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PREFACE

The present work comprises two papers on topics in
the local theory of singularities. The first, and lonéer,
is an analygsis of 3 speciai class of singularitiesg of
surfaces, while the second is concerned with a question
about the derivation module of the local ring of an
arbitrary point. The contents of the two papers are

described at some length in their respective introductions.

It gives me great pleasure to acknowledge my gratitude
to Professor Oscar Zariski, for his suggestion of the
topics studied nerein, for many inspiring conversations and
access to unpublished notes on which much of the material
1s based, for nis patient guidance and encouragement, and

for nis personal interest when it was most needed.

Thanks of a different kind are due to my wife Pnyllis,

for tyﬁing the manuscript and for never doubting.



QUASI~ORDINARY SINGULARITIES OF EMBEDDED SURFACES

Introduction

Since their introduction by Jung in 1908, the so
called guasi-ordinary (or Jungian) singularities have
prlayed an important_role in the problems of uniformization _
and resolution of singularities (Walker, Zariski, Abnyankar).
A point of a surface in three-gpace is quasi-ordinary if
some neighbourhood of the point can be projected into a
pPlane in such a way that the branch curve has an ordinary
double point at the image of the original point. Thus the
quasi-ordinary points are in some sense those which are
next in order of complexity to points at which a surface
is éguisingglar'along some curve C, i.e. to those singular
- points whose image in some (local) projection is a simple

point of tne branch locus (which is the projection of c).

The situation of equisinguiarity always comes‘about
when some one-parameter family of plane‘curves having
"eguivalent" singularities at their regpective origing
sweeps out a surface S, C being the nongingular curve

traced on S by the origins. The original curves appear



then as gections of 8 by planes transversal to C, and
around any point P of C, S is more or less a Product of

C with such a section of 8. Thus the singularity of S at P
is essentially no more complicated than that of the
transversal plane sections, and singularities of plane

curves can be classified according to classical methods.

In spite of their importance, the quasi-ordinary
singularities have not yet been classified. In the absence
of a general theory of classification for singularities of
embedded surfaces, an analysis of the special situation
presented by quasi-ordinary points would seem to be

worthwhile. Such an analysis is the theme of this paper.

It is well-known that the neighbourhood of an
analytidally irreducible qQuagi-ordinary singularity may be
represented by an algebroid funetion € of two variables
X and Y, wnich is actually a fractional power series in
Xand Y (i.g. (= H(Xl/n,Yl/n) for some power series H aﬁd
some.integer n). If £1s Cz are two conjugate brancnes of (,
then it turns out that {; - (, = Mlaela(xl/n,'i’l/n) where

My, = u/an/n is a (fractional) monomial in X and Y, and

1
ela(o,o) # 0 (ef. §1 for technical details). The monomials

so obtained are the "characteristic Wonomials" of (. Tnig



‘parallels exactly the situation for irreducible branches
of plane ﬁurves, where we deal witnh fractional power

series and characteristic monomials in one variable X. In
the case of curves, two suitably normalized fractional
power series represent equivalent singularities if and only
if they have the same characteristic monomials. (By
"suitably normalized" we mean that the parameter X is
chosen to be "transversal®). Thus we may hope that the
characteristic monomials of branches which are somehow
normalized (cf. §2) would provide the key to tne
classification of irreducible quasi-ordinary singularities.
Of course it would be essential to show that two different
branches representing the same point should havé the same
characteristic monomials. More generally, we should demand
that two different branches representing points witn
isomorphic local rings (in the absolute sense, and not
necessarily relative to the ground field) should have the

same characteristic monomials.

By further analogy with the case of plane curves,
another more intringic approach to the c¢lassification
problem would be to resolve the singularity under
consideration by quadratic and monoidal transformations,
observing the behavior of the resulting singularities at

- each stage. The prerequisite for such an'attempt is to



show that quadratic and monoidal transforms of
quasi-ordinary points are once again qQuasi-ordinary. We
find in §§3-4 that this is indeed the case wnen the
original point is analytically irreducible, and that,
moreover, the monoidal transforms and certain "speciall
quadratic transforms of such points are again analytically

irreducible.

The "non-special" quadratic transforms are points P!
which are either simple points of the transformed surface
S' or such that S' is equisingular along the exceptional
curve at P'; such transforms can be analytically reducible.
As we have pointed out, the singularity of S' at a
non-special transform is determined by a plane section of
S! transversal to the exceptional curve. Such plane
séctions also appear as Ygeneric sections™ in the local
ring of certain special transforms, and so we may restrict
our attention at each stage to the (finitely many) special

transforns.

In the case of curves the two different approaches
are related by the following result: the characteristic
monomials of a branch representing a point with local ring
A determine and are uniquely determined by tne

multiplicities of tne successive quadratic transforms of A.



Our main result should therefore run along the following
lines: the characteristic monomials of a branch
representing a quasi-ordinary point with local ring A
determinetand are uniquely determined by certain invariants
associated with the successive local rings appearing as
special transforms in some kind of resolution of A. In
the case of curves, the only invariant used is the
multiplicity; in the present case we need more information,
such as the multiplicities of multiple curves appearing in
the successive transformations, the number of components of
certain tangent cones etc. (ef. §5 for exact description).
The required information about téngent cones and multiple
curves at a quasi-ordinary point is developed in §2; the
behavior of characteristic monomials under quadratic and
monoidal transformations is given in §§3~4; the

classification tneorem is then stated and proved in §5.

In §6 we investigate the relation between the
characteristic monomials associated with a quasi-ordinary
point and the Ygeneric plane sections™ transversal to a
given multiple curve through the point. The material of
tnis sectiﬁn leads to anothner formulation of the

classification theorem.

We work throughout in the context of complete local



rings although the motivation (as given in this
introduction) is always geometric. For more background
on embedded surfaces we refer the reader to {7]; for

equisingularity we refer to [8].

The proofs of all our prinecipal results are purely
computational and consequently quite tedious. It is to
be hoped that a more conceptual approach can be found.
We do take care at all times however to show that the
computations being performed on a branch have a
significance which is intrinsic to tne local ring of the

point represented by the branch.

[As we have indicated, we are restricting ourselves
to the case of analytically irreducible, two dimensional
local rings. The reason is that in other cases, the
property of being quasi-ordinary is not rreserved under
quadratic transformations: for example, the reducible
surface (z2 - X‘?Y)(Z3 - XY} = O becomes
(z° - XY)(xZ® - ¥) = 0; the turee dimensional variety
Uh = X°YZ becomes U¥ = XYZ which in turn becomes XUY = IZ3}.

Although the notion of'equivalent singularities is
at present a vague and intuitive one, we believe that there

is sufficient evidence presented in this paper to justify



the claim that the classification of analytically irreducibl
quasi-ordinary singularities by characteristic monomials is

the "correct" one.



l. Ihe Distinguished Pairg of a Quasi-ordinary Branch.

Let R = x[[X,Y,Z2]]) be the power series ring in three
variables over an algebraically closed field k of
characteristic zero. An element f in R is said to be a

bseudo-polynomial in 2 (over k[[X,Y]]) if

where the g, (i = 1, 2, ..., m) are non-units in kx[[X,¥]].
i

DEFINITION l.l1. A pseudo-polynomial f in Z is a
guasi-ordinary polynomial if the discriminant of £ (f being
considered as a polynomial over k[[X,Y]]) is of tne form
XaYbe; with a,b non-negative integers, and ¢ a unit in

kllx,¥l].

If f is of degree one (as a polynomial in Z) we shall
consider that f has discriminant equal to the identity;
thus in this case f is a quasi-ordinary polynomial if and

only if the absolute term g1 is & non-unit.

We may also speak of a quasi-ordinary polynomial in X
(over k[[Y,21]) or in Y (over k[[X,2]]), the definitions in



each case being obtained from definition 1.1 by a suitable

permutation of the letters xvw, nyn, 6 mnzn,

In order to discuss the roots of quasi-ordinary

polynomials, we recall the notion of fractional power

series. Let n be a positive integer, and let T, be the
set of all non-negative rational numbers a such that no is
an integer. A fractional power series ¢ in X and Y of

order g n, with coefficients in k, 1s a formal sum

¢ = z c . X*¥® (¢ e k)
(G’B)ernxrn GB “B

Ifg = szBX“YB is a second such sum, then we set

(+¢g = Z(c

g
(a,p) P ) daB)an

) d )x“YB
s (a,p) (G'+a."=q ca'gt angh

Brph=g

In particular (x?)i = Xla, (Ya)j = vIB for any
integers i,j. We verify that the set of all fractional

power series form a ring g; that for fixed n, the



fractional power series of order < n form a subring 8.3
that we may'identify k[[X,Y]] witn §, in such a way that

X (respectively Y) is identified with x* (respectively Yl);
and that

= k[[x,Y]] [x¥/7,91/n) o yqra2/n ¢1/ny)

2

is isomorphic to the power series ring in two variables

over k.

Thus any power series ¢ of order < n can be written
in the form ¢ = H(XX/™,¥Y/%) Lrere § = H(X,Y) is a power
series in two variables with integral exponents. The set
of conjugates of { over k[[X,¥Y]] is then the set of

. , 1/n 1/n
fractional power series {H(wlx WY )} wnere 0,0,
Tun through all the n-th roots of unity. § is a unit in %
if and only if H(0,0) # 0, and when this is so, { is a

W§ can, of course, define fractional pPower seriesg in
any number -of variables X,Y,Z,.... over k, and all the
above remarks have obvious extensions to such situations.
For example, if a,b,c are any integers, then there is a

k~igomorphism between k((xl/a,Yl/b,zl/cll and k[[X,Y,Z]]



taking X2/ & x, Y° L v, 2% | 2. Tacit use of tne
existence of such an isomorphism is often made in later

sections.

It is known that the roots of a quasi-ordinary
polyﬁomial are fractional power series [1; Theorem 31];
in other words, if f is a quasi-ordinary polynomial in 2
over k[[X,Y]] tnen.thefe is an integer n and power series

Hl’ HZ' esey Hm sueh that

£(x,%,2) = 1 lz- Hi(xl/n,rl/n)l
im]

Tne discriminant of f is then the product

m[H (xl/n,Ylfn) - H.(xl/n,Yl/n)J = x2yPe
iy T J

Since § = k[[Xl/n,Yl/n]] is a unique factorization .
. 1/a ,1/n '
domain in which X , Y are irreducible elements, it

follows thnat

i/n o1/n 1/n 41/ny
H, (X noy/0y Bj(x S ) Mysegy

where Mij is 2 monomial in Xl/n, Yl/n, (i.e. Mij = Xu/an/n



for some integers u,v) and €55 = aij(Xl/n,Yl/n) is a unit

in §_ {i.e. eij(0,0) # 0).

Moreover, since £{0,0,2) = Z® (by our definition of

pseudo-polynomials) we have

Z% = qlz - H, (0,0)]
i

whence Hi(o,o)_= O. Thus ¢ and its conjugates are

non-units in §, and Mﬁj # 1.

Conversely if { is a non-unit in $,» and if for every
conjugate ¢, # ¢ of ¢ (over k[[X,Y]]) we nave
€ ~¢; = Miei, where Mi is some monomial in Xl/n,‘Yl/n,
and € is a unit in $ s then for any two distinct conjugates

{12 §p of { we nave
€1 =62 = Mpe,

where M;, is a monomial and €15 18 a unit (fo?, €1 - €z is
conjugate to some element of the form ¢ -~ ci). It follows

that the minimum polynomial 1[2 - (, ] of ¢ over k[[X,Y]]
' i

is a quasi-ordinary polynomial.



In general, if { is any fractional power series in X
and Y over k, and if ¢ = Cis Cps voes Gy are the distinct
conjugates of ¢ over kl[X,Y]], then we will call the
element JEIEZ - ¢;J of R the minimum polynomial of ¢

DEFINITION l.2. A fraqtional power series in X and Y
with coefficients in k is said to be a guasi-ordinary
braﬁch if its minimum polynomial is a quasi-ordinary

polynomial.
To summarize the previous remarks, then, we have:

PROPOSITION 1.3. The roots of a quasi-ordinary
polynomial which lie in gny algebraically closed field
containing the ring § of all fractional power series are
themselves fractional power series. A fractional power
series { € ¢, is 2 quasi-ordinary branch if and only if ¢
is a non-unit in §  and for each conjugate (. # { we have
l/n;

€ - C; = Myeq, wnere M, is a monomial in Xl/n and

€ is a unit in ‘n‘

DEFINITION l.L4. If ¢ is a quasi-ordinary branch,

then the monomlals M, = XY of proposition 1.3 are



called the gharacteristic monomials of {. The ordered

pairs (xi,ui) are called the distingsuisned pairs of (.

(We would prefer to say "characteristic pairsh™;

however, such usage would be in conflict with established

terminology in the theory of plane curves).

We shall now give some properties of the

characteristic monomials and distinguished pairs of a

quasi-ordinary branch { ¢ ¢, in a series of remarks.

REMARK 1l.4.0. ( may have no characteristic monomials.

This will occur if and only if ¢ ¢ k[[X,Y]].

REMARK l.k.l. Any conjugate of { has the same set of

characteristic monomials as (.

REMARK 1.4.2. Recalling that any conjugate of { is

obtained from { by a substitution of the type

Xl/n - wlxl/n, Yl/n - wzfl/n (w? = wg = 1), we see that

the characteristic monomials actually appear as terms
(witn non-vanishing coefficients) in the expression of ¢

as a fractional power series.

If (A,u), {0,7) are two ordered pairs of rational



numbers, we write (),u) < (o,7) to signify » <o, u g 7.
If (A,n) < (o,7) and (a,u) # (0,7), we write (%,u) < (0,1).

REMARK 1.h.3. Let M; = X¥, M, = X977 be two
distinct characteristic monomials of ¢, and let €12 €2
be conjugates of { such that { - €1 =™ Mgy, € - (o = Myey,

€ and €5 being units in §n. We have seen that
151 "~ Mpep < G -G ¢ Mpoes

where M., is a monomial and €1 is & unit. It follows
easily that eitner {i,u) < (o,1) or (6,7) < (x,u). Thus,

the distinguished pairs of { are totally ordered.

REMARK l.L.k. Let Ml’ Moy «ee, Ms be the distinct
characteristic monomials of (. Let K be the quotient
field of k[[X,Y]] and let K, be the quotient field of
k[[Xl/n l/n]J K is a galois extension of K. If’cluXXY“
is any term appearing in ¢ (cl # 0), then any automorphism
of K /k leaving { fixed leaves X%Y“ flxed thus XRYQEK(C)
On the other nand proposition l.3 shows tnat any
automorphism leaving Ml, Mz, ceuy M fixed leaves { fixed.

Hence (and in view of remark 1.4.2)

K(G) = K(My, My, weu, M)



REMARK 1.L.5. Setting M, = XML, we may assume,
by remark l.4.3, that (ll,ul) < (Az,uz) < eee < (xs,us).
Suppose that blquY” is a term of ¢ (cku # 0) and that
M= XY lies in K(My, My, +.e, M) but not in
K(Ml’ My, vee, Mt-l)' Then there is an automorphism 6
which leaves My, My, ..., M, , fixed, and whicn "moves" M
(i.e. 8M # M). Tnhen 6 must move Mt’ and so both M and Mt
appear with non-vanishing coefficients in the expression
of { - 8L = Mree {where Mr = KAPYHP is some characteristic
monomial of {, and €g is a unit). Thus ponn) < O,u),
and (kr,ur) < (At,ut). The second inequality shows that
M, is one of Myy My, ees, M., and since & moves M., Mr is
necessarily M . Hence (xr,ur) = (kt,ut), and so

(Xt’ut) < Gou)de.

REMARK l.4.6. For any t, 1 < t < s, there exists an
automorphism ¥ such that { - ¢ = Mtew (5¢ a unit)., If
XA is moved by ¥ then clearly (xt,pt) < (W) nence
Ml’ Mz, see, Mt-l are left fixed by y. On the other hand,
M, is moved by ¥; thus M, does not lie in

K(Ml' Ma, sy Mt_l)-

REMARK 1.4.7. Let s now be any integer, and let
M, = AL (1= 1, 2, +4+, 8) be arbitrary monomials with

fractional exponents. Then a monomial X*Y lies in



K(Ml, Moy eee, Ms) = K[Ml’ Mo, «ee, Ms] if and only if the

Wyector® () ,u) satisfies
(r,u) = ql(ll’nl) + q2(12:u2) *oees ¥ qs(ks’us) modulo ZXZ

where 9y» Gps *++s Qg  are integers, and Z is the set of all
integers. The sufficiency is obvious, and the necessity
is easily established if we consider an integer N such that
NA, Nu, WA, Ny (i=1, 2, ..., s) are all integers, and
note that the monomials Xo/Nyd/N yien o <ec<N, 0g<d<N

l/N,Yl/N) over K.

form a basis of the vector space K(X
The properties given in remarks 1.4.2 through l.4.6

characterize the characteristic monomials of a

quasi-ordinary branch. More precisely, we have the

following criterion, which will prove useful.

PROPOSITION 1.5. Let { = E: casquB be a
(a,B)eT xT

fractional power series. In order that ( be a
quasi-ordinary branch, it is necessary and sufficient that
thnere exist pairs of rational numbers

(hgamg)s Opaup)y eees (Ngsn )el xI', such that, with

(Agsng) = (0,0), we nave



1)
2)

3)

L)

5)

£

(RO’HO) < (llaUl) < e < (KS:HS)
cki“i 0O fori=1, 2, ..., s |
If o # 0, tnen the pair (j,u) is a linear combination,

with integer coefficients, modulo ZxZ, of the pairs
(Ajou3) £ =0, 1, ..., s.

if o # 0, and if v = 7(),u) is the least of the
integers t > O sueh tnat (),u) is a linear combination,
with integer coefficients, module ZxZ, of

(Loatgds (gaug)s «oey (Mgoly)s then (,u) 2 Opou )
T(ki,pi) =i fori=1,2, ..., 5.

If such pairs exist, they are uniquely determined by

in fact they are the distinguished pairs of (.

PROOF. Necessity follows from remarks 1.4.2 - l.4.7

and the fact that no characteristic monomial of { is

equal to 1.

