, such that ®(z) and eles are
algebraically dependent over the field of all algebraic
numbers, then ®(a) is tfanscendental for any non-zero
algebraic a € S .

For, if there is an identity

(eP%)"p_(w(2)) + (PH)™ TP (9(2))+...4P_(¥(2)) = O

for all 2z € S , where the P'!'s are relatively prime
polynomials with algebraic coefficients, and if ®(a) is
algebraic, then setting 2z = q , we see that eBa is an
algebraic number (note that Pi(w(a)) # 0 for at least
one i ).

In particular: for algebraic a # 0 , cos (a) and

sin (a) are transcendental. (Take B = /-1).

9,2 Let B be an irrational algebraic number, let

K =09(B) , £,(2) = Pz, £,(z) = e” , Ry = XY, R, = X,Y, .
Bz

To apply theorem 8, we need only check that e and e?

are algebraically independent., Suppose not. Arguing as
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in §9.1, we find a number § such that some polynomial has

as roots all the numbers

eB(§+2“ﬂi) = eBge2HBni (= 1,2,3,...) .
These numbers are distinct because B is irrational, and we
have an absurdity. Thus theorem 8 (with & in place of a )
gives:
If &6 #0 , and if B is an irrational algebraic number,
Bo

then at least one of e" e6 is transcendental.

Setting e6 = a , we have:

Theorem 9. (Hilbert-Gelfand-Schneider)., If a,B are
algebraic numbers, a # 0,1 ; B irrational, then axa is
transcendental,

If o # 0,1 ) and aB = Y are both algebraic then
B = log Y/log a must be either rational or transcendental.

The theorem may therefore be stated as: the quotient of the

logarithms of two algebraic numbers is either rational or

transcendental.

9.3 The following examples involve the Jacobi elliptic
functions sn(z), cn(z), dn(z) cf. [E.T. Copson: Theory of

Functions of a Complex Variable, Oxford, 1935; or any book on
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elliptic functions.] These functions are meromorphic in the

whole plane, and of order < 3 , By standard formulae, for

example
%; sn(z) = cn(z)dn(z)
sn(xty) = sn(x) .cn(y) .dn(y)+sn(y).cn(x) .dn(x)

1 - kzsnz(x)snz(y)

etec; k being a constant which we assume to be algebraic,

the conditions of theorem 8 are fulfilled when fl(z) = z

£,(z) = sn(z), £3(z) = en(z) , £,(z) = an(z), K = Q(k) .

rt

(The algebraic independent of fl(z), 2(z) results from

the periodicity of fz(z) , as in §9.1)., Hence, for any

algebraic o distinct from O and from the poles of sn(z) ,

sn(a) is transcendental. (Recall that cn(z) = (l—snz(z))1/29

dn(z) = (1~k2sn2(z))1/2).

For the elliptic integral of the first kind, we have
P 2,-1/2 2 2,-1/2
J (1-27) 7 (1-x"2") dz = v-u
a

where sn(v) = B, sn{u) = o . If a and B are algebraic,
the above addition formula for sn(xty) shows that sn(v-u)

. . ( -
is algebraic unless v-u 1is a pole of sn(z) . The above



L6 .

result becomes: the value of an elliptic integral of the first

kind, with algebraic k , evaluated between distinct algebraic

limits a,B , is_either transcendental or a pole of sn(z) .

In particular, the periods of the integral (and hence also the

poles of sn(z)) are transcendental.

In a similar way, we may treat the elliptic integral of

the second kind

JB(l—zz)_l/z(l—kzzz)l/zdz - E(v)-E(u)
a

where sn(v) = B, sn{u) = a . The function E satisfies

the relations

E(x) + E(y) - E(xty) = kzsn(x)sn(y)sn(x+y)

and d/dz(E(z)) = dn®(z) .

Theorem 8 applies with fl(z) = E(z), fz(z) = sn(z) ,
fs(z) = en(z), fh(z) = dn(z) , K = Q(k) . The details are
left to the reader. We find that if sn(v), sn(u) are
algebraic, then so is sn(v-u) , whence E(v-u) is transcen-
dental, i.e. E(v) - E(u) + kzsn(u)sn(v—u)sn(v) is transcen-
dental. Hence: The value of an elliptic integral of the

second kin with algebraic k between distinct algebraic
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;ig1§§4_1§_;zgn§gggdgg§gl. One geometric consequence is that

Several results concerning the Weierstrass elliptic

functions are given in [Schneider; 1]. For example: if «a

is algebraic and not a pole of & then &(a) s tran -

dental. In analogy with the Hilbert-Gelfand-Schneider theorem:

i p(z) and @(Bz) are algebraically independent, B
peing algebraic, then one of & (a), @(Ba) is transcendental

for any a # 0 . For the elliptic modular function J : if T

J(r) is transcendental.

