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INTRODUCTION

In two basic papers ([3], [4]) M. Artin has developed the theory of rational singu
larities of algebraic surfaces. Roughly speaking, these are isolated singularities of a surface
whose resolution has no effect on the arithmetic genus of the surface; alternatively, they
are singularities which are " cohomologically trivial ". Among these singularities are
included all normal points which birationally dominate a regular (i.e. simple) point,
and in particular by abuse of the term " singularity " the regular points themselves
(ct: § I for precise statements) (1).

Our purpose is to fill in the theory, and to demonstrate its wide applicability by
expanding upon a number of familiar topics in the theory of surfaces:

Resolution of singularities of surfaces by means of quadratic transformations
and normalizations (cf. [22]).

- Factorization of birational maps of non-singular surfaces into quadratic trans
formations (cf. [24, § 11. I]).

- Complete ideals in two-dimensional regular local rings (cf. [21] and
[25, Appendix 5]; cf. also [14] and [14']).

- Factorial henselian two-dimensional local rings (cf. [7, § 3]).
- The contractibility criterion of Castelnuovo and M. Artin (cf. [4]).

In part I, we show that Zariski's method of desingularization by quadratic trans
formations and normalizations works for any excellent surface (i.e. reduced two
dimensional noetherian scheme). Resolution of singularities for excellent surfaces has
been established by Abhyankar and Hironaka ([2], [9], [10]), and we must make use

(l) Rational" double points " have been known and studied for many years; for more historical and biblio
graphical information cf. [6, § I].
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RATIONAL SINGULARITIES 197

of their result, at least in its weak form of" local uniformization ". Thus it is the process
- and not the fact - of resolution which is of interest in part I. We also extend the
classical theorem on factorization into quadratic transformations to proper birational
maps f: x~Y where X is a regular surface and Y is a surface having only rational
singularities. From the point of view of novelty, the sine qua non of part I is
Proposition (3. I).

In parts 11 and V we generalize Zariski's theory of complete ideals in two
dimensional regular local rings to two-dimensional normal local rings S havi.ng a rational
singularity. The principal result in part 11 is to the effect that any product of complete
ideals in such an S is again complete (cf. Theorem (7. I)). This implies, among other things,
that rational singularities can be resolved by quadratic transformations alone. In part V
we take up the question of unique factorization of complete ideals into simple complete
ideals. Theorem (20. I) states that such unique factorization holds for all complete ideals
in S if and only if the completion (or henselization) of S is factorial. The method used is to
resolve the singular point of Spec(S) and to relate the problem of unique factorization
to the behaviour of exceptional curves on the resulting regular surface. The necessary
preliminaries about curves on surfaces are developed in parts III and IV.

That unique factorization of complete ideals holds when S is regular is a central
point of Zariski's theory. Our approach yields an alternative proof of this fact, and
naturally suggests the question: which S - other than the regular ones - are such that
their completion (or henselization) is factorial? The interest of this question is heightened by
the result: Let R he any two-dimensional analytically normal henselian local ring with algebrai
cally closed residue field. If R is factorial, then R has a rational singularity. (More
generally, R has a rational singularity if and only if R has a finite divisor class group,
cf. Theorem (17.4).) In part VI we find that the answer to the above question is:
essentially those rings studied by Scheja in [19] (cf. § 25 for details). In particular we
obtain the following generalization of a theorem proved by Brieskorn [7] for local rings
over the complex numbers: let R be any non-regular analytically normal two
dimensional henselian local ring with algebraically closed residue field of characte
ristic =F2, 3, 5; then R is factorial if and only if the maximal ideal of R is generated
by three elements x,y, Z satisfying .t+y3+ x5= o.

To obtain this result we follow the same strategy as Brieskorn: we first show that
a ring of the desired type has multiplicity two (§ 22), and then describe explicitly all
rational" double points " together with their divisor class groups (§§ 23-24). The
rational double points are classified according to the " configuration diagram " of
exceptional curves on a minimal desingularization. These diagrams turn out - a poste
riori - to be precisely the Dynkin diagrams used in the theory of Lie groups and algebras
(cf. § 24). This means that the intersection matrix

(Ei , Ej exceptional curves)
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Ig8 JOSEPH LIPMAN

is identical with a " Cartan matrix ", and conversely each Cartan matrix appears as
such an intersection matrix for the minimal desingularization of some rational double
point. This striking phenomenon was observed by Du Val, who first classified rational
double points with algebraically closed residue field, thereby obtaining (in effect) all
Dynkin diagrams in which only the integer" I " appears (cf. [7 1/2]). By allowing
arbitrary residue fields, we get the remaining types of diagram. Is there some deeper
connection with Lie algebras, or is this all mere coincidence??

The main unanswered question is: does every complete two-dimensional factorial local
ring R have a rational singularity? (1) The answer is affirmative, as we have already noted,
if R has an algebraically closed residue field. This restriction on the residue field is
entirely due to the same restriction in Complement (I I . 3). What the question comes
down to, in part, is: when does the Picard scheme of a one-dimensional algebraic scheme
over an arbitrary field k have just one k-rational point in its connected component?

In the Appendix, we include two basic theorems about surfaces. The first is
essentially a well-known theorem of Zariski on the elimination of indeterminacies of
rational maps; it is of constant use throughout the paper. The second is a generalization
of the contractibility criterion of Castelnuovo and M. Artin; the proof involves most of
the theory of rational singularities.

For more details about the contents of the individual parts and sections, we refer
to their respective introductory remarks.

There is a certain amount of material of an expository nature included for the
usual reasons: " in order to be self-contained " or " for the convenience of the reader ".
Generally this consists of facts which are very well known for surfaces over algebraically
closed fields, and readily worked out, but not conveniently available, in the context of
arbitrary two-dimensional schemes (in which generality they are required, since we
work throughout with arbitrary two-dimensional local domains subject only to some
restriction of the type " analytically normal "). Similar expositions can be found
in [13] and [20].

I wish to express my appreciation for stimulating conversations with Professors
S. S. Abhyankar, H. Hironaka and R. Hartshorne. I am much indebted to the two
cited papers of M. Artin without which I could not have begun. Finally, I am dedi
cating this paper to Professor Oscar Zariski, from whom I have learned so much.

§ o. SODle terDlinology and notation.

In the absence of explicit indications to the contrary, the following conventions will be in force
throughout the paper:

I. All rings and schemes are noetherian. All schemes and maps (=morphisms)
are separated.

(1) (Added in proof.) No ! (P. SALMON, Rend. Lincei, May 1966). But cf. Proposition (17.5).
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RATIONAL SINGULARITIES 199

2. Whenever we speak of a birational map f: X-)-Y, it is tacitly assumed that
both X and Y are reduced schemes.

3. A point x of a scheme X is regular if the local ring ((}x,x is regular; otherwise x
is singular. X is regular, or non-singular, if all of its points are regular. A map f: X-)-Y
is called a desingularization iff is proper and birational and X is regular. Sometimes,
by abuse of lan.guage, we say that " X is a desingularization of Y " meaning that " there
exists a desingularization f: X -)-Y ".

4. We say that a map f: X -)-Y is a quadratic traniformation iff is obtained by
blowing up a closed point (1) of Y. If Y is reduced, then such an f is birational
(cf. [8, chapter 11, § 8. I], or, as we will write from now on [EGA 11, § 8. I]).

5. The word " surface" will mean" reduced noetherian separated scheme of dimension two" .

We shall often use, without explicit nlention, the following facts:

A) The normalization integral closure) of a surface in its total ring of fractions is
a surface (cf. [EGA 11, (6.3. 8)] and [17, Theorems (33.2) and (33.12)]).

B) If Y is a surface and g : W -)-Y is a proper birational map, then W is a surface.

(For, W is clearly noetherian, separated, and of dimension 2 (dimension formula),
and dim W > 2 because the inverse image of any non-closed, non-maximal point of Y
is a non-empty collection of non-closed, non-maximal points of W.)

6. If X is a scheme and :F, f§ are ((}x..modules, we may write" :F® f§ " for
" :F@(Ox f§ " if no confusion is possible. Similarly, we may denote cohomology groups
by" HP(:F) " instead of " HP(X,:F) ".

7. We say that a ring R is factorial if R is a Unique Factorization Domain.

I. - APPLICATIONS TO THE BIRATIONAL
THEORY OF SURFACES

§ I. Birational behavior of rational singularities.

We recall the definition of rational singularity (c£ [4]):
Definition (I. 1). A normal local ringR of dimension 2 is said to have a rational

singularity if there exists a desingularization f: X -)-Spec(R) such that H1(X, ((}x):= o.
Note that if R is regular then R has a rational singularity (take X:=Spec(R)).
Two important facts about rational singularities are given in the next proposition.
Proposition (1.2). - Let R be a two-dimensional normal local ring having a rational

singularity, and let g: W --+Spec(R) be a birational map of finite type.

I) If WE W is a normal point of codimension two, then the local ring ((}w,w has a rational
singularity.

2) If W is normal and g is proper then H1(W, ((}w) = o.

(1) With reduced subscheme structure.
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o

Proof. The proposition follows from two familiar facts:

A) If X is any regular surface and j: Z~X is a quadratic transformation, then
H 1(Z, (!}z) ~ H 1(X, (!}x)·

B) Let f: X~Spec(R) be a desingularization. Ifg is proper, then there exists a commu
tative diagram of proper birational maps

Z
h

W---.,...

; I lu
t t
X Spec(R)

with j a product of (i.e. succession of) quadratic transformations.

A) is proved in [20, pp. 59-61]; for convenience we will give the proof again below.
B) is a special case ofTheorem (26. I) of the Appendix (" elimination ofindeterminacies ").
By induction A) holds also whenj is a product of quadratic transformations; consequently
if X and Z are as in B), and we assume, as we may, that H 1(X, (!}x) 0, then also
H 1(Z, (!}z)=o. Iffurthermore W is normal, then h*({!}z) (!}w; since there is a canonical
injection

we conclude that H 1(W, (!}w) = 0, proving 2).
To prove I), we first remark that some affine open neighborhood of w is a dense

open subscheme of a scheme W* which is projective over Spec(R); we may replace W
by W·, i.e. we may assume that g is projective. Let h: z~W be as in B) with
H1(Z, (!}z) = 0 as before, and let V = Spec( (!}w,w) xwZ. V is proper and birational
over Spec ({!}w,w), V is regular, and since H1(Z, {!}z)=o [EGA Ill, (1.4- 15) (espe
cially p. 94)] shows that H1(V, (!}v) 0 e). Q.E.D.

We can prove statement A) by showing that Rlj*(@z) = 0 : the desired conclusion then follows from the exact
sequence

of terms of low degree in the spectral sequence for HOj*. (Note that (!}x =j.({!}z).)
Since Rlj*((!}z) is concentrated at the point x which is blown up, we may replace X by an affine neighborhood

Spec(T) of x which is such that x corresponds to a maximal ideal in T generated by two elements, say band e. We
have then to show that Hl(Z, (!}z) o.

Z is covered by the affine open sets Ub= Spec(T[ejb]) , Spec(T[bje]). For this covering, the alternating
one-cochains with values in @z are the elements of r(Ub n Dc, (!}z) T[elb, ble]. Since

~.tij(~) i (~)j = .~ .tij(~)i-j_.~. (-Uj) (~)j- i
~,3 b e 3:S:~ b 3>" e

every alternating one-cochain is a coboundary. Thus Hl(Z, (!}z) o. Q.E.D.
(Another proof of A) can be obtained from Corollary (~3 .2).)

(1) We must first show that R1h.({!}z) =o! By [EGA Ill, (4.2.2)], H2(W, h.«(f)z)) =0 and R1h.(lVz) has
support of dimension .:5. 0 ; now use the exact sequence

Hl(Z, (f)J ~ HO(W, R1h*((f)z) ~ H2(W, h*({!}z))
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RATIONAL SINGULARITIES 201

§ 2. Resolution of singularities by quadratic transformations and normali
zation (method of Zariski).

We show now that the methods of Zariski's original paper [22] on the resolution
of singularities can be applied to any excellent surface (cr. [EGA IV, (7.8. 5)]) once
some fornl of local uniformization is known. Local uniformization for excellent surfaces
has been established through the work of Abhyankar [2] and Hironaka [9], [10]. The
following theorem shows therefore that any excellent surface can be desingularized by a succession
of quadratic transformations and normalizations.

Since the normalization of an excellent surface is a disjoint union of integral excel
lent surfaces, plus possibly some regular schemes of dimension < I, we need only consider
the integral case. Whenever it is convenient, we will take the point of view of models,
i.e. given any integral scheme Y, with field of rational functions K, and a birational
map f: x~Y, we will regard X as a collection of local rings with field of fractions K
(in particular we regard Y in this way), and then f associates to each element S
of X the unique element of Y which is dominated by S (cf. [25, chapter VI, § 17]
and [EGA I, § 8]).

If A, B, are subrings of a ring C, then " [A, B] " denotes the least subring
of C containing both A and B. C is " essentially of finite type " over A if there
are finitely many elements Cl' c2 , ••• , Cn in C such that C is a ring of fractions
of A[c1 , c2 , • • ., cn].

Theorem (2. I). Let Y be an integral excellent surface, with field of rational functions K.
Suppose that each valuation v of K which dominates a local ring REY also dominates a regular
local ring A whose quotient field is K, and which is such that the unique localization of [R, A]
dominated by v is essentially offinite type over both Rand A. Let Y1 be the normalization of Y
in K, and let

(L)

be a sequence such that, for i> I, Yi is the normalization of a surface obtained by blowing up a
singular point on Vi-i. Then the sequence (L) is finite.

