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A natural question in elementary field theory is: if

Pqs Ppseisp, are distinct prime numbers and Iy rgj,.;,rn

rl r2 I‘n
[ \‘-5—: \|P2:-!!: \ipn): Q]

(@ = the field of rationals) as large as possible, namely

rlra...rn? In other words, are the obvious algebraic relations

: .
among the {[pi the only ones? This was answered in the
affirmative by A. S, Besicovitch [J. London Math. Soc, 15 (1940),

pp, 3-6]. The special case ry = r, =...sr =2 appeared in

this Monthly as advanced problem #4797: prove that the sguare

roots of the square free integers are linearly independent over

the rationals. (A solution is given in this Monthly, vol. 67
(1960), p. 188).
More generally, let K be any field, let Xys XpseorsXy

be non-zero elements of K, and let Iys Tpseess¥, be positive

integers not divisible by the characteristic of K, For each

X
I =1, 2,..., N let i’xi be a root of the polynomial

r
X 1o x say in some fixed algebraically closed field K

i)
containing K. We ask: under what conditions will it be true that

At




r r , r.o
[K( l\,xl, \2| XE_’...? r{’xn): K] = I‘ll‘e--.rn ooo(*)

We may observe that (*) does not depend on which root of
r
X i, Xy we happen to select (i =1, 2,..., n). PFor if
- r r
(*) holds, then the field K( [%;,..., Q[X.), being separable

over K, admits rir,.,.r, distinct K-isomorphisms into XK;

n

since any such isomorphism is uniquely determined by its effect
r r
on the elements i]xi, and since each lei has at most

ri Kecqnjugates, it must be true that for any choice of roots

r
yl, yz,,..,yn of the respective polynomials X 1. xl,

r

r
- xz,.,., X8 . X there is a K-isomorphism f with

X 2

r
£ X[F) = vy (1 =1, 2,..., n)

Applying this f to (*), we obtain
[K(Yl’ yg:!":yn): K] = rlrz!'!rn'

In other words, (*) holds for one particular choice of the
r
respective roots E[xi if and only if it holds for all

possible such choices.,

Necessary and sufficient conditions for (*) are given in
the following proposition. (For the case n =1, e¢f, S, Lang,
Algebra, Addison-Wesley 1965; chapter VIII, §9).



PROPOSITION. Maintain the preceding notation, In

addition, for any integer q, let I be the set consisting

q
of all 1 such that q divides r,, and let K? be the set
of qth powers in K., Then (¥*) is true if and only if the

following two conditions hold:

(Cl): For any prime number ¢, if some product

a
1T Xq 1 4s in k%, ‘then q divides each exponent a, .

ie Iq

(02): If -1 1is not a square in K, and if

b
i

%, 1

1612

e - HKu, then bJ is odd for some J ¢ I,

REMARKS. 1. The Proposition yields as a corollary a
generalization of the result mentioned in the opening paragraph:

if our field K 1is the field of guotients of a unique

s e— ———— G S — g b s i, Sttt ey

n
prime elements of R, then (*) holds. Indeed, (Cl) is trivially

factorization domain R, and if Xys XpseeesX are distinct

satisfied in this case; and so is (C,) since a relation

TT'xibi e - ux implies at once that all b, are even, i.e.

-1 is a square in K. (We can weaken the hypotheses on the Xy

in various ways; it is enough to assume for example that the

Xy are pairwise relatively prime, and that for any prime number q,
in the factorization of each X4 with 1 ¢ Iq some prime element

of R occurs with exponent relatively prime to q).



b,

2. In connection with the assumption that the characteristic
of K does not divide r{¥pisst 5 note that if k is a field
of characteristic p > 0 and T 4is an indeterminate, then

with K = k(T),
(k( }T, RTH): K] = p

i.e. (*) does not hold, even though (Cl) and (C,) are satisfied

in this case (cf. preceding remark with x; =T, X, = T + 1).

3. Because of the multiplicativity of degrees in successive
field extensions, 1t is clear that in proving the necessity of

(Cl) for some prime number g, we may replace

r r
K( Y%,..., Y%) by its subfield

r, r,/q
RO )y Iq) = KRy . Iq)3

in 6ther words we may assume that ry =T, Sevl=r o= Q.
Similarly, in proving the necessity of (C2), we may assume that
ry =4 4if 41eI and r; =2 if 1§ I,. At this point,

the proof (of the necessity) becomes quite straightforward; we
prefer to illustrate the idea by some examples, and leave the

formal argument to the reader,



(A) ta( Y150, {1z, [BH0): ) < 7.7.7
In this example (Cl) fails,; since
1502.123 5403 = (2.3.5%)2(22.3)3(22.33.5)3
o ot g1k 7
= 1807
150 appears here to the power 2, and, modulo 7, the inverse

of 2 1is U4; ofter raising the members of the preceding

equation to the power L4/7, we obtain

{150 = 1804/ 150(lfi§)12(Z1540)12

(for suitable choice of <[150), so that

Q(ZJ150, Zle, ZJsao) = Q(QHEL ngﬂb)

(B)  LQ(YT350, 2/7510, {723h): Q] < 4.2.4.