(J(1) is known to be algebraic when T is imaginary-
quadratic) .
These results depend on theorem 8 and the addition theorem

for the é?-function.

9, Schneider has applied his methods to functions of
more than one variable, and this has led to results about

Abelian integrals and functions. An interest example is
T(p)T(q)
T(ptq)

B(p,q) = flxp'l(l-x)q“ldx =
o
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Schneider®s result is: B{p,q) is transcendental for all

rational, non-integral p,q . For p = q = 1/2 , we have,

once again, the transcendence of W ,
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III. ALGEBRAIC INDEPENDENCE

§10. Transcendence Properties of the Exponential Function.

10.1 In 1882, F. Lindemann proved his celebrated

theorem on the algebraic independence of exponentials:

Theorem 10. Let WisWoseea, W be algebraic numbers,
linearly independent over the field of rationals Q . Then

i ¥y “m
e ,e T,...,€ are algebraically independent over Q .

For the case m = 1 , the theorem states: e is
transcendental for algebraic a # 0 . We have already proved
this fact (§9), and pointed out that it implies the transcen-
dence of T (take a = /-1 m),

Another form (in fact, the original form) of Lindemann's

theorem is:

Let w;,w,,...,w, be distinct algebraic numbers. Then

W, W w
n . .
e 1,e 2,...,e are linearly independent over the rationals.

To see this, let Gl,ﬁz,...,ﬁm be linearly independent
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algebraic numbers such that each W is a linear combination
m —
wW. = z qi,w. (i =1523ooa’n)

with rational integers ¢ . Choose an integer q such

i3]
that q + aj 5 >0 for all i,j . Then any non-trivial linear
n W,
relation L ae 1 = 0 among the numbers
i=1
W, Wy Qiq W, Q. W Q.
e = (e l) J”]'(e 2) 12 (e™ ™ (i=1.2,...,n) would

ﬁl w., | &m
become, after multiplication by (e HYYe ©) ... (e MHT | a

W,
non-trivial polynomial relation among the e I (5 = 1,2, .00,m}

contradicting Lindemann's theorem, Conversely, if
WysWygeoeyW, are linearly independent over Q , then any non-

trivial polynomial relation

w
e

z
(q)

W, g qa. w9
1) l( 2) 2 e m} 1il -

o y = ) q )
a(q)(e 9""5( 0 (q) (Q1JQZ°°°qu/
would be a non-trivial linear relation among the nuwbers

w.q,tTW,q,t...TW_q
e , whose exponents w1q1+w¢qq+ung+wmqm are

distinct for distinct m-tuples (ql,qQEQDqum) .
We note in passing that the converse of Lindemann's

theorem is trivial; for if q1w1+q2w2+aog+qmwm = 0 , then

gl
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(e 1yW"2)%2 | (o™ 3 -,

10,2 We are going to prove somewhat more than Lindemann's
theorem, augmenting its qualitative statement by a gquantitative

estimate - a transcendence measure - of 'how algebraically

w Wy v
independent" e 1, e “,...,€ actually are,

Let M = (Ml’Mz""’Mm) be an m-tuple of positive rational
integers, If gq = (ql’qz""’qm) is another m~tuple of integers,
we write 0 < q XM to mean O qu -<-M;j for all j = 1,2,...,m .

Let P(xl,xz,...,xm) be a non-zero polynomial with rational

integer coefficients

q q q

q q . 1 2 m
b _X (x3 = X7 X,% .00 X))
We say then that P is of degree <M , and that

H = max Ibql is the height of P .
q

With this notation, the refined version of theorem 10 is:

Theorem 11. Let WysWoyeeosWy be algebraic numbers
which are linearly independent over Q , and let

g = [Q(wl,wz,...,wm):Q] . There is a number T , depending
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only on g and m , such that if P(Xl,...,Xm) is a polynomial

of degree < M and of height H then

Wai W. w ~TM. M. ...M
]P(e 1,3 2,..,,8 m)‘ZH L2 "

provided that H is sufficient large. More exactly, for g > 1

and

1

£ =
1/m+1
1 - (5Eh

the statement holds with TMle.a.Mn replaced by

f"’”’l(kgl(mk + —%))—1

while the case g = 1 is described in theorem 12 below.

Remark: For some idea of the size of f when g> 1,

_ 1y1/m+l
(1 -2)

we may use the binomial expansion of to get

the series

£ = (mrl)g{1 + é (7)) * ;Iér'“z“(3‘;1%3;'%:{'%‘%};g)‘)+..‘,}':L

from which it follows at once that

(m+l)g > £ > (m+l)g(1 - é) = (m+1)(g-1)
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For the case g =1 we will be even more precise.