Proof. - We follow the line of reasoning in [22]. A normal sequence in K is defined
to be a sequence (finite or infinite)

R1<R2<R3<·· ·

ofnormal two-dimensional local rings with quotient field K such that, for i> I, ~ belongs
to the normalization of the surface obtained by blowing up the maximal ideal of Ri-i

Such a normal sequence will be called singular if none of its members is regular. We are
going to show that there are only finitely many singular normal sequences as above with
RI EY1. Since clearly any local ring which is blown up somewhere in the sequence (L)
is a member of such a singular normal sequence, Theorem (2. I) will thereby be
proved.

201
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202 JOSEPH LIPMAN

The excellence of Y will be needed only so that the following statement holds
(cf. [EGA IV, (7.8.6)]):

For any W birational and offinite type over Y, (i) the normalization W' ofW in K is finite
over W, and (ii) W' has only finitely maizy singular points (1).

Now let Sn (n> I) be the set of surfaces defined inductively by:

SI = {Spec(R) !REYl, R not regular};

Si+1 {normalizations of all those surfaces which can be obtained by blowing up
a singular point on a member of Si}.

By induction we see that Sn is a finite set for all n.

Let T n (n > I) be the set of all local rings Q such that there exists a singular normal
sequence

with RIEY1. Each element ofTn is a singular point on one of the finitely many members
of Sn; hence T n is a finite set for all n.

Suppose there were infinitely many singular normal sequences beginning with an
element of T 1. Since T 1 is finite, there would be infinitely many beginning with a
specific member R1. Since T2 is finite, there would be some ~ET2 such that among
those sequences beginning with R1, infinitely many begin with R1<~<... Since Ta
is finite, infinitely many of these latter sequences would begin with R1<~<Rg<...
for some fixed RaETg • Continuing in this manner, we define R 4 , R5, ... , and so obtain
an infinite singular normal sequence

R1<R2<Rg<R4<R5<·· ·

Now i~1R; is a valuation ring R". (This is proved in [I, p. 337] under the assumption

that the Ri are regular. The proof in the general case is essentially the same; it can be
reconstructed by piecing together the following information in [25]: Corollary, p. 21;
Proposition I, p. 330; Corollary 2, p. 339; and the argument in the middle of p. 392.)
v dominates R1EY1, and it follows from the hypotheses ofTheorem (2. I) that v dominates
a local ring of the form Bp, where :p is a prime ideal in B R 1 [b1 , b2 , ••• , bm], such
that Bp is essentially of finite type over a regular local ring A with quotient field K.

Since Rv:=: URi' Rn contains B for all sufficiently large n, and since Rv dominates Rn'
~

it follows at once that Rn dominates Bp. Then for m>n, Rm is essentially of finite
type over A, whence, by I) of Proposition (1.2), Rm has a rational singularity.

Let f: X-+Spec(Rn) be a desingularization. Since v dominates R Jp v dominates

(1) Even ifY is not assumed to be excellent, we find, using theorems ofREES [J. London Math. Soc.,36 (1961),
p. ~7] and NAGATA [EGA IV, (6.13.6)] that for (i) to hold it is sufficient that Nor(Y) contain a non-empty open
set and that every local ring on Y be analytically unramified. For (ii) to hold it is sufficient that furthermore Sing(Yl)
be finite (use [EGA IV, (6.12.2)]). These conditions on Y and YI certainly must be satisfied ifY can be desingu
larized (er. Lemma (16.1)).
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RATIONAL SINGULARITIES 2°3

some SEX, and then as above we see that RN dominates S for some N>n. We shall
show below that:

(*) If R has a rational singularity, and f: X-+Spec(R) is a desingularization with
X =F Spec(R), then X dominates the quadratic transform V of Spec(R) (i.e. V is the surface
obtained by blowing up the maximal ideal ofR), and hence X dominates the normalization ofV.

Since no Ri is regular, an easy induction based on (*) shows that S dominates
Rn' R n +1 , ••. , RN· Hence S RN' contradicting the fact that RN is not regular.
This completes the proof, modulo (*).

§ 3- Conclusion of the proof : a key proposition.

(*) is a basic point. A proof was given in [22, Lemma, p. 686] in the case of
surfaces over an algebraically closed ground field of characteristic zero. More generally,
(*) follows from Theorem 4 in [4], at least if R has an algebraically closed residue field.
For our purposes, however, a more direct proof is desirable. We will now prove a
generalization of (*) as a separate proposition.

First some notation. Let X be any normal surface and let f!4x be the sheaf of
rational functions on X. For any coherent (Ox-submodule J 9= (0) of fJix , let J- 1

be the coherent lVx-submodule of !?ltx whose sections over any affine open U~X are
given by

J-l(U) == {aE!?ltx(U) IaJ(U) ~ lVx(U) }

Suppose J is an {9x-ideal. Then J is a subsheaf of (J-1)-1; locally, (J-1)-1
is the intersection of those primary components of J which belong to height one prime
ideals. We say that J is divisorial if (J-1)-1.

Proposition (3. I ). - Let R be a local domain with maximal ideal m =F (0), and let
f: X-+Y == Spec(R) be a proper map, not an isomorphism, with J.(lVx)== {Oy, where X is a
normal surface such that H1(X, (Ox) == o. Then the (!}x-ideal r1t == mlOx is divisorial.

In particular, if the local rings on X are factorial, then m{Ox is invertible, so that f factors
through the quadratic transform of Spec(R).

(This proposition generalizes (*) because of (2) of Proposition (I. 2).)
Proof. - Write r1t' for (r1t- 1

) -1. Our aim is to show that r1t' /r1t == o. In the
first place, Supp(r1t' /r1t) is a closed subset of X which clearly contains only points whose
local ring on X has dimension> I. Thus Supp(r1t' jr1t) is at most zero-dimensional,
and so H 1(X, r1t? /r1t) o. We have then the exact cohomology sequence

o -)- r(r1t' /r1t) -+ r( lOx/r1I) -)- r( (Ox/r1t') -+ H1(X, r1t' /r1t) == o.

I claim that r(lOx/r1I)==R/m. If this is granted, the sequence shows that one
of the R-modules r(r1t'/r1t), r(fPxlr1t'), must be (0). But lOxlr1t' has a non-zero global
section unless r1t' lVx , in which case {Oxlr1t has zero-dimensional support, which is
impossible (since by assumptionf is not an isomorphism) either by some form of Zariski's
" main" theorem, for example [EGA Ill, (4.4. I)], or, in view of [EGA Ill, (4.2.2)],
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2 0 4 JOSEPH LIPMAN

by Serre's criterion [EGA 11, (5.2.2)]. Hence r(vII' /vII) = 0, and since vii' /vII has
at most zero-dimensional support, vii' /vII= 0 as desired.

Now since vii = mlVx , we have an exact sequence

o ~ .%' ~ lO~ ~ vii ~ 0

for some positive integer n and some coherent.%'. The fibres off are of dimension I,

so R2j*(.%') 0 ([EGA Ill, (4.2.2)]), i.e. H 2(.%') o. By hypothesis H 1(lVxJ o.
Hence H 1(vII) 0, and therefore

r(lVxlvll) = r(lOx) Ir(vII).

But clearly
m~r(vII) ~r(lOx) R

so that, indeed, r((f)xlvll) R/m.

This completes the proof of Proposition (3. I) and of Theorem (2. I).

§ 4- Resolution of rational singularities; factorization of proper birational
maps into quadratic transforDlations.

For surfaces having only rational singularities the situation is described in the next
theorem.

Theorem (4. I). - Let Y be a normal surface having onlY finitelY many singular points,
all of which are rational singularities. Then there exists a unique minimal desingularization
f :x~Y (i.e. every desingularization ofYfactors through]) (1). Moreover, any desingularization
of Y is a product of quadratic transformations.

Proof. - We shall assume the following result, to be proved later (Proposition (8. I)).
If Y is a normal surface having only rational singularities, and if h : Y' -+Y is a quadratic

transformation, then Y' is a normal surface.
Now, blow up a singular point on Y (if there is one). Then blow up a singular

point on the resulting surface. Continue in this way. The preceding result, along
with I) of Proposition (I. 2), implies that the surfaces which arise are normal and have
only rational singularities. Moreover, these surfaces have onlY finitely many singular points.
(For any such point dominates one of the singular points y on Y, and so we need only
see that any normal surface W which is proper and birational over Spec((f)y) has only
finitely many singular points. But such a surface W is dominated by a regular surface Z
which is proper over Spec(lVy) (cf. B) in the proof of PropositionJl. 2)), and the desired
conclusion follows from the fact that the local rings on W which are also on Z form an
open subset of W which includes all one-dimensional local rings on W. Alternatively,
use [EGA IV, (6.12.2)].)

As in Theorem (2. I), the preceding process leads eventually to a regular surface.

(l) Cf. also Corollary (27· 3)·
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RATIONAL SINGULARITIES 2°5

(The situation here is much simpler, since all the local rings involved already have rational
singularities and since, also, normalization is superfluous.) So we have a desingularization
f: X~Y, and moreover, because of the way in which this desingularization is obtained,
(*) (§ 2) shows that for every desingularization if: X'~Y, X' dominates X.

It remains to be shown that we can get from X to X' by quadratic transformations
alone. This is a classical result [I, 24, 13]. Actually, since a non-singular surface
has only rational singularities we can reach the conclusion by arguing exactly as we
have just done, except that we must replace" singular points" by " points which do not
dominate X' ". Q.E.D.

Example. - For non-rational singularities the process of successive quadratic transformations and normaliza
tions does not always lead to a minimal desingularization. As an example, take the origin on the surface
Z2 + X 3 +y7 = ° (over any ground field). The corresponding local ring R is normal, and its maximal ideal m
has a basis of three elements x,y, z satisfying Z2 + x3 +y7 = 0.

In the ring S=R[y2/X , z/x, xy/z] consider the ideal V generated by the elements x, v=z/x, w=xy/z. From
the relations

XCI +y(y2/X)3) v2 0

Y wvEV

z xvEP

y2/X W 2 V2/X -W2(I +y(y2/X )3)EV

we see that m £ V, and that S/p;;; Rim, so that P is a maximal ideal and Sp is a two-dimensional local
domain dominating R. Further we see that x = v2 • (unit) in Sp , so that VSp is generated by the two elements v, w.
Thus Sp is regular. Now

mSp (x,y, z)Sp

v.pSp

Hence mSp is not principal, and so Sp does not dominate the quadratic transform of R.

Actually this is only a local counterexample. To globalize, one can check that the normalization of the surface
obtained by blowing up the ideal (X,y2, z)R is a non-singular surface on which Sp is the only point which does not
dominate the quadratic transform of R.

11. COMPLETE AND CONTRACTED IDEALS

§ 5- CODlplete ideals and projective norDlalization (1).

A number of results in the sequel have to do with complete ideals. This notion can
be conveniently described in terms of the integral closure of one graded ring in another.
(A valuation-theoretic treatment is also possible, cf. [25, Appendix 4] and [12].) In
this section and the next, we review the salient points and prepare the way for the theorems

In § 7.
Let R === EB Rn be a graded ring and let A === EB An be a graded subring of R.

n>O n>O

Let A' be the int;gral closure ofA in R. A' is a graded s~bringofR, i.e. A' === EB A~ with
nz.O

(l) In this section only, rings and schemes need not be noetherian (or even separated).
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A~ A' n Rn [5, p. go]. For d>o set R(d) EB R d A(d) EB A d (A') (d) EB A~d.
nzO n' n~O n' 1JzO

One sees easily that:

(i) (A')(d) is the integral closure of A(a) in R(a}.

If M is a multiplicatively closed subset of A consisting of homogeneous elements,
among them the element I, then we denote by A(M) the set of all fractions a/m where aEA
and mEM are of the same degree. (A(M) is a subring of the usual ring of fractions AM.)
The rings A'M) R(M) are defined similarly. We have A(M)~A(M)~R(M). It is straight
forward to verify that:

(ii) A'M) is the integral closure of A(M) in R(M).
Similar considerations apply when A and R are replaced by quasi-coherent graded

lVx..;algebras d== EB dn~f?lt== EB f?ltn on a (pre-)scheme X. Let sd' be the integral
nLO nLO

closure of sd in f?lt (cf. [EGA 11, § 6. g]). Over any affine open subset of X, this situation

reduces to the previous one. In particular, sd' == EB (sd' n f?ltn). In the present context,.
(..) b n>O
11 ecomes: -

(iii) Let d, f?lt, sd' be as above, let qJ: sd~!Yl be the inclusion map, and let
Proj(qJ) : G(qJ) ~ Proj(sd) be the associated affine morphism, where G(qJ)~Proj(!Yl) [EGA11,
(2.8.3)]- Then the integral closure ofProj(d) in G(rp) is Proj(d').

