FREE DERIVATION MODULES ON ALGEBRAIC VARIETIES.

By JosEpH LiPmaN.1?

Introduction. The Jacobian criterion for simple points may be formu-
lated in the following way [5;§3]:

Let P be a point on an algebraic variety V/k over a ground field %,
which we assume, for simplicity, to be perfect. ILet B be the local ring of
P on V, and let D= D,(R) be the module of k-differentials of B. Then in
order that P be a simple point of V, it is necessary and sufficient that D be
a free R-module.

D* = Hompg(D, R), the dual module of D, may be identified with the
module of k-derivations of B into itself. If P is simple on V, so that D is
free, then of course D* is free. It is tempting to ask for the converse: If D*
18 free, is P simple?

The answer is in the negative when % has characteristic p 40, even under
the additional assumption that P is normal, a counterexample being given by
the origin on the surface Z?=XY (cf. §7).

In characteristic zero, however, the question remains open, even when V
is a surface in 3-space. By way of encouragement we have an affirmative
answer in some special situations, for exaraple when P is the vertex of a
cone, or when P is the origin on a surface whose equation is of the form
Zre=f(X,Y) with f(0,0)==0. (cf. §7).

Our purpose will be to study, for its own sake, the condition that D* be
free. Although we cannot answer the above question, we can still develop
some results which may prove useful toward that end. Assuming that D*
is free, we show in § 8 that when % has characteristic zero, P is a normal point.
(Thus if V is a curve, P is simple). In §5 we give some upper bounds on
the codimension of the singular locus in the neighborhood of P. We give
a technical criterion for determining whether D* is free in §6, and apply
this criterion in § 7 to a number of specific examples. In an appendix (§ 8)
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we give a simple characterization, in terms of the local codimension of the
singular locus, of those points on a complete intersection whose module of
differentials is torsion free or reflexive. Some of the techniques used in the
proofs have independent interest (cf. §4, §6).

In view of the fact that the module of differentials of B has been defined
on certain occasions to be D**, the dual of the module of derivations, one
might also ask under what conditions D** is free. However, as long as B is
a reduced ring, it can be seen that D* == D*¥* from which it follows that
D*% js free if and only if D* is free. ,

We make the convention now that the word “ring” shall mean “non-
null ecommutative ring with identity,” and that all modules shall be unitary.
We use the terms “finitely generated” and “of finite type” interchangeably.
The phrase “ V/k is an affine variety ” shall mean “% is a field, and ¥ = Spec §
where § is a reduced k-algebra of finite type.”

The author wishes to express his gratitude to Professor Zariski, who
originally suggested the above question, for a number of conversations out of
which many of the ideas in this paper developed, as well as for constant
encouragement,

1. Generalities, Let V/k be an affine variety over a perfect ground
field %; thus V' —SpecS, where § is a finitely generated k-algebra without
nonzero nilpotent elements.

For any k-algebra 4, let D(A) be the module of k-differentials of 4 and
let D*(4) —Homy(D(4),4) be the module of k-derivations of 4 into
itself. (For the definition and properties of differential modules see [5;§1]).
If p is a prime ideal in S, then D(8,) may be identified with the localization
[D(8)]y=D(8) @58y We recall that if 4 is any ring, if M and N are
two 4-modules, and if B is a flat A-algebra, then the canonical homéomorphism

Hom, (M;N)@_i B— Homp (.M ®A B, N ®A B)

is a monomorphism if M is of finite type, and an isomorphism if M is of
finite presentation [3;p.39]. D(8) is of finite presentation and S, is flat
over §; we may therefore identify [D*(8)], with D*(8,).

If P is a point of V, and p is the corresponding prime ideal in 8, then
we gay “D* is free at P” when D*(S;) is a free Sy-module.

ProposiTioN 1.1, The points of V at which D* is free form a dense
open subset of V.

Proof. The set of points where D* is free contains the generic point



of any irreducible component of V, since Sq is a field when g is a minimal
‘prime ideal of §. Thus the proposition is a consequence of the general fact
that for any ring 4, and any A-module N of finite presentation, the prime
ideals p such that Ny is a free Ay-module form an open subset of Specd
(cf. [8; p. 137]). gq.e.d. '

From now on, we will be concerned only with the purely local properties
of P which follow from the assumption that D* ig free at P.

Prorosition 1.2. If D* 4s free of rank r at P, then every component
of V through P has dimenston r.

Proof. Let B (=S8;) be the local ring of P on V. If g is a minimal
prime ideal of B then R; is the function field of a component of V through
P, and all such components are accounted for in this way. Moreover
D*(Rq) ==D*(R) ®r R, is a vector space of dimension r over Rq. Since By
is a separable extension of % (% is perfect), Rq has transcendence degree r
over k. q.e.d.

Again let R be the local ring of P on V. Whether D*(R) is free or
not depends only on the completion of B:

ProrosiTioN 1.3. Let R’ be the completion of R, Then D*(R’) is the
completion of D*(RB), and consequently D*(R) is a free R-module if and
only if D*(R’) is @ free R'-module.

Proof. Let m be the maximal ideal of B’. Let D'= D(R’)/N m=D(R").

It is known that 7 is the completion of D(R), i.e. I/ = D(R) ®z R/, and
that D*(R’) =< Homg (D, B’) [2;§§2,3). (Note: these observations depend
on the fact that D(R) is a finitely generated R-module.)

Since B’ is a flat R-module, and D(R) is of finite presentation, we have,
as above, the isomorphism

D*(R) @ B = Homp(D(R), R) ®z B’ = Homp(D(R) ® R’, R’) == D*(R’)

and the first assertion is proved. Since B and R’ are local rings, and R’ is
a faithfully flat R-algebra, the second assertion is a special case of the fol-
lowing proposition [3; p. 53]: .

Let 4 be a ring, and let B be a faithfully flat A-algebra. An A-module
F is projective of finite type if and only if the B-module P®, B is projective
of finite type.

(We recall that for modules over local rings, “projective of finite type”
means “free of finite type.” [3; p. 107].)



2. Depth and the conductor; grade and duality. We now give some
preliminary results, to be applied in the next section.

Let 4 be a noetherian ring. A sequence {ay,a,,- * -,a;} of elements in
A is a prime sequence (of length ¢} if @, is not a zerodivisor in A, and if,
for each § = 2,8,- - -, t, ey is not a zerodivisor in A/Aa, + Aa, - + -+ Aday,.
The depth (or grade) of a proper ideal I < 4 is the length of a maximal
prime sequence consisting of elements. in I, the lengths of any two such
sequences being equal [7; Thm. 1.8]. For convenience, the ideal 4 is said
to have depth . ' i

Let 4 be the integral closure of A in its total quotient ring. Let & be
the conductor of A in 4, i.e. the annihilator ideal of the A-module A/4.

ProposiTioN 2.1. Let I be an ideal in A such that Aa: I=Aa for
every nonzerodivisor @ in A. Then €: I=G@, and consequenily if €44
then every associated prime ideal of € has depth =1.