Theorem 12. Let w # 0 be a rational number. Let
P(X) be a non-zero polynomial in one variable X , with
rational integer coefficients; let n be the degree of

P and lét: H be its height. There is a number c_ .,
depending only on w , and a number Ho(n) , depending on

n , such that whenever H > Ho(n) it holds that

3,(log(ntl)
-n-c 0" ("7 1og i)
|p(e")] > H

This result is not the best one known. Mahler has shown

that the factor n3 in the exponent can be reduced to n2

’
cf. [Schneider, 1, p.88]. Theorem 12 has the advantage for
us that it can be obtained with almost no effort from the
proof of theorems 10 and 11l.

In general, a function ®(n,t) is called a transcendence
measure for the transcendental number ? if for each positive

integer n there is a number C_ such that for any polynomial

P of degree n and height H ,
|p(g)] > e, ®(n,H)

A theorem giving a measure of transcendence of a number
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€ is a refinement of the assertion that £ is transcendental.
Theorem 12 implies that when w # 0 is rational £ € g a
transcendence measure for e" if € > 0 , (On the other hand,
Popken has shown that t_n+E is not a transcendence measure
(Math.Z., 1929]). Taking n = 1 , we see that e" is not a
Liouville number (cf. §l). Similarly, theorem 11 shows that
e” is not a Liouville number for any algebraic w .,

For a discussion of the important topic of transcendence
measure and the related classifications of transcendental

numbers due to Mahler and Koksma, the reader is referred to

[Schneider, 11].

10.3 The proof of theorems 10-12 which we shall present
depends on the existence, for each positive integer p , of

*linearly independent™ linear combinations of the form

whose coefficients a, behave "reasonably well"
k=1
(see below) with respect to p , and whose absolute value |r|

becomes very small for large p .

For the rest of §10, "p" will denote a variable integer,

and "c" will denote a positive number whish is independent of p . 4§
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Recall that for algebraic a , |E] is defined to be
the greatest among the absolute values of the conjugates of

a . Our preceding informal remarks are made explicit in:

Lemma 2. Let W;,W,,...,W, be distinct algebraic
numbers, and let K = Q(wl,wz,...,wn) . For each p = 1,2,3,...

there exist n linear combinations

n
W

r,(p) = kElahk(p)e k (h = 1,2,...,n) (1)

with coefficients ahk(p) in K , such that the nXn matrix

(ahk) is non-singular, and such that for all h,k

1) c{.p!ahk is an integer of K
2) ‘ahkl < cg

€3

p!

€15C9sC3 being positive integers which do not depend on p .

We postpone the proof until $§11.

10.4 The next three sections ($§10.4,10.5,10.6) prove

the way for the proof of theorems 10-12. Let wy,W,sece.,W,




(n > 2) be distinct algebraic numbers, let t <n be a

positive integer, and let
s k
L = Z b e (h':l’z,ooogt’) (2)

w w
n

be t linear combinations of e 1,...,e , with rational

integer coefficients bhk . We assume that the linear forms

i b lk 2are linearly independent, i.e. that the matrix
(bhk) has maximum possible rank t . (We may say then that

the L, are nlinearly independent" as linear combinaticns).
Our main task is to find a relation between the size of the
b's and the size of the L's . This information will be
obtained by estimating the size of a determinant 4 which
we now define.

Again let K = Q(wl,wz,..o,wn) . Since, for any p ,
the matrix (ahk) of lemma 2 is non-singular, we may assume

(after renumbering the rows of (ahk) , if necessary) that

the determinant

56.

SEE R e




does not wvanish,

degree ¢t

b11 oo ®1n
btl s e 0 btn
b = q+1,1 - 4+1,n
2n1 e %hn
4 is bihomogeneous of degree n-t in the a's and of
. ' P n-t
in the b's , therefore by lemma 2, (cl.p!) A

is integral, and also, with b = max |b

[a] < n cg(n—t)bt .

In other words,

la] >

k!l

s

Hence, if g = [K:Q] ,
1 < [Normy 0 ((cB.p1)" *a)]

= 1(ef.p1) ("8 yorm (1]

< (cf.px)(n"t)g(n:cg(n"t)bt)g“liA]

1
n,g-lcz pi(n-t)e t(g-1)

(3)

57'
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with o, = clntle (n-t)(g-1)
£ 1 2

10.5 Now let us find an upper bound for {a] . Let

A be the cofactors of the first

At+1,0.93 n

Blsstwoaths

column of & . By (1) (§10.3) and (2) (910aﬂ)

Wy t g
Ae = L BL + Ar (4)
1 h™h —t+1 h"h
As before, lemma 2 entails
. n-t) t-1
[B,[ < (n-1)1 cg( )b
-t-1
Al < (n-1)% cg(“ Jpt
and also
C3
lrjh] S ‘
p!”