Now let X be an integ~al scheme, with sheaf of rational functions PJlx , and let f

be a quasi-coherent lVx-submodule of !Ylx . Set sd== EB fn, (fO == lVx), and f!Jl == EB f!Jlx,
nLO nLO

(f?lt~ PJlx ). e9fI and f!Jl are quasi-coherent graded lVx-algebras. (f!Jl is isomorphic

to f!Jlx[T], T an indeterminate.) Let si' == EB f n be the integral closure of si in f!Jl.
n>O

Note that when X is normal, EB lVx is integr~ly closed, so that if f is an lVx-ideal, then
• d fi h n>Oso 'is J n or eac n. -

Definition (5. I). - Under the preceding circumstances we say that f 1 is the completion
of f. f is complete if f==J"l-

Remarks_ a/ f 1 itself is complete. In fact,

d EB fn~ EH ff~d'

so that si' is also the integral closure of Er>f; .
b) By (i) above, we see that fa is the completion of fa for all d> o.

Remark b) shows that if all the positive powers of f are complete, then d == sd'
except in degree zero; in other words Proj(d')==Proj(d). In applying (iii) to the
present situation we observe that Proj(d) is now the scheme obtained by blowing up J,
and that Proj(f!Jl) is simply Spec(K) where K is the field of rational functions on X.
We conclude:

Lemma (5.2). - Let X be an integral scheme and let f =f: 0 be a quasi-coherent
{!}x-submodule of f!llx - If all the positive powers of f are complete, then the scheme obtained by
blowing up J is normal.

206



RATIONAL SINGULARITIES 2°7

c) Once again let f be any quasi-coherent lOx-submodule of PAx. One checks
that the completion f 1 can be described as follows: for any open u~X, r(U, f 1)

consists of those sections SE r(U, PAx) for which there exists an open covering {VIX}

of U with the property that for each (1, if SIX s \V IX' there is a relation

(SIX) nIX +a1IX (scx)nlX -1 +... + an IX == 0
IX

with (i == I, 2, . . ., nIX)

d) Let f be as in c). If / is the completion of f, then for any local ring S of
a point on X, /(?)S is the completion of f(?)S on Spec(S).

e) Let f be as in c), with completion f 1 , and let 2 be an invertible lOx-submodule
of PAx. Then the completion of Jff is JIff.

f) Let f: X-+Y be a birational map. Let / be a quasi-coherent lOy-submodule
of PAy PAx, with completion /1. Then /llOx~(completionof- /lOx). (Proof.
We may assume X and Y to be affine, and apply c).) In particular, if / 1.(f)
(J as in c), with completion f 1) then since 1.(f) .lOxfJ, we have

/ l lOX5; (completion of1.(f) .lOx) 5; J 1

from which follows

Hence:

Lemma (5. 3). Let X be an integral scheme with sheaf of rational junctions f?lx, let J
he a quasi-coherent lOx-submodule of !!llx, and let f: X -+Y be a quasi-compact quasi-separated
birational map (so that 1.(f) is a quasi-coherent lOy-submodule of !!lly == fJlx). If J is complete
then so is 1.(J).

§ 6. Contracted Ideals.

Connected with complete ideals are contracted ideals.

Definition (6.1). Let j: X-+Y be a morphism of schemes such that 1.(lOx)==lOy.
Let f be an lOy-ideal. We say that f is contracted for jiff is of the jormf*(/) for some
([}x-ideal /.

Suppose f f*(/). The commutative diagram

f*J.(/) -+ /

1
f*(f)
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shows that J(!Jx( image ofv)~J. Hence 1.(J(!Jx)5;1.(J) J. On the other hand,
we always have the commutative diagram

J -71.f*(J) f*(J{9x)

1 1
t t

(!}y ~

1.((!}x)

which shows that J~1.(J(!}x). Thus J is contracted for f if and only if J 1.(J(!}x).

Proposition (6. 2). - Let Y be an irreducible normal noetherian scheme. A coherent
(!)y-ideal J is complete if and only if J is contracted for every proper birational map f: X -+Y.

Proof. - We may assume J =f: (0). Let J be the completion of J; J is an
(Oy-ideal. The finite-type (!}y-algebra EB In, being integral over In, is actually a

n>O

finite-type module over EB In, whence, fo-;:-large N, J IN IN +1. Let X==Proj( EB In)
n>O n>O

and let f: X -+Y be th~ structural morphism; f is proper and birational. Also, -IN(!}x
is invertible, and

so that

Hence

(J (f)x) (IN(Ox) == J IN(f)x == (J(Ox) (IN(!Jx)

J(!}x == J(!}x·

J f:.1.(J{9x) 1.(J(!}x)·

If J is contracted for f, then J ~J, i.e. J is complete.

Now let f: X -+Y be an arbitrary proper birational map. Let

Then X' is a closed subscheme of Y' xyX so that the canonical map X' -+Y ' is proper.

It is also birational. [EGA 11, (7.3.11)] shows then that EBf(Jn(!}x) is integral
n2: 0 *

over In; in particular,1.(J(!Jx) is contained in the completion of J. If J is complete,

then consequently 1.(J(!}x) ==J. Q.E.D.

Remark. Let f: X -+Y be as in the preceding proof. A similar argument shows
more generally that if X is a coherent (!}x-ideal contained in the completion of J (f)x, then 1.(X)
is contained in the completion of J.

In § 8 we will need:

Lemma (6.3). Let Y and J be as in Proposition (6. 2). Suppose there exists a proper
birational map f: X-+Y with X normal such that J(Ox is invertible. Let W he the normaliza
tion of the scheme Z obtained by blowing up J. Then W is offinite type over Y.

Proof. - Let J be the completion of J. Then V == Proj( EB In) is finite and
n>O

birational over Proj( EB In), so that X dominates V, i.e. J(!}x i; invertible. As in
n~O
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Proposition (6.2), therefore, / !:(/{f}x)-!:(J{f}x). Similarly, for every n>1 the
completion of fn is f n !:(fn{f}x). Thus by (iii) of § 5 and the remark b) following it,

W = Proj ( ffi f n)= Proj ( ffi f (fn{f}x) )
n.z.0 n.2. 0 *

Now [EGA Ill, (3.3. 1)] shows that W is finite over Proj ( ffi fn). Q.E.D. (1).
n~O

Corollary (6.4). - Let Y be a normal surface for which there exists a desingularization
f: X~Y. Let g:, W~Y be a birational map of finite type. Then the normalization of W
is finitfJ over W (2).

Proof. ~ The ql.lestion is local on both Y and W, so we may assume that Y is affine
and integral and that g is projective. Then W is obtained by blowing up a coherent
ideal f on Y, and so, as in (6.3), it will be sufficient to find a desingularization Z of Y
such that f{!}z is invertible. This can be done as in B) of Proposition (1.2) (with Y in
place of Spec(R)). Q.E.D.

As another application of (6.2), we generalize Proposition 5 of [25, p. 38 I].
Proposition (6.5). Let f: X~Y be a birational proper map of irreducible normal surfaces such that R Y*((!)x) = o.

If J is a complete coherent ideal on Y, then J (!)x is a complete ideal on X.
Proof - Let g:W~X be a birational proper map. Then J{!)x£,g*(J{!)w) so that there is an exact

sequence

It will be sufficient, by Proposition (6.2), to show that.Yf o. On X, there is a finite set S of closed points
such thatg induces an isomorphism from g-l(X-S) to X-S; hence the support of Ye is contained in S. Thus,
if J.(.Yf) = 0, then .Yf = o.

Applying f* to the above sequence, we get an exact sequence

But hg*(J{!)w)=!*(J{!)x)=J since J is complete (Proposition (6.2)), i.e. <X is an isomorphism. Therefore, it
is enough to show that RY*(J{!)x) = o. For this purpose we may assume Y to be affine, and then J{!)x is a homo
morphic image of (!)~ for some n. Since R:f* vanishes for all coherent sheaves on X, we conclude that Rlf*(J{!)x)
is a homomorphic image of R%({!)~)= o. Q.E.D.

§ 7. Products of cODlplete and contracted ideals.

Our main purpose in this section is to prove:
Theorem (7. I). Let Y he a normal irreducible surface having only rational singularities.

Then any product of complete coherent {f}y-ideals is again complete.
Theorem (7. 1) is a consequence of:
Theorem (7. 2). - Let Y be an integral noetherian scheme, let X be a normal surface, and

let f: x~Y be a proper map with !:({!}x) (!}y, Ry'({!}x) o. Then any product of coherent
contracted (for f) {!}y-ideals is again contracted.

(1) (Added in proof.) It would be simpler to note that X dominates Z, say g: X~Z, and then
W = Spec(g*((!)x)) is finite over z.

(2) Corollary (6.4) holds without the assumption that Y is a surface; the proof is indicated in the footnote
in § 2.
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To deduce Theorem (7 -I) from Theorem (7 -2), we first remark that it is enough
to treat the case Y = Spec(S), S being a two-dimensional normal local domain with a
rational singularity (cf. remark d) following Definition (5- I)). Let J, g' be coherent
complete (Oy-ideals; it will be sufficient to show that fg' is complete. Let f be the
completion of fg' and let W be obtained by blowing up f. There exists a desingula
rization f: X~Y, and moreover, after applying suitable quadratic transformations,
we may assume that X dominates W (cf. B) in the proof of Proposition (I -2)), so that f (Ox
is invertible. Y being affine, the requirement R 1J.( (Ox) == 0 means simply H1(X, (Ox) ==0,

which is certainly satisfied in this case (Proposition (I _2) ). So Theorem (7 _2) applies:
since f and g' are complete, they are contracted for f (Proposition (6 _2)) and so then
is f g'. Since f (Ox is invertible, the first part of the proof of Proposition (6 _2) (with f
replaced by Jig') shows that Jig' is complete. Q.E.D.

We begin the proof of Theorem (7 -2) by collecting together the technical
details in:

Lemma (7 -3). Let X be any scheme (not necessarily noeth~rian) for which:

I) H 1((Ox)=o, and
2 ) H 2(2) 0 for all quasi-coherent (Ox-modules 2 such that 2 f lVx, n finite (1) •
Let f and f be two quasi-coherent (Ox-modules such that

3) r(f) and r(f) are finitely generated r((Ox)-modules, and
4) f and f are generated by their global sections.

Then the canonical map

p : r(Ji)®r((!}x)r(f) ~ r(f®(!}xf)
is surjective.

We will use Lemma (7-3) via:

Corollary. - Suppose Ji ana f are (Ox-ideals and let f f be the image of the natural map
tL : f ® f ~ lVx • If, in addition to the conditions of Lemma (7 -3), we have H 1(kernel of (.L) == 0,

then

Indeed, if the Lemma holds, then the composite map

r(f)®r(f)~ r(J®f)~ r(f f)

is surjective, and the Corollary results.

Proof of Lemma (7 -3) . By 3) and 4) there are exact sequences
(X

o ~g'1 ~ (Ox ~ J ~ 0

a
o-+g'2~lVi~ f ~o

(1) A simple argument [EGA 11, top ofp. 98] shows that 2) need only be assumed for n = I.
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(s, t finite) such that in the derived exact sequences

r(lO~) ~ r(J) --+ H1(f1) --+ H1(lO~)=0

r(lO~) ~ r(J) -+ H1(f2) -+ H1(lO~)=o

the maps y and a are surjective. Necessarily, then, H1(%1) H1(f2) o.
Let JV be the kernel of (X(8)~. The exact sequence

f = (f1 (8) lO~) Et)(f2 (8) lO~) --+ lO~(8) lVi~ J® J --+ 0

gives an exact sequence

But H1(f) = 0, and, since !F'~f~ (I)~ Et) lO5t, 2) gives H2
( 2') = o. Hence H1(JV) = 0

and so the map r({X(8)~) is surjective. From the commutative diagram

r ({O~) (8) r ((O~) ~ r (lO~ (8) (O~)

we see then that p is surjective. Q.E.D.
Now let f: X--+Y be as in Theorem (7.2), let I, J be coherent {Oy-ideals, and

let J = I((}x, J =JlVx · Theorem (7. 2) is proved if we show that 1.(J) .1.(J) 1.(fJ).
To do so, we may assume that Y is affine and of dimension >0, and then we must

show that r(f). r(J) = r(fJ). The conditions of Lemma (7.3) are now satisfied.
(H2 vanishes because f is dominant, so the fibres of f are of dimension I). As for
the kernel of [J. : f(8) J --+JJ, we remark that unless IJlOx = (0), both IlOx,x and JlOx,x
are invertible whenever XEX is such that dim. lOx, x< I; thus in any case, the
kernel of [J. has at most zero-dimensional support, and the Corollary applies. This
completes the proof of Theorem (7.2).

In part III we will refer to the following consequence of Lemma (7.3):
Corollary (7.4). - Let A he a ring, let X he a quasi-compact separated scheme satisfying I)

and 2) of Lemma (7.3) and let g: X--+Spec(A) be a morphism. Let 2 be an invertible
lOx-module such that r(2) is a finitely generated A-module. If 2 is ample and 2 is generated
by its global sections, then 2 is very ample for g (and, of course, conversely).

Proof. - By [EGA II, (4.6.3) and (4.4.3)] it is enough to show that the graded
A-algebra EB r(!F®n) is generated by r(2) over A, i.e. that

n~O

r(eP) ®A r(eP) ®A. • • @A r(cP) -+ r(2Q9n
)

is surjective for each n. But this follows by induction from Lemma (7.3) (with J =2,
J=2®k(k=I,2,3, ... )).
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§ 8. Norm.a1ity of blowing-up and join.

Throughout this section Y will be a normal irreducible surface having only rational singularities.

Proposition (8. I). - Let Y be as above and let J be a complete coherent {!}y-ideal. Then

X Proj (EB In) is normal (whence X has only rational singularities). In particular, any
nLO

quadratic transform of Y is normal.