To prove sufficiency, we set

Hi = XGYB i=0, l, veey Be

c
T(a:B)‘i a8

By conditions L), 5), we nave



H = x"iY“iGi(xl/n,Yl/n) = MG for i > 1.

where M, is defined to be X;iYui, and Gi(o,o) # 0. By
condition 3)’ C = Ho'+ Hl * aee Hso

Let 6 be an automorphism of K /X, and let t be an
integer 1 € t < s. By remark 1l.4.7, 8 leaves all the
elements Ho, Hl, cee, He fixed if and only if 8 leaves all
the elements Ml, Mz, cee, Mt Tixed. Setting t = s we see
that if 8¢ # (, then G(Mj) # Mj for some index j; setting
ot equal to the least such index, we see that t > 1 and that
8 leaves HO’ Hl, ey Ht-l fixed; it follows
{condition 1) } tnat

¢ -8¢ = Mtee

with 39(0,0) # O. By proposition 1.3, this means that { is

a gquasi-ordinary branch.

We see moreover that the distinguisned pairs of (
must be among the pairs (y;,u;) 1 =1, 2, cery S
Conversely, condition 5) and remark l.4.7 show that for
any i > 1, M; does not lie in the field K(My, My, ..., My 1)

{for 1 = 1, this is intended to mean M) £ K). Hence, there



is an automorphism § of K_/K leaving My, Mp, wouy My 5
fixed and moving M;, and clearly ( - §{ = Mie¢ (e¢(0,0) # 0)
for such a . It follows that (Aisu5) is a distinguished

pair of ¢ for any 1 » 1. gq.e.d.

(We could prove uniquenegs directly from the
conditions 1) - 5) by an inductive argument, using the
fact that (ki,ui) must be the least of tne pairs (3 ,u) such

that S # 0 and 7()\,u) = 1i).

During the course of the proof we have established

the following fact:

COROLLARY 1.6. Let ¢ € 3, be a quasi-ordinary brancn.

Then either € € k[[X,Y]] or
¢ = Hy(X,Y) + xdydr(xl/n yi/m

where HO(X,Y) € k[[X,Y]], H(0,0) # 0, and (3 ,u) is tne
least distinguished pair of {e '



2. The Tangent Cone and Singular locus of a Quagi-ordinary
Local Ring.

Let R = k[[X,Y,2)] be as in §1. We say that an
element f in R is ‘a defining polynomial of a given ring A
if £ is a pseudo-polynomial and if A is ring-isomorphic

to R/(f).

DEFINITION 2.1; A loczal ring A will be said to be
quasi-ordinary if A has a defining polynomial which is an
irreducible quasi-ordinary polynomial. If £ 45 such a
defining polynomial, and if { is any root of f {so that ¢

is a quasi-ordinary branch) then we shall say that (

represents A.

The requirement that A be an integral domain is a
matter of convenience. We shall always assume (unless
otherwise stated) that defining polynomials are
pseudo-polynomials in Z.‘ We note that a quasi-ordinary
branch { represents a given quasi-ordinary ring & if and

only if k[[X,Y1l[{]) is isomorpnic to A.

Our first task is to isolate a certain subset N of
the set of all quasi-ordinary branches such that each

guasi-ordinary ring is represented by at least one member



of N and such that the members of N are of a form which
is amenable to some computations which we will have to

carry out later on.

LEMMA 2.2. If { is a representing branch for a given
quasi-ordinary ring A, then { - h represents A for any
non-unit nh in kK[[X,¥]]. Moreover { and { - h have the same

distinguished. pairs.

PROOF. It follows immediately from lemma 1.3 and
definition 1.4 tnat if { is a quasi-ordinary branch, then
{ -~his a quasi—ordinary branch having the same
distinguished pairs. This being so, we have only to note

that k[[(X,Y]I[¢] = RI[X,¥Y331¢ - n]. gq.e.d.

if¢= zcaBX“YB is a representing branch of A, then
setting h = E'caBX“YB where L' denotes summation over
those pairs (&,B) such that both a and B are integers, we
obtain a representing branch {' = { - h in which there
appeér no integral monomials. By corollary 1.6, we nave
either (¥ = O or (1 = XAY“H(Xl/n,Yl/n) where () ,u) is the

least distinguished pair of (' and H{0,0) # O.

If it nappens that one of ),u vanishes while the other



is less than unity, then we shall find it convenient to

replace {' by another defining branch.

LEMMA 2.3, Let ¢ = x*/Bu(x}/™ y1/%) 1o 4 derining
branch for a quasi-ordinary ring A, with 0 < u < n, and
H(0,0) # 0. Tnen A has a defining branch of the form
¢t = X (x28 y1/7y aen wi(0,0) # 0).

PROOF. Let f(X,Y,Z) be the minimum polynomial of ¢
over k[[X,Y]]. The conjugates of { over k[[X,Y]] are bf
the form {, = “/nﬁi(xl/n,yl/n) witn H, (0,0) # 0

(i=1,2, +e., m, wnere m = degree of £ in Z). Thus

m
£f{X,Y,2) = nilz - Xu/nHi(Xl/n,Yl/n)J
i=]

and £(X,0,0) = ou/n ﬁ(xlfn,o) witn‘ﬁ(o,o) # 0. Hence
mu/n is a positive integer, and by the Weierstrass
preparation theorem [9; p. 1L45] there is a power series
E(X,Y,2), E(0,0,0) # O, such that Ef = g where g is a
pseudofpolynomial of degree mu/n in X over k[[Y,Z2]].
Since A = k[[X,Y,2]]/(g), it will clearly be sufficient
to show that g is & quasi-ordinary polynomial in X (over

k[[Y,2]]) and that g has a root of the form
2290 (218 y1/7) | wi(0,0) # o.



Let H = X"H, so that ¢ = E(xl/n,yl/n). We shall
construct a power series G in two variables (over k),

G{0,0) # 0, sucn thnat

E(zl/“c(zl/“,Yl/n),Y;/n) = 3z

Assuming that such a G exists we set € = G(Zl/u, l/n).
Since f(X,Y,ﬁ(Xl/n,Yl/n)) = 0, we have, upon substituting
z;/ug for Xl/n, f(Zn/ufaY,Z) = Q; hence zn/ugn is a root
of g. Therefore, the discriminant of g is the product of
all the conjugates over k[[Y,2]] of the element
gx(zn/ugn,Y,Z). Now

gx(zn/ugn,Y,Z)-aa—z(zn/“t;“) + gz(z“/“gn,Y,Z) = 0
But g%(zn/ugn) = z(n/u)-1 y(1/u y1/n, €1(0,0) # ©
and gz(zn/“gn,Y,z) = E(Zn/ugn,Y,z)fz(zn/ugn,Y,Z).

The product of all the conjugates {over k[[X,Y]]) of
the element fz(X,Y,g) is the diseriminant of f, wnicnh is,

by assumption, of the form anbe(X,Y), €{0,0) # 0; nence

fz(X,Y,ﬁ(Xl/n,Yl/n)) - 'Xc/nYd/nen(xl/n,Yl/n)



(c,d integers, €"(0,0) # 0). Tnus

gz(zn/ugn,Y,Z)_= B(z,n/ugn’y,z)zc/u‘_;ch/n(_:"(zl/ug,YZL/n)
= zc/uyd/nanr(zl/u,fl/n) e"1(0,0) # 0.

Hence gx(zn/ug,Y,Z)-Z(n/u)‘lgr + 28/9y4/n 0y o 4

and ex (2% ,v,2) = z8/uyb/n ¥ (g1/w y1/ny

(s,t integers, e*(o,o) # 0). Hence the product of the

n/u

conjugates of g,(Z"' "§,Y¥,2) is of the form

zPY9, (unit in k{[Y,2]])

where p and ¢ are integers, necessarily non-negative since
gx(z”/“g,y,z) is integral ofer k{[Y,Z]]. Thus g is a

guasi-ordinary polynomial.

To prove the existence of G, We-remark that if W is
an indeterminate, then H(X,Y) - W* = X"H(X,Y) - W* nas a
factor {in k[[X,Y,W]]) of the form XG(X,Y) - W with
G{0,0) # 0 (for G we take any power geries such that
G' = H). By the preparation theorem, there is a unit

E(X,Y,W) such that



E(XY,W(XG(XLY) ~ W) = X -ar{w,T)
and, setting X = 0, we see that G'(W,Y) = WE(0,Y,W).

Let G(W,Y) = E(0,7,W); then G(0,0) # 0, and setting
X = G'(W,Y) = WG in the above relation, we have

WG.G(WG,Y) - W= O whence H(WG,Y) - W* = 0.

Our conclusion follows on substituting Zl/u for W

l/n for Y. CQeCo d.

and Y
The preceding lemmas show that any quasi-ordinary
local ring A is represented either by { = 0 or by a

quasi-ordinary branch of the form
( = XkﬁJH(Xl/n,Yl/n) nh,nd integers; H(0,0) # 0

where ), are such that
1) not botn of ), u are integers

2) if ) * u <1l then 0 <) and O < yu.

If { = Oor if { is of the form just described, then
we shall say that { is & normalized quasi-ordinary branch.

Thus



PROPOSITION Z2.4. Any quasi-ordinary local ring can

be represented by a normalized guasi-ordinary branch.

We snall now describe the "tangent cone™ and the
"singular locus™ of a given quasi-ordinary ring 4, and
demonstrate the fact ‘that these objects are determined'by
the distinguished pairs of any normalized representing
branch of A. Conversely, given these objects we can deduce
certaln things aboui normalized répresenting branches of A
in a waf which will prove most useful when we come to

classifying such branches.

The tangent cone of A is the affine scheme defined by
the associated graded ring gr{A) of A with respect to its

maximal ideal m. (c¢f. [9; p. 248]).

Let A be a quasi-ordinary local ring and let f be a
defining polynomial of A. Then gr(A) is isomorphic to
k[X,Y,Z]/(fi) wnere f; = fI(X,Y,Z) is the initial form of
the power series f(X,Y,Z)(i.e. ﬁ;is the sum of all tné

terms of f of lowest total degree in X,Y,Z).

LEMMA 2.5. Let A be a quasi-ordinary local ring and



let ¢ = XXY“H(Xl/n,Yl/n)(na,nu integers; H{0,0) ¥ 0) be a
normalized representing branch of A. Let f be the minimum
polynomial of { over K (the quotient field of k[[X,Y]])
and let f; be the initial form of f (f being considered as
a power series in X,Y,Z). Then one of the following
stateﬁents is true:
1) x4+ u >1, and = Z" where m = {K(¢):K].
2) A +tu =1 and = (Zt - thYtu)r, where
t = [K(X*Y"):K] and r = [K(C):K(X*T¥)].
3) A * u<landfy = cXPY¥, where ¢ € k, WA > 0, mu > 0
(again m = [K({):K]).

PROOF. The conjugates of { are of tne form
¢, = x%Y“Hi(xl/n,Yl/n), H;(0,0) # 0, i =1, 2, ..., a.

Thus

m
£(X,Y,2) = 1nf(z- x%Y“Hi(xl/“,Yl/n)].
i=1

If X + 4 < 1, then clearly ;= c:X.lmifml'1 for some
¢ € k, and since { is normalized, m\ > 0 and mt > O.

Similarly, if A + u > 1 it is clear that f; = Z™

If ) + yu =1, then



m
= M [2 - X4 (0,0)]
i=1

7

Since any automorphism of K(Xl/n,Yl/n)/K leaving ¢
fixed leaves XYM fixed, we have bl - K{C). On the other
nand, the automorphism Bi of K({) over K which takes { into
1, (X2, 1/7) takes X into XK, (0,0) (since 8; is

effected by a substitution of the type XI/n - wlxl/n,

Yl/n l/n’ w? =yl = 1). It follows that the family

2
of elements {XAYuHi(0,0)} i=1, 2, ..., mis a complete

- sz

set of conjugates of X*Y*, each conjugate being repeated r

times. This completes the proof.

Let N be the ideal of nilpotent elements in the ring

gr{a).

THEOREM 2.6. Let A be a quasi-ordinary local ring.
Then gr{A) is determined up to isomorphism by the
distinguisned pairs of any normalized representing branch
of A, and precisely one of the four following pairs of
statements holds:
1) a) A is a regular local ring, and gr(A) is a polynomial

ring over k.

b) ¢ = 0 is the only normalized representing branch of A.

2) a) N # O0is a prime ideal and gr(A)/N is a polynomial

ring over k.



b) If { is any normalized representing branch of A,
then { # O and the least distinguished pair (3,u) of
¢ is sueh that ) + y > 1.

%) a) N is a prime ideal and gr(A)/N is of the form
k[X,Y,Z]/(Zt - Xch) where t, ¢, d are integers
with e+ d = %, |

b) The integer t and the unordered pair (e¢,d) depend
only on A. If { is any normalized representing
branch of A, then { # 0, and if (3,u) is the least
distinguished pair of {, then 3 + ¢ = 1 and the
unordered pair (¢,d) is identical with tne pair
(th, tu).

k) a) N is not a prime ideal. gr(A)/N is of the form
k[X,Y,Z]/(Xch) where ¢ and d are positive integers.

b) The unordered pair (c,d) depends only on A. If ( is
an& normalized representing brancn of A4, then { # 0,
and if (y,u) is the least distinguished pair of ¢
then ) + u. < 1 and the two numbers ), u are

proportional to the two numbers ¢, d (in some order).

PROOF. Most of the statements follow directly from
the lemma. In the first place, gr(A) is determined by the
pair (i,u) and by the degree m = [K(£):X]. Since K({) is
obtained by adjoining tne chafacteristic monomials of { to

K (remark l.4.4). m is determined bv the distineuished



pairs of (.

If { = 0 is a representing branch of A, then & is
a regular local ring, gr(A) is a polynomial ring, and

N = (0) is a prime ideal.

If { # 0 is a normalized representing branch of A,
then according to lemma 2.5 gr{A) is of one of the three
forms (1) k[X,Y,21/Z% (m > 1), (ii) k[X,Y,2]1/(z% - xCy)T
(c,d positive integers, t =c+ d3>2) (iii) k[X,Y,Z]/Xch
(c,d positive integers). In cases (i) and (ii) N is a
prime ideal, and in case (iii) N is not. In case (i) N # (0O).
In case (ii) gr{A)/N is tne co-ordinate ring of the

Y = x°v9, wnicn nas a t-fold

irreducible affine surface Z
point at the origin (t > 2); nence gr(A)/N is not a

polynomial ring.

Thus we see that one and only one of the Statements
la), 2a), 3a), ba) nolds, and that gr{A) determines which

one of them does.

la) - 1b): If ¢ # O is a normalized representing branch
of A, tnen gr(4) is not a polynomial ring, and 4 is not

regular.



2a) ~ 2b): Thnis follows from the lemma.

3a) ~ 3b): Tne singular locus of A

='Xch either has two
components, in which case these components have |
multiplicities ¢, d respectively, or has less than two
components, in which case one of the integers ¢, d is 1,
and the other is t - 1 (and t is the multiplicity of ihe

origin). The rest follows from the lerma.

La) - Lb): Tne total quotient ring of k[X,Y,Z]/(XCYd)
is a direct sum of two artinian rings of lengths c, d

réspectively. Tne rest follows from the lemma. gq.e.d.

*
*
*

The singular locus of A is thne set of prime ideals
P in A such that.thé local ring Ap is not a regular local
ring. If £ is a defining polynomial of A, and if P is the
inverse image in R = k[[X,Y,2]] of p, then £ € P and the
multiplicity of Ap 1s the unique integer e such that f is
in the e-tn symbolic power P(e)(=(PeRp)nR) while
4 ple*l) [6; §40.R). In particular, Ap is regular if and
only if its multiplicity is unity. We note that by a

theorem of Zariski-Nagata [6; §38.3] the integer e is



always < multiplicity of A.

We introduce some geometric language. Let p be a
prime ideal in A. We say that p has multiplicity e in A
if tne ring Ap has multiplicity e. We say that p is a

plane curve with a v~fold point at its origin if 4/p is a

one-dimensional local ring of multiplicity y whose maximal
ideal has a basis of two (or fewer) elements. We note
that p is a curve with a 1-fold point (or a simple point)
at its origin if and only if the maximal ideal of A/p is
principal; in this case we say that p is a non-sipzular
plane curve. Two plane curves p and q intersect.
transversally if p and q together generate the maximal
ideal of A. Finally we say that p is a gomponent §f‘the
singular locus of A if p is a minimal member of the

singular locus.

In this terminology, the singular locus and its
connection with distinguished pairs are described by thne

following theoremn.

THEOREM 2.7. Let A be a quasi-ordinary local ring.
Then precisely one of the foilowing four statements holds

true:



1) A is a regular local ring (i.e. the singular locus
of A is empty).

2) Tne maximal ideal m of A is the only member of tnhe
singular locﬁs.

3) The singular locus of A has precisely one component
p-# m and p is arnon—singular plane curve.

4) Tne singular locus of A has two components, both of
which are plane curves; these twd curves intersect
transversally. If one of the components has a v-fold
point at its origin (v > 1), thnen thnis component-has
multiplicity < e in A (where e = multiplicity of ),
while the othner component is non-singular and nas

multiplicity e in A.

Furtnermore, the following data {all of wnich are
intrinsic to A4) are completely determined by the
distinguished pairs of any normalized representing branch
of A.

(1) Whicn one of the above four statements holds for A.

(ii) Tﬁe multipliecity of A.

(iii) The multiplicities in 4 of thne curves in the singular
locus. |

{iv) The multiplicity of the origin of each such curve.



PROOF. We may assume that A = k[[X,Y]][{] where
{ # 0 1s some normalized quasi-ordinary branch. As in

lemma 2.5, the minimum equation of { has the form

£(X,Y,2) = ﬁl[z - x%x“xi(xlfn,ylfn)] H,(0,0) # 0
, i=1 -

Suppose ) >.0. Let P be the ideal (X,Z) in
k[[X,Y,Z]]. Thnen wé see easily tnat P(a) = P? for any
integer .a, and that £ € P if and only if a < min(m,m\).
Hence if g is the ideal (X,{) in A, then q is a
nonsingular plane curve of multiplicity min{m,m\) in A.
Similarly we see that A itself nhas multiplicity
min(m,m\+mu).

Similar remarks hold if u > O.