So if A = maxiLhi , (&) gives
h

iA!iewli E:t(n~l)Ecg(n—t)bt_ll+(n-t)(n~l)Ecg(n‘t_l)bt(cg/pgn)

and therefore
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-1 (5)

: n-t\p, t A
18] <nt(e, )5b 05(b + 1P

Y1
where cg = 1+ (03/19 .

10.6 We repeat: L. pbeing as in (2) (§10.4), A

and b are defined by

» = max|L | b = max |b_ |
h h,k hk

Also, g = [Q(wl,...,wn):Q] .

Our two estimates (3) (§10.4) and (5) (§10.5) for

‘A] show that

1
t“)

n-t,\p ,.t A
< n!(c2 o c5(b +

1
Vn!gblcﬁp!(n-t)gbt(g‘l)

Setting ¢ = ntS cy, cg—t cg = nt® (clcz)(n—'t)g cs >1, and

s = n-(n-t)g , we deduce

A 1 (—i— - 21— (6)
b p!(n"t)g cP btg p!s

For example, if t = 1

This is the basic inequality.

i=1,2,...,0 , SO that g =1 , then

and if W, = i for
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taking p =ufficientliy large we see that A > 0 ; in other
jocrds we have the transcendence of e ., Essentially the same
argument proves theorem 10; however some preparation is
necessary because (6) says nothing at all unless s > 0 o

(i,e, n-(n-t)g > 0} , or, equivalently,
, g-1 e
t > n{ P ) (73

At this point the reader may proceed dire-tly to §10.7
where the proof of Lindemann‘s theorem is completed.

For theorems 11 and 12, however, we must extract from
(6) more infermation about the relation between A and b .
We shall do so by making a good choice for the as yet unspeci-

fied integer p . The final result is:

Lemma 3, If the relation (6) holds for all integers
pz 1, where n,t,g,b are positive integers such that t < n
and s = n-(n-t)g >0 , and A and c¢ are real numbers with

1 5 and if b is sufficiently large, say log b > Zacénz

I
i\

i

then, with o© = ntg/s , we have
l_cm(iﬂ_lQE_ZQ) (8)

log log b
A>b
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This inequality underlies theorems 11 and 12. For example,

we can deduce theorem 12 as follows:

Let w # 0 be a rational number, and let w, = (i-1)w
(4 =1,2,...,m , with n>2) . Let P(X)= b1+b2x+...+bnxn'1

(bn # 0) be a polynomial of degree n-1 , with rational

L g Yk
Put L. = P(e") = I be , and let
1 k=1 k

Then we have the situation of §§10.4-10.6,

integer coefficients.
t =1, g=1.

with b = max]bk[ = height of P , and A = ]Ll‘ , and 0 =n .
k

After proving lemma 2 in §11, we shall see that under

the present circumstances, there is a number Ew such that

log 2c¢ =< c-:w(n—l)2 log n (9)

where c¢ is as in (6). Theorem 12 follows directly from

(9) and lemma 3.

We will prove lemma 3 by showing:

(A) For given € >0, if b is sufficiently large,

say

log log b > (3 + %%) log zc + log 2n (10)

then there exists a positive integer p such that




(1) P8 > 2(pi)®

(1) (1™ 5 b7

For € take the number 50log zc/log log b . If we

assume that

log log b > 2(3 leog 2c¢ + log 2n) = 1og(28c6n2 (11)

then we have

(5/2) o log 2c¢

log log b-3 log 2¢ - log 2n

Py

so that (10) holds, and (A) asserts the existence of o

satisfying (i) and (ii). For such a p , (6) gives

~0-€

ol
V

’_J
AV
o

=
o]

Thus (A) implies lemma 3,

To prove (A) , we begin with:

(B) Let a,B,Y be real numbers, o >0 , B> 1,
y>1, If B is sufficiently large, say log log B 2>
> (atl) log Y , then for any positive integer p such that

YP > B, we have p? > p% .

Proof: By Stirling's formula; (pg)l/p > %op s and by

62,
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. 1 1l lo . ey
assumption _.p > o I;g“% (lLog Y being positive); also, since
a > 0 , we have e > Ba/p . So it will be enough to show
that
1 log B a
e log Y =Y
i.e, that

log log B - (1tlog log Y) 2 a log Y

But (1 + log x) <x for all positive x , in particular

for x = log Y , and so it is sufficient that

log log B - log Y = a log Y
q.e.d.