Proof. Let c€ 4 be such that J C €. If 2€ 4, then a—="0/a (b,a€ A,
and « is a nonzerodivisor) and ¢I-b/a C 4, i.e. ¢b-IC 4a. Hence

che Aa: I=Ag

and ¢-b/a€ A. Thus ¢4 C 4, i.e. ¢€ € and the first assertion is proved.

If Iis an associated prime ideal of €, then €: I 4 €, so that for some
nonzerodivisor a, da: I == Ae, i.e. I is contained in an associated prime ideal
p of Aa. Since depth p=1, the same is true of I . qoed.

There is an interesting geometric consequence:

CorROLLARY. Let P be a point of an affine variety V/k, and let 4 be
the local ring of P on V. Then P is a normal point of V (f.e. 4 is an
integrally closed domain) if and only if the singular locus of V is of depth
= 2 locally at P (i.e. every prime ideal p in A such that Ay is not regular
has depth = 2).

Proof. If 4 is an infegrally closed domain, then every prime ideal p
of depth 1 is of height 1, and 4y is regular for every such prime ideal.

Conversely, if p is a prime ideal in A containing @, then A, is not
integrally closed in its total quotient ring [1; p. 506], and so 4, is not regular.
Therefore, if the singular locus is locally of depth =2, then every prime
ideal containing € has depth = 2, whence, by the proposition, € — 4, so that
A 1s integrally closed in its total quotient ring, Since A is a reduced local
ring, 4 is an integral domain. (Otherwise, there is an idempotent e in the



total quotient ring of 4, e5%0, e 1, and e is necessarily in 4 since e satisfies
a relation of integral dependence: ¢?—e==0. Since ¢ and e—1 are zero-
divisors in A, they are both nonunits in A4, which is impossible). g¢.e.d.

In particular, if 4 is a Macaulay ring (for example if V is a complete
intersection locally at P), then P is normal if and only if no singular sub-
variety of V of codimension 1 passes through P. For, 4 being a Macaulay
local ring, the depth of a prime ideal p in A is the same as the height of p,
i.e. as the codimension of the subvariety of ¥ corresponding to p.

® % %

Let A be a ring, M an 4-module, and let “* ”” denote the functor “ dual”
so that M* =Hom (M, A). Let M**= (M*)* he the bidual of M.

The canonical bilinear map of M* X M into A taking the pair {,z) into
o(x) defines 2 natural homomorphism f: M — M**, The “naturality” of f
means, explicitly, that for any homomorphism of modules h: M— N, the
following diagram commutes:

M
M —m— M**

h l l -
fv

N ——— N**

If f is an isomorphism, we say that M is reflexzive. Any finitely generated
free module is reflexive; a direct summand of a reflexive module is reflexive;
hence, any finifely generated projective module is reflexive.

The kernel of f consists of those elements of M which are annihilated by
every A-homomorphism of M into A. It follows that if M is a submodule
of a free module, in particular if M is a projective module, then f is a mono-
morphism. It also follows that the dual map of M — f(M) is an isomorphism
of [f(M)]* onto M*, so that these two modules may be identified.

We denote the cokernel of f by M**/M, even if f is not injective. Thus
we have an exact sequence

0—>F(M)—> M¥*— M¥*/M—0

Applying “*” and taking note of the preceding identification we get
the exact sequence
£
0— (M**/M)* = (M**)*—— Y* >
h
— Ext'(M** /M, A) —— Ext* {M** 4) (1)

which we will use in a moment.



Suppose now that 4 is noetherian and that M is finitely generated. If I
is the annihilator of M, then the depth of I is called the grade of M. We
check that grade M —min{depthp | p€ SuppM}. (Recall that Supp M is
the set of prime ideals p in 4 such that My %0, or, equivalently, the set of
prime ideals in A which contain the annihilator of M). It is known that
the grade of M is the least integer 4 such that Ext®(M,4) 540 (unless M =0,
in which case grade M =) (cf. [7]).

ProposiTION 2.R. Let A be a ring, and let M be an A-module such that
M* 15 free of finite type. Then Ext®(M**/M,A) = Bxt*(M**/M,A) =0.
Thus, if A is noetherian grade(M**/M) = 2.

Proof. Since M* is free of finite type, so is M**, whence Ext!(M**,4)
=0. Moreover, M* is reflexive, i.e. the canonical map g: M*—> (M*)**
= (M**)* is an isomorphism. f* being as in the above sequence (1), we
verify easily that (f*og) is the identity map of M*, so that f* is the inverse
of g.

Thus f* is an isomorphism, and the exactness of (1) shows then that

ExtO(M** /M, A) == (M**/M)* =0
and that % is injective, so that
Ext* (M**/M,A) C Ext*(M** 4) =0.
3. Free D* and normality.

TreorEM 1. Let V/k be an affine variety over a field k of charac-
teristic zero, and let P be a point of V. If D* s free at P, then P is a
normal point.

Bemark. The theorem is false when % has characteristic p 5% 0, a counter-
example being the origin on the plane curve X?==Y#" (cf. §7).

We shall prove Theovem 1 by showing that if R is the local ring of P
on V, then the singular locus of R is Supp(D**(R)/D(R)). In other words,
for any prime ideal b in B, Ry is not regular if and only if p contains the
annihilator of D**(R)/D(R). Then Proposition 2.2 shows that the singular
locus of R has depth = ®, and this being so, the corollary of Proposition 2.1
shows that P is normal.

We write “.D” in the place of “ D(R).” Let f: D— D** be the canonical
map. We have noted in §1 that we may identify the modules (D*)y and
(Dp)*, and similarly we may identify (D**)), with (D,)**. When this is
done, the “extension” f,: Dy — (D**), of § to D, is easily seen to be the



canonical map of D) into its bidual (D,)**. To say that p }4 Supp(D**/D)
is to say that (D**/D)p =0, i.e. thatDy**/D, =0, i.e., that f, is surjective,
If B, is regular, then by the Jacobian eriterion, Dy=D(R,) is free, and
fy Is certainly surjective.

Conversely, let dzy,dz.,- - -, da; generate Dy (25,2, - ', %€ Ry; d is
the universal derivation of R, into D(RB,) =D;). Since D* is free, by
assumption, both Dy* and D,** are free (over Ry). Since we are dealing
with modules over a local ring, f, is surjective only if there is a free basis
of Dy*% among the elements fy(da;), 1=1,2,- - -,¢ If d,,dy,- - -,d, sre
derivations forming a free basis of Dy*, then «,, &, - -, , form a free basis
of D,** only if v=7r and the matrix («;-d;) is invertible (over By). Noting
that f,(dz;) - di== dw;, we see finally that f, is surjective only if there ewist
elements ., %2, * <, % in By, and derivations dy, ds,- - +,d, of R, into itself
such that the matriz (dw;) ds invertible over Ry. (Here r = rank D*, which,
by Proposition 1.2, is the dimension of any component of ¥ through P).