If pg A does not contain the discriminant XaYba of
over k[[X,Y]] tnen Ap is an unramified extension of the
regular local ring k{[X,Y}]q (where now q = p N k[[X,Y]])
cf. [6; §41.3]; since dim.Ap = dim.k[[X,Y]]q [6; §10.14]
and since the maximalrideal of Ap is generated by that of
k[{X,Y]]q, Ap ig itself regular. Hence any prime ideal in
the singular locus of A contains eitner X or Y. If we

suppose that nelther ) nor gy vanishes, then both X and Y



divide £(X,Y,2) = 2" (in k[[X,Y,2]]) so that botn X and

Y divide Cm in 4. If p contains one of X,Y, then p

contains C, and p is one of the ideals (X,{), (Y,(), (X,Y,0.
Tous, (if neither ) nor u vanishes), no prime ideal other
than these three belongs to the singular locus of A, and

we see tnaf precisely one of the statements 1), 2), 3), 4)

hold.

Suppose now that U = O. Since ( is normalized,
A > 1, and so the ideal (X,{) is a nonsingular curve
whose multiplicity in A is equal to the multiplicity of A
itself (viz. to m). Let p belong to the singular locus

of A. If X € p, then, as befére, P is one of the ideals

(X,¢), (X,Y¥,8).

Suppose X E p- Then Y € p. Since f(X,Y,¢) = O,
£{X,0,{) € p. Now f(X,0,2) = niz - XAHi(Xl/n,O)}. We
i ,

claim tnaf £{X,0,2) is a power of the minimum polynomial
g(X,Z) of CO = XXH(Xl/n,O) over k[[X]] (or, what is the
same thing, over k[[X,Y]]). This amounts to saying tnat
the family of elements {XlHi(Xl/n,o)} i=1,2, ..., m
is a complete set of conjugates of CO’ each conjugate

being repeated r times where r = [K(C):K(go)]; the proof

of the latter statement is tne same as that given for



lemma 2.5 (statement 2)). Tnus £(X,0,2) = g(X,2)".

Since f(X,0,¢) € p, also g(X,{) € p. On the other
hand, since g is an irreducible element of k[[X,Z]], the
ideal (Y,g(X,Z)) is a prime ideal of k[[X,Y,2]]. It
follows that p is the ideal (Y,g(X,{)) in A.

We are left, therefore, with tne following question:
if q is the ideal (Y,g(X,()), what is the multiplicity of
A ? As a Tirst step in answering the question we note
that K(go) = K(Xl/u) for some integer u where K is now
the quotient field k{{X}} of k[[X]] (for it is clear that
Lo is a quasi-ordinary branch, (iﬁ one variable), whose
characteristic monomials are of the form
XAl, XAz, ooy Xlt, the ki being rational numbers; and we
have seen (remark l.4.4) that then
K(Co) = K(Xll, Xla, sen, Xlt) = K(Xl/u) where u = l.c-m.
of the denominators of the ki when the li are written as
reduced fractions).

Now we consider tne ring B = A[XM"] = krx¥/,¥13[¢].
The prime ideals of B which contain ¢ are ﬁhose which
contain Y {since Y divides g(X,¢)T). However,

/8 v, 291/0(x2/¥,1,2) where n(x*/%,Y,2) is tne

1/u

B = k[[X

- minimum polynomial (in 2) of { over k[[X »Y11; we have



h(xl/u

+0,2) = (2 - Qo)r, and it follows that any prime
ideal in B containing Y contains ({ - go)r, hence contains

the ideal 0 = (Y,{ - ().

The ideal Q is a prime ideal in B, and since B is
integral-over A, Q must be the only prime ideal in B lying

over q. It follows that Bq = B*BAA is a local ring,

q
whence Bq = BQ. B dis a finite Aq-module. The residue

q
field of Bq is obtained from tne residue field k{{X}}(¢)
of Aq by adjunction of an element wnhose u-th power is X.
Since k{{X}}(go) = k{{Xl/u}}, there is actually no residue

field extension from Aq to Bq. Finally, since

t .
g(%,0) = Tfe - ¢§Fh, where ¢ = oD, [P, L., (Y
J=

are the conjugates of Co over k[[X]], and since, for j # 1,
{ - gé5> € B but not to Q (otherwise go - géj), wnich is
of the form Xv/u.(unit in B) lies in Q, whence Xl/u lies
in Q and Q is the maximal ideal of B,which is absurd) we
see that in fact QBq is generated by Y and g(X,{), so tnat
Bq is unramified over Aq. Tne foregoing facts imply that

It remains to determine the multiplicity of BQ. Now
B is isomorpnic to k[[X,Y]][(] where { is obtained from

{ - go through replacing X by Xu, and under the indicated



isomorphism, Q becomes thne ideal {Y,({)}. It follows from
the fact that ¢ is a quasi-ordinary branch that also (E)
is a quasi-ordinary branch (prop. 1.3). Moreover,
-examining { in light of the proof of proposition 1.5 we
find that either (i) { = YG(X,Y) € k[[X,Y]] or (ii) T is
of the form YG{X,Y) + XUYTGl(x“/n,Yl/n) witn G € k[[X,Y]]
and G{(0,0) # 0, and where {c/u,7) is the least
distinguished‘pair of { whose second member does not

vanish.

The first case cccurs only if all the distinguisned
pairs (li,ui) of { are such that u; = O (this means that
there is Yequisingularity" along the curve (X,{), <f. end
of §4); in tnis case Bglhas multiplieity 1. In case (ii),
we £ind by previous reasoning that By has multiplicity
min{r,r7). We have therefore determined the multiplicity

of Aq in terms of the distinguished pairs of (.

Noting that r < m = multiplicity of A, we see that
statement 4) nolds in tnis case. If A = 0, a similar

argument leads again to condition L4).

To complete the proof, we note that all the data
mentioned in the statement of the second part of the

theorem have been determined by the distinguisned pairs



of {, and by the degrees of certain field extensions,
which are also determined by the distinguished pairs

(remark loll'ollr)o_ q.e-d-

COROLLARY 2.7.1. If p is a prime ideal of A, then

Ap is analytically irreducible.

PROQF. We may, clearly, restrict our attention to
prime ideals in the singular locus. The latter part of
the theorem (in which we replace Aq by BQ) shows that we
may then assume that neithner ) nor u vanishes. We may
tnerefore assume tnat Ap = RP/(f) where P ig the ideal
(X,2) in R = k[[X,¥,Z]]}, and f is the minimum polynomial
of (. The completion of RP is clearly the ring
k{{¥}}[[X,2])]; since f is irreducible over k{{Y,X}}, we

conclude that the completion of A, is an integral domain.

P
qoe-do

We remark now that condition 2) of the theorem holds
for A if and only if A is integrally closed and not
regular'(cf. corollary to proposition 2.1 in the paper on
¥Fpee Derivation Modules ..;" which is part of this thesis;.
the corollary is applicable, since the normalization of A
is a finite A-module, A being complete [6; 32.1]. Actually,

. the remark can also be deduced directly from the proof of



theorem 2.7 by a slight modification of the proof of the

following corollary). In particular, if A has a defining
equation of tne form 7% - XY (i.e. if A is isomorphic to

k[[X,Y]j[Xl/mYl/m]) then A is normal. The converse is

also true:

COROLLARY 2.7.2. If A is normal, then A& has a

defining polynomial of the form Z% - XY for some integer m.

PROOF. If A is regular we take m = 1. Otherwige
set A = k{[X,Y]]1[C] where { = XKY“H(xlfn,Yl/n) as in the
"proof of the theorem. 3Since A is normal, then A has no
curves in its singular locus, and we conclude that
0<A <1, 0<pu<l; it is then clear that mh = mu = 1,
where m is the degree of the minimum equation of { (all
this comes out of tne earlier part of the proof of the
theorem). Thus Xl/mYl/m is a distinguished monomial of {,
and since m = [K({):K] = [K(Xl/mYl/m):K} {(nere X = quotient
field of k[{[X,Y]]) we nhave K(() = k(XM yL/B) (of. remark
1.4.4). Since A is the integral closure of k[[X,Y]] in
X(¢), and since k[[x,YJ][xl/mYl/mj is integrally closed
{as we nave just seen) we see that A = k{[X,Y]][Xl/mYl/m] =

= K[[X,Y,2]]/(2® - X¥). q.e.d.



3. Quadratic and Monoidal Transforms of Quasi-ordinary
local Rings.

We review some facts about quadratic and monoidal
transformations. All the statements ma:de are easy
consequences of the elementary properties of "Pro jn
(cf.f3;§§2.4,2.8]). The reader who is willing to accept
Proposition-Definition 3.1 may well skip this preliminary

material.

let R be a (noetnerian) local ring, let $ = Spec R,
let M be tne maximal ideal of R, and let k = R/M, For the
moment, we make no assumptions about k. Let P be a prime

ideal in R. The direct sum @ p" is, in a natural way, a
n>0

graded R-algebra; the S-scheme T = Proj{® P™) is called
. 0

the monoidal transform of S with center P and the

structural morphism n: T=S is called the monoidal

transformation of S with center P. If P =M we usually
use the word "guadratic" instead of "monoidal™ and omit
all reference to the center M. ‘(All'these definitions

hold, of course, in a more general context [3;88.1]).

The fibre n'l(M) is the algebrajic scheme

Pro j( (R/M@R( ® PY) = Proj( @ Pn/MPn), in other words
n>0 n>0



the projective k-scheme defined by the graded ring

k[xl, oy vrey xn}, the X being the MP-residues of some
system of generators of P, with degree of x, = 1l for all
x;+ As a topological space, n"l(M) is a closed subspace

of T. We say that a ring R' is a mpnoidal transform of R

(or guadratic transform, as the case may be) if Rt is the

local ring on T of some glosed point of n*l(M).

In the special case when R = k[[X,Y,2]], k aﬁ
algebraically closed field, and P = (X,Y)R, n"l(M) is
defined by a polynomial rineg k[x,y], i.e. n'l(M) is the
projective line over k. Similarly if P =M = (X,Y,2)R,
then n'l(M) is th; pro jective plane over k. Thus, the
closed points of n_l(M) are in one-one correspondence
with the directions {q:8) (or (a:8:y) as the case may be),

asB,Y € k (with (0:0), respectively (0:0:0), being

excluded from congideration).

If P= (X,Y,Z)R, then T is covered by the three
affine schemes Ty = Spec(R[Y/X,2/X]), T, = Spec(R[X/Y,2/Y]),
T, = Spec(R[X/Z,Y/Z]). We find tnat tne point with
coordinates (q:g:y) lies in Ty if and only if o # 0;
similar remarks hold for (Ty,s) and for (Tz,y). Suppose
then that n is a closed pointof T with ni(n) = M, and tnat

1 has co-ordinates (q:B:Y), a # O, when n is considered



as a point.of the projective plane n"'l(M). Tne local ring
Rt of non T is of the form R[Y/X,Z/X]M, where M?! is a
maximal ideal in R[Y/X,Z/X). Tne local ring of n on the
projective plane n"l(M) is R'/MRY = R'/XRt. RM'/XR! is a
regular locai ring of dimension two, whose maximal ideal

is generated by vyt ~ (g8/0), 2zt - (v/n)s vty 2t being the
XR' residues of Y/X, 2/X. It follows that Rt is a regular
local ring of dimension tnree, and tnat

{X, /X - g/a, 2/% - Y/a} is a regular system of parameters
for R1Y.

Let £ # O be an element of R contained in P, let
R = R/(f) and let P = P/(f). The natural epimorphisnm

® pl'- @ P8 gives rise to a closed :.mmersion v of
w0 n>0

T = Proj(®@P") into T = Proj(® ).

If x is tne image of X in ﬁ', then the natural map
of R onto R extends to a map of rings of quotients Ry “R-
which restricts to a map of R[Y/X Z/X] into Rx’ the image
R of tnis last map is the co-ordinate ring of the affine
scheme Tan. The kernel of tne map R[Y/X,Z2/X]~R is the
ideal fRy N R[Y/X,Z/X], which is easily seen to be tne
principal ideal generated by £/X° where s is the greatest

- integer such that £ € P5. Tnus the kernel of tne



epimorphism R' = Rt (tne localization of R with respect to
the image of M') is generated by f7, the image of f/XS in

R'. We say that £t is the strict transform of f in Rt.

f' is a non-unit in R? if and only if the point 5 is in
the image of the closed immersion ¢; when this is so, RY
is a quadratic transform of R/(f), and the epimorpnism

R' - RY is tne local map associated with o.

Let X' = X, Y' = Y/X - B/a, 2' = Z/X - y/a so
that X', Y', Z' are regular parameters for R'. Set

B' = 8/a, Y' = v¥/a. If f is written in the form

£ = fs(X,Y,Z) + f‘s+1(X,Y,z) S (s > 0)

where the fi are homogeneous forms.of degree i, thnen,
noting that X = Xt, Y = Xt (Yt + gt), Z = X1{Z' + y') we

find that

£1 = £/X% = £ (1,¥r4p 1,204y 1) + X1E_ . (1,X04p1,204y1) + ...

Note that ft is a non-unit in R' if and only if
£,(1,8%,v?) = 0, i.e. if and only if fla,B,v) = 0. If
this is so, and if R is tne completion of R', then ﬁ'/(f‘)

is a complete two dimensional local ring, which is the



completion of some quadratic transform of R/(f).

In a similar way, we find that wnhen P = {X,Y)R, the
monoidal transform R" of R corresponding to some point n
with co-ordinates (a:g), o # 0, is a regular local riﬁg
of diﬁension three, with regular parameters X, Y/X - g/a, Z.
We consider, as above, an element O # f € P, and we impose
the additional assumption that if t is an integer such
that £ € Mt, then £ € Pt (in otner words the local rings
R/(f) and (R/(f))ﬁ have the same multiplicity). Then we

can write

£ = F_(X,Y,2) + Fs+1(X’Y’z) LR

where F. is a form with coefficients in kf[Z]] and of
degree i in X and Y, and where, moreover, PS(X,Y,O) # 0.
Setting X" = X, Y* = ¥/X - g/fa = ¥/X - g", 2" = Z, so that

X", Y", Z" are regular parameters for R", we find tnat

I = f/xs = Ps(l,Y""’B",Z")"' X”FS+1(1,Y"+B",Z") + ...

f" is a non-unit in R" if and only if F,(1,8",0) # 0,
i.e. if and only if f_(a,) # O, where £ (%,7,2) = £ (X,Y)

is the initial form of £ (i.e. the form which is the sum of



the terms of f of lowest total degree in X,Y,Z). If tnis
is so0, then ﬁ“/(f") is tne completion of some monoidal

transform of R/(f) with center P/(f).

The significance of the foregoing remarks for our

purposes is summarized in

PROFPOSITION - DEFINITION 3.1. Let R = k[[X,Y;Z]]
be as in previous sections. Let
T=f(XY,2) + Te41(X:Y,2) + +.. (s> 0) be a power series

in R, tne fi being forms of degree i in X,Y,Z.

a) Let (a,B,y) # (0,0,0) be a triple of elements in k such

that fs(a,s,y) = 0. Ifqg # 0, we gset

fc'L’B,Y fs(l’Y+B/“’Z+Y/°‘) * st+1(1:Y+B/a,Z+Y/a) + ...

If g # 0 we set

f;’ﬁsf = £ _(X+a/B,1,2%y/g) + st+1(x*a/8,l,z+y/g) . oL

If v # 0, we set

f‘;’ﬁbl fs(X+q/YaY+ﬁ/Y:1) + Zfs+l(X+a/Y’Y+B/Y)1) b



According to the preceding discussion, those of the

elements 1 which are defined are

ft i
a,8,Y’° a8y’ aaBoY,
non-units in R, and all of those rings
R/T? R/T? R/fY which are defined are
/ o,B sy’ / asg,y’ / CsBsY a
isomorphic to the completed quadratic transform of R/(f)
at the point (g:g:y) € n"l(M) (n = quadratic transformation
of R, M = maximal ideal of R). It makes sense therefore
to call any one of those rings the formal guadratic

transform of the pair (R,f) in the direction (a:g:Y). The

collection of all formal quadratic transforms so defined

(one for each suitable direction) depends only on the ring

R/(£).

We shall use tne term formal guadratic transform of A

to refer to the completion of any quadratic transform of
the local ring A, i.e. to any formal quadratic transform

of a pair (R,f) witn R/{f) isomorpnic to A.

b) Let P be a prime ideal in R generated by some two of
X,¥,2, say by X,Y. Suppose that, s being as above, f may
be written as f = F (X,Y,2) + F 1(X,Y,2) + ... tne F,
being forms with coefficients in k[[zj] of degree i in

X and Y. (Tnen f € P, PS(X,Y,O) # 0, and the local rings
R/(£), (R/(£))5 (wnere P = P/(£)) nave the same

multiplicity). ZLet (q,B) # (0,0) be a pair of elements



in k such that Fs(a,a,o) = 0 {or, what amounts to tne
same thing, fs(a,s) = 0 {fs is independent of Z under

- our assumptions on f and P)). If q # 0 we set

fg,a = Fs(l;Y*B/CL:Z) + XFS+1(1:Y+B/CL:Z) o

If g # O we set

fo.p = Fel¥als,1,2) + TP, (X+a/p,1,2) + ...

We then proceed as before to define the formal

monoidal transform of the pair (R,f), with center P,

in the direction (a:g).

If A is isomorpnic to R/(f), and F is the image of P
in A (so that A/P is regular), we shall use the term
formal monoidal transform of A with center P to refer to
any formal monoidal transform of the pair (R,f) witn
center P. The formal monocidal transforms of A with center

P are precisely tne completions of the monoidal transforms

of tne local ring A with center P.

DEFINITION 3.2. If A is any local ring, we say thnat

a prime ideal T in A is a permissible center if A/F is a




regular local ring and if tne rings & and AF have the same

multiplicity.

The maximal ideal of A is a permissible center. Tne
assumption in part b) of 3.1 above may also be expressed
as follows: whenever we speak of formal monoidal transfornms
of A, such transforms are taken with respect to a

permissible center which is a curve in A.

Our goal now will be to determine the extent to
which the property of being qQuasi-ordinary is preserved
under quadratic and monoidal transformations. The next
few pages are devoted to procedures for displaying the
roots of transforms of quasi-ordinary polynomials as
fractional power series, and, in the easier cases, to
shewing that these roots are actually quasi-ordinary

branches.

First we remark that any formal transform (quadratic

or monoidal) of a regular local ring is again regular.

From now on, therefore, we assume that we are dealing

- with a quasi-ordinary ring A which is not regular. Let



¢ - Xu/an/nH(len,Yl/n) u,v integers, H(0,0) # O

be a normalized quasi-ordinary branch which represents A.