Using (B), we show
(C) Let &>0 , let B>1 and let c=>1 . If B

is sufficiently large, say

log log (Bb) > (3 + %)log 2¢ - (12)

then there is a positive integer p such that

(iii) 8% > (20)P

(iv) 128> o1 > pl*e

and consequently



(v) p! > B(2c)P > 2BcP

Proof Let p be the largest positive integer such that

f:
+26 . +20 ;
pt < pl*2°, By (B), with a = l“?r‘3 g = B6 , Y = 2c , 1t

follows that (2¢)P < B provided that

+
log log(Ba) > (1 %6 + 1)log 2c = (3 + %) log 2¢ .

: +
Now suppose p! < gl 6. Then

(pt1)t = (pr1)p! < (2¢)P pltd o b gl¥d _ pl+28

contradicting the definition of p . q.e.d.
Conditions (ii) and (i) of A are given respectively

by (iv) and (v) above, with

B__.btg/s___bo/n 6____5_3__ ..__E_

For these values of B,% , (12) becomes
log log b + log(€/2n) 2 (3 + g%) log 2c (13)

Since -log € Sf%

.l , (13) is implied by
€

log log b > (3 + z%)log 2¢c + log 2n %“% (14)

and since o is > 2 (as is easily checked), so that

6L,
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% o log 2¢ > % , (1L4) is implied by (10) of (A) . This

completes the proof of lemma 3.

10.7 We shall now prove theorem 10. Let
wl,wz,...,wm be algebraic numbers, linearly independent
over Q . Let M= (Ml’Mz”"’Mm) be an m-tuple of positive
integers, and let q = (ql,qz,...,qm) be a "variable" m-tuple
of non-negative integers. Let P = P(xl,xz,...,xm) be a non-

zero polynomial

q; 4
p= L a x4 (x9 = x,1x, 2

xqm)
oSqSM q 1 2 s o0 m

with rational integer coefficients aq . Our object is to
W, W w
show that L = P(e 1,e 2,...,e ™ ¥ 0 .
Let Vv = (vl,vz,...,vm) be an m-tuple of non-negative

integers, and for 0 <uXV let

*p= I q

b X
0 < q <Mty Pl

The coefficients b'_&q are rational integers and
maxpb | = max|a_ | = H (the héight of P ). Setting
M,q Ha q 1

= + '
wq qq Wy q,%, +...t Q¥ + WO see that the substitution



of e for X. (i =1,2,...,m) turns x? into e % ;

w w
L =e ®L= )3 b e 4
. 0 <q <Mtp M

If A= maleuj , then clearly L =0 if and only if A=0
Now the wq are distinct for distinct values of q,

since wl,wz,e.,,wm are linearly independent. Moreover,

the matrix (b“q) has maximum possible rank, that is to say

if E ch“q = 0 for all q , then e, = 0 for all

(because if Q = I c“X“ , then QP =2 chU x9 = 0 , whence
#q q
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Q E 0). In other words we are dealing with nlinearly indepen-

w
dent!" linear combinations of the e 4 , and we have exactly

the sort of situation discussed in §§10.4-10.6. As soon as
we satisfy the condition (7) (§10.6) - which concerns the
number t of distinct L“ as compared to the number n of
distinct e 4 - then, choosing a sufficiently large value
for p in (6) ($§10.6), we find that A >0 ., Hence L # 0,

as required

m m
Now t = 1 (Vk+l) , while n = oM
k=1 k=1

Kk + Vi + 1) . Set

g = [K:Q] where K 1is the field generated over Q by the

variocus wq:; clearly K = Q(wl,wz,,,.,wm) so that g
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depends only on Wy,Wy,.ee,W . The condition (7) is that

t > n(g-1)/g , i.e.

g g-1
it (vk+1) > &=

H (M + v, + 1) (15)
k=1 € k=

1 k

This inequality will hold for sufficiently large Vv ,

g-1.1/m My
for example if 1 > ( ) (&= + 1) for all k , Thus

g Vk+l

(7) can be satisfied, and the proof is complete.