Thus, it will be sufficient to show that the existence of such elements and
derivations implies that By is regular. This has been done by Nagata in the
case when B, is an integral domain [6;p,v96]. Presumably, a slight modifica-
cation of his reasoning would take care of the possibility that R, has zero-
divisors and thereby finish the proof of Theorem 1.

However, for completeness, and for its own interest, we shall present in
the next section a somewhat generalized version, due essentially to Zariski,
[9; p. 526], of Nagata’s theorem. The regularity of R, will be a special
case of that version, in view of the following observation (which is included
in Nagata’s proof) :

If fy is surjective, and Ry has Krull dimension s, then there are nonunits
Y, 92" * ", Ys in By, and derwwations dy,d,- - -, ds’ of By into itself such
that (diy;) is a unit matriz.

Proof. Supposing fy to be surjective, let (diz;) be as above, and let
(bis) be the inverse matrix. Replacing d; by 3 buwd,, we may assume that
i

diw;=38; (Kronecker 8). Then it is easily seen that 2, - -,z arve
algebraically independent over k.

Let q=pRy N k[a:l, @, * *,@]. Then B, dominates the regular local
ring T e=k[%,, @, * *,%]o. D*(T) is generated by the restrictions of the

di, so that any derivation of 7" into 7 extends to one of .Rp into R,. The
above remark about r shows that

7 =8 -} ir. degy By/pRy == s 4 tr. deg:, T/qT



Since r==dim I + tr. dege T/qT, we have s=dim 7. If y,9s - *,¥s
form part of a regular system of parameters of T then there are derivations
d/yds,: - -,d of T into T such that (dfy;) is the uwnit sX ¢ matrix.
Extending the 4 to derivations of Ry into E,, we complete the proof.

4. Derivations with invertible determinants.

THEOREM R. Let 4 be a ring containing @ field of characteristic zero,
and let m be an ideal in A such that A is a complete Hausdorff space in iis
m-adic topology. Suppose there exist derivations dv, dy,- - -, d, of A into A
and elements 2., - -, @, tn m such that the matriz (d;) is invertible.

Then there is a subring B of A such that

1) =, - -,%, are analytically independent over B.
R) A is equal to the power series ring B[[2:, 2, - +,2,]].

3) B contains the subring 44 of A on which all the d; vanish
(ie. dg=1{2€ 4| dz=0 for all i}).

Proof. Let (by) be the inverse matrix of (du;); replacing d; by
2 biwdy; affects neither the hypotheses nor the conclusions of the theorem,

and d,,a:, 853 we may therefore assume from the onfset that ( d;xj) is the unit
matrizx,

As a first step, let B, be the subring of A on which d, vanishes, and set
d=d;, =g,. Thus dv=1 and 2,24 + *,2,€ B,. For any element y
in A set

y#=y—ody+ (a*/21) 'y — (a°/3 1)y + - - -

Then y— y* is a ring homomorphism : the identity (y -}-2)# ==y# | z#
is obvious, and the identity (y2)# — y#2# is a direct consequence of Le1bn1tz
rule for repeated differentiation of a product.

It y# =0, then y€ Az; moreover ## ==0; thus the kernel of # is the
principal ideal Az. We also note that d(y#) =0, so that y# € B,, and that #
restricts to the identity on B,; hence B, is the image of #.

Since (y—y*) € Az, and since 2 € m, we see that any element z in A
can be written in the form

2=2zyF 5,8} 2.2 - -« - with z;€ B,

(for, 2 =2 + wiz = 2* 4+ (0. * + w.2) 2 = 2% + w, 2 + w22
= 2% 4wz 4 w.t2® - wea® ete. ete.)



Applying d#, we find that (d"z—nlz,) € Az. Hence
= (drz—nlz) ¥ = (drz)*— (nlg)F = (d"2)F —nlz,
so that z, = (1/n!){d"2)# (cf. Taylor’s theorem!).

In particular, if 2==0, we have 2o=2,=2,=" + *==0, l.e. # is ana-
lytically independent over B,. Thus 4 = B,[[z]].

Let m* be the image of m under #. Then m*¥ Cm4- 4z +m. Thus
mf=mnN B,.

Since B, = A/Ax contains a field of characteristic zero, and since B, is
a complete Hausdorff space in its m* = m N B, topology, we can easily com-
plete the proof by induction, after noting that the restrictoin of (#od,)
to B, is a derivation of B; into B, (¢=2,3, - -,s); that z;€mnN B,
(7=2,8,- - -,8); that the matrix ((#od;)2;} is the unit (s —1)X (s—1)
matrix; and finally that if dg=0 (i=1,2,- - +,5) then 2z is in B, and
(#Fod))z=0 (i=2,8,-+-,8). ¢-e.d.

Let B be a noetherian local ring with residue field of characteristic zero,
let B’ be the completion of R, and let ¥ be a subring of B. Suppose there
exist k-derivations dy, d;,- - -,d, of B into R and nonunits ,2.," - -, s
in B such that the matrix (diz;) is invertible. Let

ReR/Rz, - Bz, + - - --}-1;?:08,
and let B’ be the completion of B, so that there is a canonical diagram
Ree—— P
LD
B—#
where the horizonte]l arrows represent inclusion maps.

Cororrary 1. Under the preceding cireumstances there is a map
g: B =R such that hg is the identily map of B (hence g zs infective),
and such that when R is identified with g(R’), we have

1) kCR.

2) @, - -, 2, are analytically independent over R’

3) B s the power series ring RB'[[2y, 20, « +,%]].

Proof. The dy, being uniformly continuous, may be extended to deriva-

tions of B’ into R’. Thus, by the theorem, B'— B[[2, 2, - *,%,]], with
k< B. If # is the projection of R’ onto B, then g—=h is easily seen to



be a well-defined isomorphism of R’ onto B having the required properties
(as a map of ® into R’). gq.e.d.

E and B being as above, we note that if B has Krull dimension s, and if
R is analytically unramified, then B=R’'/R'z,4- Rz, + - -+ R'z, is a
reduced local ring of dimension zero, i.e. a field. Hence R is a vegular local
ring and #,,%,° - -,%, are regular parameters. This remark applies in
particular to the ring Ey of § 3; thus the proof of Theorem 1 is complete.

Geometrically, Corollary 1 may be interpreted as follows. If R is the
local ring of a point P on an affine variety ¥V /& over a field ¥ of characteristic
zero, then B is analytically unramified, and therefore, by the corollary, R is
analytically unramified. Hence £ is the local ring of P on an affine sub-
variety V of V and the corollary states that some neighborhood of P on V
is analytically the direct product of a neighborhood of P on V with an open
subset of the affine space k. In particular, the singularity of P on V is
completely determined by that of P on V. For further developments in
this direction we refer the reader to a paper of Zariski on the subject of
“equisingularity ¥ [9]. 7

With regard to the study of free D*, Corollary 1 can be supplemented
by a reduction principle:

ProrosrrroN 4.1. In the situation described by Corollary 1, assume
further that the B-module D(R) =D (R) of k-differentials of R is finttely
generated. Then the RB-module D(R)==Dy(R) is finitely generated, and
D*(R) 1s free if and only if D*(R) 1s free.