Proof. The first assertion follows from Theorem (7. I) and Lemma (5. 2).
Let y be a closed point of Y, and let J be the ideal whose stalk at XE Y is {!}x if x =t=y,
and whose stalk aty is the maximal ideal of (!}y. The surface obtained by blowing up y

IS Proj(EB In). But it follows easily from the definitions that J is complete. Q.E.D.
nLO

Let K be the field of rational functions on Y. Given two surfaces Xl and X 2

dominating Y birationally, we say that the closed image X of the canonical map
Spec(K)~X1Xy~ is thejoin of Xl and X 2 over Y. A surface Z with function field K
dominates X if and only if it dominates both Xl and ~.

If Xl and ~ are obtained by blowing up ~y-ideals J, et respectively, then Z
dominates Xl (resp. X 2) if and only if J {!}z (resp. et(f)z) is an invertible {!}z-ideal; on
the other hand, J {!}z and et{!}z are both invertible if and only if (Jet) {!}z is invertible;
it follows at once that X is obtained by blowing up the (!}y-ideal J et. Now if Xl is
normal, then the considerations of Lemma (6.3) show that Xl is also obtained by blowing
up the completion of J; in other words, we may assume J to be complete. Similarly,
ifX2 is normal, then we may assume et to be complete. If both J and et are complete,
then Theorem (7. I) shows that J et is complete; thus (Proposition (8. I)), the join
of Xl and X 2 is normal.

More generally, we have:

Proposition (8. 2 ). Let Y be as above and let Xl' X 2 be any normal surfaces which are
birational and offinite type over Y. Then the join of Xl and X 2 over Y is also normal.

Proof. The question is local on Xl and X 2 , so we may assume Xl and X 2 to be
dense open subschemes of Xl' X2 respectively, where Xl' X2 are projective over Y.
Because of (6.4) we may replace Xl' X 2 by their normaltiazions (this does not affect Xl
or X2). In other words, we may assume to begin with that Xl and ~ are projective
over Y. We may also assume that Y is affine. But then the situation is the one dealt
with in the preceding discussion. Q.E.D.

§ 9. Pseudo-rational singularities.

It is conceivable that one might wish to apply Theorem (7. I) and the results
in § 8 to a surface without knovying a priori that the points of the surface can be desingu
larized. For this purpose, the definition of rational singularity can be weakened: say
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that a two-dimensional normal local domain R has a pseudo-rational singulariry if the
following condition holds:

For any projective birational map g: W ~Spec(R) there exists a normal surface Z, proper
and birational over Spec(R), such that Z dominates Wand H 1(Z, (!}z) - o.

A) and B) in the proof of Proposition (I .2) show that if R has a rational singularity
then R has a pseudo-rational singularity. Conversely, that proof shows that if R has
a pseudo-rational singularity and R can be desingularized then R has a rational singu
larity (use Chow's Lemma). The analytically reducible normal local ring described
by Nagata in [17; Example 7, p. 209] has a pseudo-rational, but not a rational, singu
larity. (To prove this, one can use Proposition (23· 5).)

Using Chow's Lemma and the fact that projective birational maps into integral
affine schemes are obtained by blowing up suitable ideals, one can prove without difficulty
the analogue of Proposition (I. 2) for pseudo-rational singularities. Theorem (7. I)
and the results in § 8 hold for surfaces having only pseudo-rational singularities. The
proofs are practically the same.

Ill. NUMERICAL THEORY OF RATIONAL EXCEPTIONAL CURVES

The goal of part III is Theorem (12. I), whose statement will be essential later on.
In § 10 we review some well known facts about degrees of locally free sheaves on one
dimensional schemes. (These facts are required in §§ 11-12, and also in part IV in
connection with intersection theory.) In Proposition (I 1. I) we see that the numerical
characters of an invertible sheaf on a " rational " one-dimensional scheme determine
whether the sheaf has enough global sections; this generalizes some of Theorem (1.7)
of [3]. Theorem (12. I) is a relative version of Proposition (I I . I); it is related in
part to Theorem 4 of [4].

§ 10. Degrees of locally free sheaves OD curves.

To begin with, we fix some terminology and notations. By a curve we mean a one
dimensional noetherian scheme. A component of a curve C is a one-dimensional closed
subscheme of C which is integral (i.e. reduced and irreducible) the components of C
are in one-one correspondence with the (finitely many) non-closed points of C.

We will be dealing mainly with curves C which admit a proper map f: C~Spec(A)

where A is a noetherian ring and. the image off is zero-dimensional, i.e. is a finite set of
closed points. For such a C, the cohomology modules of any coherent (!}c-module ~
are of finite length over A;.. it makes sense therefore to talk about hO(~) and hl(~)

(the lengths of HO(~), Hl(~) respectively), and about the Euler-Poincare characteristic

X(ff)==hO(~)-hl(:F). (Of course hO, hi, and X depend on the choice of A and j.)
The degree of a locally free (!}c-module vY offinite rank n is defined to be the integer

degc(vY)==X(vY) X((O~) x(vY)-nx({!}c)·
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Some basic properties of " degree " will follow easily from the next lemma.
We say that two coherent {!}c-modules ff and C§ are generically isomorphic if there is an
open subset U of C such that C - U is zero-dimensional and such that the restrictions
/F IU and C§ IU are isomorphic. It is the same thing to say that for each non-closed
point x of C, the stalks ~x, and rJx, are isomorphic (!}x,-modules.

Lemma (10.1). - Let f: C-+Spec(A) be as above, and let:IF and rJ be two coherent
{f}c-modules which are generically isomorphic. Then for any locally free (f}c-module JV of finite
rank n, we have

X(ffEBJV) - X(rJ®JV) = n(x(/F) - X(rJ))

Proof. - By assumption there is an open subset U of C, with inclusion map, say,
i : U -+C, such that C - U is zero-dimensional and such that i*(:!F) and i*(rJ) are
isomorphic. We have exact sequences

o-+%t-+:F-+i*i*(ff) -+%2-+0

11
2

O-+X'"'g-+rJ -+i*i* (rJ) -+X'"'4-+0

where, for i=I, 2,3,4, X'"'it is concentrated on C-V (so that X(%i®JV)=nx(%i,)).
The conclusion is obtained by tensoring these exact sequences with JV and taking Euler
Poincare characteristics. Q.E.D.

Proposition (10.2). - Let ,,(: C-+Spec(A) be as above:

a) If Jt and JV are locally free (!}c-modules of finite ranks m, n respectivel:J, then

degc(Jt®JV) = n. degc(Jt) + m. degc(JV).

In particular, if Jt and JV are invertible (f}c-modules, then

degc(Jt®JV) dege(Jt) degc(JV)·

b) If h: C'-+C is a proper map, with C' a curve, such that h*({f}c') is generically
isomorphic to {!}~for some integer t>o (which is always the case, for example, if C is integral)
then for any locally free (!)c-module JV (of rank n<00)

degc,(h*JV) = t. degc(JV)

(Here" degree" on C' is relative to the map foh : C' -+Spec(A).)

Proof. - a) By Lemma (10. I) (with :F =Jt, rJ = (!)e)

X(Jt®JV) - X((!)e®JV) n(x(Jt) - X( (!)'C))

I.e. dege(Jt®JV) +mnx((f)e) -mx(JV) = n. degc(Jt)

I.e. degc(Jt®JV)-m degc(JV) == n.degc(JI).

b) The standard exact sequence

0-+H1(C, h*h*JV) -+H1(C', h*JV) -+HO(C, R 1h*(h*JV)) ~o
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along with the isomorphism

gives

I.e.

HO(C, h*h*JV)~HO(C', h*JV)

X(h*h*JV) -X(h*JV) hO(Rlh* (h*JV))

X(h* (@C,) (8)JV) -x (h*JV) = hO(R1h* (@C') (8)JV)

(cf. [EGA 0III' (12. 2 . g)]). Since C' is one-dimensional, at most finitely many of the
fibres of h are one-dimensional; consequently R1h*((9c') has support of dimension 0,

and so
X(h*(@c,)®JV)-X(h*JV) = n. hO(Rlh*(@c')) = n. (X(h*(@ct )) -X(@c,))

(Take JV = mc to get the last equality.) Thus

degc,(h*JV) X(h*JV)-nX(mc')
= X(h*( (Oc,)(8)JV) -nx(h*((Oc'))
=X((O~(8)JV)-nx((O~) (Lemma (10. I))
= t(X(JV) -nx((Oc))
= t.degc(JV). Q.E.D.

For a (Cartier) divisor P) on C (er. [16, Lecture g] or [EGA IV, § 21]) we define
the degree, degc(P)), to be the degree of the corresponding invertible sheaf (9c(.~).

Corollary (10.3). If P) is an effective (Le. positive) divisor on C, then

degc(P)) = hO(m~).

Proof. - By definition, there is an exact sequence

o~mc(-P)) ~mc~(O~~o

whence degc(P)) = degc(mc(~))

=-degc(mc(-P)))
= X(mc) -x( (9c( -P)))

x( (O!!})
=hO((9~)

(Proposition (10.2) a))

Q.E.D.

Some more known facts about degrees of invertible sheaves are collected together
in the next proposition.

Proposition (10.4). - Let f: C ~ Spec(A) be as above, let Cl' C2 , ••• , Cn be the
components of the curveC, and letei: Ci~C (i=I, 2, ... , n) be the corresponding inclusion
maps. Let le be an invertible sheaf on C, and for i I, 2, ... , n let

8i = degci (e;(2))

(i) If 2 ~ (Oc, then 8i 0 for all i.
(ii) If 2 is generated by its sections over C, then ~i>O for all i.

(iii) flJ is ample if and only if ~i>O for all i.

Proof. - The hard part of the proposition is the implication "8i>0 for all i => le
ample ", which can be proved as in [11, p. gI8-gIg: proof that (iv) implies (i)].
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For the rest of the proof, we may assume that C is integral {cf. [EGA 11, (4. 6 . IS)
(i bis)]). (i) is then obvious. Under the condition of (ii), there must be an exact
sequence

0--:;".(7)c-+2 -+:Yt --:;".0

where :Yt has support of dimension <0, and so

dege(2) X(2)-X((7)e) X(%) hO(:f»o.

Note that if dege(2) 0 in this case, then $'=0, i.e. 2';;;{f)c.

Now suppose that 2 is ample. Because of the additivity of degree, we may
replace 2 by 2®n for any n> 0; we may therefore assume that 2 has non-zero
global sections, and then the preceding argument shows that degc(2»0. (Here
there is strict inequality beca\lse, r(C, (f)e) being artinian, {f)e is not ample [EGA 11,
(S. 1.2)]). Q.E.D.

§ 11. NUDlerical theory of rational curves.

We will be especially interested in a situation in which Proposition (10.4) admits
a converse.

Proposition (11. I). - With the notation ofProposition (10.4), assume that H1(C, (f)e) = 0:

(i) If ~i=O for all i, then 2~(!Jc.

(ii) If ~i>O for all i, then 2 is generated by its global sections, and H 1(2) o.
(iii) If ~i>O for all i, then 2 is very ample for J.

Proof. - If .P is generated by its global sections, then .P is a homomorphic image
of (7)0 for some integer s>o, so that H 1('p) is a homomorphic image of H 1 ({f)0) 0;

i.e. H1(2)=o. (ii) implies (iii) in view of Proposition (10.4) and Corollary (7.4).
Moreover (ii) implies (i) because of the following simple fact:

Let C be any locally noetherian (pre-)scheme such that HO(C, (f)c) is artinian. Let 2 be
an invertible sheaf on C such that both 2 and 2- 1 are generated by their global sections. Then
if';;; {f)c.

(Proof. - Since the connected components of C are open [EGA I, (6. I .9)], we
may assume that C is connected. Then the image of the canonical map C--:;".Spec(HO( (Oc))

is connected, hence consists of one point, and it follows that HO((!Jc) is a local ring. If x
is any point of C, the hypotheses imply that there exist global sections A, A' of 2, 'p- 1

respectively such that (AQ9A')x is a unit in (Ox; thus 'AQ9A' is an element of HO( (Oc)

which is not nilpotent. Since HO((Oc) is a local artinian ring, AQ9A' is a unit in HO((Oc),
and consequently A is a nowhere-zero global section of 2. Q.E.D.)

It remains therefore to prove the first assertion of (ii), and this will be done in the
following roundabout way. Note first that, as in the preceding proof, we may assume C
to be connected, so that HO( (!Jc) is an artinian local ring. The effect on degrees of
sheaves of replacing A by HO((!Jc) is simply division by a positive constant, namely the
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length - as an A-module - of the residue field of HO ((Oc) ; hence we may assume that A
is an artinian local ring, with maximal ideal, say, m. By [EGA 0111' (10.3. I)] there
exists a faithfully flat local A-algebra A' whose maximal ideal is mA', and which is such
that K = A' /mA' is an algebraic closure of k == A/m. A' is artinian since some power
of mA' vanishes. Let C'==CxAA', and let 7t: C'-+C be the projection map. Note
that, 7t being flat, H1(C', (OC/) 0 [EGA Ill, (1.4.15)]. We will show first that in
proving (ii) we can replace A by A', C by C' and 2 by 7t*(2); in other words we may
assume A to have an algebraically closed residue field. Second we can remark that,
under the preceding assumption, (i) is proved, in effect, in [3] or in [18] . Finally we will
see, still assuming A to have an algebraically closed residue field, that (ii) follows from (i).