10.8 Theorem 11 results from a proper choice of the

v We assume g > 1 , the case g =1 having been covered

k L]

+
by theorem 12. Put h = (g/g-1)%/™"1

i - [ i)

and, for each k , let

where "[ ]" denotes the "greatest integer" function. Then

(15) (§10.7) is satisfied, since V +1 > Mk/(h~l) , so that

m M +Vv +1 m M
Do g K- =- 1 1+ k ) <p® <yl o2

1 Ykt1 k=1 Vit g-1

Previously (lemma 3, $10,6) we have defined o by

o = —ntg = __.n
n-(n-t)g 1-B g=1
t* g
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Now, with our choice of Vi

188l s o R I k2

where f = (l—h—l) is as in theorem 11, Also
m m Mk m h m
n= O0M+v+1) < 0 (M+ —= +1) = I (=5 M +1) = I (£fM _+1)
e " o he1 roq -1 Mk "
Thus
m m )
o<f 0 (eM+1) = £ 10 (M + L) = 1 (say) (16)
k=1 K k=1 = f

(We may remark here that our choice of Vv was dictated
by the desire to make the upper bound ¢ in (16) as small as
possible.)

By the definition of A and L (§10.7), there is a
positive number a , depending only on VvV and on
WysWyse00,W , such that L] > aX . Combining this remark
with (8) of lemma 3 (§10.6), (where now b = H , the height

of the polynomial P , cf, §10.7), we have

1-g- 50 log 2c¢
‘ log log H
IL] > a H (17)

for sufficiently large H . Let € = 1 - 0 ~> 0 . Choose




S

69.

H so large that (17) holds and also so that

Then (17) gives

L] > a,Hl_T+E—(E/2) = Hl_T(aHE/Z) > Ht T

q.e.d.

§11. Arithmetic Properties of Green's Functions

11.1 Qur aim now is to prove lemma 2 (§10.3).

The proof rests on the properties of the complex integral

I R e
R(x) = 3531 jc o(z) 92
pi p2 pn
where Q(z) = (z—wl) (z-wz) o.e(z—wn) for certain

positive integers PysPysecesPy » and C is a circle con-

taining WisWoseees W, in its interior, We shall see that
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n w, X
R(x) = I Pk(x)e k where the P, are polynomials of degree
k=1

n
p.-1 , and that, with v = I p_, R(x) has a Taylor expansion
k=1

beginning with (1/(v~1)2§)>r;"'m1 . The sought-after linear

n W,
will be defined to be R (1) = L P (1)e X %
h hk 9 x
k=1 j
the Rh(x) being suitable integrals of the above type. i

combinations rp
It is easily seen that R(x) is the unique solution of ;

the differential equation

2(D)y = 0 (> =%

with initial conditions y(0) = y'(0) =...= y(V'Z)(o) =0,
y(v_l)(O) = 1 ;3 in other words, R(x) is the Green's functicn
associated with the linear operator Q(D) . As such, R(x)
can be studied without the use of any integration whatsoever.
The treatment based on complex integration, however; though

not "elementary", is most economical.

‘ n
11.2 By Cauchy's residue theorem, R(x) = I pk(x)
k=1

where pk(x) is the residue of e-2/Q(z) at the point W o

For pk(x) we have the two representations

(z-wk)pkexz_(pk_l)

1 e*Z _ 1
Pe(x) = ong fc 0(z) 4% T (o -Dt\ 2(2)
k

Z=W
k
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Here Ck is a circle about Wy such that w. lies outside

C, whenever i # k ; and for any G(z) , G (z) =
Pt ,
=-D G(z) where D is the operator d/dz .
An easy induction on s shows that for any non-negative
integer s , and any meromorphic function £(z) , D°(e*?f)

= e¢*%(p+x)°f . Using this fact to carry out the indicated

differentiation in the second representation of pk(x) , we

W, X
find that pk(x) = e Pk(x) , where

-1 Pk
Py (pk-—l) {Dt _(_Z_;wk)

1
z
£=0 t Q(Z)

(p-1)!

P (x)

We see from this that Pk is a polynomial of degree
exactly pk—l , and that the coefficients of the powers of

x in Pk are sums of terms of the form,

N {# a ratlonal integer

(18)

+o

(pk—l) n (W —W ) J l 9T eee

j=1
j#k

+°nS pk_l

From (18) we draw two conclusions about Pk(l) . First

of all, if d is a rational integer such that




is .an algebraic integer, and if v = E P, » then

(p -1)! vak(l) is integral (19)

Secondly, if we regard Pk(l) as a function of

WysWysee.sW, ;, We see that any conjugate SPk(l) of

Pk(l) (6 being an automorphism of Q(wl,wz,...,wn)/Q)

is the same function of Bwl,ewz,.oo,ewn . Hence, if we

n
set Gk = bw, and Q(z) = kgl(z—ﬁk) , then
W, z
b (1) = e <.0P (1) = o I_ T (20)

where C, is a circle about Gk with all Gj(j # k)

in its exterior.