Proof. If 7 is chosen as in the proof of the corollary, and 2 is identified
with g(R), then the restriction of = to B is the canonical map of R onto &,
and = is the identity on k. Thus D(R) is a homomorphic image of D(B)
(D(RB) being thought of as an R-module via the map R~> R), and it follows
that D(R) is a finitely generated R-module.

The proof of Proposition 1.3 shows then that D*(R) is free if and
only .if D*(R’) is free, and similarly that D*(R) is free if and only if
D*(R') is free. Also D*(R'), D*(R’), are modules of finite type (over R,
B, respectively). Thus the proposition is a consequence of the following
lemma:

Lemya. Let B be a ring, let & be o subring of B, and let A be the
power series ring B[[X,, X,,- - -, X,]]. Let “D*” denote “ module of k-
deriwations.” Then D*(B) is a projective B-module of finite type if and
only of D*(4) 4s a projective A-module of finite type.



Proof. 1t is sufficient to deal with the case s=1. We set X; =X, s0
that 4 =B[[X]]. A k-derivation of 4 into 4 is uniquely determined by
its restriction to B, and by its value at X, both of which can be assigned
arbitrarily. More precisely, we can check that D*(4) == D*(B,4) ® 4 (the
first summand being the module of k-derivations of B into 4). Thus we may
replace D*(4) by D*(B,A) in the statement of the lemma.

The projection of 4 onto B induces an A-homomorphism of D*(B, 4)
into D*(B), and we see easily that this mapping is a surjection with kernel
XD*(B,A). Thus D*(B) is isomorphic as a B-module to

D*(B,A)/XD%*(B,A) =D*(B,A) @4 B.
Hence if D*(B, A) is projective of finite type, then so is D*(B).

Conversely, if D*(B) is a projective B-module of finite type, then
D*[X] == D*(B) ®p B[X] is a projective B[X]-module of finite type. In
its X-adic topology, B[X] is a Hausdorff space with completion 4. There-
fore D*(B,4) is a topological B[X]-module, and it is not hard to see that
D*[X], with its X-adic topology, is a dense topological submodule of D*(B, A)
(we identify D*(B,4) with the additive group of “ power-series in X with
coefficients in D*(B)”, and similarly we identify D¥*[X] with the additive
group of “polynomials in X with coefficients in D*(B),” and then D¥*[X]
is a dense B[X'}-submodule of D*(B,4) in an obvious way .. .). Thus
D*(B,A4) is the completion of D*[X]. Since D*[X] is a direct summand
of a free B[X]-module of finite type, and since completion “commutes” with
finite direct sums, D*(B, 4) is a direct surnmand of a free A-module of finite
type. q.e.d.

(The preceding situation can be described succinctly: D* (B, 4) is the
complete temsor product D*(B)®pA, when B and D*(B) have discrete
topologies, and 4 has the X-adic topology.)

When we are dealing with free D* at a point P on an affine variety V /%,
with % of characteristic 0, the local ring of P being B, with maximal ideal m,
Proposition 4.1 allows us to assume that d'm C m for every k-derivation d’
of B into B (otherwise we can pass fo a subvariety V of V through P, with
dim V < dim V).

For example, if P is & (closed) point on a surface 8, and if d'z is a
unit for some nonunit # in R, then we may pass to B/zR, which is the local
ring of P on some curve ¢ through P. 1f D*(R) is free, then by Proposition
4.1, D*(R/zR) is free, whence (Theorem 1) P is a normal point of C, so
that B/«R is regular. It follows then from Corollary 1 that R is regular;
hence P is a simple point of S.



We close this section with a complement (which we do not require else-
where) to Theorem 2.

Complement. In the notation of Theorem 2, assume that dizy = 8y
A necessary and sufficient condition for B to equal A, is that the d; commute
with each other.

Proof. Necessity is clear. Conversely, let b€ B. Set
bF — > ((—z)%- - '(—-:z:s)“'/acll- . 'C‘a!)d1°"' . -ds""(b)

(2% R 3

where (@, @, - -, @) runs through all s-tuples of nonnegative integers.

Then, assuming that the d; commute with each other, we verify that
dj(b*) =0 (j=1,2,- - -,s). Hence b*€ 4;C B, so that all terms of »*
vanish except that for which (ay,as,: -+, @) = (0,0,- - +,0); i.e, b¥ =b.
Thus BC 44 q.e.d.

The condition that the d; commute with each other is always satisfied
in the geometric case (cf. remarks following Corollary 1). Thus, in this
case, B may be identified with the subring of B’ on which all the d; vanish.

5. Free D* and the codimension of the singular locus. In [4;p. 212]
Buchsbaum and Rim have obtained a generalization of Krull’s principal ideal
theorem:

Let R be a noetherion ring, and let g: R*— R with t=r be a homo-
morphism of B-modules. Then dim By =¢—r-+1 for oll minimal primes p
1 Supp (cokernel of g).

If B is the local ring of a point P on an affine variety V/k, and if
D*(R) is free of rank r, then D**(R) is free of rank r, and the above
result implies that each irreducible component of Supp (D**(R)/D (R)) is of
codimension = ¢—r -1, { being the least number of generators of D(R)
(localizing at a minimal prime of R, we see easily that t=r). If k has
characteristic zero, then, as we have seen (§3), Supp(D**(R) /D(R)) is
the singular locus of B. Thus if P is singular (whick we hope it is not)
we get a bound on the codimension of the singular locus in the neighborhood
of P,

It is known [5; p. 174] that the number ¢ is characterized by the
fact that the #-th Fitting ideal of D(R) is the unit ideal in R, while the
(t—1)-th Fitting ideal is not. If V/k is immersed in affine n-space,
ie. it ¥ is defined by an ideal I= (fi,fs" * +,f,) in the polynomial ring



X, Xe,r -, X,), with I= VI, then we have an s X n Jacobian matrix
(fi), where fy; is the I-residue of the partial derivative 3f,/0X;, and for any
integer ¢ the g-th Fitting ideal of D(R) is generated by the images in R
of the (n—¢q) X (n—¢q) subdeterminants of the Jacobian matrix (by con-
vention, such a subdeterminant vanishes if ¢ < n—s, and is the identity if
q=n). Thus (n—1) is the rank of the Jacobian at P.

If ¢ is the dimension of ¥V at P, we can associate with P the nonnegative
integer 8p = (n—7) — (rank of the Jacobian at P). 8p=1%—r depends
only on B, and not on the particular immersion of V. (The definition of 8
has nothing to do with the assumption that D*(R) is free. However, if
D*#(R) is free of rank r, then r is indeed the dimension of V at P (Proposi-
tion 1.2). In summary:

Proposition 5.1. Let P be a point of an affine variety V/k over a field
of characteristic zero. If D* is free at P, then every irreducible component
of the singular locus which passes through P has codimension =14 8p on V.