The conjugates { = Cl’ gz, cesy Qm are of the form

¢; ~ u/an,./nHi(xl/n,Yl/n) i=1,2, ..., m and so

£(X,Y,z2) = ﬁ [z - Xu/an/nHi(X]'/n,Yl/n)]'
i=1

ig a defining polynomiai of A, We may, and shall, assume

that A = k[[X,Y3][C]-
CASE 3.3. Monoidal Transformations

Suppose there exists a permissible center in A which
is a curve. Then we see (by the proof of theorem 2.7)
that u/n + v/n > 1, and that eitner u/n > 1, in whien
case the prime ideal (X,) is a permissible center, or
v/n > 1, in which case {Y,{) is a pernﬁ.ssible center. (We

may, of course, have both u/n > 1 and v/n > 1).

Suppose u/n > 1 and let P = (X,{)}. The inverse image
of Pin R = k[[X,Y,2}] is (X,Z)R. The initial form of
£(X,Y,2) is fm(x,z) = Zm, so tnat fm(rg,,s) = 0 if and only

if g = 0. There is, therefore, only one formal monoidal



transform of (R,f) viz. the one in the direction {1:0).

A defining polynomial for this transform is

£1(X,Y,2) = [£(X,Y,X2)] /58 = ;1 [z - X(“'n)/nrv/nﬁi(xl/n,Yl/n)J
1

i=

m
= I [Z - (¢/%)]
i=1

The elements gi/x i=1,2, ..., m are obviously all
conjugates of each other over RI[X,Y]], so tnat f' ig
irreducible. Moreover, (gi/x) - (gj/X) = M..eij/x where

il
Mij is a monomial in Xl/n,Yl/n and

follows that the (gi/X) are quasi-ordinary branches

eij is a unit. It

{prop. 1.3), and thnat if {(lj:uj)} j=1,2, ve., s is the
set of distinguisned pairs of {, then {(xj-l,uj)}
3 =1, 2, .v., s is the set of distinguisned pairs of e;i/x

for any i.

Similar results hold when we assume v/n > 1 and take P
to be (Y,{). Thus, any formal monoidal transform At of a
quasi-ordinary local ring 4 is again quasi-ordinary; for
any normalized representing branch { of 4, the branch ¢/x
{or ¢/Y as the case may be) is a representing branch (not

necessarily normalized) of A', whose distinguisned pairs



are determined by those of (.
CASE 3.4. Quadratic Transforms.
.CASE‘S.h.l. w/n+ v/n>1 ("Transférsal“ Case).
By theorem 2.6, the initial form of f is

£ (%,Y,2) = Z> when u/n + v/n > 1, or

£,(X,Y,2) = (z% - XaYb)r (a+ b=t) when u/n + v/n = 1.

We use the term exceotional curve of a guadratic

transformation 1 of Spec(4) for the reduced scheme
underlying n"l(M)- ﬂ"l(M) is defined by the associated
graded ring gr(A) of A with respect to its maximal ideal.
Thus, in thne ﬁresent case, the exceptional curve is eitner
a projective line (defined in the projective plane by Z = 0)

or an irreducible projective curve (defined by Zt = XaYb).

We always have fm(0,0,l) # 0, so we may restrict our
attention to quadratic transforms in a direction of the
form (lig:y) or of the form {g:l:y); for reasons of
symuetry, it is sufficient to consider a direction (l:g:y)

witn ﬁm(l,s,y) = 0. The appropriate transform of f is then

ft(x,Y,z) = [F(X,X(¥+g) ,X(Z+y)) /X"



Let G be a power series in one variable over k such

l/n) - Yl/n;

tnat (G(YY/™) 1 = Y+ 5 (if g = 0 we take G(Y
if g # O, the binomial theorem shows that G(Yl/n) is

actually of the form G(Y)). Let g = G(Yl/n). We have

£(X,X(¥+p),X(z+y)) = 2(X, (X2/Pg) R, x(z+y))

H

(TR
I =

[z - X/ R(xM gy vy, (328, gy,

so thnat

m
£1(X,Y,2) = nl[z +y - X(u+v—n)/n§vHi(xl/n’xl/ng)]
i=

Thus the roots of f' (which is still a polynomial in
Z over k[[X,Y]]) are the fractional power series
i=1,2, «.., m.

-

g1 = -y x(u+v-n)/n§vHi(xlfn,xl/ng')

Ifu+ v>n, orifu+ v=n and g = 0, then y = 0O
and g{ is a non-unit in - for all i. However, if
u+ v=nandg # 0, it can easily be seen that ¢! is a ‘
non-unit for precisely r values of i, where

r = [K(g)zx(xu/nY"/n)J, (since H, (0,0) takes on



{K(Xu/an/n):KJ different values).

If C{ is a non-unit, then so are all its conjugates,
and a representing polynomial for the transform under
consideration is H*[Z - Q{J, where the product ﬁ* is
taken only over those values of i for which g{ is a

non-unit. Now

1 - ¢y - X(u-i-v-n)/ngv[ﬁi(Xl/n,xl/ng) _ Hj(xlfn,xl/ng):;.

But gince

Ci _ QJ = u/an/n[Hi(Xl/n,Yl/n) - Hj(Xl/n,Yl/n)] = Mijaij

1/n Ll/n

(Mij a monomial in X7, ¥ » £:.(0,0) # 0) it follows

ij
that (! - g3 = xs/ngtsij(xl/n,xlfng) (s, t integers).
Hence any (} whichn is a non-unit in §_ is a quasi-ordinary
branch, and so the irreducible factors of f' are

quasi-ordinary polynomials.

If g = 0 (in which case § = Yl/n), then it is not
nard to see that all fthe g{ are cohjugate to eag¢h other,
i.e. that f!''is irreducible. Thus the corresponding

formal transform of A is again quasi-ordinary. Moreover



we see that if {(li’“i)} is the set of distinguished
pairs of {, then {(ki t g o~ 1, ui)} is the set of
distinguisned pairs of any C!- As in tne case of a
monoidal transform, the distinguished pairs of ¢} are

determined by those of (.

If g8 # 0, then f* may very well be reducible. For
example if £ = z° - X®Y, tnen £1 = 2% - XR(y + 8).
4ccording to our definition the transform of A is not
quasi—ordinafy if £ is redﬁcible. This is no loss,
however, for when g # O, € is a unit in k[[Yl/nJ] and
the discriminant’of ft is essentially a power of X alone.
Tnis indicates a situation of Yequisingularity" and the
analysis of such a situation depends only on the theory

of plane curves. (¢f. further remarks at end of §4, and

also §6).
CASE 3.4.2. u/n + v/n < 1 {"Non-transversal" Case)

Sincé § is normalized, we have 0 < u, 0 < v. The
initial form of f is cxmu/nYmv/n with ¢ E.k, so that the
exceptional curve is the pair of lines in ine projective
plane defined by the equation XY = 0. For any point
{azg:y) on the‘eiceptional cﬁrve, either ¢ = O or g = 0.

We may therefore restrict our attention to quadratic



transforms in a direction having one of the forms
(1:0:v), (0:1:v), (0:0:1); by symmetry it will be
sufficient to consider only the first and last of these

forms.
CASE 3.#.2.a).‘_The direction (1:0:y).
We have to consider tne power series
£1(X,Y,2) = [£(X,X,X(z+y))]/xTHmv) /0

It is clear tnat £1(0,Y,0) = Y™/™. (unit in k[[Y]1])-
Thus by the Weierstrass preparation theorem, there is a
unigque power series g'(X,Y,Z) such that g! is a
pseudo-polynomial of degree mv/n in Y, and sueh that
g?' = fr.{unit in k[[X,Y,2]}). g! is called the
distinguished pseudo-polynomial in Y associated with fr,
Since K[[X,Y,2]1/(£') = k[[X,Y,2]]/{c'), it will be

sufficient for our purposes to study the roots of gf.
Let G(Zl/v), Gi(Xl/n,Yl/n) be such that

[G(Zl/v)]v =z 4y [Gi(xl/n,Yl/n)]v - Hi(Xl/n,Yl/n).



Let g = 6(z1/V), 8 7 Gi(Xl/n,Xl/nYl/n)- Tnen

m
£UXY,2) = T (XA /mveyY | l/ng vy
1:

_— E ; {w_x(n-uwv)/nvg - Yl/ngi}
o i=1 =1 3

where wj runs through the v-th roots of unity.

Let T be an indeterminate and let E, (X,Y,T) be sucn
that E, (0,0,0) # 0, and

E; (X,Y,T)(T - Y6, {X,X¥)) = ¥ ~ TG, (X,T) G, (0,0) # o.

Since Gi(o,o) # 0, thne existence of Ei is guaranteed by

the preparation theoren. Setting

.. =.Ei(Xl/n’Yl/n,wjx(n-u—v)/nvg) and

Ei = ai(xl/n,wjx(ﬁ'“‘V)/an) we have

si(ij(n—u—v)/nvg _ Yl/ngi) = yl/n _ wjx(n'u'v)/nvgig

Hence for some unit.a in k[[Xl/nv,Yl/n,Zl/v]] we have

m v
f1(X,Y,2) = el 1 {Yl/n - wjx(n—u-v)/nv

£%. }
i=1 j=1 3



Now the product on the right is clearly tne
distinguished pseudo-polynomial in Ylfn assocliated with
£1(X,Y,Z) wnen £1(X,Y,2) is thougnt of as an element of
k[[xlfnv,ylfn,zl/"n; but so also is g'(X,Y,Z). By

unigqueness we must have

m v
g (X,Y,2) = 1 {¥*/? - w.x(n'““')/“"gii}
A i=1 j=1 J

It follows that the roots of g' (considered as a polynomial
in Y over k[[X,2]]) are the n-th powers of the fractional
power series ij(nhu"v)/nvggg. Thus the roots of g' are

fractional power series which are non-units.

It would be possible now, using methods similar to
those of lemma 2.3, to show that the discriminant of g
is of the form Xagb.(unit in k[[X,Z]]) thereby establishing
the fact that the roots of g' are guasi-ordinary branches
(in the variables X, 2). However, this fact will also
result (although more circuitously) from the study of
distinguished pairs in the next section. We prefer to

defer the proof until that time.

We would also like to prove, as in the transversal

case, that for y = 0, the corresponding formal transform



is an integral domain, and that tne distinguished pairs
of any of the roots of g!' depend only on the distinguished
pairs of (. We have found it necessary to devote most of

§4 to the carrying out of such proofs.
CASE 3.4.2.b). The direction (0:0:1).

Let F, (X,Y) be suen tnat [F,(X,7)]"™"V = B, (X,Y),
and let g, = Pi(Xl/nZl/n,Yl/nzl/n). We are interested

in the power geries
£1(X,Y,2) = [£(X2,Yz,2))/z(B¥mv) /n

- E {[Zl/n]n-u-v__[Xuﬁﬂn-u-vDYv/n(n—u-v)ggn_u_v}

i=1
= g n-ﬁ—v{zl/n _ w.Xu/n(n-u-v)Yv/n(n-u_v)gi}
i=1l j=1 J

where now wj runs through the (n-u-v)-th roots of unity.
Several applications of the Weierstrass preparation theorem,
as in 3.k.2.2), show that all the roots of the distinguished
pseudo~polynomial in Z associated with f' are fractional
power series. We will give the details of the latter steps

in §%, wnen we actually calculate distinguished pairs in



order to show that the new roots are quasi-ordinary
branches. As in 3.4.2.a), we shall wait until tnis
calculation is performed before we show that the new
distinguished pairs depend only on the "olg® ones, and
‘tnat the formal transform under consideration is actually

an integral domain.

In the sequel, the formal monoidal transforms of A
and certain formal quadratic transforms will play a
special role. This has been indicated in the preceding
remarks, where it was pointed out that formal quadratic
transforms in any direction other than (1:0:0), (0:1:0)
and {0:0:1) have defining polynomials whose discriminant
has only one irreducible factor. We will describe the
special transforms in an ad hoc manner, relating this
description to the behavior of the diseriminant in §4
{cf. corollary 4.4.1 and remarks on-equisingularity at end

of §4).

Let A be a local ring, let P be a prime ideal in A
and let A' be a formal monoidal (or quadratic) .transform
of A with center P. If Q is a prime ideal not containing P,

then we say that the proper transform of Q passes tnrough A!




if there is a prime ideal Q' in A' which contracts to Q
in A (relative to the canonical local homomorphism of A

into At)..

DEFINITION 3.5. Let A be a guasi-ordinary local ring.
We say that A' is a special transform of 4 if A' is not =z
regular local ring and if one of the following conditions
holds:
1) A nas a permissible center P which is a curve, and At
is the formal transform of A with center P.
2) A has no permissible center which is a curve, A! is a
formal quadratic transform of A, and there is a curve
Q@ in thne singular locus of A whose proper transform
rasses tnrough At.
3) A has no permissible center which is a curve, and A' igs
the completion of a quadratic transform of A which lies
at a singular point of the exceptional curve of the

quadratic transformation of Spec{A).

When A is represented by a normalized quasi-ordinary
branch, then it is easily verified that any special
quadratic transform of A must ¢ccur in one of the directions

(1:0:0), (0:1:0), {0:0:1).

We anticipate the result, partially demonstrated so



far, and completed in §4, that a special transform of a
quasi~ordinary local ring is again a quasi-ordinary local '
ring. In §5, we will consider sequences

A= Ao, Al, AE’ ...; At where A = AO is a quasi-ordinary

. local ring and for each i = 1, 2, ..., &t A; is isomorphic
to a special transform of Ai—l' We call such a sequence

a partial resolution of A. As a conseguence of the

resolution theorem for embedded surfaces [7] we nave:

PROPOSITION 3.6. For a given quasi-ordinary local
ring 4, there is an integer N such that any partial

resolution of' &4 has fewer than N members.

We review briefly the idea of the proof, which is

based on induction on the multiplicity of A. If A nas
permissible centers, then after finitely many monoidal
transformations, we obtain a quasi—ordinary local ring
which either has no permissible centers, or which is of
multiplicity less than A. In tane latter case, we can

apply an inductive hypothesis, and we are done.

Suppose, therefore, that A has no permissible centers.
If tne tangent cone of A is irreducible (transversal case)
then after a finite bounded number of quadratic

transformations (in either of the directions



(1:0:0), (0:1:0) at any stage) there is a drop in
multiplicity. (As long as there is no such drop, we
remain in the transversal case, and no permissible centers
which are curves ﬁre created). If tne tangent cone of &
is reducible (non-transve;sél case) then the initial form
of a defining polynomial will be of the form chYb

(c € k; a, .b integers). A consideration of the proper
transforn of the defining polynomial shows that one
quadratic trénsformation in either of the directions
(1:0:0), (0:1:0) produces a drop in multipliecity, and that
after a finite number of quadrétic transformations in the
direction {0:0:1), (under wnich the tangent cone remains
reducible) we get a drop in multiplicity, or else we get
into the transversal c#se. In any case, an inductive

argument completes the proof.

(411 tne preceding statements may be verified on the

basis of formulas which have been given in tnis section).



L. Effect of Various Transformations on Distinguished Pairs.

Our purpose now is to continue the investigation of
what happens to the distinguished pairs of quasi-ordinary
branches when such branches are subjected to tne
transformations discussed in the previous section and in
lemma 2.3. We gnall find it convenient at thnis stage to

formulate some technical lemmas.

Let F = Ecinin be a unit in kK[[X,Y]]. Let A(F)
be the additive submonoid of ZXZ generated by those (i,j)
such that €4 4 # 0; thus A(F) consists of all finite sums

of pairs (i,3) for whicn € 4 # 0.

LEMMA L4.1. Let p # O be a rational number, and let
G = FP. Then A(G) = A(F).

PROOF. Since k is algebraically closed and of

characteristic zero, we can find FP by expanding (egq * T)P

according to tne binomial theorem (T - an indeterminate)

b
(1,3)>(0,0) ®13

therefore clear that if dy is the coefficient of x5vY¥ in

and then substituting Xy for T. It i
FP, tnen dst is a sum of terms of tne form

eij(ciljlciajz ‘oo cirjr) where eijEk and



(il’jl) + (iz,jz) toses + (ir’jr) = {s,t}). It follows
that dst = 0 if (s,t) ¥ A(F); nhence A(G) c A(F).

Similarly, since F = Gl/p, A(F) ¢ A(G). q.e.d.

LEMMA 4.2. Let U = XPI(X,Y), V = YF,(X,Y) where

1» Tp are units in k[[X,Y]]. Let Gy (X,Y), G, (X,Y) be

the unique units in k[[X,Y]] such that X = uG, (u,v),
Y = VG2(U,V). Then A(Gl) + A(Gz) = A(Pl) + A(Fz).

PROOF. Set

.xiyj) a50 £ 0

U = XF. (X,¥) = X(a.. + X a,
1 %0 " (1,5)>(0,0) 13

b, . x*vJ) beo * O

V= YF_(X,Y) = Y(b.. + T
& 00 " (1,5)>(0,0) id

T a, .uivd) d. £ 0
(1,3)>(0,0) 3 o0

X = UG {u,v) = U{dy, +
Substituting the series for U and V into the series

for X we find that X = X( T E;
i,3

I = gitld
dij 250 boodij + terms of the form

inYj) where

sese A. b " e b

e, .d a a, . .
1340dg 1137 2535 S P ) sJs



witn e; E k, {igsdg) < {1,3), and

(io!jo) + (illjl) toese (is:js) = (i:j)' Since doo =1
and Eﬁj =0 ({1,3) # (0,0)), dij is a sum of terms of the
above‘displayed form. It follows by induction that

d; ; = O unless (i,j) € A(F;) + A(F,); thus

ij _
A(Gy) g A(F) + A(F,). Similarly, AGy) g A(Fy) + A(F))
so that A(Gl) + A(Ga) Q-A(Pl) + A(FE). Since

k[([X,Y]]) = k[[U,V]], the opposite inclusion holds by

symmetry, and our conclusion follows. g.e.d.

We snall‘use lemma 4.2 in the form of the following

corollaries.

COROLLARY %4.2.1. Let T be an indeterminate, let
F(X,Y) be a unit in k[[X,Y¥]}] and let E(X,Y,T) be a unit

in k[[X,Y,T]] such that
E.(T - XF(X,Y)) = X - TG(T,Y) G(0,0) # 0.
Then A{F) = A(G).