Let

-1 -
n =735 min lewk ij]

i#k, 6

the minimum being taken over all pairs j # k and all

automorphisms 6 ., For ék in (20) take the circle with

center Gk and radius 7N . Then we get
z-w
k n
1 e 1 e
lep, (1)] = I - | dz| < . & L2mm
= = - m
k 2Ti Ck Q(Z) 2 ,nV




Thus,

n
P ()] < %3 (k = 1,2,.,.,n) (21)
n
11.3 As soon as we define r_ , (19) and (21) will

give us conditions 1) and 2) of lemma 2, For condition 3),
we must estimate the size of R(x) .

Once again, let v = L p We have

k .

-
-

=)
N
-
|
N
<
=L
™
i
L2
Sa”’
d

g QS(W19W29-°-:wn)

+
s=0 zs v

where Qs(xl’X2’°“"Xn) is a homogeneous polynomial, of
degree s , with non-negative rational integer coefficients,
Note that Q= is the constant 1 . If p = max(‘wl],lwzl,
.,o,]wn]) , and € > 0 , then the above series for Q(z)
converges uniformly for lz] > ut+ €,

Let C be the circle with center 0 and radius @ + €

Because of the uniform convergence,



pat 1 e*Z
R(x) = Sfo ST c zS+V dz°Qs(w1’w2’°'°’wn)
@© xs+v—l
- I EeeD 2ty ewy)
s=0
v-1
= %;:ITE + 6o (22)

Since Qs has non-negative coefficients,
'Qs(wlswzsw"s“"n)i < 95(33“90009“)

Hence

© stv-1
IR(x) | sz-o %‘ﬁ‘i‘v—_f)—, Q_(MyMsoo0sh)

dz

—lT j e]X]z
271 C (z_u)v

XL ixle

(v-1)1

In particular

"
IR(1)] < %;jfj; (23)

7k
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11.4, Now let p be a positive integer, and let

=p + & (Kronecker &) (1

Phi hk

Let Rh(x) be the function R(x) of §l11.1 when

Py T Ppys Py 7 Phposec+sPy T Ppp o Note that
n
v, = L p,, =nptl , Also
h '~ o Phk
(x) = TP (x)e X (24)
R, (x) = P x)e 24
h op B
the P, being certain polynomials. Let a,, = Phk(l)
and set
n W
r’=R(1)=Za e
h - “h o1 Chk
np+l . .
By (19), pld a,, 1is integral, and (1) of lemma 2

follows directly.

Similarly (21) gives condition (2), and (23) gives
condition (3) (since (v-1)% = (np)! > pt™) .

It remains to be seen that the matrix (a£k) is non-
singular, Consider the matrix (Phk(x)) . In the expansion

of its determinant D(x) , each term is a polynomial of

degree < np except for the term Pll(x)Pzz(X)°°°Pnn(x) s
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whose degree is np . [Recall that Phk(x) is of degree
precisely (phk—l)]. Thus D(x) is a polynomial of degree
np(=v-1) .

On the other hand, (24) implies that

where the Ah(x) are the cofactors of the first column of
xv-~l

(Phk(x)) . Since, by (22), Rh(x) = (v + ... , and

W :

e =1 + WX +.,.. , it follows that D(x) has no terms

f degree < v-1 . This means that D(x) = cx'P , ¢ # 0 .
Thus det(ahk) = det(Phk(l)) = D(1) = ¢ #0 , and
(ahk) is non-singular,

This completes the proof of lemma 2,

11.5 For theorem 12, we are interested in the
situation in which w # 0 is a rational number, and
Wy = (i-D)w (i =1,2,...,n , with n 2> 2) . A close
look at (18) shows that, if d is the numerator of w

and if u = max (p, + p,.) , then
ik
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(pk:l)!(n—l)!u d(n_l)qu(l) is an integer .

By our definition of the r (§11.4), it follows that

h
for the number c; of lemma 2 we may use ((n-l)!dn_l) .
Similarly, taking 7 = |w/z| in (21), we may set
c, = (d*)" for some positive integer d' depending only
on w ; and in view of (23), we may put cg = (d")®  where

d" also depends only on w .

For the number c¢ of inequality (6), (§10.6) (where

now t =g = 1), we have then
log 2c Swa(n~1)log (nt) SEw(n-l)2 log n

for some number Ew depending only on w . As we have seen

in §10.6, this implies theorem 12,

Remark: By exercising more care in the choice of
C13C95Cz and by a slightly different treatment of inequality
(6), one can replace the factor log (n+l) in theorem 12 by

unity without changing the basic argument.