If V is a hypersurface in affine n-space, so that r==dim V=n—1, then
dp =1 and Proposition 5.1 shows that the components of the singular locus
have codimension = 2 at P. Since P is normal (Theorem 1) each component
actually is of codimension 2 at P. A more general result has been proved
by 8. Lichtenbaum and M. Schlessinger for complete intersections:

Prorosirion 5.2. Let P be a point of an affine variety V/k over a
perfect ground field k. Assume further that V/k is a complete intersection
locally at P. If D* 1s free at P then each component of the singular locus
passing through P has codimension =2 on V.

Proof. Let R be the local ring of P on V. Since V is locally a complete
intersection, D (R) has homological dimension =1. If p is a prime ideal
in R, then Ky is regular if and only if D(R,) is a free Ry-module; but D(R,)
also has homological dimension =1; thus D(RB,) is free if and only if

0 == Exte,*(D(By), By) = [Extz (D(R), B) Jp.

In other words the singular locus of B is Supp(Ext*(D(R),R)).
Again, D(R) has homological dimension =;1; thus there is an exact
sequence
0»F=>G—>D(R)—0

with F, @, free BE-modules of finite type. Applying * we get the exact
sequence
0— D¥(R) —» G*— F*—> Ext'(D(R),R) > 0



By assumption, D*(RB) is free; hence Ext*(D(R),R) has homological
dimension = 2.

Now, Theorem 1.1 of [7] implies that if M is a module of finite type
over 2 noetherian ring, and if p is an associated prime ideal of M, then
depth p = homological dimension of M. Applying this result to the minimal
prime ideals of Supp (Ext*(D(R),R)), we see that each component of the
singular locus of B has depth = 2. Since B is a Macaulay ring, each such
component has codimension = 2. q.e.d.

Remark 1. An alternative description of 8p (cf. Proposition 5.1) is
obfained as follows. If mi is the maximal ideal of R, then it is well-known
(2;§1] that the universal derivation d: R— D(R) gives rise to an exact
sequence of vector spaces over R/m:

0—>m/m?*— D(R)/mD(R) — D(B/m) =0

The dimension of the vector space D(R)/mD(R) is the number {, while
the dimension of the space D(R/m) is the k-dimension of the point P, If
V/k is assumed to have dimension r at P, then it follows that

r=dimgm D(E/m) 4 dim B
and that
t— 1 =38p == dimp,mm/m* — dim E,

In particular, Proposition 3.1 shows that if P is an isolated singular
point of V, and if D* is free at P, then 2 dim B =1 4 dimgmm /m2.

Bemark 2. Let D= D(R) and assume that D* is free of rank ». The
canonical map D— D** gives rise fo a canonical map of symmetric algebras
g: 8(D)—> 8(D**). We note that S(D**) is a polynomial ring in r
variables over R.

For each #, let §, denote the n-th homogeneous component of the sym-
metric algebra, so that g induces gn: S (D) — S, (D**). If P is an isolated
singular point of V, and if the ground field % has characteristic zero, then
Supp (D**/D) contains only the maximal ideal of R, and it follows that the
cokernel of g, has finite length L(n) for each n. It is shown in [4;§38]
that L{n) is a polynomial in n for large n, the degree of the polynomial
being r—1 -+ dim RB.

Proposition 5.2 implies therefore that if V is a complete intersection
locally at P, then the polynomial L (n) has degree r4 1 (since P is normal).
A more direct proof of this fact might yield information about L(n) in the



general case (when V is not necessarily a complete intersection), and so lead
to an improvement of the estimate in Proposition 5.1.

6. Linear equations and free duals. The following proposition on
linear equations with solutions in a module will lead to a characterization. of
free dual modules (Theorem 3) and, in particular, to a useful criterion for
free D* (Proposition 6.2).

ProrosrrioN 6.1. Let A be a ring, let M be an A-module, and let
(ay) be an n X r matriz with entries in A. Let I be the ideal generated by the
r X r subdeterminants of (ay) (if r>n, an r X r subdeterminant is defined
to be zero). Then the system of homogeneous linear equations

(S) ?aﬁxj=0 (":“"':1:2:' ) 'n’;j_'—_]-;za' ' ':'r)

has a nontrivigl solution wn M if and only if I annihilates some nonzero
element of M.

Proof. We can always reduce the case where r > n to the case where
r=mn: enlarging the matrix by setting a;=0 for ¢=n4+1,n+4R2,- - -,r
affects neither 7 nor the set of solutions of (S). We assume therefore that
r=n. Then Cramer’s rule implies the necessity of the given condition.

For fixed n, we prove sufficiency by inductiom on . If 7==1, there is
nothing to prove. If r>>1, let m be a nonzero element in M which is
annihilated by all r X r subdeterminants of (ay;) (i.e. which is annihilated
by I). If m is annihilated by all (r—1) X (r—1) subdeterminants of
(@), then by the inductive hypothesis, the truncated system %‘,a;;X,-=0

{(t==1,2,- - -,n;§=1,2,- - -,r—1) has a nontrivial solution; hence, o
fortiori, (S) has a nontrivial solution.

We may therefore assume that bym £ 0, b;, ., - -, b, being the cofactors
of some row in some r )X r submatrix of (ay). But X ayb;— = ¢;, where for
i

each 4, ¢; either is an » X r subdeterminant of (ay;), or is zero. Hence

‘;Zaﬁ(b,-m) = om=—0

and we have a nontrivial solution of (8). g.e.d.
We mention, without proof, the following corollary (which we will not
use elsewhere) :

Let 4 be a ring, let NV be an A-module of finite presentation, with anni-
hilator I/, and let M be any A-module. Then



a) Homu(N,M)=0 iff Homs(4/F, M) =0,
b) NQuM=0iff 4/I'®, M =0,
[ (b) follows directly from (a) via the identity
Hom (N ® M, M/I'M) = Hom (N, Hom (M, M/I'M))].

We proceed to the characterization of free duals.

With any » X n matrix (a;), the a;; being elements of a ring 4, we
associate an 4-module of finite presentation, viz. the module with generators
€1, 62,° * *, e, subject to the relations Dajey=0 (i=1,2---,r). I N

' 7

1s any A-module, then we say that N is torsion free if every element of A
which is a zerodivisor in ¥ is a zerodivisor in 4 (cf. §8).

LeMma. Let (a;) be an r X n matriz with entries in a ring A, and
let N be the associated module. Let I be the ideal generated by the r X r
subdeterminants of (ay) (I= (0) if r>n). Then

1) The rows of (ay;) are linearly independent over A if and only if
(0): I==(0) in A, and if this is so, then

2) N is torsion free if and only if (a): I= (&) for any nonzerodivisor
ain A.