PROOF. If U = XF(X,Y), then substituting U for T
in the above relation we have X - UG(U,Y) = 0. 1In

~ lemma 4.2 ‘get F, = F, F, = 1. Then Gy =G, G, = 1. Since

2



A(1) = {(0,0)} and since (0,0) belongs to both A(F) and

A{G) our statement follows.

COROLLARY 4.2.2. Let T, W be indeterminates, let
F(X,Y) be 2 unit in k[[X,Y]] and let E(X,Y,W,T) be a unit
in k[[X,Y,W,T]] such that |

E.{T - WP(XW,YW)) = W - G(X,Y,T) -——{1)

Then G(X,Y,T) = TG(XT,YT) wnere G(X,Y) is a unit in
k[{X,Y]] such tnat A{G) = A(F).

PROOF. Let U = XF(X,Y)
V = YF(X,Y).

There exists a unique unit G(X,Y) in k{[X,Y}] suenh

that
X = ue(u,v) ~--(2)

Clearly G(U,V) = F(X,Y) ™! so tnat Y = VG(U,V). Hence
by lemms L.2 {witn F, = F, = F, G =G, = G) A{F) = A(G).

Substituting G for W in (1) we find that
T - GF{XG,YG) = 0, whence



XT = XG.F(XG,YG)
YT = YG.F(XG,YG)

and so by (2) XG = XT.G(XT,¥YT) q.e.d.

As a further preparatory step, we recast proposition

1.5. We recall tnat (A,u) < (6,7) means A <'c and g < 7.

LEMMA %4.3. Let F(X,Y) be a unit in k[[X,Y]], let n
be a positive integer and let (u,v) # {0,0) be a pair of
non-negative Ainteger-s. In order that Xu/an/nP(Xl/n,Yl/n)
be a quasi-ordinary branch it is necessary and sufficient
that there be elements Up S Ug < eos 1 € A(F) suen that, .
with u, = (u,v), we nave

(1) Any elehent'g_ of A{F) satisfies a relation
R 7 gy togou, voue. + q.u, + ny

where .ql’ dps e++y Qg are integers (possibly negative) and
Y is some element of ZxZ. {We refér to this relation by
saying "u is a combination of By, Boyy eee, u mod, n").
(ii) If u € A(F) and if 7 = r{(u) is the least number ¢ >1
such that u is a combination of yp Uos eee, B mod. n,

then u > u .
-T

- (441) 7(u;) =4 for i =2, 3, ..., &



If tne above conditions hold then tne distinguisned
pairs of the quasi-ordinary branch Xu/an/nP(Xl/n,Yl/n)
are the pairs {(Ei +w)/n}i=2, 3, ..., s along witn
the pair u,/n = (u/n,v/n), unless botn u/n, v/n are
integers, in which case u/n, v/n is not a distinguisnhed

pail" .

PROOF. Suppose ( = xu/nyv/np 41/ n,Yl/ ™) is a
quasi-ordinary branchn. Let (,,u,) < (Agsug) < «es < (gau
be those distinguished pairs of C which are not equal to
{u/n,v/n). If u/n, v/n are not both integers then it
follows from proposition 1.5 that (u/n,v/ﬁ) is the least
distinguisnhed pair of ¢+ In any case we set

Xy = u/n, By = v/n.

Set u; = {u,v) and for i = 2, 3, ..., s set = (ug,v,)

where u = nli; -2 1} and vy = nlpy - i)+ Note tnat
(li,ui) = -(u + By). Conditions 1) and 2) of proposition

1.5 snow tnat By S 8y < een < n ané that u, € A(F).

If u is any element of ZXZ, then we see that uis a
combination of W, Ly, -«v, B, mode n (s> t > 1) if and

only if



(w+uy)/n = qpluy/n) +ay(up*uy)/n+ectq lu +u)/nt ¥ —-n(3)

where qi, Qg +++, Qy are integers and y € zZxZ. It

follows immediately that condition 5) of proposition 1.5
implies (iii) above. Moreover, condition 3) of proposition
1.5 shows that any u which arises from a non-vanishing
coefficient of F is a combination of Y35 Yps +eep, B mod. n
{whether or not (ll'“l) is a distinguished pair of () and

(1) follows.

Now if u € A(F) then u is a sum u = Wyt Wyt oees tow

where Wis ovey w, are associated with non-vanishing
coefficients of F. Clearly rt(u) < max T(Ej) and H-Z-Ej
for any j = 1, 2, ..., r. On the other nhand, condition %)
of proposition 1.5 shows that if Ej does come from a

non-zero coefficient of F, then
(wy * m9)/mn2 O ) = (n + )/ if v o= (w2 2

Hence Wy 2w when T = T(ﬂj) (this follows from the
preceding inequality if T(Ej) > 2, and is obvious if

T(Ej) = 1), and condition (ii) results.

Conversely, let Yy, Uy, e++, U, verify the conditions

-of lemma 4.3. Setting (A ,uy) = (m; * ¥y)/n



i =2, 3, «¢e., 8 and (\ysuq) = (u/n,v/n), we nave
(0)0) < (ll:[—ll) < (la;uz) S tes S ()LS’US) and (iii) shows

that the " < ™ gigns may be replaced by " < n.

To prove 2) of proposition 1.5, it is sufficient to

. u. V.
show that for i = 2, 3, ..., s the coefficient of X *Y * ipn

F(X,Y) does not vanish (where (ui,vi) = Bi)‘ To see thisg
' = + cos ¥+

we note that n Byt W, 4 W, Where Ej

(=1, 2, +.., r) arises from a non-vanishing coefficient

in F(X,Y); since T(Ei) =i, T(Et) > i for gome t < r;

hence, by (ii), W, 2 U;; but clearly u 2 W3 thus w, = w, .

Condition 3) of proposition 1.5 follows easily from
(i} and tne remark preceding equation {3) above. Similarly,
4) of proposition 1.5 follows from (ii).

Finally, 5) follows from (iii) unless u/n, v/n are
integers; in the latter case, it is now easy to see that
1) - 5) of proposition 1.5 continue to hold if we set
(Ai,ui) = (Bi+1 + Ei)/n,i =1, 2 ... s-1, (and replace s
by s~1 in proposition 1.5). q.e.d.

As a typical application of the preceding lemmas to



the problem of calculating distinguished pairs, we shall
re-examine the case of a quadratic transformation in the

direction (0:0;1) as treated in §3.4.2.b.

We start off with a quasi-ordinary branch
¢ = x“/nrv/nn(xl/n,rl/n) u+ v<n

Then we choose F such tnat [F(X,¥)1" "7V = u(X,Y).

By lemma 4.1, A(F) = A{H).

We are then led to expressions of the form

zl/n - wxu/n{p-u-v)yv/n(n»u-v)P(Xl/nzl/n’yl/nzl/n)

Multiplication by -[P(xl/“zl/“,yl/nzl/n)]'1, which is
a unit in k[[xlfn,Yl/n,Zlfn]],gives us |

U - zl/nF-l(xl/nzl/n’xl/nzl/n)

where U = wxu/n(n-u-v)Yv/n(n-u-v). Multiplication by a
suitable fractional power series of the form

E(xl/n,Ylfn,zl/n,U), E(0,0,0,0) # 0, gives us

21/ | ye(x/ny, vt/ my)



where, by corollary L.2.2, A(G) = A(P'l). Thus, arguing
as in §3.4.2.a, we find that our formal transform is

repregented by a polynomial whose roots are of the form

¢r = Upe(xt/ My, v/ my) R

='xnu/n(n-u-v)an/n(n—u-v)ﬁ(xl/n(n-u—v) Yl/n(n-u-v))

Note that A(G") = A(G) = A(F™Y) = A(F) = A(H), {lemma
k.1 and preceding remarks). A typical non-vanishing term
of H(X,Y) nas the form

n-v,v,i n-vyj _ L (n-v)+ju, div+j{n-u)

e; (XM (x ) cijxl e
where (i,3) € AGY) = A(H). Thus, a typical element of
A(H) is of tne form (i{n-v) + ju, iv + 3j(n-u)) witn
(1,3} € A(H), and this may also be written as (i,3j)D where

D is the matrix (n“’ v ) .
u -1

We note that (i,j) is uniquely determined by (i,3)D since

determinant of D = n{n-u-v) > 0.

Lemmz 4.3 can be applied to H witn Y, = (u,v) and
with the integer n. We wish to deduce the conditions of
lemma L4.3 for the power series H(X,Y), the integer n(n-u-v)

~and the sequence



b

1 = (ma,nv), Wy, = uD, eee, W= u D

-]

{(the uts belohg to H). If we do this, then lemma 4.3
shows ﬁnat ¢! is a quasi-ordinary branch, and gives the
distinguished pairs. In fact, the distinguished pairs of
(7 will be (m, + Hi)/n(n-u~v) (i =2, 3, vv., 8), along
with the pair (nu/n(n-u~-v), nv/n{n-u-v)) provided that tne

latter is not a pair of integers.

Since w, = u,D and u, = n(xi,ui) - (u,v)
(i =2, 3, ¢2+, 8) where (xi,ui) is tne i-th distinguished
pair of Xu/an/nH(Xl/n,Yl/n), and since (u,v) = (nxl,nul),

we have
(V_‘J_i+‘_i1)/n(n'u'v)= ()Li(l'}.ll) + ”ill’ llul + ui(l’ll))/l-kl-ul'

(1=2, 3, «e., s), and for i = 1, the formula on the right
gives (ll,ul)/l-xl-pl = {nu,nv)/n(n-u-v). Thus the
distinguished pairs of the transformed branch depend only

on those of the original branch.

- In order to verify the conditions of lemma 4.3, we

remark that if u is a combination of Yy» ..;, u, mod. n,

u-= qu'-l + Q85 T oeee * Qpliy + n(a,b) {a,b integers)



then uD = giu,D + n(a,b)D + GpupD + ..o + gu D
and a brief computation shows that

94, D + n(a,b)D = (ql+a+b)51D + n{n-u-v)(a,b)
so that uD is a combination of D, ..., wD mod.n({n=-u-v).
Conversely, if uD is such a combination, then we can show

that u is a combination of By, ++e, B Wod n.

In view of this, and in view of the fact that
multiplication by D preserves order between rairs, the

conditions for H can be established by routine verificatioen.

Other transformations which we have given can be
;treated in a similar manner. We omit the details of the
computations, the principles of whicﬁ are adequately
illustrated in tne above example. The final results, along

with those of §3, are set down in the following table.

In each of the indicated processes of transformation,

we have started out with a normalized quasi-ordinary branch



and ended up with a fractional power series which. turns out,

as in the above example, to be a quasi-ordinary branch.

We note thét in S.E.B.a we ended up with a
quasi-ordinary branch in X and Z. For the sake of
uniformity we may substitute the letter "I" for Z to get &
"standard" quasi-ordinary branch in X and Y (which still
represents the formal quadratic transform being considered).
Similarly, when considering a direction of the form (0:l:y),
{non-transversal case).we end up with a branch in Y and Z;
substituting "X" for Z we get a branch in Y and X, and then
we can interchange X and ¥, to get a Wstandard® form for
the representing branch. It is such standard branches
which are referred to in the table under the heading

"Resulting Brancn®.

If (xi,ui)(i =1, 2, +»+, 8)are the distinguished
pairs of the original branch, then the distinguished pairs
of the "standard" transformed branch are those given in
the table for i = 1, 2, «.., s unless it happens that the
first pair given (i.e. that pair for wnich i = 1) turns
out to be a pair of integersj when that is;so, the first

palir must be omitted.



TABLE 4.4,

Trangformation Distinguished Pairs of
Resulting Brancn

LEMMA 2.3 ' _ g + 1 =290/ Aqs uy
MONOIDAI TRANSFORMATI ON
Center (-X,g) - | P T
Center (Y,() Ayr g =1
QUADRATIC TRANSFORMATION ‘
Iransversal Case
Direction {(1:0:0) Ay tug -1y
Dirrection (0:1:0) Ayr Ay my - 1

Non-Transversal Case

Direction (1:0:0) At {1+ ui) (1~ ll) /ul] -2, [{1+ui)/ul] -1
Direction (0:1:0) gt (1) (T-uy)/A 1= 2, (14202, )-1
Direction (0:0:1) O (Lt /1= Ay =Hys Oyt (L2 /A2

We have given the distinguished pairs onlyfor "gpecial®
directions in the case of quadratic transformations. Tnis

information can always be used to give us the distinguished



pairs for "non-special" directions. For example if we
want a set of distinguished pairs at the transform in a
direction (1:0:y), y # O, in tne non-transversal case,
then we .remark that the process given in §3 shows that tne
roots of a defining equation fY at {1,0,v) can be obtained
from those of a certain defining equation f at (1:0:0) by
éubstituﬁing the (integral) power series (Z + Y)l/v for
1/v

A . Tne difference of any two roots of fY

the same substitution from the difference of some two roots

is obtained by

of f.° It follows that the distinguished pairs of any of
the roots at (1,0,Y) lie among the pairs

‘(KE,O), (i =1, 2, «v., s), where K; denotes the first
member of the pairs given in table 4.4 for the direction
(1:0:0) (non-transversal case). The distinguished pairs

in fact turn out to be those of the pairs (fi,O) such that,
in the notation of proposition 1.5, T(I;,O) = i; i.e. such
that fi is not congruent, mod. Z, to an integral
combination of fb = 0, fi, fz, cony i;-l' The proof, based

on proposition 1.5, is straigntforward and we omit it.

We remark that the preceding result can also be
obtained by an argument based on the concepts of
Yequisingularity®™ and "generic sections® {c¢f. end of this

section and also §6).



From table 4.4 we can deduce another description

of "special transforms". {cf. definition 3.5)

COROLLARY h.L4.1. Let A be a quasi-ordinary local
ring, and let A be represented by a normalized brancn 4
as in §3. Assume that A has no permissible center which
is a curve. Tnen any non-special formal quadratic
transform of A in a direction (1:8:¥) nhas a defining
equation whose discriminant either is divisible by X

alone, or is a unit.

REMARK. Corollary 4.4.1 has the following
interpretation: A non-regular formal trangform A' of A is
non-special if and only if T, (the quadratic transform of
Spec(A)) is eguisingular along the exceptional curve at the
point whose local ring is A'. (cf. remarks at end of this

section).

PROOF. Since the discriminant of a polynomial is a
product of differences between its roots, considerations
such as those following table 4.4 lead immediately to a

proof, except for a transform in the direction (1:0:0).

Our assumptlon on A shows that { has the form

xAY“q(Xl/n Yl/n) 0<A<1l, 0<y < 1l. The proper



transform of the ideal (Y,¢) passes through the transform
in the direction (1:0:0), and ;o if that transform is to

be non-special, (Y,{) must have multiplicity 1 in A.

Hence p = 1/m where m = [K(¢):K] {cf. proof of corollary
2.7.1). It follows that xhyH is the only characteristic
monomial of {. Then it is easy to check that the transform

under consideration is actually a regular local ring. g.e.d

The formulas of table 4.4 allow us to show that

special transforms of guasi-ordinary local rings are

integral domains. First, however, we must make some
EET » »

preliminary remarks about subfields of'Kn = K(Xl/n,Yl/n)a

K being the quotient field of k{[X,Y]].

Ifw is a %rimitive n-th root of unity, then any
automorphism of K, /K is effected by a substitution of the
form:;:l/n-.' al/n yi/n bl/n, 0ga<n, 0<b<n.
Representing such a substitutlon by the pair (a,b) we get,
clearly, an lsomorpnlsm between the Galois group G of K /K
- and the direct sum Z © 2 (Z_ = integers mod. n). If K1

is any subfield of Kn and G! is tne subgroup of G leaving

X! fixed, then xu/nyv/n lies in X' if and only if



ua + vb = 0 mod. n for all {(a,b) in G'. It follows that
the set G of elements (u,v) (0L u<n, 0<v<n) suen
that XV/0yV/D ¢ g, may be identified witn the group
Hom(G/G',Zn). Since G/G' is a direct sum of cyclic groups,
we can easily show that Hom(G/G',zn) is (non-canonically)

isomorpnic to G/G'.

Thus the total number of elements in G is the order
of G/G', wnich is also the degree [K1:X]. Hence the
monomials Xu/an/n form a basis for the vector space K'/K,
and so (a,b) € G' if and only if au + bv = O mod. n for all
(u,v) in G. [Thus the duality bétween the subgroups of G
and the subfields of K /K is a reflection of the perfect
duality between Z ~-submodules of z @ Z, associated witn

the bilinear form {(u,v), {a,b)} - ua + vbj.

We see now by symmetry that the order d of Gt is the
order of G/E; and it -is well-known [2; p.95] that the
latter order is the g.c.d. of the 2X2 subdeterminants of’

the matrix



where (ul’vl)’ ey (uS,Vs) is any set of generaﬁorS'of G.

The degree [K':K] is therefore nE/d.

We shall now consider the case of the formal quadratic
transform A' of a quasi-ordinary local ring A in the
~direction (0:0:1). Our object is to show that At is an

integral domain.

Let { be a normalized representing brancn of A, and

let f be the minimum polynomial of ¢ over K. Let
(Asomuy) = (ui/n,vi/n) i=1, 2 ..., s be the distinguished
pairs of {, and let T"({) be the subgroup of Z @ L,
consisting of those pairs (u,v) (0 gu<n, 0<v<n)
such that xu/an/n € K(¢). We nave seen (remark 1l.L4.lL)
that K({) is generated over K by the characteristic
monomials of ¢; it follows easily.that r(g) is generated
by the pairs (ui,vi).i = 1, 2, ++s, s. Hence

[K(¢):K] = na/d, d being the g.c.d. of the 2X2

subdeterminants of the above displayed matrix.

Let {* be a root of the formal transform of f in tne
direction (0:0:1), (' being obtained from { as in earlier
parts of this section (and also 3.4.2.b.). Table L.k gives

us the distinguished pairs of (' and we conclude, by the



preceding argument, that [K(g!):K] = nz(n-u-v)z/d' where
u = uy, v=vy, and d' is the g.c.d. of the 2x2

subdeterminants of the matrix

(o] n{n-u-v) nu ... ui(nuv)+viu e
- (b)
n(n"'u"v) 0 nwv LIS uiV+Vi (n-u) LIS
Now tne degree of the formal transform ft = fz
) 0,0,1)

of the polynomial f is easily seen to be

(degree of f).(n-u-v)/n. Hence if

[K(¢*):K] 2 [K(¢):X].{n-u-v)/n then, ¢! being a root of
', we must actually have equality and f! is necessarily
irreducible. It follows then that A' is an integral

domain, as required.