In this example (C is found to be satisfied, but

1)
(C,) fails since



(1350)3(-210)2(-294) = -(2.35.5%)3(2.3.5.7)%(2.3.72)

From this we obtain

1350/ %J1350 = QJTE*(9A50/ 2710 %J-zgﬂ)

; , BT
(for suitable choice of ~[1350), so that

m

{{1350, 2

(=15, YEawc oy H) (A{z10, MNoEan).

Q

Since &J—M =+ 1 + 1, with 12 o -1, [Q({'-M):Q] = 2

and our assertion follows.
We turn now to the

PROOF OF SUFFICIENCY. The proof is based on simple properties

of "Norm" and "Trace". We may assume r, > 1, Let p be a
=~ ry rl/p

prime number dividing rys and let x = ( .‘xl) ;5 then

xP = x, and so p > d = [K(x):K]. Taking Norms from K(x)

to K we have

xld = Norm(xl) = Norm(xP) = (Norm(x))P e KP,



7.

Because of (Cl) (with g = p) p divides d; hence d = p

so that Xp - X is the minimal polynomial of x, and
2

i §
Norm(x) = (-l)p+lxl).

Let (cl)#, (02)#, be the conditions (cﬂ, (02), with
K(x) 4in place of K, x in place of Xy5 and rl/p in
place of r,. Assuming that. (Cl) and (02) hold, we shall show
that (Cl)#’ (02)# are satisfied; the conclusion then follows

by an obvious induction argument.

V7.

y be an element of K(x) such that

We first prove (C Let q be a prime number, and let

Y' o= X T Xy Teaax i la)

with a; =0 if q does not divide rl/p, and, for i > 2,
a; =0 if q does not divide r, (il.e. if i ¢ Iq). What

we have to show is that q divides Ay3855 000580,

Taking Norms from X(x) to K we get

(p+l)a a pa pa
(Norm(y))q = (-1) 1 Xy & X, 2 eak, B P
n
If either q or p is odd, then (Cl) applied to (2) shows

that qla; and qpa; for i > 2; hence if q # p we are done.



If d=p#2;0rif gq=p =2

and a, 1is even, (Cl)
still shows that q(=p) divides ay, so that
p 2)/p g ®n a
y' =% Xy TeedXy ¢ K. This implies that yx e K for
some integer a. (Otherwise, for each a, since
K g K(yx*) ¢ K(x),

(K(yx*): K] (which divides

p) must equal
whence the minimal polynomial of yx® over K
a
xP . (yx )p:

Ps

is
and consequently Trace(yx®) = 0} since
-1 Pk
y U= tex tate x (c; € K)
it follows that

-1 e a

p = Trace(l) = Trace(yy ~) = Z% ¢, Trace(yx™) = 0
a=

in contradiction with our assumption that the characteristic of
K does not divide

rl). We have therefore for some a,
(pata.)/p a a o
Xy L X, - X = (yx )p e KP

and so, by (C;),
stated that play,

also.

p]ai for 1 =2, 3,.,..,0,

We have already
so (since p = q)

we are done in this case

There remains the case

p=9gq=2 with a
assumption p

1 5y
2 # characteristic of K. Let g be the
automorphism of K(x)/K which sends x to -x,

=

odd.

and let y = g(y).



Applying g to (1), we get (S})2

with 41° = =i, Tt follows that

Ayg, whence y = + iy

i

y= (14 1i)w where w = %(y +y) eK
so that (squaring (1))
a 2a 2a,
1 I 4 .
A R A A -4k,

Note that since a, # 0, we have by assumption 2|(rl/2),
i.e. 1 e I, We have also assumed for 1 > 2 that a; =0

ir i # 12; we find therefore that the preceding equation

contradicts (02). This establishes (C )#

1

For proving (02)#, let y e K(x) be such that

x 1 x. @ e X B -ﬂyu veel(F)

with b, = 0 if 2 does not divide r,/p and, for i > 2,

bi =0 1f 2 does not divide rir

If p 1is odd we can take Norms to get

b pb pb
x) T x, Zexy D= <h(-0)PL (Norm(y))* e -ux*

and (02)# follows at once from (C,).



10.

Now suppose p = 2, We may assume that -1 is not a
square in K (otherwise (CE)# 18 vacuously true); in
particular, -1 # 1. Let y = g(y) be as above. Applying
g to (3), we get ¥ * e * yA; gsince -1 is not a square,

y 4 = yu (so that b, is even); moreover y # + iy, and
therefore y = + y, Setting y =c +dx (c; d ¢ K), so that
y = ¢ - dx, we conclude (since -1 # 1) that either y = o
or y = dx (according as y =y or ¥y = ~-y). So (3) says

that

Now (02) shows that either (i): bJ is odd for some J ¢ Iy
J=1 or [11): b;/2 1is odd and 4 does not divide ry.
If (i) 1is true, we are through. But (ii) cannot hold, since

by assumption b, = 0 if 2 does not divide r1/2.

This completes the proof.