§12 Siegel®s Method

12.1 In the introduction, we have referred to
Siegel's work on the algebraic independence of transcen-
dental numbers. Some of the basic ideas of Siegel's method
were illustrated in our proof of Lindemann’s theorem. We
will describe briefly, without proof;, the main features of
the method. Full details are in [Siegel; 11,

The construction of the "approximation form"
n W, X

R(x) = kflPk(x)e k given in §11 depended on the special
properties of the exponential function. Siegel has given
a construction which applies to a large class of functions -
the so-called E functions - which includes the exponential
functions. Siegel's construction is purely algebraic, being

based on a lemma similar to lemma 1lb, §6,

The function f(x) is an E-function if

x”
f(x) = ay Vi

\Y)

I 8

v=0

where the coefficients a, are such that

1) All the a,, belong to a single algebraic number

field of finite degree over Q .

78.
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2) Igzl = o(v®) for any €>0, as Vv — @ ,

3) There is a sequence of positive integers {bv}
such that for all v , the numbefs
aobv’albv""’avbv are algebraic integers and

b, = O(Vev) for any €> 0 as Vv - ® ,

One verifies that E-functions are entire, that the E
functions form a ring, and that the derivative of an E
function is again an E-function,

The problem is the following: given m E-functions

E and an algebraic a , investigate the trans-

Elxﬁzy--'x m ?

cendence and algebraic independence of the numbers
E;(a), E,(a),...,E (a) .
Additional assumptions have to be made on the E,

namely that they satisfy a system of homogeneous differential

equations

dE . m
dx kflgjkEk (3 =1,2,...,m)

where the ij are rational functions with algebraic
coefficients; and also that the Ek satisfy a certain

complicated independence condition called normality.
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Under these assumptions, Siegel showed that
El(a), Ez(a),...,Em(a) are indeed transcendental.and
algebraically independent, as long as «a is neither 0 ,
nor a pole of any QkL o

Siegel's proof makes use of "approximation forms™ in
a manner which, when suitably specialized, yields a proof
of Lindemann's theorem very much like the one in §10. Other
applications of Siegelts method to particular E-functions
require a careful study of the algebraic and analytic
properties of the functions under consideration, because
of the need to establish "normality". Siegel has carried
out such investigations in several instances.

The best known result of this work concerns the Bessel

function

it 1)V  xy2V
7 (x) = = B

which is easily seen to be an E-functien, For any algebraic
x # 0 , Siegel showed that Jo(x) , and Jg(x) , are trans-
cendental and algebraically independent.

One very pretty comnsequency of further work on Bessel

functions is: the continued fraction a, + 11 soo 18
1 a2+ a3+
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transcendental whenever the integers 815855875000 form an
. . . 11 .
arithmetic progression., Thus 1 + o+ 3+ +e°+ 18 transcen-

dental; as is %: %; I%I ese o The latter continued frac-

I(D

tion converges to 3;1 (see e.g. [(Hermite; 1]) , whence,

again, e is transcendental.

12.2 We close with some recent developments.
In 1954, A,B, Sidlovskii, elaborating on Siegel's work,

proved the following theorem: [see Math, Reviews 21, #1295],

Let El’E2’°°°’Em be E-functions satisfying

dE . m
dx on ¥ kfl ij°Ek (3 =1,2,...,m)

where the 0's are rational functions, and let « # 0 be
an algebraic number distinct from the poles of these rational
functions,

Then the numbers El(a)9°°”Em(a) , are algebraically
independent over the rationals if and only if the functions
El’Ez"'°9Em are algebraically independent over the field

of rational functions,
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From this fundamental theorem, Sidlovskii deduced a
generalization of Lindemann's theorem: [soviet Mathematics,
v.2, #3, (May, 1961) pp- 841-8L41,

Suppose the transcendental E~function e(z) is a

solution of the first crder linear differential equation
P(z) y* + Q(2)y = R(2)

where P.Q.,R;, are polynomials. Let w13w29°°09wm be
algebraic numbers, linearly independent over 0 , and
distinct from the zeros of P . Then e(wl)ge(wz)gooa,e(wm)
are algebraically independent over Q .

In another paper [Math,Reviews 26, #1285] V.,A. Oleinikov
applied Sidlovskii's theorem to the confluent hypergeometric

function,

o
B(B+1) ... (prv-1) 2Y
\)20 a(a+l)000(a+v"l) :;E (a93%0?-1§-23000)

Kagﬁ(z) =

Oleinikov'!s result is that if a,p are rational,
B#1,2,c0. s B~- @ #0,1,2,... then KasB(z) and Kzasﬁ)(z)
are algebraically independent for every non-zero algebraic value
of z .

For further results, see Sidlovskii's paper in (Amer Math.

Soc, Translations (2) 27 (1963) pp- 191-2301.

P———
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