Tne~preceding inequality may be written as
n{n-u-v)d > d'. In view of the definition of dt, thnis
inequality can be establisned by showing tnat n(n-u-v)d
divides all the X2 subdeterminants of (4), We check that
any 2X2 subdeterminant of (L4) has a value of one of the
following forms;
(1) n®(n-u-v)®
(ii) n(n-u-v)(nvi tuvo- viu)

(1i2) [ (n~v) (n-u) - uvl[uivj N viuj]'



By the definition of d, we see that d divides
n2, nu, nv and therefore n{n-u-v)d divides (i). Similarly
d divides nv, and d diyideé u,v - v,u, whence n(n-u-v)d
divides (ii). Finally d d;vides U vy - ViU and

{n-v)}(n-u) - ﬁv = n(n-u-v); so n(n-u-v)d divides (iii).

Q- e.d.

Formal quadratic transforms in the directions
(1:0:0), (0:1:0) (non-transversal case) can be treated
similarly. Details are left to the interested reader.
Tne transversal and monoidal cases have already been

treated in 3.3 and 3.4.1.
To summarize the main resultg of this section we have:

THEOREM 4.5. Let A be a guasi-ordinary local ring.
Any special transform A' of A is again a quasi-ordinary
local ring. If ¢ is a ﬁormalized_brancn representing A,
then, by one of the processes of §3, we can find a
quasi-ordinary brancn ¢! {not nécessarily normalized) which
represents A', and whose distinguished pairs depend only
on those of ¢ and on the process employed, the exact nature

of the dependence being as in table L.l.



We close this section with some informal remarks
about non-special transforms and equisingularity. Corollary
L.k.1l and also the remarks preceding 3.4.2 show that for
non-special transforms there.is a defining polynomial whose
discriminant has at most one irreducible factor. Such
benavior for a "general" transform could have been
predicted on tne basis of the theory of equisingular

families of curves,. developed by Zariski in [8].

Rougnhly speaking, suppose P is a closed point on a
surface 5 in three-space, let w:S3 - S be the locally
quadratic transformation of S with center P, and assume
that the exceptional curve n-l(P) (reduced) is a multiple
curve of S'. If P! is a point of n-l(P) whose complete
local ring on S* is defined by a polynomial whose
discriminant is a power of a linear form, then St is
equisingular along n"l(P) at P'. Tnis means that P! is a
éimple point of n-l(P) and that the singularity which S?
has at P' is "no worse® than the singularity which it has
at the generic point of n-l(P); in topological terms, St
is locaily the product of a line witn a section of St by a

plane which is transversal to ﬂ'l(P).

Tnis situation is clearly illustrated in the preceding

computations. For example, when we are considering



directions of the form (1,0,Y), v # O, in the
non-transversal case, we can write down defining equations
of the corresponding transforms according to the procedure
given in 3.4.2.a; if we then set Z = 0, we get a family of
plane curves (i.e. of one-dimensional branches) in whien y
appears as a parameter. These curves are cross gections of
the total transform T of Spec(A) by planes which are
transversal to the exceptional curve. A4s long as ¥ # O,
these curves are easily seen to be gquivalent in the sense
that the components of two different curves can be maﬁched
in such a way that intersection multiplicities are
preserved and that corresponding irreducible branches have
the same characteristic monomials (in one variable). (cf.

also [8]).

it turns out in the next section that as far as the
classification of quasi-ordinary local rings by quadratic
and monoidal transformations is concerned, we may ignore
non-special transforms. This is not surprising, since any
special transform contains ali ﬁhe information about its
neighboring non-special transforms in its Ygeneric

transversal sections" (cf. §6).



5. Strict Resgolutions of Cuasi-ordinary Iocal Rines.

Let ¢ be a normalized representing branch of a
quasi-ordinary local ring A, and let (li,ui)
(1 =1, 2 ..., s) be the distinguished pairs of Co
Interchanging X and Y in ¢, we get another normalized
representing branch of A whose distinguished pairs are
(nys1y)+ We are ready now to show that, modulo this
ambiguity, the distinguished pairs of any two representing

branches of A are the same.

To eliminate the ambiguity, we shall say that a
normalized quasi-ordinary branch ¢ is strongly normaljzed
if eltner { = O or if the distinguished pairs g ouy)
(i=1,2, «+., s) of { are such that
(Xqs Ay «eey Ag) = (Hys Ups vovy ug ) in the lexicographnic
ordering. With any quasi-ordinary branch ( we can
associate a well-determined normalized branch (' according
to the procedure at the béginning of §2. If ¢t is not
strongly normalized, let E be tﬁe quasi~ordinary branch
obtained from (' by interchanging X and Y; otherwise let

C =('s C is strongly normalized, and we shall say that

is tne strongly normalized branch associated with ¢ ¢
and { represent the same (ﬁp to isomorphnism) quasi-~ordinary

local ring.



We are going to relate tne distinguisnhed pairs of
strongly normalized quasi-ordinary branches to certain
resolutions of the rings which they represent {cf.
proposition 3.6). First we introduce some more terminology.
If A' is a formal moncidal or quadratic transform of A,
with center P, then we say that a curve P! in A' is an

exceptional gurve for tne transformation from A to At if

P!, as a prime ideal, contracts to P in A. We see easily
(say by the formulas of §3) that if A' is a formal
monoidal or quadratic transform of a quasi-ordinary ring A,
and if A' nas two curves in its singular locus, then at
least one of these curves is exceptional for the
transformation from A to A'. Moreover, unless A has a
reducible tangent cone and At is the formal transform
which lies at the intersection of the two components of
the exceptional curve of the quadratic transformation of
Spec(Ai) (ef. 3.4.1), then there is precisely one curve
in AY whieh is excéptional for the transformation from A

to At.

DEFINITION 5.1. ' A gstrict resolution of a

quasi~ordinary lecal ring A is a sequence 4 = AO’ Al, ceey By
such that
1) A_ 1s either normal or such that it nas no special

tranasforma.



2) A,

S+l (0 €4 < t) is a special transform of A;, subject

to tne following “exactness" conditions:

(i)‘Ai+l contains precisely one exceptional curve {for
the transformation from Ai to Ai+l)'

{ii) If Ay (0 <1< t) nas two curves in its singular

| locus, neither of which is a permissible center,

then Ai+l is the formal quadratic transform of Ay
through which passes the proper transform of the
exceptional curve for the transformation from Ai-l
to Ai. (cf. remarks preceding 3.5).

ﬁii)If‘Ai (0 <1 < t) has two permissible centers which
are curves, then A, , is a monoidal transform of A,
and the center for the transformation fronm A; to
A;4q is exceptional for tne transformation from

Ai-l to Ai.

We see easily that any quasi-ordinary loecal ring has
at most two strict resolutions {up to isomorphism). In
fact there are at most two possible choices for Al’ and
from proposition 3.6 and the remarks preceding definition
5.1, we find that there exists precisely one strict
resolution of.A for each sucn choice. Ve ﬁote also that
if A = AO' Al, evuy At is a strict resolution of A, then

Ar’ Ar+1’ ooy At is a striet resolution of Ar for any r £ t.



We are going to attach certain bits of information
to each ring Ai appearing in a strict resolution of Ao.
These "bits" will depend only on the distinguished pairs
of any strongly normalized representing branch of Ao, and
conversely, the collection of all the "bits" asscciated
with a given strict resolution will determine such

distinguished pairs uniguely.

To each quasi-ordinary ring A, tnen, we attach a
label [a;b,c3d;e;f] with six numbers:
a: the multiplicity of A
b,c: (1) If A has two curves in its singular locus
then b is the greater of their
multiplicities in A and ¢ is the lesser.
(i1) If A nas only one curve in its singular
locus, then b is the mulﬁiplicity of that
curve in 4 and ¢ = 1.
(ii1) If A is integrally closed then b = ¢ = 1.
ds If there is a curve in thne singular locus of A
which is not itself a non-singular curve then
d = 1; otherwise d = O.

e, need further explanation, given below.

If A is a quasi-ordinary local ring, and ¢ = X YH is

a normalized representing branch of A, and if the tangent



cone of A is reducible, then the degree m = [K{():K]
(K = quotient field of k{[X,Y]]) is not, a priori,

uniquely determined by A (if A nas an irreducible tangent

cone,.then m = multiplicity of A). To show that m is
actually unique, we consider Al, the formal quadratic.
transform of A lying at the intersection of the two
components of the exceptional curve of the guadratic
transformation of Spec(A); if A, has a reducible tangent
cone, then we derive A2 from Al in the same way we got Al
from A; in this way we get a sequence Al’ Az, ey Ar
which terminates after finitely many steps; 1.e. the

tangent cone of A, is irreducible. We leave it as an
exercise for the reader to show that r is the least integer
such that x + 1> 1 - r() + y), and tnat

m = (multiplieity of A)/(multiplicity of Ar) = (er)/[1-r (A+u)].
Since m and r are intrinsic to A, so is ) *+ . On the other
hand, we know {proof of theorem 2.7) tnatr

m(y + ) = multiplicity of A. Thus m is intrinsic to A:

By remark l.4.4, m is detgrmined by the distinguished pairs

of ¢.

Now we describe the number e: if A has a reducible
tangent cone, then e is the degree over K of any normalized
representing branch of A. If A has an irreducible tangent

cone, then e = Q.



We go on to the description of f.

LEMMA 5.2. Let A be a quasi-ordinary local ring of

multipliecity m > 1 and let ¢ be a strongly normalized
representing branch of A. Suppose that A has a permissible

center which is a curve and that the corresponding formal
monoidal transform is regular. Then ( has only one
distinguished pair, and that pair is eitner (1, 1/m) or

(1 + 1/m, 0).

PROOF. The proof is an easy consequence of the

information in table L.4. q.e.d.

The problem which arises is to show that if one
strongly normalized representing branch of A nas the
distinguished pair (1, 1/m) then so do all other such
branches. We shall need therefore to make some distinction
between a ring whicn is represented by a quasi-ordinary
branch having only the one distinguisned pair
{(a): (1L + 1/m, 0) and a ring'wnich is represented by a
quasi-ordinary branch having only the one distinguished
pair (g): (1, 1/m). [Both rings nhave the séme numbers
a,b,c,d,e in their label]. This may be done either by
looking for equisingularity or by counting the number of

- components in a "generic transversal section” {c¢f. next



section). However, these are concepts which we have not

yet introduced formally, and for our purposes any intrinsic
distinction will do. Here is one: by 3.3 we can see that
each of the rings has pfecisely one formal guadratic
transform which is not regular, and that these formal
transforms are represented by branches with one distinguished
pair of the form {a?): (1 + 1/m, 1/m) in case {(a),
respectively (8t): {1, 1/m} in case (B); in both cases

there is one permissible center; in case (q') the
corresponding monoidal transform is not regular, in case

(8?) tne monoidal transform is regular.
Now we can describe the number f. If A does not
satisfy the hypotheses of lemma 5.2, then we set £ = O.

Otherwise we define f to be 0 in case (¢) and 1 in case (8).

Tne above discussion and theorems 2.6, 2.7 show that

the label of a guasi-ordinary ring A is completely

determined by the distinguished pairs of anv normalized

guasi-ordinary branch which represents A.

DETINITION 5.3. Let A, A!' be quasi-ordinary local
rings, let A = Ags Al’ cers AL be a strict resolution of A
and let At = Aé,
We say that the two resolutions are eguivalent if t = g

Al, ees, A; be a strict resolution of At.



and if for each i =0, 1, 2, ..., t, Ai and A{ have the

same label.

An equivalence class of strict resolutions may be
identified with a sequence of labels, viz. those which
belong to the successive members of any resolution in the
equivalence class. We shall call such a sequence a

composition and say that a composition belongs to a given

quasi-ordinary local ring A if it is the sequence of labels

belonging to some strict resolution of A.
Now we can state the main result.

THEOREM 5.4. (CLASSIFICATION THEOREM). Let A, A' be
quasi-ordinary local rings, and let ¢, (' be strongly |
normalized representing branches of A, A' respectively.

If there exists a composition which belongs both to 4 and
to A', then ¢ and (' have the same distinguished pairs.
Conversely if ¢ and (' have the same distinguisnhed pairs
then the set of compoéitions belonging to A is identical

with the set of compositions belonging to At.

COROLLARY. If A and A' are isomorphic then { and (!

have the same distinguished pairs.



PROOF OF COROLLARY. Since A and A' are both
represented by (, the second part of the theorem says that
their respective sets of compositions are identical (a
fact which is clear a priori, since the definition of
composition of A" is intrinsic to A); hence the first

part says that { and {' have the same distinguisnhed pairs.

PROOF OF THEOREM. We consider thnat enough has been
said by now (theorem 4.5, remark preceding definition 5.3,
etc.) to show that the following problem can be
successfully programmed for a computer: given the
distinguished pairs of 2 strictly normalized quasi-ordinary
representing branch of a quasi-ordinary local ring A,

construct all compositions belonging to A.
The second part of the theorem results.

Now we turn to tne first part of tne theorem, whicn
will occupy us for the remainder of thne section. We are
assuming that A and A?! have equivalent strict resolutions.
Let us first treat the case in which these resolutions
have only one member. Since 4 and A' have the same label,
A contains a permissible center which is a curve if and only
if A' does. Lemma 5.2 is applicable {otherwise A has a

special transform), and so  has precisely one distinguished



pair, which is either (1 + 1/m, 0) or (1, 1/m)

(m = multiplicity of A). The decision between these two
is made according to whether tnhe number "f" in the label
of A is Oor 1. Tnhus the distinguisned pair of ( is
determined by tne label of 4, and consequently ¢ and (!

have the same distinguished pair.

If neither A nor A' has a permissible center which is
a curve, then neither has any curve at all in its singular
locus (otherwise one of them would be non-normal and also
would have a special transform). Hence botn A and At are
normal., Clearly A has multiplicity 1 if and only if At
does; then { = (' = 0. Otherwise, by corollary 2.7.2 and
its proof, { has a single distinguished pair, that pair
being of the form (1/m, 1/m); we have m = 2 if and only if
tne tangent cone of A is irreducible, and if the tangent
cone is reducible, then m is the number "e™ appearing in
the label of A. Since A and A' have the same label, ¢ and

' have the same distinguisned pair.

If the resolutions under consideration have more than
one member, then let B, B! be the successors of 4, At in
the respective resolutions. B and B! are represented by
g€ and €', where £ and £t are transfdrms of ¢, (?

- respectively, obtained by the procedures of §3 (and then



"standardized", cf. remarks preceding table 4.4). Let

E, E' be tne strongly normalized branches associated witn
€, E' respectively. B and B' have equivalent resolutions,
with fewer members than the above resolutions of A, AY;
hence, arguing by induction, we may assume that E, E'

have the same distinguisnhed pairs, which we denote by

(Oi,Ti)'

Now we show how conditions (ii) and (iii) of
definition 5.1 can be used. Let E be any sfrongly
normalized quasi-ordinary branch such that k[[X,Y]][E]
has two curves in its singular locus, with either both or
neither Eeing permissible centers. Thegse curves are then
the prime ideals (X,£) and (Y,§). We shall say that (X,E)

~is the X-curve of E and that (Y,E) is the Y-curve of g,

LEMMA 5.5. Let € be a strongly normalized
quasi-ordinary branch having distinguisned pairs (o557)
(1 =1, 2, ..., 8) witn o; # T; for at least one i.
Suppose alsc that B = k[[X;Y}]{E] has two curves in its
singulér locus. Tnen
a) If both curves are permissible centers then the

respective monoidal transforms of B are represented by
strongly normalized branches having distinect sets of

distinguished pairs.



b) If neither curve is a permissible center, and if
By, By are the special transforms of B througn which
pass the respective proper transforms of these curves,
then B1 and 32 are represented by strongly normalized

branches havihg distinet sets of distingulished pairs.

PROOF. Suppose to begin with tnat g * 177 < 1. Let
Ei (Eé) be a strongly normalized representing branch of
By (BB)' By table L.k, Ei, Eé are the strongly normalized
branches associated with otner branches whose distinguisned

pairs are among
(O'i + [(l + Tl)(l - Ul)/TlJ = 2! I(l + Tl)/Tl] = l)
(1, + [(L+ o, M1 = 79)/oq) = 2, [(1+ 05)/04] -1)

respectively. For i = 1 we get ({1 - o, - Tl)/Tl' l/Tl)’

((1 -0y = 19)/0q, 1/0q) respectivgly.

If 1/-rl and (1 =~ oy - Tl)/Tl are not both integers,
then, since 1 - Gy =Ty < 1l, the pairs of Ei are those
which are displayed above, with the order reversed; and
similarly for Eé. Hence, in tnis case, if El’ Eé have the
same pairs, then (1 + Ti)/Tl = (1 «+ Ui)/ol for l

i=1, 2, «.+, 8, Whence gy < T5 for all i.



If botn 1/71, (1 - o - Tl)/Tl are integers, while
one of l/cl, (1 - oy - Tl)/cl is not an integer, then El
has s - 1 distinguisned pairs, while Eé has s distinguished
pairs, so our conclusion certainly nholds. If all four of
these quantities are integers, tnen clearly
6, =T, =g (say). Comparing the above displayed
expressions, we see that if Ei, Eé have the same
distinguisned pairs, then eitner (1 + 1)/ = (1 + o) /o

fori=2, 3, ..., s, in which case oy = T3 for all i, or
(1 + Ti)/c =T, 140 )1 -0)/o) -1
and L+ 6;)/0 = o, + [(1+ 1,00 -0)/o) - 1

for i =2, 3, «.., 3. Subtracting one of tnese equations

from the other, we get Z(Ti - Ui)(g ~ 1) = 0 whence

Ty T 0y for 1 = 2, 3, ..., s. In any case, the lemma holds.
We still nave to consider several cases in which

oq + Ty 2 1. The arguments are gimilar in principle to

the preceding ones, and somewhat simpler to carry out, and

we omit them. (Wé note only that in treating the case

Gy +.Tl = 1, lemma 2.3 must be ﬁsed).

LEMMA 5.6. Let A, A', B, Bt, E, E' be as above.