To begin, then, we show that: if D' is a component of the curve C', with inclusion map
e : D' -+C', then

degD,(e* 7t* (2)) >o.

(Here, of course, " degDI " is calculated over A'.) D' is a component of 7t- 1(Ci ) for
some i, and we have a commutative diagram

Spec(K) ~ D' ) C'

1 1 in
Spec(k) ~ Ci C

(k==A/m and K=A' jmA'). In calculating degrees of invertible sheaves on Ci (resp. D')
we may replace A by k (resp. A' by K). We may therefore assume, for proving (I),
that C=Ci , A=k, A'=K.

Now [EGA IV, (4.8.13)] there is a field L with k~L~K, [L: k]<oo, such
that D' = D®LK for some component D of C®kL. We have then a commutative
diagram

Since HP(D',g*ff)=HP(D,ff)0LK for any coherent (OD-module ff and any p>o
([EGA Ill, (1.4.15)]) we have

degD/('C,* 7t*(2)) == degD/(g*h*(cP)) == degD(h*(cP))

where" degD" is calculated over L; it is therefore sufficient to show that degn(h*(cP)) >0.
But clearly for this purpose we may calculate " degD" over k instead of over L. Then,
since degc(2) >0, Proposition (10.2) b) (with D in place of C') gives the desired
conclusion.
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To complete the first step, we show that: !l' is generated by its sections over C if and
only if1t*(cP) is generated by its sections over C'. Indeed, if eJIt is the subsheafof cP generated
by the sections of !l' over C, then, since A' isflat over A, HO(C', 1C*.P) = HO(C, 2)0A A',
and so 1t*(eJIt)==eJIt®AA' is the subsheafof 1t*(!l')==cP®AA' generated by the sections
of 1C*(2) over C'; and since A' is faithfully flat over A the inclusion map eJIt~!F is
surjective if and only if the corresponding map rc*(eJIt) c-?- rc*(2) is.

We may now assume that the residue field k of A is algebraically closed. Under
this assumption (i) is proved by the argument given in [3; Lemmas (1.4) and (1.6)]
with one small modification, namely in Lemma (1.4) the induction should be carried
out with respect to the chain of schemes

Crad == C(l)~ C(2) ~. • •~ C{t) C

where, if JV is the sheaf of nilpotents of (Qc, then C(i) is the subscheme of C defined
by JVi

, and t is such that JVt- l 4=o, JVt 0. (A similar argument appears in

[18; Chapter (5.1 )].)

To deduce (ii) from (i) we make use of the following description of divisors on
curves (cf. [EGA IV, § 21.9]).

Lemma (11 .2). Let Xl' X2 , ••• , Xn be closed points on a curve C, and for each
i == 1, 2, ... , n let1. be a unit in the total quotient ring of (Qxi. Then there is a unique divisor ~
on C such that 1. is a local equation of ~ at Xi (i == I, 2, .. -, n) and I is a local equation at
all x4=x1 , X2 , • • ., Xn •

(Proof. It is possible to choose, for each i, an affine neighborhood U i Spec(~)

of Xi' and a unit gi in the total quotient ring of Ri such that: a) (gi) Xi ; b) (gi)x is a
unit in (!)x for all X in Ui' X=FXi; c) for j*i, xjEfUi. If UO==C-{x1 , X2 , •• -, xn},

then the collection {(I, U o), (gl' UI), ... , (gn, Un)} clearly defines the desired !2J.)

We need the following consequence: let C be a curve, let C* Crad be the asso..
ciated reduced curve, and let h: C*~C be the canonical map; for any divisor !2J on C,
h* (fiT) is a well-defined divisor on C* , and from Lemma (I I .2), it follows without difficulty
that every divisor fiT* on C* such that h(x) is of depth I for all X in the support of .@* is of the
form h*(fl)).

We prove finally that (i) implies (ii) when C is proper over an artinian local ring
with algebraically closed residue field k. Each component C i of C may be regarded
as a complete curve over k. Hence we may choose on Ci distinct closed points Pi' Qi'
which are regular points of C* and such that h(Pi ), h(Qi) are of depth I on C. The

effective divisor fl)* ~ ~iPi on C* is of the form h*(~), where !2J is an effective divisor
~

on C, and the invertible sheaf (!)c(2)) induces the invertible sheaf (!)c*(.@*) which in turn
induces, for each i, an invertible sheaf of degree ~i on Ci (Corollary (10.3)). By
additivity of degree, !l'® (Q( -fiT) induces an invertible sheaf of degree 0 on each

component Ci' whence, by (i)~ Ie®f!)( -!JJ) ~ (f}o') Le, $~ <P(~). Similarly, if

tf*=~~iQi we have tff~=hrll(~) with 2~m(C).
i
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Since the supports of f» and C have no point in common, .If is generated by some
two of its global sections, and this completes the proof of Proposition (I 1_I).

In some cases, Proposition (11 _I) holds only if H1(C, ([Jc) o.
Complement (11.3). With the notation of Proposition (I 1. I), assume that each point

in the image offhas an algebraically closed residue field. If either (i) or (ii) of Proposition (I I . I)
is true (for all invertible sheaves .:P on C) then H 1(C, ([Jc) == o.

Proof. - As before, we may assume that C is connected and that A is an artinian
local ring. Since (ii) implies (i) (cf. beginning of proof of Proposition (11. I)), it is suffi
cient to show that (i) implies H 1(C, (Oo) 0. This also is done in [3; Lemmas (I -4)
and (1.6)], Lemma (1.4) being modified as indicated during the proof of Pro
position (I 1. I). Q.E.D.

We will also make use in § 27 of the following simple lemma.
Lemma (11.4). f: C ~ Spec(A) being as in § 10, assume further that C is integral

and that H1(C, (Oo) == 0. If.:P is an invertible (Oc-module, then H 1(C, 2) == ° if and only if
dego(2) > -hO((Pc).

Proof. If H 1(2) == 0, then

dege(.:P) == hO(2) -hO((Pc) > -hO((!)e)·

In proving the converse, we may assume that HO(':p) 0; for, if HO(.If)=t=o,
then, C being integral, we have an exact sequence

I

0~([Jc-:;,.2~:X: -:;"0

where:X: has support of dimension <0, and so there is a surjection H 1«(Oc) -:;,. H1(y),
i.e. H1(2)==0. Now if dege(2»-hO«(Oc) and hO(2)==o, then

°<degc(2) hO({Oc) dege(.:P) x.«(Oe)
==X(2)
==-h1(y)

Thus h1(ff) == 0. Q.E.D.

§ 12. Relativization.

For the applications which we have in mind, it is necessary to give Proposition (I I . 1)
a relativized form.

Let A be a noetherian ring, and let f: X ~ Spec(A) be a map of finite type.
If !F is a coherent {Ox-module, and C is a closed subscheme of X, defined by a coherent
{ox-ideal, say, f, we set

:Fe == !F@(9x ({ox/f) ==:F /f:F

Let ic : C~X be the inclusion map. There are canonical isomorphisms

([EGA Ill, (1.3.3)])

(2) HP(X, :Fe) ~ HP(C, i~(:F)), p>o,
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Suppose now that C is a curve on X (by which we mean that C is a closed
subscheme of dimension one). We say that C has exceptional support, or that C is an excep
tional curve (relative to f) if the support of C is proper over A andf( C) is zero-dimensional.
Such a C is then of the type considered in §§ 10- I I, and so for any invertible sheaf 2
on X, we may set

Theorem (12. 1 ). Let A be a local ring with maximal ideal m, and let J: X ~ Spec(A)
be a proper map whose Jibres have dimension < I. Assume that H 1(X, (J)x) o. Let 2 be
an invertible (f}x-module. Then:

(i) (2 .E) 0 for all integral exceptional curves E on X if and only if 2 ~ (f)x .

(ii) (2 .E)>0 Jor all integral exceptional curves E on X if and only if 2 is generated
by its sections over X, and when this is so, H 1

(2) == o.

(iii) (2. E»o for all integral exceptional curves E on X if and only if 2 is ample, and
when this is so, 2 is even very ample Jor f.

Proof. - The" if" parts of (i), (ii) , (iii) follow at once from Proposition (10.4).

Since the fibres ofJhave dimension <I, H2(ff)==0 for all coherent (f}x-modules ff
[EGA Ill, (4. 2 . 2)]. Hence if 2 is generated by its sections over X, then H1(2)
is a homomorphic image ofH1({f}~) for some positive integer s, and so H1(2) ==0.

If (2.E»0 for all E as in (iii) then i;(2) is ample ifDis the closed fibre off
(Proposition (10.4)) and consequently [EGA Ill, (4.7. I)] 2 is ample. Then (ii)
and Corollary (7.4) show that 2 is very ample for f. (This last statement is the only
part of (iii) in which the hypothesis H 1((f)x) == 0 is used.)

To complete the proof we need:

Lemma (12.2). Let ff be a coherent (f}x-module. Then H1(ff) 0 if and only if
Hl(ffc) == 0 for all exceptional curves C on X.

Proof. - Since H 2 vanishes for all coherent lVx-modules and ffc is a homomorphic
image of ff, H 1(ff) == 0 implies Hl(~c)== o.

Conversely, if H1(~C) 0 for all C, then, letting A denote completion with
respect to the maximal ideal m, we have

H 1(/F) A = lim H1(:F@ (lVx/mk&x))
~

k>O

=lim (0)
~

k>O

=0

(cf. [EGA Ill, (4.1.7)]). Thus H1(F)==0. Q.E.D.

We return to the proof of (ii). Let x be a closed point of X. We have to show
that some global section of !£' does not vanish at x. Lemma (12.2) implies that
H1(C, &c)==o for any exceptional curve C, so Proposition (11.1) shows that i~(2)
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is generated by its sections over C, and the same is obviously true of i~(mlOx). Hence
i~(2@mlOx) is generated by its sections over C so that (cf. beginning of proof of
Proposition (1 1. 1), and the isomorphisms (2) above)

0== H 1(C, i~(eP®mlOx)) H 1(X, (eP®mlOx)o).

It follows from Lemma (12.2) that H1(2@mlOx) o.

The exact cohomology sequence shows then that HO(2) ~ HO(2®(lOx/mlOx)) is
surjective. For the closed fibre D on X, defined by mlOx , we have, as above, that i;(2)
is generated by its sections over D (this being obvious if D is zero-dimensional); hence
some section of 2n==2®(lOx/mlOx) over X does not vanish at x, and since this section
can be lifted to a global section of 2, we are done.

The proof of (i) is almost identical, the only difference being that i;(2) - and
hence 2 - has a global section which does not vanish at any closed point x. Q.E.D.

Remarks. - 1. Theorem (12.1) can easily be reformulated so as to apply to the
situation where Spec(A) is replaced by an arbitrary locally noetherian scheme.

2. For later use, we set down some simple properties of the " intersection
product " (eP. C) defined at the beginning of this section:

a) If C is integral then (2. C) is an integer multiple of hO(C, lOo).
(This is because cohomology groups of coherent sheaves on C are vector spaces

over the field HO(C, lOo)).

h) If Jt and JV are invertible sheaves on X, then

((Jt®(9xJV) . C) == (Jt. C) +(JV. C)

(This follows at once from the additivity of " degree " (Proposition (10. 2) a)).)
c) If f!) is an effective divisor on X whose support contains no associated point

of C, then

(Under our assumptions, io*(f!)) is an effective divisor on C, and the assertion
follows easily from (2) above and Corollary (10: 3).)

IV. - AN EXACT SEQ,UENCE FOR THE DIVISOR
CLASS GROUP

In part IV we continue to lay a proper foundation for the results in parts V and VI.
To a large extent, IV is devoted to a systematic presentation of more or less familiar
facts in a setting suitable for the subsequent applications. Some of these applications

are given in § 17-
Throughout R will be a two-dimensional normal local ring, with maximal ideal rn,
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and as in § 12

admitting a desingularization, say, f: X --* Spec(R) (1). We study an exact sequence
of abelian groups

(3) 0 --* PicO(R) --* Pic(U) -+ H

where U == Spec(R) -{ m}, so that Pic(U) is the divisor class group of R. The
group PicO(R) is the numerically trivial part of Pic(X), while H is (approximately) the
finite abelian group defined by the intersection matrix of the exceptional curves on X ..
(The requisite intersection theory is reviewed in § 13.) The homomorphisms in (3)
are defined in § 14. If R is henselian, then Pic(U) --*H is surjective (Proposition (14.4)).
In § 15 it is shown that the sequence (3) is actually independent of the choice of the
desingularization X (so that the notation" PicO(R) " is justified). In § 16 we examine
the relation between (3) and the corresponding sequence for a formally smooth R-algebra.

When R is the local ring of a point on a two-dimensional complex space, Mumford
has obtained, by transcendental means, an exact sequence containing (3) ([15; Part 11]).
An immediate consequence, in this case, is that R has a rational singularity if and only
if R has afinite divisor class group (cf. [7; Satz (1.5)]). In Theorem (17.4) we reach
the same conclusion for arry henselian R with algebraically closed residue field. The treatment
given here is purely algebraic.

We also include a result on the factoriality of certain power series rings (Pro
position (I 7 . 5) )·

§ 13. Intersection theory for exceptional curves.

We now review those few facts of intersection theory which we will need in later
sections. The results here are all particular instances of the formalism developed by
Kleiman in [11; Chapter I].