If A 1is noetherian, then these two conditions on I mean precisely thal
depth I=2.

Proof. To say that the rows of (a;) are linearly independent is to say
that the system of equations 3 @;X;==0 has no nontrivial solution in A.
i

By Proposition 6.1 this is equivalent to (0): I = (0).

If the rows are linearly independent, then “N is torsion free” means:
if ¢ is a nonzerodivisor in 4, and (b, b, - +,bs) is & vector with entries
in 4, and if a(by, by, - -, b,) is 2 linear combination with coefficients ;€ A
of the rows of (ay), then (3,5, - -, b,) is already such a linear combina-
tion; i.e. @ divides each z,.

This condition may be restated as: the system of equations 2ayX; =0
has no nontrivial solution in the A-module A/(a). By Proposition 6.1, this
means that (a): = (a).

If 4 is noetherian, then (0): I~ (0) implies that I contains a non-
zerodivisor, say @, and then (a): I= (a) shows that I contains a nonzero-
divisor modulo (a). Hence depth 7=2. Conversely, if depth 7==2, then
(2) : == (a) for any nonzerodivisor a: this is obvious if @ is a unit in 4,



and otherwise any associated prime ideal of (a) has depth 1, and therefore
does not contain I. Similarly (0): I=(0).

CoroLLARY. Let M be o free A-module of finite rank r, let fy,f2, « -, fr
be linearly independent elements of M, and let Q be the submodule of M
generated by the f's. Then M/Q is annihilated by a nonzerodivisor in A,

Proof. The module M/Q is associated with an » X » matrix with linearly
independent rows. If I is the determinant of this matrix, then (0): I = (0)
and [ annihilates M/Q (Cramer’s rule).

(Conversely, it can be shown that if f,,f.,- - -, f- are arbitrary elements
of M, and if M/Q is annihilated by a nonzerodivisor, then (0): 1= (0),
whence fi,fz, * *,fr are linearly independent).

Let A be a ring with total quotient ring K, and let 4° be the subset
of A consisting of the zero element along with all the nonzerodivisors in A.
Let M be an A-module and let M* =Hom,(M,4). If fi,f, - - -, f € M*,
and &, %2," ¢ ¢, %n € M, let I{fiz;] be the ideal generated by the r X r sub-
determinants of the matrix (fiz;).

THEOREM 8. With the above nolation, assume that M s finitely
generated, and let f,fs- - -, fr€ M*.  The following statements are equiv-
alent :

1) M* 4s free and f,,fs,- - -, fr form a free basis.

R) M*QuK is a free K-module of rank r, and of @y, 25, - -, 2, are
elements in M which generate M, then (a): I{fz;] = (a) for any
a i A°.

3) M*QuK is a free K-module of rank r, and there ezist elements
Ty &2yt * *, %0 0 M such that (a): I[fm;] = (a) for any a in A

Proof. 2) obviously implies 3).

Assume that 3) holds. By enlarging the set {zy,%s,- - -, 2.} if Decessary,
we may assume that @,,2.,- - -, 2, generate M, Let A» be a free A-module
with basis ej, s - -, and let g be the map of 47 onto M such that
g(e) =2a; (1==1,2,- - -,n), Thus we have an exact sequence

[}
Fodrtem s M >0

where F is a free A-module. Applying *, we get the exact sequence

*
0= M* s (A7) %> F*



so that M* may be identified with a submodule of (A47)*. Note that
(4)*/M* is isomorphic to a submodule of F*; since F* is a direct product
of copies of 4, F'* is forsion free, and therefore (47)*/M* is forsion free.

We identify any element o of (47)* with the vector (wey, wes,: -, wey).
Then fi = g* (fi) = (firs, fite, + -, fin) for =1,2,- + -,r. Thus if  is the
submodule of M* generated by fi,fz- - -,fr then (4™)*/Q is the module
associated with the matrix (f@y). According to the lemma, then, the condi-
tion “(a): I[fi;] = (a) for any a in A°” means precisely “fi,fs, * -, fr
are linearly independent (over 4), and (A47)*/Q is torsion free.”

To establish 1), it will be sufficient therefore to show that Q — M*, i.e.
M*/Q =0. Since M*/Q & (A")*/Q which is torsion free, it is even enough
to show that each element of M*/Q is annihilated by a nonzerodivisor of 4,
Le that (M*/Q) @1 K =0, i.e. that (M*@,K/Q®,K)=0.

It is clear that M* is torsion free, and it follows that the canonical map
M*— M*@4 K is injective. Hence the images of fi,fs- - -,f, in M* Q4 K,
which generate the submodule @ ®4 K, are linearly independent over X. Since
H*@y K is, by assumption, a free K-module of rank , and since every non-
zerodivisor in K is a unit in K, the corollary of the lemma shows that indeed
(M*Q@4K/Q®,K)==0. Thus 8) implies 1).

Forgetting 3), assume now that 1) holds, and apply the preceding con-
siderations to any set of elements z,,2,, * +, %, which generate M, In this
case, ¢ = M*, and, having remarked that (A®)*/M* is torsion free, we sece
that 2) holds by referring to the equivalent conditions set in quotation marks
three paragraphs back. This completes the proof.

As an immediate corollary of Theorem 3 and the last assertion of the
lemma, we have:

Prorosirron 6.2. Let R be the local ring of a point P on an affine
variety V/k over a perfect ground field k. Assume that V/k is locally,
at P, equidimensional of dimension r. Then the k-derivations dy,d,,- * -, dy
of B into B form a free basis of D*(R) if and only if there exist elements
Tyy oy* 5 Ty tn R such that the ideal generated by the r X r subdeterminants
of the matriz (dwz;) hes depth = 2.

Moreover, if dy,ds,- - -,d, do form a free basis for D*(R), then the
wdeal generated by the r X r subdeterminants of the malriz (dw;) has depth
== % whenever o1, %, - -, T, are such that the k-differentials dz,, dx,,- -, da,
generate D(R).

Remark 6.3. Clearly Proposition 6.2 also holds if R is the coordinate



ring of the affine variety V/k, provided that all irreducible components of ¥
have dimension 7.

7. Ezxzamples. a) If V is an affine curve over a field of characteristic
zero, then, by Theorem 1, D¥ is free at a point P of V if and only if P
is simple. On the other hand, consider the irreducible plane curve C
defined over a perfect ground field % of characteristic p£0 by the equation
X, Y)=Xr—¥r1—=0. We have fx=0, fy=Y?. Thus if E=Ek[z,7]
is the local ring of the origin, then there is a derivation d of B into R with
dz==1, dy == 0. "1t follows from Remark 6.3 (or it may be checked directly)
that D*(RB) is free with generator d. Thus D* is free at every point of C.
Nevertheless, the origin is not & normal point of C.