Suppose that among the characteristic pairs (oi’Ti) of E
{or, wnat is the same, of E') there is one for which

o5 # Ty Suppose also that B has two curves in its
singular locus, neither or both of which are permissible
centers. Let ¢ be an isomorphism of B with k[[X,Y]][E],
and let p be the curve in B which is exceptional for the
transformation from A to B; let ', p' be defined
similarly with respect to B'. Thnen y(p) is the X-curve

of £ if and only if y1{p!) is the X-curve of ET,

PROOF. We treat the case wnhen B has no permissible
centers whi¢h are curves, the other cage being similar.
As previougly remarked, E, E' have the same distinguished
pairs; in particular B' also has no permissible centers

which are curves.

Let C, Ct' be the formal quadratic transforms of B, B!
through which pass the proper transforms of p, p'
respectively. By (ii) of definition 5.1, C, C! are the
successors of B, B' in the equivalent resolutions of A, AT
wnich.we nave assumed to exist. By an inductive argument,
we may assume that any twe strongly nofmalized branches,
one of which represents C, and the other of which
represents C', have the same distinguished pairs. Since

also E, E' have the same distinguished pairs, our



conclusion follows easily from lemma 5.5. g.e.d.

To carry out the proof of the theorem, it will be
sufficient to show that the following data determine
uniquely the distinguished pairs (xi,ui) of (:

1) ihe label of A.

2) The distinguished pﬁirs (oi,Ti) of E.

3) Wnen the conditions of lemma 5.6 are all fulfilled (a
situation whose existence {or non-existence) depends
only on (Ui,Ti)), whether the image of the unique
exceptional curve in B under some isomorphism of B
with k[[X,Y]][E] (and tnerefore, by lemma 5.6, under
any such isomorphism) is the X-curve or the Y-curve

of E.

For, in view of the foregoing considerations,
1), 2), 3) do not change when A, B, E are replaced by
At', B, E', and so we will be able to conclude that ¢ and

€' have the same distinguished pairs.

The rest of the proof is, again, a program for a
computer, giving instructions for calcul#ting (li’“i) from
1), 2), 3) above. There is a subdivision into a number of
cases énd subcases, and of course the subdivision must

depend only.on the data 1), 2), 3); the reader will easily



verify at each "fork in the road" that this requirement

is adhnered to.

We shall maintain the above notations:

A, B, €, E: (7‘:'.’-”1)" (ci’Ti).

CASE I. Monoidal Transformations of A.
The distinguished pairs of € are either (i) {(11-1,;;4)}

or (ii) {(liaui"l)}'

I.l1. A has two permissible centers.

In this case § is normalized.

I.l.c¢. 0'1_>_1>'rl.
In this case (Gi:Ti) = (ui,ki-l) or (Ci,Ti) = (li,ui-l)-

Thnus we have one of

Ial.a-(i). (0-., ’ri+l, 1-0)2(..-’ ci’ c-.)

lexicographically. In this case (ki,ui) = (Ti+l,ai).

Iol-a-(ii)o (o--, Ti+1, -co) < (oco, oi, a.-)

lexicographically. In this case (ki,ui) = (Gi,Ti+1).

I.l.8. 01 2 Ty 21, o, 7 T; for some i.



I.1.8.a. Exceptional curve is the X-curve of E.

In this case we have either (i) above, and then
(ci,Ti) = (li““’“i) for all i, or (ii) oceurs and tnen

(oi,Ti) = (ui-l,xi) for all i. Thus we have one of

Ialnsnac(i)o (--o’ Ci+1, --c)Z(--a, Ti, oo-)

lexicographically. In this case (ki,ui) = (Ui+1,7i)-

Ioloﬂ-a-(ii)- (oo., Ui+l’ oo-) < (ooo, Ti, ooo)

lexicograpnically. In this case (xi,ui) = (15,0,%1).

I.1.8.b. Exceptional curve is the Y-curve of E.

fere we may proceed as in I.1.R.a.

I.1l.Y. oy =Ty > 1 for all i.

In this case (liﬂﬁ) = {gi+1,7i) for all i.

We have now disposed of case I.l. From now on we

will be a little less mechanical in our description of

the program.

I.2. A nas precisely one permissible center whnich

is a curve.

I.2.0. There is no curve in the singular locus of A



other than the permissible center.

In this case the proofi of theorem 2.7 shows that the
set of distinguished pairs of ¢ is of one of the following
kinds.

(i) (Al,l/m) where A7 > 1 and m is the multiplicity
of A. | |
{ii) (7*1’0)' (12,0), cee, ()\s,o) s21, Ay>1-
(£12)  (s0)s (100)5 weey O, 1, 0), O, 1/0) 51,3 >141/m, 1<r<a.

By definition 5.1, B is not a regular local ring. If
(i) occurs, then g hés one distinguished pair (xl-l,l/m).
Since 11 > 1 (otnerwise B is regular), E will have
precisely one distinguished pair, and 1/m will be a member
of that pair: If (ii) occurs, then every distinguished
pair of € will have at least one vanishing member. If
(iii) occurs, then the largest distinguished pair of £
will nave two members both of which are > 1/m. Thus we
can distinguisn between cases (i), (ii), (iii) by examining

the digtinguished pairs of E.

In case (i), it is clear that xrlg;l/m, and hence

(Kl,ul) = (Ul'*'l,'fl) .

For cases (ii) and (iii), we remark that the



multiplicity of B is min(m,m,-m). Tnis implies, in tne
first place, that tne multiplicity of B equals the
multiplicity of A if and only if Ay > 2. In this case

g = E and (xi,ui) = (Ui+1,Ti)-

Suppose mult. of B < mult. of A. Thnen Ay < 2 and
1/(kl—l) = (mult. of A)/(mult. of B), so Ay is determined
by_the label of A .and by tne (Gi’Ti)° Since Ay - 1«1,
we must treat £ as in lemma 2.3. By table L.Lh, the (Ci,Ti)

will be

(where My =0 for i =1, 2, ..., s-1, and Mg = Oor

By = 1/r according as we have case (ii) or (111}, unless
xl/(ll-l) is an integer (or, equivalently, 1/(x1—l) is an
integer). Since Ay 1s now known, it is clear how to

recover (ki,ui) from (Gi,Ti)-

I.2.8. A nas two curves in its singular locus,

precisely one of which is a permissible centep.

Let P be tne permissible center, and let Q be tne

otner curve in the singular locus of A.



I.2.8.a. Q is a non-singular curve.

In this case 3, > uy > O and we can calculate Hq
from the label of 4, since py = (mult.of Qin 4)/(mult.of 4).
We note that multiplicity of B = min(m, mAl+mul—m),

(m = mult. of A). Thus, the multiplicity of B equals
that of A if and only if At My 2 2. 'Wnen Ay Yug 2R,
then £ is normalized. Tnus.

{(ci,Ti)} = {(xi-l,ui)} or {(ui,hi-l)}. If 01 = Uy and
Ty # s then (li’“i) = (Ti+1,ci) for all i; if Ty = Mys

and ¢4 # uq then (ki,ui) = (°i+1’Ti) for all i.

Finally, if G = Ty T ugs then either o; = T4 for all.
i, in which case (Ai,ui) = (ci+l,7i) or else B satisfies
the conditions of lemma 5.6, In the latter case, we can
use type 3) data and say tnat {(li’”i)} = {(Gi+1,Ti)} or
{(xi,ui)} = {(¢i+l,ci)} according as the exceptional curve

is the X-curve or the Y-curve of E.

Suppose now that B nas smaller multiplicity than A.
Then (mult. of A)/(mult. of B) = Ay *uy -1 and so Ay is
determined. If Ay > l, then € is normalized and we can

proceed as in the case kl + Hq > 2.

If Xy = 1, tnen £ must be treated as in lemma 2.3,



and by table 4.k we nave (o.,7,) = ((1;*+1)/uy~1, 2;-1)

for all i unless 1/1_;l is an integer, in which case the pair
(1/u1, xl—l) must be omitted. If l/ul is not an integer,
then (xi,pi) is easily found. If l/ul is an integer,

then we have one of

(3) (O'i:'ri) = ((ui+l+l)/i-11'l, )\i"'l-l)

(ii) (Ui"ri) = ()L-+l“1’ (ui+l+1)/1.11“1)°

i
First we check to see whether Ty < 1. If so then we
are in case (i) above, since (u2+l)/u1 -1>1., If T, > 1,
then B satisfies lemma 5.6 (unless o; = r; for all i, in
which case (i) nolds); if thnen the exceptional curve is
the X-curve we have (ii) above, and if the exceptional
curve is the Y-curve we have (i)}. Once we have decided

whether (i) or (ii) holds, the (li,ui) are easily obtained.
I.2.s.b. Q has a multiple point at its origin.

In this case Hy = 0. We leave this case to tne
reader, since no arguments are needed which have not

already been used in the above cages.

Tnis completes the program for the monoidal case.



CASE I¥. OQuadratic Transformations of A.

A quadratic transformation of A is called for if and
only if A nas no permissible centers which are curves. 1In
this case we have O < X <1l,0< My < 1. If A nas an
irreducible tangent cone then ey tug 2 1l; if a, b, ¢ are
the first tnree numbers in the label of A, then, by tneorem
Re75 8xy = b, a1y ® ¢. If A has a reducible tangent cone,
and e is the fifth number in the label of A, then
ey < b, euy = ¢ In either case, Ay and M, are determined

by the label of A.
II-]_. ll + ul > 10

In this case the distinguished pairs of E are either
{()‘1’)‘1+“i-1)} or {(ul,ki*‘ui-l)}. Hence
{(ki,u_i)} = {(Ui"ri-i.l“ci)} if (oto, ci, o.-)Z (--c,‘fi+1-0'i, --o)

lexicograpnically; otherwise {(xi,ui)} = {(Ti+l-oi,ci)}.
IT.2. Ay + g = 1.

In this case § has to be treated according to lemma 2.3;
the resulting pairs are either

(i) ((“i+1'1"l)/“1’ Ai+ui_l) or

(£1) (A +2-21)/Aqs X %ug-1)



Since lz + Mo > kl + M s £ has at most one pair in
which O appears. If there i1s such a pair, then the otner
member of the pair is either 1/@1 or 1/A1- Then we find

+1- —(g.+1- i ther
that {(0;*1-0}/0y,s 7,t1-(0, %1 ol)/cl)} is eithe
{(xi,ui)} or {(pi,li)}; we can easily decide which one by

1exicograpnic_order as in II.1l.

It E has no pair in which 0O appears then at least
one of l/xl, l/ul is an integer. If 1/1l is an integer,
wnile l/u1 is not, we must be dealing witn case (ii)
above. Since (x2+l-hl)/kl > 1/xl > 2 we check to see
whetner T, < 2. If so, then E has the pairs displayed in
{ii) for i = 2, 3 ... and tne (Ai,pi) are easily found.

If T. > 2, then we use the (by now) femiliar arguments

1
about exceptional curves being X-curves or Y-curves of E
to distinguish between the case when the pairs of E are

as displayed in (ii) and tne case in which the pairs are

in reverse order; then the (Li,ui) are easily found.

If l/u1 is an integer and 1/11 is not, then we proceed
as above.  If botn 1/1l and l/u1 are integers, then, since
My Y Hy =1, g Ty T 1/2. A combination of the
foregoing considerations about exceptional curves and
lexicographnic order easily indicates the procedure in this

Case.



II.3. 11 + Mo < 1.

In this case we have {again) two possible sets of pairs
for g, namely those given in table 4.4 for the directions
(L1:0:0), (0:1:0) respectively, in the non~transversal
case; the first of the two members of each of these pairs

is always the one associated with the exceptional curve.
For 1 = 1 we get one of the pairs

Once again, we are led to different situations, according‘

to how many of 1/‘;.113 1/11; (1-).1~L11)/u1, (1“?\1‘111)/?&1 are

integers. The reader who has come this far will have no

trouble filling in the details.

Tnis completes the proof of theoremrs.h.



6. Generic Transversal Sections.

In our remarks about equisingularity (ef. introductien
and also end of §4) we have indicated the importance of
considering a section of a surface § by a plane which is
transversal to a given curve C on S at some simple point
Pof C. If Pis a variable point of € which approaches a
given point Q of C, we can think of a corresponding family
of continuwously varying transversal sections. The nembers
of the family are curves with "equivalent™ singularities
at their origins, although in the limiting curve {i.e.
when P becomes Q) there may be some kind of degeneracy.

At any rate S is equisingular along C in any sufficiently
small neignbornood of Q (excluding Q) and the "generic"
plane section transversal to C tells us everything about
the nature of S along C near Q. Thus, such a generic
section conveys a certain amount of information about the

singularity which 8 nas at Q itself.

The notions of equivalence of plgne curves and of
transversal sections are given in [8]. We snhall study the
connection between the distinguished pairs of =z
quasi-ordinary branch { and the generic sections
transversal to curves in the singular locus of the

quasi-ordinary ring represented by £, and then give a



different version of the clasgsification theorem.

We shall now define generic transversal sections in
a general setting. We first reproduce definition 19.8.1

of [5; p. 109]:

Let 4, B-be noetherian local rings, let M be thne
maximzl ideal of A, and let w: A - B be a local
homomorphism makiﬁg B into an A-algebra. We say that B
is a Cohen A-algebra if
(1) B is complete
(i3) B is a2 flat A-module
(iii) MB is the maximal ideal of B
{iv) B igs residually separable over A (i.e. B/MB isg a

separable field extension of A/M).

If Bis a Conen A-algebra and if "gr" denotes
assoclated graded ring with respect to the maximal ideal,
then there is an isomorphism (B/MB)@A/Mgr(A) S gr(B)

[&; §10.2.2, p. 18]; hence A and B have the same

multiplicity and dimension.

DEFINITION 6.1. Let A be a noetherian local ring
containing a field of characteristic zero, and let P be a

prime ideal in A. We say that a local ring B is a generic



section of A transversal to P if B is a Cohen AP-algebra
whose residue field is the algebraic closure of the

residue field of AP.

The existence and uniqueness (up to (not necessarily
canonical) isomorphism) of generic sections of 4
transversal to P are given in theorem 19.8.2 of
[5; p. 110]. 1In view of the uniqueness we may‘speak of
Lhe generic section transversal to P (as long as we are

concerned only with the structure of B as a ring).

Now let R = k[[X,Y,2]] be as usual, let P be the
ideal (X,2) in R, let f be an element of R contained in P
and set & = R/(f), P = P/{f), so that Ap = RP/fRP. Let
L = k{{¥}} %nd let L¥ be tne algebraic closure of L. We
nave R ¢ Ry g L[[X,2]3 € L¥[[X,2]] and L[[X,Z]] is the
completion of RP' Clearly gr(L*{[X,Z]]) = L*®Lgr(RP)
-whence [&; §10.2.2, p. 18] L*[[X,Z]] is a flat Rp-module.
It follows that L'[[X,2]] is a Cohen Ro-algebra, so tnat
L*[[X,Z]]®RP(RP/1‘RP) is a Conen (R,/fR;)-algebra. In
other words, if £* is f considered as a power series in
L*[[X,Z]], then L*[[X,Z]j/(f*) is the generic section of A

trangversal to P.

L*[[X,Z]]/(f*) is an algebroid plane curve in the



sense of [8). In the case that f is a quasi-ordinary
polynomial we shall be particularly interested in the
equivalence class of thnis curve. Thnis equivalence class
depends only on the ring structure of L*[[X,Z]]/(f*), and

so, by our previous remarks, depends only on A and P.

iet ¢ € in be arstronély normalized guasi-ordinary
branch, with conjugates Ql; Cps o5 C» and let
f =10z - gij be the ﬁinimum polynomial of (; since ( is
stroigly normalized, f is contained in (X,Z)R. The gi can
be thought of as fractional power series in X with
coefficients in L*, and when we do tnié, we write gf
instead of C;+ Clearly f* = Q[Z - g:]. We denote by C
the algebroid curve defined oter L* by f*, and by
Cl’ Czs ++9, the irreducible components of C. We say that
g:'(or ¢4) represents Cj if_g: ig a root of the

%
irreducible factor of f corresponding to Cj'

THEOREM 6.2. In the preceding situation, the
equivalence class of C is determined by the distinguished

pairs of (.

PROOF. It can be shown that two algebroid plane
curves are equivalent if and only if there exists a 1-1

correspondence between their irreducible components such



that corresponding components are equivalent and such
that intersection multiplicities of pairs of components
are preserved. We shall first discuss the equivalence

classes of the irreducible components of C.

Everything we have said about distinguished pairs of
quasi-ordinary branches applies (in simpler form) to
fractional power series in one variable over an
algebraically closed field of characteristic zero; we then
have characteristic monomials in one variable instead of
two, and distinguished numbers instead of distinguisned
‘pairs. In particular, we can prove as in previous
sections (but with considerably less effort) the
well-known fact that the distinguished numbers of a
fractional power series in one variable determine the
multiplicities of the successive quadratic transforms of
the one-dimensional local domain represented by the power
series. (If the least distinguished number is <1, we must
first "normalize" as in lemma 2.3). - It follows that the
equivalence class of the one-dimensional local domain is
specified by the gequence of distinguished numbers of the

power series.

*
It is easy to see that the conjugates of £ over

L*[[X]] are those (. such that ¢. = §C with g in the



galois group of K(g)/[K(g)ﬂK(Yl/n)3. Thus if

(Xi’“i) (1 =1, 2, ..., 8) are the distinguished pairs of
€, then the distinguished numbers of g* are among the
numbers ll’ Aps ey Xs' We leave it to the reader to
verify that the distinguished numbers of g* are the
elements li su¢h that ki is not an integral linear
combination of Aqs 12,'..., Ay1 modulo Z {(i.e., in fhe
notation of proposition 1.5, such that T(Ai) = i). The
proof is a straightforward application of the final

statement of proposition 1l.5.

We conclude therefore that all irreducible branches of
C belong to the same equivalence class, and that ithe
equivalence class to which they belong is determined by

the distinguished pairs of (.

We turn now to the question of intersection
multiplicities of different components. Let G0 be the
galois group of K(g)/Kf G, operates in an obvious way in
the set of irreducible componehts.of C. Let H be tne
subgroup of G0 which leaves all -the irreducible components

fixed. As we have indicated above, H is tne galois group

of K(Q)/[K(g)nK(Yl/n)J.