As in § 12, we deal with an arbitrary map of finite type f: X--*Spec(A), A being
a noetherian ring. The subsequent considerations will be applicable mainly when X
is two-dimensional because of the following restriction on our previous terminology:
from now on, by a curve on X we mean a one-dimensional closed subscheme of X whose defining
sheaf of ideals is invertible, or equivalently, an effective divisor with one-dimensional support.

Let D be a divisor on X, and let (f}(D) == (f}x(D) be the corresponding invertible
sheaf. Let E be a curve on X, with exceptional support (cf. § 12). (f)( -E) is the sheaf
of ideals defining E; let (!}E {f}x/{!} (-E). For any coherent (f}x-module Y;;, we set

Y;;(D) = Y;;®~x (f}(D)

Y;;E Y;;® {f)x {f}E •

If ~ is an (f)x..lmodule which is locally isomorphic to (!}E' then the HP(X,~) are
A-modules of finite' length, and we set

degE(~)= x(~) -x( (f)E) = degE(i;(~))

(1) Cf. Remark (16.2).
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where iE : E-?X is the inclusion map (so that i;(~) is an invertible sheaf on E). This
abuse of notation should cause no difficulty. The intersection number (D. E) is defined by

(D. E) == (lO(D) .E) == degE ( lOE(D))

(cf. beginning of § I 2) .

Some basic properties of th~ intersection number are set out below. They will
be used, sometimes tacitly, throughout the sequel.

It will be convenient to write" hP(E) ", " X(E) " in place of" hP ( lOE) ", " X( lOE) ".
Proposition (13.1). - Let D, D1 , D2 be divisors on X, and let E, F be curves on X with

exceptional support:

a) If E is integral, then (D. E) is an integer multiple of hO(E).

b) ((D1 +D2) .E)==(D1 .E)+(D2 .E)

(D.(E F)) (D.E) (D.F).

c) If D is an effective divisor whose support contains no associated point of E, then
(D. E) >0, and (D. E) 0 if and only if the supports of D and E have no point in common.

d) (F. E) == X(E) + X(F) -X(E + F) == (E. F).

Proof. - a), the first equality'in b), and c), all follow easily from a), b) and c)
of Remark 2 at the end of § 12.

Now tensor the exact sequence

o -? l'9( -E) -? l'9x -? lOE -? 0

with the invertible sheaf lO( -F) to obtain an exact sequence

o -? lO(-E-F) -? l'9( -F) -? l'9E ( -F) -? 0

so that the exact sequence

o -? l'9(-F) /lO( -E-F) -? lOx/{() (-E-F) -? (()x/(() (-F) -? 0

can be written as

Tensoring with an lOx-module!e which is locally isomorphic to lOE+F' we get an exact sequence

o -? £'E ( - F) -? 2 -? 2 F -? 0

from which, along with additivity of " degree ", we obtain

(F. E) degE ( lOE(F))
degE(2E)-degE(2E ( -F))

== (degE(2E) X(E)) -X(2E ( -F))
== X(2 E)- (X(2) -X(2F))

I.C.
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In particular, for ~E+F' we get

(5) (F .E) = X(E) +X(F) -X(E +F)

which is the first equality in d). The second follows by interchanging E and F.
Subtracting (5) from (4), we get

o degE(2E)+ degF(2F)-degE+F(eP).

In particular, if % is an invertible (Ox-module, then

degE+F(%E+F) degE(%E) degF(%F)·

For (9(D), this is the second equality in b). Q.E.D.

§ 14. Definition of the sequence.

0=== (r(!Jx. Ei ) === - (C+D. Ei ) = - (C. Et) - (D. Ei)

(D.Ei)==-(C.Ei ), so that C is as desired. Q.E.D.
Let E be the additive group of divisors on X with exceptional support, i.e. divisors

I.e.

As before, let R be a two-dimensional normal local ring, with maximal ideal m,
admitting a desingularization f: X--*Spec(R). Note that every closed point on X is
of codimension two (by Zariski's " main theorem " [EGA Ill, (4.4.8)], for example).
Since X is regular, it follows that everyone-dimensional closed subscheme C of X having
no closed associated points is defined by an invertible {Ox-ideal (i.e. C is a curve on X in the
sense of § 13), and conversely. Thus all the results of § 13 are applicable.

Let El, E2 , ••• , En be the distinct components of the closed fibre, i.e. all the
integral curves on X with exceptional support, so that f-l({ m})red === El +E2 + · · · + En.
The following lemma of Du Val is important:

Lemma (14. I). The intersection matrix ((Ei . Ej )) is negative-definite.
Proof. - It is sufficient (cf. [4; proof of Proposition 2]) to find a curve

C===~ciEi (ci>o) such that ex) (C.E,,)<o for all i and ~) (C.C)<o. In view of
~

Proposition (13. I ) c) , ex) implies that if Ci 0 and cj >0 then Ei and Ej do not meet,
so that ~ Ei is both open and closed inf-l({m}); since f-l({m}) is connected, it

c~=o

follows that Ci>O for all i, and so ~) holds provided (C.Ei)<o for at least one i.
Let r be any non-unit in R, let Vi be the discrete valuation whose center on X is Ei ,

and let C be the curve ~vi(r)Ei. Then r{o(C)~(9x, i.e. r{O(C) (9(-D) where D is
"an effective divisor whose support contains no associated point of C. Moreover there is a

discrete valuation v whose center in R is a height one prime ideal containing r; since f
is proper, the center ofv on X is a one-dimensional integral closed subscheme meeting UEi ,

i

and since v(r»o, this center is part of the support of (!Jxlr(9(C), i.e. the support of D.
Thus D is a curve such that (D. Ei)>0 for all i, with strict inequality for at least one i.
But

n

of the form .~ SiEi with Si E Z, the group of rational integers. Since no non-zero
1=1
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principal divisor has exceptional support, the canonical map E-*Pic(X) is injective,
where Pic(X) ~ H1(X, (O~) is the group of divisor classes on X.

The cokernel of this map is easily determined. , Let

U X-f-l({m})~Spec(R)-{m}.

Then Pic(U) is nothing but the divisor class group of R, i.e. the free group generated by
height one prime ideals in R, modulo principal divisors. The restriction map
p : Pic(X) -* Pic(U) is clearly surjective and its kernel consists of classes of divisors D
on X which become principal on U. But this condition on D means precisely that D
is linearly equivalent on X to a divisor with exceptional support. Thus we have an

exact sequence o-*E-*Pic(X)~Pic(U)-*o

Hom(E,Z)6 : Pic(X) -*E*

Next, for each 1,2, ... , n, let di>o be the greatest common divisor of all the
degrees of invertible sheaves on E i . For each divisor class ~ in Pie(X) we can
define (~. Ei ) to be (D. Ei ) where D is any divisor whose class is ~. We define a group
homomorphism

by setting 1,2, ... , n

for Ll in Pie (X) . The kernel of 6 is the group of divisor classes whose intersection number
with every exceptional curve on X is zero ;we call this group PicO(X). Because of the
negative-definiteness of ((Ei •Ej )) (Lemma (14. I)), the restriction of e to E is injective,
i.e. EnPicO(X) =(0). The cokernel H of this restricted map is seen at once to be the
abelian group with generators et, e2 , ••• , en subject to the relations

n I

j~l d. (Ei · Ej)ej 0 (i I, 2, · · ., n).
J

H is a finite group of order

Finally, let G be the cokernel of e itself. We have then a commutative diagram
with exact rows and columns

o 0

Pic (U) -* H -* G ~ 0

1 1

En PicO(X) = 0

1
o ~ PicO(X) -*

1
o ~ p(PicO(X)) ~

1

Pic(X)

lp

1
6(E)

1
e
-* E* ~ G ~ 0

1 11

o 0

225

29



226 JOSEPH LIPMAN

The definitions of the maps in the last row are self-evident, and the verification ofexactness
is immediate. Thus:

Proposition (14 _2). - With the preceding notation, there is an exact sequence

o-+PicO(X) -+Pic(U) -+H-+G-+o.

We finish § 14 with a sufficient condition for G to vanish.

Lemma (14-3) (1). - Suppose that for every height one prime ideal V in R, the integral
closure of RJv in its field of fractions is a local ring, i.e. RJ:p is unibranch. (This condition
holds, for example, if R is henselian.) If E is any exceptional curve on X, then the restriction
map Pic(X) -+ Pic(E) is surjective.

Before proving this lemma, we deduce:

Proposition (14-4). - If R satisfies the condition of Lemma (14-3), then G=(o), so
that there is an exact sequence

o -+ PicO(X) -+ Pic(U) -+ H -+ o.

Prooj. Let E El E2 En and let Zi: Ei-+E be the inclusion maps.
The exact sequence of abelian groups

n

(1) -+ (0; -+ .IT (0;.
'£.=1 t

has cokernel with at most zero-dimensional support; consequently there is a surjection

H1(X, (0;) -+ H1(X, IJ(O;J = IJH1(X, (O;i)
~ ~

from which we conclude easily that the map

IS surjective.

From the definition of di , it follows that there is an invertible sheaf of degree di

on Ei , and therefore there is an invertible sheaf !ei on E such that z;(.Pi) has degree di

and for j=t=i, z;(.Pi ) has degree zero_ Since.Pi is induced by an invertible sheaf
on X (Lemma (14- 3)), we see that e is surjective, i.e. G (0). Q.E_D.

Now we prove Lemma (14-3).
Since E has no embedded associated point, every invertible sheaf on E comes from

a divisor on E. Because of Lemma (1 1_2), it is sufficient to show that if Q is a closed
point on E, and w is a non-zero-divisor in (OE,Q then there is a divisor D on X whose
support meets E only at Q, and whose local equation at Q (on X) induces w. Let w
be an element of (f)x,Q whose image in (OE,Q is w. We may assume that no Ei is a component

of the divisor (w) on X. (Let 1'1,1'2' · - -, Vr' Vr+l' _. -, Vt be the prime ideals in ({)x,Q

corresponding to those Ei passing through Qwhich are not components of E, the labelling

being such that WEV1' 1'2' - - -, Vr' W~:Pr+l' - - -, Vt; if q is the kernel of the natural

(1) Cf. [EGA IV, (21.9.12)].

226



and

RATIONAL SINGULARITIES

r

surjection {f}x,Q -+(f}E,Q' then we can choose aE q n Pr + t n. · · n Pt, afj::i!:J
1
Pi' and replace w

by w+a.) Write (w)==D+D', where no component of D' passes through Q, and
every component of D passes through Q. Then D is the desired divisor.

To see this, it is clearly enough to show that every prime divisor f!JJ on X other than
El, E2 , ••• , En meets E in at most one point. Let R' be the local ring of such a point on X,
let p' be the height one prime ideal in R' corresponding to f!JJ, and let p == 1" n R.
Then R' ~Rp = R;", and if g: Rp -+ Rp/pRp== K is the canonical map, then
g(R) ~g(R')<K. Since g(R) ~ R/p is one-dimensional and unibranch, the theorem
of Krull-Akizuki [17; § 33.2] shows that the integral closure S of g(R) in K is a discrete
valuation ring, and S is contained in, hence equal to, the integral closure of g(R') in K.
Thus S dominates g(R'). Now if x is a non-unit in g-l(S), then g(x) is a non-unit in S
(otherwise x is a unit in R" (since g(x)=I=o) and g(r/x)=r/g(x)ES, i.e. r/xEg- 1(S));
it follows that the sum of two non-units in g-l(S) is a non-unit. We see then that g-l(S)
is a local ring which dominates R'. Since S depends only on f!JJ, and since there can
be no more than one point on X whose local ring is dominated by g-l(S), we are done.

§ 15. Intrinsic nature of the sequence.

In § 14 we have defined an exact sequence

o -+ PicO(X) -+ Pic(U) -+ H -+ G -+ 0

of groups associated with a particular desingularization X of a normal two-dimensional
local ring R. In this section we will show that the sequence depends only on Rand
not on X.

To this end, let g: X' -+X be a proper birational map with X' regular. For any
divisor D on X there is a unique divisor D' = g* (D) on X' with the property that for
any x' EX', a local equation for D at g(x') is also a local equation for D' at x'; moreover
we have a canonical isomorphism g*({f}x(D)) (f}x,(D'). D' can be represented uniquely

in the form D' = Dlf+F'

where D# is a formal linear combination of prime divisors whose supports are mapped
by g onto curves on X, while the support of F' is mapped into a zero-dimensional subset
of X. D# is the proper transform of D (by g). It is an easy consequence of Proposi
tion (r 0 . 2) b) that:

oc) if C is an exceptional curve on X then

(D'. C#) (D'. C') =(D. C) ;

~) ifF is any curve on X' such that g(F) is zero-dimensional, then F has exceptional support,

(D' .F)=o.

Let E' be the group of divisors on X' with exceptional support and let F be the
subgroup consisting ofdivisors on X' whose support is mapped by g into a zero-dimensional
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subset of X. It is evident that every divisor on X' can be written uniquely in the form
D' +F where D is a divisor on X and FEF; D' +F is principal on X' if and only if F=o
and D is principal on X; and D' +FEE' if and only if DEE. From these facts, we
obtain the following commutative diagram of split exact sequences:

0-+ Div(X)
g*

Div(X') F-+o~

! !
0-+ Pic(X) Pic(X') ~ F-+o

~
t

J J
0-+ E E' F-+o

(where" Div " denotes" Group of divisors on ") and hence the split exact sequence
ga

o ..(- E* ( ) E'* ~ F* ~ 0

Hom(E,Z)
I1

Hom(E', Z) Hom(F, Z)

Lemma (15.1). Let 6: Pic(X)~E* be as in § 14, and let 6': Pic(X')~E'* be
similarly defined. Let ~: F~F* be defined by restricting 6', i.e. ~ ia o6'oi. If Pic(X')
and E'* are identified respectively with Pic(X) E9F, E*Et>F* according to .the above splittings,
then 6' becomes identified with 6Et> ~.

