SOME PROPERTIES OF LOCALIZATION AND NORMALIZATION

JOSEPH LIPMAN

In a recent note [1], S. Abhyankar has given some lemmas concerning localization and normalization for noetherian rings without nilpotent elements. We give a characterization of those rings in which every prime ideal is maximal (Proposition 1) and deduce generalizations of Abhyankar's results (cf. Corollary 1 and Corollary 2).

Preliminaries. A ring will always be a nonnull commutative ring with identity.

For properties of rings of quotients see [3, §§9-11 of Chapter IV]. Recall that if R is a ring with total quotient ring K, and if M is a multiplicative system in R, then we may identify the ring of quotients R_M with a subring of K_M . When this is done, the total quotient ring of K_M is also the total quotient ring of R_M .

Denote by g_M the canonical map of K into K_M ; the restriction of this map to R is then the canonical map of R into R_M : the restricted map may also be denoted by g_M without fear of confusion. If M consists of all the powers of a single element f, then we write R_f , K_f , g_f , in place of R_M , K_M , g_M .

If Q is a minimal prime ideal in R, and M is the complement of Q in R, then QR_M , being the only prime ideal in R_M , consists entirely of zerodivisors (in fact, of nilpotents). Consequently, if $x \in Q$, then $g_M(x)$ is a zerodivisor, and it follows easily that x is a zerodivisor. Thus any minimal prime ideal in a ring consists entirely of zerodivisors.

PROPOSITION 1. For a ring R, the following statements are equivalent:

(1) Every prime ideal in R is maximal.

Received by the editors July 2, 1964.

- (2) For every multiplicative system M in R, the canonical map $g_M: R \rightarrow R_M$ is surjective.
 - (3) Any homomorphic image of R is its own total quotient ring.
- PROOF. (1) \rightarrow (3). If \overline{R} is a homomorphic image of R, then every prime ideal in \overline{R} is maximal; therefore every prime ideal in \overline{R} is minimal and so consists entirely of zerodivisors. It follows that every non-unit in \overline{R} is a zerodivisor; (3) is thereby proved.
- (3) \rightarrow (2) is clear, since R_M is contained in the total quotient ring of $g_M(R)$.
- (2) \rightarrow (1), for if P < Q are proper prime ideals, (< means "strictly contained in") and if f is any element in Q-P, then P contains the kernel of $g_f: R \rightarrow R_f$; a fortiori, Q contains the kernel, whence $g_f(Q)$ is a proper ideal in $g_f(R)$. But $g_f(f) \in g_f(Q)$ is a unit in R_f ; hence $g_f(R) < R_f$.

COROLLARY 1. For a ring R with total quotient ring K, the following statements are equivalent:

- (1) Every prime ideal in R consisting entirely of zerodivisors is a minimal prime ideal.
- (2) For every multiplicative system M in R, $g_M(K)$ is the total quotient ring of R_M .

PROOF. In view of the relationship between the prime ideals in R and those in the total quotient ring of R, (1) implies that every prime ideal in K is maximal. By the proposition, this means that $K_M = g_M(K)$ is its own total quotient ring, and so (2) holds.

Conversely, if P < Q are prime ideals in R consisting entirely of zerodivisors, and if $f \in Q - P$ then PK < QK are proper prime ideals in K, $f \in QK - PK$, and, as in the proof of Proposition 1, $g_f(K) < K_f \subseteq$ total quotient ring of R_f ; hence (2) does not hold.

EXAMPLES. The conditions of the corollary are satisfied by any noetherian ring in which the ideal (0) has no embedded primes; in particular, by any noetherian ring without nilpotent elements [3, §\$5-6 of Chapter IV].

Another example is the following: Let k be a field, R and R' two integral domains containing k. Then $R \otimes_k R'$ satisfies the conditions [3, p. 191].

The conductor. Let B be a ring, let A be a subring of B, and let \overline{A} be the integral closure of A in B. If M is a multiplicative system in A, then, after suitable identifications are made, $A_M \subseteq \overline{A}_M \subseteq B_M$, and by $[2, p. 22] \overline{A}_M$ is the integral closure of A_M in B_M .

The conductor $\mathfrak{C}(A, B)$ of A in B is defined to be the annihilator of

the A-module \overline{A}/A . $\mathfrak{C}(A, B)$ is an ideal in A. If $c \in \mathfrak{C}(A, B)$ then $c\overline{A} \subseteq A$, whence $c\overline{A}_M \subseteq A_M$, so that $c \in \mathfrak{C}(A_M, B_M)$; thus $\mathfrak{C}(A, B) \cdot A_M \subseteq \mathfrak{C}(A_M, B_M)$. In particular if $\mathfrak{C}(A, B) \cdot A_M = A_M$ then $\mathfrak{C}(A_M, B_M) = A_M$; hence if $\mathfrak{C}(A, B)$ meets M then A_M is integrally closed in A_M .

COROLLARY 2. If R is a ring in which every prime ideal consisting of zerodivisors is minimal, if K is the total quotient ring of R, and if M is a multiplicative system in R such that M meets the conductor $\mathbb{S}(R, K)$, then R_M is integrally closed in its total quotient ring.

PROOF. By Proposition 1 and Corollary 1, $K_M = g_M(K) =$ the total quotient ring of R_M . We may therefore apply the preceding remarks with A = R, B = K.

REFERENCES

- 1. S. Abhyankar, A remark on the nonnormal locus of an analytic space, Proc. Amer. Math. Soc. 15 (1964), 505-508. (Cf. also Correction, ibid., p. 1000).
- 2. N. Bourbaki, Algèbre commutative, Ch. 5-6, Actualités Sci. Ind. No. 1308, Hermann, Paris, 1964.
- 3. O. Zariski and P. Samuel, Commutative algebra, Vol. I, Van Nostrand, Princeton, N. J., 1958.

HARVARD UNIVERSITY

-			
1			