An example where D* is not globally free as above is provided by the
curve Y2 4 X? L X7 =0 over a perfect field of characteristic p >2. If R
is the local ring of the origin, then there os a derivation d of R into B with
dz==2 -+ 2, dy=y. By Proposition 6.2 (or directly) D*(R) is a free
module with generator d, whereas the origin is a singular point. (The fact
that D* is not globally free is seen by remark 6.3 and by consideration of
the points (0,0), (—1,0) on the curve).

b) Consider the surface defined over a perfect ground field % of charac-
teristic p =0 by the equation f(X,Y,Z2) =XY -~——ZP=0. We have fxr=171,
fr=2X, fz=0. The origin is the only singular point, and by the corollary
to Proposition 2.1, the origin is a normal point. Thus, the coordinate ring
B=Fk[z,y,2] is integrally closed, and the ideal (z,%) in R has depth 2.
By Remark 6. 3, the two derivations d,, d. such that: dyz=0,d,y =0, dyz2 —1;
dyx = —1, dyy ==y, d;z2— 0; form a free basis of D*(R). So we can have
free D* in the presence of singular points, even under the assumption of
normality.

From now on, we restrict ourselves to a fixed ground field % of charac-
teristic zero.

¢) Let P be the origin on a cone K in affine 3-space (over %), K being
given by f(X,Y,Z) =0 where f is a homogeneous polynomial without mulfiple
factors. Zariski has shown (unpublished notes) that D* is free at P only
if P is a simple point of K (i.e. only if K is a plane). The proof is given
here with his permission.

Assume that P is a singular point of K. If D* is free at P, P is normal
(Theorem 1), and it follows that P is the only singular point of K (other-
wise the line joining P to a singular point would be a multiple curve through



P). If fx, fv, fz all vanish at some point P’ in the affine space then, by
Euler’s theorem on homogeneous polynomials, f also vanishes at P, and P’
1s a singular point of K ; hence P’=P. In other words, (X,Y,Z) is the
only associated prime ideal (in %2[X,Y,Z]) of the ideal (fx, fv.fz). Hence
no associated prime ideal of (fz,fr) is 2 minimal prime ideal, and it follows
that (fz) : (fr) = (fz). It also follows, by Macaulay’s theorem, that (fz, fx)
Is pure one-dimensional so that (fz, f¥) : (fz) = (fz, fr). We shall make use
of these observations below. )

Let B be the local ring of P on K, and let z, ¥, # be the traces of X, ¥,
Z on K, so that k[x,y,2] is the coordinate ring of K. k[z,y,2] is a subring
of B since every irreducible component of a cone contains the vertex. We
identify any derivation @ of B into B with the vector (dz, dy,dz). Thus the
derivations of B into B are the vectors (a,b,¢) with @, b, ¢ in B such that

afm+bfy+cfz=0 f$=fx($5y;z) ete.

The derivations (a,b,¢} with a, b, ¢ in klz,y,2] span the R-module
of all derivations of R into B. We seek, therefore, the polynomial solutions
(4,8,C) of

Afx + Bfy 4 Ofz==0 (mod. f)

These solutions form a ¥[X, Y, Z]-module M which is spanned by the
homogeneous solutions (since f is homogeneous). So let 4, B, C, E be homo-
geneous polynomials such that

Afx + Bfy 4 Cfy = Ef
Setting 4,—A—XE/n, B,=B—YE/n, Ci=0—ZE/n, where n

= degree of f, we get
A:1fx + Bify + Cifz=0 (2)

Hence (X, Y,7%) and the homogeneous solutions of (%) span M. Since
(fz:fv): (fx) = (fafv), (2) implies that 4, —Gfy+-Hfz (G, H homo-
geneous polynomials). Subtracting from (4,, B, C;) the vector G(fr,—fx, 0)
+ H(fz,0,—fx) (which is in M) we may assume 4,—0. Bui then, since

(fz) : (fr) = (fz), (2) implies that (0, B,,C,) =L(0,fz,—fy) (L a poly-
nomial).
Hence M is spanned by the vectors

(Xa Y:Z)s (fY)—fX: O)J (—fZJO)fX)J (Oyfz:—fY)
and therefore D*(R) is spanned by the vectors

(x’y’z)-’ (fﬂﬁ_f-'”’ O)’ (——fZJ O:f-‘r):l (Osfz:—fu)-



Thus there is a free basis of D*(R) among these four vectors. Applying
Proposition 6.2 to all the possible pairs among these vectors, we conclude that
one of fz, fy, f- is a unit in B ; this is impossible since P is not simple.

d) We will treat in some detail the following situation: P is the origin
on a surface V defined over the field & (of characteristic zero) by an equation
of the form Z"=f(X,Y) where f(0,0) =0, and n > 1. If D* is free at P,
then P is normal (Theorem 1); by the corollary of Proposition 2.1, P is
normal if and only if, writing f(X,Y) =¢(X, Y)h(X,Y), where h(X,T)
is the product of all those factors of f(X,Y) which do not vanish at (0,0),
we find that g(X,Y) has no multiple factors.

We will show that if D* is free at P, then D* is free at the origin on
the curve defined by g(X,Y) ==0. By Theorem 1, the origin is a simple
point of this curve, whence P is a simple point of V.

(i) Let k[2,y,2] be the coordinate ring of V, and let § be the local
ring of P on V. Let R be the local ring of the origin on the (2,%) plane,
Le let B=F[2,94](sy. Then B[2]C 8. On the other hand, we can check
that B[] is a local ring, cf. [8; p. 318], and it follows easily that R[z] = 8.

(i) We study the derivations of S=R[z] into itself. Any such
derivation is uniquely determined by its restriction to R thus our problem
is to study the derivations of R into R[2z] which can be extended to deriva-
tions of R[z] into R[z].

Let d be a derivation of R into B[#]. Then clearly

a=do+zd1+z2d2+. * .+zn'-1dﬂ-1

where do, di,* * -, dn arve uniquely determined derivations of R into B, We
claim that d can be extended to a derivation of R[%] into R[z] if and only
if doydyys © -, dny con be extended. (Note that the derivation 2t weq €AN
always be extended.)

If this is so, then, denoting extensions by upper “e¢,” we will have

o= (do)* +2(di)e+22(da)e + - - -+ (2dy 1)

since the derivation on the right is obviously an extension of @, and since 4
has at most one extension, It follows that D*(8) is generated by derivations
of the form (dy)e, or (zn'd,)®, where d, is a derivation of B into R.

The proof .of the claim is straightforward. d can be extended if and
only if there is an s in § such that nz*'s — df, or equivalently,

nfs =z(df) = 2(dof } + 2*(dif) - - 2" (dnof ) + F(duaf).



Thus s exists if and only if f divides dof, dif,- - -, dusf.

Setting dy=d,=" + =d,; =0, we see that d, can be extended if
and only if f divides d,f; similarly d; can be extended if and only if f divides
dif (t=1,2,- - ,n—R). Thus, the preceding statement becomes “s exists
if and only if do,dy,- - -, das can be extended” q.e.d.