Proof. - The lemma is equivalent to the following four equations:

(i) gao6'og*=6.
(ii) ga o 6' oi = o.
(iii) iao6' og* = o.
(iv) i ao6' oi ~.

(iv) is the definition of~, (iii) is nothing but the relation (D'. F) =0 given in ~)

above, and (ii) says that (F. E') = 0 if FEF, EEE, which is true since (F. E') = (E' .F).
(i) says that for DEDiv(X), EEE, we have (

(6' (D')) (E') == (6(D)) (E).

It is enough to check this for integral E. Then
(D' .Fi ) 0 for all i we have

(6' (D')) (E') ~# (D' .E#)

E# ~niFi' (FiEF), and since
t

228
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(cf. <x) above)
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where d>o is the greatest common divisor of all degrees of invertible sheaves on E,
and d#>o is defined similarly for E#. But since E# is birational over E, the canonical
map Div(E) --+ Div(E#) is surjective (as follows from Lemma (II .2) and the fact that
every locally principal fractionary ideal of a semi-local domain is principal; or
cf. [EGA IV, (2I.8.5)]) and by Proposition (IO.2) b), d#. Q.E.D.

We will also need:
Lemma (15.2). The above map tlJ: F --+F* is an isomorphism.
Proof. - By the Factorization Theorem (cf. Theorem (4- I)) we have

g==gm-==hmohm_ 1o ... oh1 where for rn, hk : X k --+ X k - 1 (Xo==X) is a quadratic
transformation. Let Fk be the gr9uP of divisors on X k ( k <m) whose support has
zero-dimensional image on X, and let tlJk: Fk-+F; be defined as above.

We proceed by induction on m. Just as in Lemma (I5 _I), we can write
Fm = Fm -1 EB F', ~m -== ~m -1 EB tlJ' where F' consists of the multiples of the (unique) integral
curve F on X m whose image on X m - 1 is a closed point, and ~': F'-+F'* is defined by

(tjJ' (F) ) (F) = i (F .F)

where a is the g.c.d. of degrees of invertible sheaves on F. By the inductive hypo
thesis ~m-1 is an isomorphism; so it is enough to show that tIJ' is an isomorphism,
i.e. that (F. F) == ±~. Since hO(F) divides a, this follows from the well-known fact that

(F.F)

(This can be seen - for example as follows: if x is the point on Xm-l which is blown up to give Xm, then F
can be identified with the projective line L over the residue field of x, and then if n is the maximal ideal of eJXm _

1
, x

we have an identification of

(F. F) - --\.~IX~1l:!!'. \ \..'l.

as required. (Alternatively, use Corollary (23.2).) Q.E.D.

-hO(F)

We can now prove the main result in this section by piecing together the preceding
information in the form of various commutative diagrams.

First:
o -+ E ~ Pie(X) Pic(U) ~ 0

g'l cr1 19· cr2 1~~
o --+ E' -+ Pic(X') ~ Pic(U) -+ 0

The commutative square cr2 is obtained by applying the functor " Pie " to

g-1(U) c-+ X'

I~~ Ig

t t
U <=------+ X
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Second:
0 0 0 0

! ! ! !
PicO(X) Pic(X)

6
E* G0-+ -+0

t
o -+ PicO(X') -+ Pic(X')=Pic(X)EBF ~ E'*=E*EBF* -+ G' -+ 0

! !
o o

The fact that the commutative square 0'4 induces isomorphisms of the kernels PicO(X),
Pico(X'), and the cokernels, G, G', follows from Lemmas (15. I) and (15. 2).

Third:

The square with the E's is obtained by putting together 0'1 and 0'4 as shown; the
map from H to H' is defined to be the unique map making 0'5 commute. This cokernel
map H-+H' is an isomorphism for the same reason that G-+G' was.

Fourth:

Of the six faces in the central cube, all but the bottom one ((17) are known to be
commutative; since Pic(X) -+ Pic(U) is surjective 0'7 is also commutative. Similarly
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we find that 0'8 is commutative. The commutativity of 0'6 follows at once from that

of 0'2 and 0'3.

All this " diagramatic nonsense " plus a few extra trivia is summarized in:
Theorem (15. 3). - The diagram preceding Proposition (14. 2) is a contravariant functor

of X as X varies in the category of desingularizations of Spec(R). If g: X' -)O-X is a map
in this category, the corresponding map of diagrams induces an isomorphism of exact sequences

0 0 0 0

J 1 1 1
o -+ PicO(X) -+ Pic(U) -+ H -+ G -+ 0

1 1 1 1
o -+ PicO(X') -+ Pic(U) -+ H' -+ G' -+ 0

1 1 1 1
0 0 0 0

Thus the groups PicO(R) = PicO(X), Pic(U), Hand G and the exact sequence

o -)0- PicO(R) -)0- Pic(U) -)0- H -)0- G -)0- 0

depend only on R and not on X.
Proof. - The only thing left to be said is that in verifying the last assertion, one

should recall that any two desingularizations of Spec(R) are both dominated by a third
(cf. B) in the proof of Proposition (I. 2) ).

§ 16. Formally smooth extensions.

Lemma (16. I). - Let A be a reduced local ring, with maximal ideal rn, such that there
exists a desingularization g: Y -)0- Spec(A). Let B be a local ring, and let <p: A-)o-B be a
local homomorphism such that, with A and B topologized by the powers of their respective maximal
ideals, B is a formally smooth A -algebra (1). Let A' be the integral closure of A in its total ring
offractions TA' and let B', TB, be similarly defined. Then

(i) A' is a finitely generated A-module.
(ii) B is reduced and the projection

g(B) : Z V®A B -)0- Spec(B)

is a desingularization.

(iii) With canonical identifications we have

B = A®AB~A' ®AB f TA®A B~ TB

and then A'®AB==B'.

(1) For our purposes this can be taken to mean that B is flat over A and that B/mB is geometrically regular
over A/m (er. [EGA 0rv' (19.7. I) and (22.5.8)]).
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Proof. (i) Since g is a desingularization it is easy to see that A' ~ r(Y, iVy),
which is a finitely generated A-module.

(ii) To prove that Z is regular it is enough to show that iVz,z is regular for every
closed point ZEZ. We have the cartesian diagram

y *"<__0 __

g

Spec (A)

Z

IrH)
Spec(B)

Let y o-(z). Since g, and therefore g(B)' is proper, g(y)=='t'(g(B)(Z)) m, and so the
residue field k(y) is a finitely generated extension of AIm; since BjmB is geome
trically regular over Ajnt, the fibre

o--l(y) ==k(y) ®AIm BjmB

is regular; and since iVy,y is regular and 0- is fiat, it follows that iVz,z is regular.

The canonical map

induces an isomorphism iVz,cp(w) ~ {!Jw,w for any WEW, so that {f}w,w is regular. Hence
TA(8)AB is reduced, and since B~TA(8)AB (cf. proof of (iii) following) B is reduced.
Finally g(B) is birational [EGA IV, (6. 15.4. I)] and so g(B) is a desingularization, as
asserted.

(iii) Since B is fiat over A, we have a canonical map ~: TA~TB which gives
rise to an injective map TA®AB~ TB; we then obtain the indicated identifications
from the inclusion AfA' f TA by tensoring with B. Moreover one checks that when
r(Y, (!Jy) and r(Z, (!Jz) are naturally identified, as in the proof of (i), with A' and B'
respectively, then ~ induces the map

corresponding to 0-. Finally, since B is fiat over A, r(0-) gives (upon extension of scalars)
an isomorphism

[EGA Ill, (1.4. IS)].

Thus A'(8)AB==B'. Q.E.D.

Remark (J:6 .2 ). - A special case of (16. I) is: if A is a normal local ring admitting

a desingularization, then the completion A is normal. (Take B == A in (iii).) Conversely,

ifA is a two-dimensional local ring such that Ais normal, then the methods ofHironaka [10]
show that A admits a desingularization (since the two-dimensional excellent normal
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local ring A can be desingularized by " modification of the closed point ", and such
a desingularization " descends " to A).

Proposition (16.3). - Suppose that A and B satisfy the hypotheses of Lemma (16. I) and
that furthermore both are two-dimensional (so that mB is the maximal ideal of Band B/mB is a
separable field extension of A/m). If either one of A or B is normal then so is the other, and there
is a natural commutative diagram with exact rows and columns

0 0

1 1
o~ PicO(A) ~ Pic(UA) ~ H(A) ~ G(A) ~ 0

~l ~l yl 1
0 PicO(B) Pic(UB) H(B) ~ G(B) ~o

Moreover if BjmB is a regular field extension of A/m then y is an isomorphism (1).

(The rows of the diagram are the sequences defined in Theorem (15.3), with A, B,
respectively, in place of R.)

Proof. If A is normal then so is B, by (iii) of Lemma (16. I). Conversely if B
is normal then so is A, since, by flatness, B n (field of fractions of A).

Let g:Y-+Spec(A),g(B):Z=Y(B)-+Spec(B), O':Z-+Y, be as in Lemma (16.1),
and let Ey , Ez be the groups of exceptional divisors on Y and Z respectively. Since

g(Bf({mB}) g-1({m} )®A/mB/mB

each integral curve E with exceptional support on Z dominates a unique such curve O"(E)
on Y. We define a homomorphism

by setting, for each integral curve EEEz,

0'1(E) = PEO"(E)

where PE is the integer (depending on E) defined in the following lemma (with F = O"(E),
k=A/m and K B/mB).

Lemma (16.4). Let F be an integral curve proper over a field k. Let K be a field
containing k, and let E be a component of the curve F(K) with projection map 1t: E -+F. Let L
be a finite algebraic extension of k which is a field of definition of E, so that E = D(K) , where D
is a component of F(L) (such L exist). Let n [L: k] and let t be the degree of the function
field ofD over that of F. Finally let dF be the g.c.d. of all the degrees (over k) of invertible sheaves
on F and let dE be the g.c.d. of all the degrees (over K) of invertible sheaves on E. Then

tdFp=-
ndE

(1) Cf. correction at the end of this paper.
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is an integer, and for every invertible sheaf cA on·F we have

cAoreover if K is a regular extension of k then dE == dF and pIe).

Proof. - Let 7t1 : D~F be the projection. I t follows from Proposition (10. 2) b)
that

where " degn " is relative to L. Since E == D(K} and degree IS defined in terms
of cohomology groups, we have

degE ( 7J:*cA) == degn (1t~Jt).

Thus I * n * I
-d degE (7tcA)--d degn (1t1cA)==p·-d degF(cA)

E n E F

as asserted. To see that p is an integer, just take cA to be an invertible sheaf of degree dF.

If K is a regular extension of k, then we can take L - k so that n == t == I. Since p

is an integer, we need only show now that dF divides dE. Let F be the normalization
ofF in the field offunctions ofF, and let E F(K). Then E is birational over E [EGA IV,
(6. IS.4. I)] so that dF dF and dE==dE (cf. end of proof of Lemma (IS. I)). Let ap/k

be the g.c.d. of all the field degrees [k(x): k] as x runs through the closed points of F,
and let 0E/K be similarly defined. Since the group of divisors on a curve is generated
by effective divisors with one-point support (Lemma (I I .2)) and since F is regular,
we see that ap/k dp( == dF) and that aE/K divides dE). But since K is a regular
field extension of k, we have aF/k == aE/K • Q.'E.D.

Returning to the proof of Proposition (16.3), let al be as above and let

a~: E;==Hom(Ey , Z)~Hom(Ez, Z)==E;

be the adjoint homomorphism. Let ay: Pic(Y) --?E;, 6z : Pic(Z) ~E; be defined
as in § 14. Then the diagram

(6)

Pic(Y) Pic(Z)

6z

---'---~) E;
or

is commutative. Indeed the commutativity means precisely that: if E is an integral curve

(1) Cf. correction at the and of this paper.
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on Z with exceptional support and F O"(E) is the corresponding curve on Y, then for
any invertible sheaf.P on Y, we have

1 r
d(cr*(2').E)=PE.-d (.P.F)

E F

and this follows at once from Lemma (16. 4).
In view of the definition of the rows (§ 14), it is now completely straightforward

to see that a commutative diagram exists as asserted in Proposition (16. 3). To see
that ~ (and hence tX) is injective, we need only note that if I is an ideal in A such that IB
is a principal ideal of B, then I is principal in A (since B is faithfully flat over A). To
see that ,y is an isomorphism when K isa regular extension of k, it is, enough (because
of (6)) to check that 0"1 is an isomorphism, and this too follows from Lemma (16.4).
This completes the proof.

Remark. - It can be shown that if A is henselian and B==A, then tX and ~ are isomor
phisms. (We will not need this result.)

Proposition (16.5). Let A, B be as in Proposition (16.3). If eithp,r one of A or B
is normal then so is the other, and then A has a rational singularity if and only if B has a rational
singularity. I "

Proof. - The assertion about normality is proved at the beginning of the proof
of Proposition (16. 3). If A has a rational singularity then there is a desingularization
g : Y ~Spec(A) with H 1(y, lDy ) o. Then g(B): Z Y(8)AB ~ Spec(B) is a desingu
larization of B (Lemma (16 _I)) and since B is flat over A,

H 1(Z, (!}z) H 1(y, lDy ) B o.