Let Ml’ MB’ vaey, Ms be the characteristic monomials



of (, the numbering being such that Mi divides Mj in 3§
whenever i < j (¢f. remark 1.4.3). For i =1, 2, ..., s
let G; be the galois group of K({)/K(My, My, +ovy M)
Each G, , being a subgroup of Gy, operates in the set of
irre&ucible components of C. The orbits under Gi are in
1-1 correspondence with the cosets of G, in GO, and the
number of elements in any orbit is the number

IGiHI/]HI = lGiI/IGiﬂH[ (wnere | [" denotes "cardinality
of"). For any two irreducible components Cys Cy of c* let
1= I(Cl,Cz) be tne least number i such that C, and C, do
not lie in a single orbit under Gi' FPor various choices .
"of Cl’ Cz, I may be any one of thnose i such that

G, H < G, _qH; we shall refer to these i as the gritical
values. (There always exist critical values unless C is

irreducible). We have now:

LEMMA 6.2.1. The intersection multiplicity (C1~c2)

of C; and C, depends only on the number I = I(CI’CB)'

PROOF. Let €12 L2 be conjugates of ¢ which represent
Cl’ C2 respectively. Let 84> 92, ceny er be the various
elements of H. (Cl'Cz) is then the order in X of the

power gerliesg



r
I[85y - 8,Cp) =
ISR FES

r - r
8. ( T [¢y - 08:C50)

j=1 *g=y 0t TR

which is r times thne order in X of HI_;=1[€1 - ejt;z]. For

each t, 1 <t € 8, let q. be the number of different j

such that (9 - ejgz = M e, (et(0,0) # 0). Then

(C;+Cy) = (5., @) Thus it will be sufficient to

show that the sequence Qps Gps +<+s Qg depends only on I.

It is not hard to see that Cl’ C2 lie in the same
orbit of Gi if and only if there is a e:j such that Mi-i-l
divides €, - ejgz in &. Tnerefore q, = O for t > I, and
9 # O for t = I. Thus for t ¢ I there exists ej such thna
Mt divides Cl - ejgz. Tnen if 6 € 4, Mt divides
¢, - eejga if and only if p leaves Ml’ I~’2, ceey Mt-l
invariant, i.e. if and only if p lies in Gt-l N 43. Tnus

we obtain the following rule for computing Qg
o = I6ganul - lognr]  af1ge <
§t = |6, _,nH| 1f ¢ = I.
The lemma is therefore proved.

To complete the proof of the theorem, we prove:



LEM‘IA 6.2-2- Let il, ia, e ey it, ‘o be the
critical values. For t =0, 1, 2, ... let n, be the

number of elements in any orbit under Gi and let A
t+1 ‘

be thne intersection multiplicity of any two branches
C;» Cp sueh tnat I(C,,C;) = 1,47+ Then the equivalence
class of C is specified by the equivalence class of its
irreducible branches and by the finite sequence

(nt,vt) t = 0, 1, ses o

FROOF. All the irreducible components of C belong
to the same equivalence class; moreover, by the proof of
the preceding lemma, C has the property that for any
integer v, the binary relation [R,: (Ci'cj) 2 v] is an
equivalence relation on the set of components of C, and
the number n{v) of components in each eguivalence class
for Rv is the same. (We are using the term Yequivalence
. class™ both for equivalence of algebroid cufves and for
the relatioen R,; the two distinct meanings of the term
should not, nopefully, lead to confusion). The above
properties must hold for any algebroid curve which is

equivalent to C.

For any algebroid curve enjoying such properties,

let {v,} (¢t = 0, 1, 2, ...) be the set of those v such



that n(vt+1) < n(vt); let n_ = n(vt). We check that

this notation is congistent with that given for C in tne
statement of the lemma. It is clear that two equivalent
such algebroid curves Cl, C2 have the same seguence
(nt,V£), and also that the equivalence class of algebroid
curves to which the irreducible components of Cl belong is

the same as the class to which those of C2 belong.

Conversely, two curves Cl, C2 for wniéh these data
coincide are equivalent.‘ In fact, we easily prove the
following by induction on t: let Ei be the set of all
equivalence classes of components of Cl under the relation
R,y and let UI=lEi be ordered by inclusion; let U:=1E£ be
the ordered set defined similarly with respect to Cse
Then there is a map F, from U§=1Ei onto U§=IB{ such that
Ft is an isomorphism of ordered sets. For large enough t,
each member of E, consists of a single element, and it
follows immediately that Pt then induces an equivaience

between Cl and C,. This completes the proof of thne lemma

and of theorem 6.2.

REMARK 6.3. 1In connection with the formulae for Ay »
we note that (i): G, NH=G N HIif and only if (ii): Ay
is an integral linear combination, modulo Z, of

Ayr Ao sy Ap g3 for it is easy to see that (i) and (ii)



both mean that K(Y]’/n) (Ml’ Moy aney Mt-l) = K(Yl/n)(}.il, My eee, Mt) .

The next proposition allows us to identify a curve
in the singular locus of a given quasi-ordinary ring by
means of the distinguisned pairs of any normalized

repregenting branch.

PROPOSITION 6.L4. Let ¢ € %, be a normalized
quasi-ordinary branch with distinguished pairs
Ogamg) (4 =13, 2, .., 5), and let & = k[[X,¥]I[¢].
Suppose A_has two curves Pl’ P2 in its singular locus, and
ltnat the generic sections of A transversal to Pl, P2
respectively are equivalent. Tnen Ay T ug for all i,

hs

(The converse statement follows from theorem 6.2).

PROOF. Pl and P2 must both have the same multiplicity
in A, since the corresponding generic transversal éections
have the same multiplicity. Hence neither Aq TOT iy -
vanishes, and if either Ap or uy is < 1, then (theorem 2.7)
A1 ® uy. Tne methods used in the proof of theorem 6.2 are
applicable now. The generic sections are represented by ¢
considered respectively as.a fractional power series in X

and as a fractional power series in Y.



We nave already stated that the distinguisned numbers
of a fractional power series determine the equivalence
class of the one~dimensional local domain D represented by
that series; conversely we can prove as in §5 (and again
with mueh less effort) that the sequence of multiplicities
of the successive quadratic transforms of D determines tne
original digtinguished numbers uniquely; provided that the
least distinguished number is > 1. If we start off witn a
power series whose least distinguished number is < 1, then
we first normalize as in lemma 2.3, thereby obtaining a
fractional power series which represents D and whose least
distinguished number is > 1. The distinguished numbers of
the normalized branch, along with the leasﬁ distinguisned
number of the original branch teogether determine all the
other distinguisned numbers of the original branch. (To
seé this set all the y; = 0 in the formula given in table

L.lL for lemma 2.3, and work with the resulting formula).

In view of these remarks, and the above mentioned
fact that Ay = yy 1if eitner X, or u, is < 1, our assumption
implies that the distinguished numbers of { as a fractional
power series in X and those of { as a fractional power

series in Y coincide.

Let tne groups G; be as in the proof of theorem 6.2,



1/n

let H be the galois group of XK{¢)/[K(C)NK(Y /")) and 1let

1/nyq,

H' be the galois group of K(¢)/[K(¢)NK(X Since
]GOI/IHI is the number of irreducible components of one
generic section and |Gy|/|H'| is the number of comﬁonentsr
in the other generic section, |H| = [H']. Set ‘o = Ko = O-

Thnen:

LEMMA 6.4.1. :If Ay = ui for i =0, 1, ..., t, then
for 1 = 0, 1, v+, t, |G NH| = |G;nHt| and G H = G, HT = G

PROOF. It will be sufficient to prove the second

assertion since
le;nafleg sl = [6l1n] = fg;liut] = |o nue] g ur].

Ifi=0, GiH =G, = GiH'. Otherwise, GiH is the

(o]
galois group of K(g)/[K(Ml,Mé,...,Mi)nK{Yl/n)]. The
denominator is generated over K by terms * such that (0,\)
is a linear combination, with integer coefficients,

modulo ZXZ, of (Al.ul), (lz,ug), "".(li’“i)' Since we
are assunming 11 = My 12 " Hps e, ki = My the

denominator must in fact be K. A similar argument shows

that also GiH' is the galois group of K(¢{)/K. g.e.d.

Now let 1 € t and suppose A; = u, for

4



i=0,1, 2, vve, t-1. We wish to show kt = Hgs since
then the proposition follows by induction. We have three

possibilities:

1) Ay is an integral linear combination of Apr Apseeeyp Ay g

mod.Z, and My 1s such a combination of M2 Hps seealy_ g

In this case remark 6.3 along with lemma 6.4.1 shows
that thH = Gt_lnH = Gt_lﬂH' = thH'; it follows, for one
thing, that G.H < Gy_1H-and that G H' < G, H'; thus t is
a eritical value for both generic sections (in fact t is
the least critical value in each case). By lemma 6.2.2,
the corresponding intersection multiplicities Vo vé are
the same. The formulas for Q¢ given in the proof of
theorem 6.2, along with lemma 6.4.1, show then that

IthHllt = ]thH'[pt, whence A, = ..
2) Neither Ag DOr u, is an integral combination ...

In this case A, is the t-tn distinguished number of ¢
as a fractional power series in X and My is the t-tn
distinguished number of ¢ as a fractional power series in

Y, and so At’= T

3) Ay is an integral combination ... while y, is not.



In this case My is the t-th distinguished number of
"{ as 2 fractional power series in Y while Ay is less than
the t-th‘distinguisned numberrof'g as a fractional power
series in X, and so y, > A, . Also, as in 1), t is the
least critical value for the generic section represented
by { as a fractional power series in Y; let u > t be the
least criiical value for the other generic section. (Suen
a u exists since both generic sections have the same
number of components). Again by tne proof of theorem 6.2,

and lemma 6.L4.1,

0= vy ~v,= (th_lﬂH'l - [Gt”H'l)ut+ veo (lGunHI).uu_- ”Gt-l”HD’Lt

> lc.{_'_lmvlut - Ic;i_,_lrm];»\t >0

since |G, _,nH'| = |G, . nH| (lemma 6.4.1). Thus case 3)

cannot occur, and proposition 6.4 is proved.

PROPOSITION 6.5. Let B be a special transform of A, -
let P be a curve in the singular locus of A which does not
contain the center of the transformation from 4 to B, and
iet Q be a prime ideal iﬂ B which contracts to P. Then Q
is the only such prime ideal and the generic sections of A

transversal to P and B transversal to Q are equivalent.



PROOF. The uniqueness of Q can be verified by
examining tne formulas of §3 in the light of the proof
of theorem 2.7. Let B! be the quadratic or monoidal
transform of A of wnicﬁ B is the completion, and let
gQr=0n B, It is-easiiy seen that B'Q, = AP' Moreover,
since Q' is analytically unramified (Bt being
pseudo-geometric [6; p. 112, p. 134]), By is a Cohen
B'Q,-algebra. If 1 is the algebraic closure of BQ/QBQ,
then the unigque Cohen BQ-algebra D whose residue field is
L [5; p. 110] is also a Cohen B'Q,—algebra. The
uvniqueness implies that if L* is the algebraic closure of
the residue field of B'Q, and DY is the Cohen B'Q,-algebra

witn residue field L', then D is (isomorphic to) the Cohen

Dt-algebra with residue field L.

The propesition states that D and Dt are equivalent
algebroid curves {(altnough they have differenf residue
fields). This follows easily from the last statement in
ﬁhe preceding paragraph since LY and L are botn

algebraically closed. gq.e.d.

We also mention, without proof, the following

proposition about monoidal transformations:

PROPOSITION 6.6. Let A be a quasi-ordinary local



ring and let P be a permissible center in A which is a
curve. Let B be.a formal monoidal transform of A witn
center P and let Q be a prime ideal in B which contracts
to P in A.J Then Q is the only such ideal in ﬁ, and the
generic section of B transversal to Q is equivalent to any
one.of the connected components of tne quadratic transfbrm

of the generic section of A transversal to P.

Using the properties of generic sections, we can

refornulate the classification theorem.

A resolution of A4 will be a sequence

A= AO’ Al, caey, At such that
1) Ai+l is é special transform of A; (for all 1,0 € i < %-2)
2) If for some i, O £1i<t-1, A; has a reducible tangent
cone, then Ai+l is the formal transform of A which
lies at tne intersection of the two components of the
eXceptional curve.
3) Suppose A _q has an irreducible tangent cone. If
there is a permissible center in the singular locus
of A, _, then 4, is a monoidal transform of A 43 if
there is no permissible center in At—l’ then every

quadratic transform of A__, is regular.



L} A, is a regular quasi-ordinary local ring.

The labels which we now attach to a quasi-ordinary
ring A will nave five numbers [a;b,c;dj;e] where a, b, c, d
are as in §5 and e is the number of irreducible components

of the tangent cone of A (e = 1 or 2).

Two resolutions A = Ay, Ay, «ves Ag;

t = 1
A AO

s =t, if for each i = 0, 1, 2, ..., t, A; and Al nhave tne

s Ai, ey A;; will be said to be equivalent if

same label and if, in addition, the fqllowing conditions

hold:

(1) If for some i, 0 < i < t, A,

i form i
i+] 1S & formal monoidal

transform of Ai, in which case A{+l i1s necessarily
a forﬁal monoidal transform of A{, then the generic
section of A; transversal to the center of the
. transformation from A; to Ai+1 is equivalent to the

generic section of A{ transversal to the center of
the transformation from Al to Al,..

(ii) Suppose that for some i, 0 < i < ¢, A; has an
irreducible tangent cone, and that Ai has.two curves
in its singular locus, neither of which is a
permissible center. Let C be the generic section

transversal to the curve in the singular locus of A;

whose proper transform passes through A;, .3 let C! be



similarly defined for A{ (A{ satisfies the same
conditions as Ai since both have the same label);

then C and C' are equivalent.

An equivalence class of resolutions may therefore
be identified with a sequence of labels, along with
_certain equivalence classes of algebroid plane curves,
one for each label which describes a situation to which
(i) or (ii) applies. We call such a sequence of augmented

labels a gcomposition of A (without fear of confusion with

the compositions of §5, which will not appear in tnis

section).

THEOREM 6.7. Theorem 5.4 contimues to hold when the

word "composition" is interpreted as above.

PROOF. We prove the second part of the theoren by
induction. Suppose ¢ and ¢! have the same distinguished
pairs. Suppose further that A has an irreducible tangent
cone and that & has Two curves in its singular locus,
neither of which is =z permissible‘cenfer (all other cases
can be treated in a way similar to that_which follows).

Clearly A' satisfies the same assumptions as A.

By theorem 6.2, the sections of A, A', transversal



to the X-curve of { and the X-curve of (' respectively,
are equivalent, and similarly for the respective Y-curves.
Moreover (theorem L4.5) the transforms By, BJ of A, At
through which pass the proper transforms of the respective
X-curves are represented by strongly normalized branches
having the same distingulished pairs. By an inductive
hypothesgis, we may assume that Bl’ Bi have identical sets
of associated compositions. We proceed similarly for the
special transforns Bz, Bé through whieh pass the proper

transforms of the Y-curves. It then becomes clear that A

and A' nhave identical sets of associated compositions.

The proof of the first part of the theorem runs
along lines similar to those of §5. We shall point out

the places where the reasoning is different.

We are assuming that A and A' have equivalent
resolutions (in the sense of tnis section)., In the first
place, if these resolutions have only one member, then we
need .only remark that A and A'.are regular, and so

C:gfso;

We can then pass directly to lemma 5.6. In tne
present context, that lemma is needed only under the

additional nypothesis that A has an irreducible tangent



cone; the proof, using the notation of lemma 5.6, is thnen
as follows: there are associated with B two generic
sections (transversal to the two curves in the singular
locus of B) which are not equivalent {proposition 6.4),

and which are determined by the ordered pairs (o, ,T,)
(theorem 6.2); therefore it is only necessary to show

that thne generic sections transversal to the non-exceptional
curves in the singular loci of B, B' respectively are
equivalent; however, because of our definition of
equivalent resolutions, this follows easily from

proposition 6.5,

Tne proof for monoidal transformations now continues
exactly as in §5; to handle case I.2.q¢ we must note
however that if A (and therefore A') is such that the
hypotheses of lemma 5.2 hold, then we can tell whether ¢
nas the distinguished pair (1,1/m) or (1+1/m,0); for in
the first case the generic section transversal to the
permissible center has m irreducible components, while in
the second case, the generic section is irreducible; by
our definition of equivalent resolutions, { and (' must

have the same distinguished pair.

. For quadratic transformations, the proof is still

the same as in §5 if A has an irreducible tangent cone.



If A has a reducible tangent cone then we use the following
approach {(notation as in proof of theorem 5.4 except that B
is now the formal transform of A lying at the intersection

of tne components of the exceptional curve).

We cannot calculate Aqs py as in §5; howgver the
ratio g3y, is still the same as the ratio bic where b, ¢
are the second and tnird numbers in the label of A.
Setting Ay/{1-Ay=uq) = %, py/(1-A;=u;) = v, we have
Ay = x/{1+x+y), My ™ y/{l+x+y). If x and y are both
integers, then clearly iy + uy > 1/2. Now
(mult. of B) = min(mAfmul, m(l-xl-ul)), (m = [K{£):K]);
thus mult. of B < mult. of A if and only if Ay g > 1/2.
Hence if mult. of B = mult. of A, then x and ¥y are not
both integers, (ol,wl) = (x,y) (table 4.L4), and 11, My
can be found from (01,71). If mult.B < mult.4 then
{(mult.B)/(mult.s) = 1 - Ay = py- Knowing tne ratio i,iuy

we can then calculate X4, pq»

Wé have (1-xl)/(l-xl-u1) = 1+y, (l-ul)/(l-kl-ul)"l*x-
Table L.k tells us to examine the numbers “i.‘(l+x)xi+Lﬁﬁ
B, = mi‘ + (l-l-y)ui (1 =1, 2, «+s, s)» Note that
@] = X2 ¥ = By. We have gy = B; = (A;=u;) + (x-y) (Agrug)-
It is thgrefbre clear that (“1’“2""’“5) rd (81,82:°'-:BS)

lexicograpnically. If x and y are both integers, then it



is also clear that (qz,...,as) 2_(52,...,33)

lexicographically. Hence
unless x and y are both integers, in which case we replace
o; Py 04 _4» 75 by 7,_y and consider only tng-Valuesb

i = 2, 3, resy 5.

In any case, the equations can be solved, and so

li' py are determined, as required.
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