(iii) Assume now that D*(S) is a free S-module. Since § is a local
ring, any set of generators of D*(8) contains a free basis {d', &} of D*(8).
By the above results, we may assume that &’ is either of the form

(#) (dy)¢: dy’ € D¥(R) and f divides d/'f
or of the form
(##) (2*dy)e: dyf € D*(R)

and similarly for d”.

We identify 4’ with the vector (d'z,d'y,d’?) and d” with the vector
(d"%, &y, d"2). Then

&' = (o, &, 2(dy’f) /nf) o, €R
or
&' = (2"*ay, 2720y, 271 2(dyf) /nf) @, % € R

according as d’ is of the form (#) or (##). Similar remarks apply to ¢”,
with “ B8 in place of “ea.”
Thus we are led to the “derivation matrix*

7=t ) (5 5 9%

where ¢ (=0,1,0r2) is the number of derivations among d’, & having the
form (2"- -)e. _

Proposition 6.2 states that the 2 X 2 subdeterminants of J must generate
an ideal of depth = 2. If #==0, then f divides both d,’f and d,”f so that 2
divides J. If =2, then (2*)*- (z/nf) = 2*/n and once again z divides J.
Hence t=1, and (2*')*- (2/nf) is a unit; moreover, we may assume that
d’ is of the form (#), so that f divides d,f.

Now dy'f = fea ++ fyxo and dy’f =f.8, + f,B:, so that the last column
of J is a linear combination of the first two. Thus Proposition 6.2 will be
satisfied only 4f @f.— a8y 1s @ unit in § (and therefore in R). Hence
either @, =d," or ¢,—=d,"y is a unit in B. Moreover, since f divides d,f,
dy’ induces a derivation in B/(f), i.e. in B/(g) which is the local ring of
the origin on the plane curve g(X,¥) =0. Since, say, ; (mod.g) is a unit



in B/(g), we see, by Proposition 6.2, that D*(R/(g)) is 2 free module with
generator dy (mod.g). This is what we set out o prove.

e) The method of d) can be extended to more complicated situations.
For example, the origin on a 3-fold in 5-space given by equations of the form

U"=f(W,X,Y,Z) f(0,0,0,0) =0
Wn=g(X,Y,Z) 9(0,0,0) =0

has a free D* if and only if it is a simple point.

f) The purpose of the examples in this section has been to illustrate
the conjecture that P is simple if D* is free at P. We wish to point out that
in attempting to prove this conjecture (assuming that % has characteristic
zero), we may assume that % is algebraically closed, and that P is a rational
point. For, in the first place, Proposition 1.1 shows that if D* is free at P,
then D* is free at almost every algebraic specialization (over k) of P, so that
we may assume that P is algebraic (over k).

Secondly, let & be the algebraic closure of %; then we have the canonical
projection ¥V Xxk— V. If P is any point of ¥V X% lying over P, then the
local ring R of P is the localization at one of the maximal ideals of the semi-
local ring R® %, R being the local ring of P on V. R is a faithfully flat
R-algebra.

It is not hard to see that any k-derivation of B into an R-module M
has a unique extension to a k-derivation of B into M. It follows easily that
D(R) ==D(R) ®z R where “D” denotes “module of k-differentials.” Hence
(cf. proof of Proposition 1.3) D*(B) —D*(B) @z R. Since R is faithfully
flat over E, D(R) (respectively D*(R)) is free if and only if D(R) (respec-
tively D*(R)) is free (cf. proof of Proposition 1.3). This shows that, for
the purposes of the conjecture, we may assume k ==,

8. Appendix: Torsion free and reflexive differential modules. We
will indicate a proof of the following facts: '

FropositioN 8.1. Let B be the local ring of a point P on an affine
variely V/k over a perfect ground field k., Assume that V is locally, at P,
a complete intersection. Let D(R) be the R-module of k-differentials of R.
Then

1) D(R) s torsion free if and only if V is nonsingular in codimension
1 at P, v e if and only if P is normal.

2) D(R) is reflexive if and only if V is nonsingular in eodimension 2
at P.



Given a ring 4 with total quotient ring K, and an A-module M, we call
the kernel of the camomical map 7: M — M) =M @4 K the forsion sub-
module of M. Thus the torsion submodule consists of all elements of M
which are annihilated by a nonzerodivisor in 4. M is torsion free (cf. §6)
it and only if its torsion submodule is (0). One checks that the torsion
submodule of 3 is contained in the kernel of the canonical map f: M — I**,
Conversely, if K is semisimple (equivalently: if the ideal (0) is a finite
intersection of prime ideals in 4) then the “naturality” of f gives a com-
mutative diagram

M — P

g

M gy ——— My ™

i which ¢ 4s injective, since M (x) is & projective K-module (cf. §2). Hence,
in this case, ker f C kerd, so that the torsion submodule s the kernel of 1.

The next lemma gives further information about the kernel and cokernel
of f: M — M¥*,

LeMma. Let A be any ring, and let Fo—>Fi— M —>0 be an exact
sequence of A-modules, where Fy and F, are projective and of finite type.
Let N be the cokernel of the dual map F.¥—> Fy*. Then there is an exact
sequence

f
0— Ext'(N,4) > M ——— M**— Exi*(N,4) > 0

Proof. One checks that for any zero-sequence Gy, — G5 — G, — G there
Is an exact sequence

0— (homology at @) — (cokernel of Go—> G,) —
— (kernel of G,— @;) — (homology at G) ~> 0 (3)

We are given the exact sequence
0> M*>F*>F*as N0, (4)
Building an exact sequence
FioF,-» M*=>0 (5)

with F, and F. projective modules, combining (4) and (3), and dualizing,
we get a zero-sequence

0> N¥ 5 F o P a% 5y F ¥y Fo¥,



Since F, and F, are reflexive the cokernel of F**— F;** can be
identified with M; also the kernel of Fo*-—» Fg* is M**. One checks then
that (8) gives rise to the desired sequence. g.e.d.

To prove the proposition, we apply the preceding considerations to the
case A=R, M==D(R). Since D(R) has homological dimension =1, we
may assume that N == Ext'(D(R),R). K is now semisimple and it follows
that N®4 K =0, whence N* == Ext’(N,R) =0.

By the lemma (and the remarks preceding the lemma), D(E) is torsion
free iff Ext!(N,R) == 0, i.e. iff grade N =1, i.e. iff Supp N has depth =1
(cf. §2); similarly D(R) is reflexive iff Ext'(¥, B) = Ext?(N,R) =0, i.e.
iff SuppN has depth =2. However, we have seen, in proving Proposition
5.2, that Supp N is the singular locus of B. Also, since B is a Macaulay ring,
depth and codimension coincide. Thus, in view of the corollary to Proposi-
tion 2.1, all our assertions are proved.

We remark that Proposition 8.1, applied o the generic point of a com-
ponent of the singular locus of V, yields an alternative proof of Proposition
5.2.

Harvarp UNIVERSITY.
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