Thus B has a rational singularity.
Suppose conversely that B has a rational singularity. Assume" for .purposes of

induction on n, that there exists a cartesian diagram

Un hn Un(B)

o

t
Spec(A) I+- Spec(B)

where gn is, proper and hn is a product of quadratic transformations. (For n 0, we
can take Yo==Spec(A), Zo=~pec(B).) Note that Zn is normal (Proposition (8.1)).
Then

(Proposition (1.2)) and since J3 is faithfully flat over A, H1(yn, lDyn) o. Also if Zn is

regular, then so is Y n (because O"n is faithfully flat, cf. [EGA 0IV' (17.3-3) (i)]), and
then we are done.

235



JOSEPH LIPMAN

If Zn is not regular, blow up a non-regular closed pointy on Y n and let Y n + l be
the resulting surface. Since (In is flat, and since the fibres of ern over the closed points
of Yn are regular zero-dimensional schemes (cf. proof of Lemma (16 _I)), we see that

Zn+l == Yn+1XYnZn== Y n + 1®A B

is obtained from Zn by blowing up the finite set of closed points on Zn which lie over y.
None of these points is regular on Zn' otherwise, as above, y would be regular on Yn.
Continuing in this way, we construct Y n+2 , Zn+2' Y n+3, Zn+3' _- _. But for sufficiently
large N, ZN must be regular (cf. proof of Theorem (4- I)). This completes the proof.

§ 17- Applications: finite divisor class groups; factorial henseUan rings.

[EGA Ill, (4- 1 - 7)]H l (X, (Ox) A ==~ H l (X, (OXr)

r>O

We maintain the notation of § 14.
Proposition (17 -I). If R has a rational singularity then its divisor class group Pic(U)

is finite. If moreover R satisfies the condition of Lemma (14- 3) (in particular, if R is henselian)
then Pic(U) ~H.

Proof. - Theorem (12_ I) (i) (along with Proposition (I _2), 2)) shows that if R
has a rational singularity then PicO(X) (0). Since H is finite, the conclusion follows
at once from Propositions (14-2) and (14-4). Q.E.D.

Corollary (17 _2). - The following are equivalent:

(i) R has a rational singularity and H (R) == (0).
(ii) The henselization R* of R has a rational singularity, and R* is factorial.

(iii) The completion R of R has a rational singularity, and R is factorial.

Proof. Proposition (16.5) (with A R, B R* or R) shows that either every

one or no one of R, R*, R, has a rational singularity. Similarly, Proposition (16.3)

gives H(R)==H(R*)==H(R). Finally, by Proposition (17-1), R* (respectively ft.) IS

factorial if and only if H(R*) (respectively H(R)) is trivial. Q.E.D.

(17. I) has a partial converse:
Proposition (17-3). - Let R be as in Lemma (14-3), and assume further that R has

an algebraically closed residue field. If Pic(U) is finite then R has a rational singularity.
Proof. - IfPic(U) is finite then so is PicO(X) (Proposition (14.2)). Let 0 be any

curve on X such that Orad El E2 En. Let PicO(C) be the subgroup of Pic(C)
consisting of the classes of those invertible sheaves 2 on C such that degEi(e;(2)) 0

for all i==I,2, . _., n (where ei: Ei~C is the inclusion map). Lemma (14-3) shows
that PicO(C) is the image of PicO(X) under the canonical map Pic(X) ~ Pic(C), and
so PicO(C) is finite. The proof of Complement (11.3) works equally well if one assumes
only that PicO(C) is finite (instead of PicO(C) 0 as in Complement (I 1 .3)) ; the conclu

sion is that H l (C, (Oc) = o.
For any integer r>o let X r be the subscheme of X defined by the ideal mr(Ox.

Since
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it will be sufficient to show that H1
( <Ox,) = 0 for all r. We cannot use the result of

the previous paragraph directly since X r may not be a " curve on X " in the sense
of § 13. However, there is such a curve Cr which is a closed subscheme of X, and
which is such that the inclusion Cr -+X r is an isomorphism outside the (at most
zero-dimensional) set of" embedded" associated points of X r • It follows at once that
H1 (<Ox,) ~Hl(<OCT)=O. Q.E.D.

From Propositions (17 -1) and (17 -3) we obtain:
Theorem (17 -4). - Let R be a two-dimensional normal henselian local ring with an

algebraically closed residue field, such that there exists a desingularization f: X -+ Spec(R) (1).
Then the divisor class group of R is finite if and only ifR has a rational singularity. In particular,
R is factorial if and only if R has a rational singularity and the group H defined in § 14 is trivial.

As a further application we prove a special case of a conjecture of Samuel.
Proposition (17 -5). Let R be a two-dimensional normal local ring having a rational

singularity and such that the group H H(R) is trivial. Let R be the completion of R. Then

the power series ring R [ [Tl' T2, _- _, Tn]] is factorial for every n> 0 (2).
Proof. - We may assume that R=R and that R is factorial (Corollary (17-2)).

A theorem ofScheja [Ig; Satz 2] states that ifS is a complete factorial local ring of depth 3,
then any power series ring over S is also factorial. Thus it will be enough for us to show
that R [[T]] is factorial with T = T 1. Let m be the maximal ideal of R. By a theorem
of Ramanujam-Samuel [EGA IV, (21 _14- 1)] it is even sufficient to show that the
ring R[[T]]p is factorial, where p is the prime ideal mR[[T]].

Now B R[[T]]:p is flat over A= R, mB is the maximal ideal of B, and the
residue field B/mB is the field offractions of (A/m) [[TJ], which is a regular field extension
of A/m. Consequently (Proposition (16.3)) H(B)=H(A)=(o). Moreover B has a
rational singularity (Proposition (16.5)). Hence, as in (17 _1),

Pic(UB)~H(B) 0

i.e. B is factorial. Q.E.D.
(Actually it will emerge in § 25 that the rings R to which Proposition (17. 5) applies

are all of the type treated by Scheja in [19]; hence - a posteriori - the statement of
Proposition (17 -5) is not new.)

v. -UNI<!UE FACTORIZATION OF COMPLETE IDEALS

It is easily seen that any complete ideal in a noetherian normal ring can be expressed
as a product of simple complete ideals, i.e. of complete ideals which are not themselves
the product of two other non-unit ideals. In this part V, we study questions concerning
the uniqueness of such factorizations in a two-dimensional normal local ring having a

(1) Cf. Remark (16.2).
(2) (Added in proof) Grothendieck has indicated in correspondence that the converse also holds .
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rational singularity. The main result (§ 20) is that such uniqueness holds if and only
if the completion of the ring is factorial.

In § 2 I, dropping the assumption of " rational singularity", we study the condition
of unique factorization in the sense of the * product introduced by KrulI, namely for
any two ideals I, J, 1*J is the completion of IJ. The results obtained generalize a number
of those in [25; Appendix 5].

As in IV, R will be a two-dimensional normal local ring with maximal ideal rn,
f: X -)- Spec(R) will be a desingularization with X=t=Spec(R), and El, E2 , ••• , En will
be the components of the closed fibre 1-1

( { m}).

§ 18. Correspondence between com.plete ideals and exceptional curves.

n

As before we denote by E the group of divisors on X of the form 2: niEi with
i=1

rational integers nit. Let E# be the set of divisors DEE, D=t=o, , such that (!)(-D)
is generated by its sections over X. Let E+ denote the set of divisors DEE, D=i=O,
such that

(lO( -D). E.J>o I, 2, ... , n)

i.e. (D.Ei)<o for all i 1,2, ... , n. For these two sets we have:

(i) E#~E+.

(This follows from the trivial part of Theorem (12. 1) (ii) .)

(ii) If D=~niEiEE+, then ni>o for all i, i.e. D is a curve on X.
~

(This follows from the negative-definiteness of the intersection matrix
(Lemma (14. I)): set D =A-B where A, B are curves without common components;
since ((A-B).B)<o and (A.B»o, we must have (B.B»o, whence B=o.)

(iii) Both E# and E+ are closed under addition: if D1 and D 2 are in E# (respec
tively E+) then so is D1 +D2 •

Now for any D 2:n.E. in E#, let. ~ ~
1.

Since D is a curve, (!)( -D) ~ (!)x and hence

ID~r(X, lVx)=R

i.e. ID is an ideal in R. By definition of E#,

IDlOx = lO(-D).

ID =f: R since D =F o. An element r of R is in ID if and only if vi(r) ni for i = I, 2, ... , n,
where Vi is the discrete valuation corresponding to Ei ; thus ID contains a power of m.
Moreover if x is in the completion of ID, then we see at once (by remark c) of § 5, for
example) that vi(x) ni for all i, so that XE ID. In other words, ID is an m-primary
complete ideal in R such that IDlOx is invertible.
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Conversely, if I is any complete m-primary ideal in R such that IlVx is invertible,
then

IlVx lV(~DI)

where DIEE#, and, by completeness (cf. Proposition (6.2))

1= r(X, lV(-DI )).

Thus the association of ID to D and DI to I sets up a one-to-one correspondence between members
of E# and m-primary complete ideals in R which generate invertible {!}x-ideals.

For any two ideals I and J in R, we set

I *J = completion of IJ

(cf. [12]). If I', J' are the respective completions of I and J, then

I' *J' I*J.

(To see this, we need only prove that I']' ~I*J; this can easily be done directly, or by
using the methods of Proposition (6.2). Altern~tively, one can use valuation theory
as in [25; Appendix 4, Proposition I e)].)

It follows immediately that if K is a third ideal then

(I*J)*K I*(]*K) completion of I]K.

If I and] are both m-primary and complete, and such that IlVx, ] lVx are invertible,
then the same is true of 1*]; in fact

because, being complete, r(X,I]{!}x) contains 1*], while (Proposition (6.2))

1*] r(X, (I*])lVx)~r(X,IJ{Ox).

Thus addition in E# corresponds to the * product for ideals.

Let K be' an ideal of the form 1*J where I and] are proper ideals in R. As above,
K = I'*J', so we may assume that I and J are complete. If furthermore K = 1*J is
m-primary, then so are both I and J (for otherwise IJ would be contained in a prime
ideal :p =f: m, and since, clearly, :p is complete, this would mean I*J e:p). Also, if
K(Ox (I *J) {Ox is invertible, then so is IJ(Ox (in fact in this case, as in the proof of
Proposition (6.2), IJ(Ox = (I *J) (Ox) so that both I(Ox and J {Ox are invertible.

We say that a complete ideal K in R is *-simple if K =1= 1*J for any two proper
ideals I, J in R. We say that an element D ofE# is indecomposable if D cannot be expressed
as a sum of two elements of E#. It follows from the preceding paragraph that in the
above correspondence between members of E# and m-primary complete ideals, the
indecomposable elements of E# correspond precisely to the *-simple m-primary complete
ideals which become invertible on X.

We say that unique decomposition holds in E# if every element in E# is in a unique
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way a sum of indecomposable elements of E#. The preceding discussion shows that
unique decomposition holds in E# if and only if each m-primary complete ideal in R which generates
an invertible (!Jx-ideal, is in a unique way a * product of *-simple complete ideals.

Finally, let us observe that every ideal I in R is such that I{!Jz is invertible for some
desingularization g: Z ~ Spec(R). (Choose Z so that Z dominates the surface W
obtained by blowing up I, cf. B) of Proposition (1.2).)

We have established:

Proposition (18. I). - Unique factorization, in the sense of the * product, into *-simple
complete ideals, holds for complete m-primary ideals in R if and only if unique decomposition holds
in E# == E~ for all desingularizations f: X ~ Spec(R). (At least one such X is assumed to
exist.)

We can define" unique decomposition" in E+ just as in E#. Then:

Corollary (18.2). - If R has a rational singularity, then unique factorization into simple
complete ideals, in the sense of the usual product of ideals, holds for m-primary complete ideals in R
if and only if unique decomposition holds in E+ =Ei for all desingularizations f: X ~ Spec(R).

Proof. - If R has a rational singularity then the * product for complete ideals is
just the usual product (Theorem (7. 1)), and E# == E+ (Theorem (12 . 1)). Also,
if K is complete and K IJ, then K==I*J; and conversely, if K==I*], then
K=I'*J' I']' where I', J' are the respective completions of I and J. Thus K
is *-simple if and only if it is simple in the usual sense. Q.E.D.

§ 19. Relation with the group H.

With notation as in § 18 we investigate further the meaning of unique decompo
sition in E+. The main technical result is:

Proposition (19, I). - Unique decomposition holds in E+ ==E*" for all desingularizations
f: X ~ Spec(R) if and only if the group H introduced in § 14 is trivial.

Proof. - We first consider a fixed desingularization f: X ~ Spec(R). For
each i == 1, 2, ... , n let ai>o be the greatest common divisor of the integers

(El' Ei), (E2 • Ei), · · ., (En· Ei)·
Lemma (19.2). For the preceding desingularization f: X ~ Spec(R), unique decompo-

sition holds in E+ if and only if there exist curves D 1 , D2 , ••• , Dn with exceptional support on X
such that, for all i, j,

(Kronecker aij )

If such curves exist, then they are all the indecomposable members of E+.

Proof of Lemma (19.2). - Suppose that such curves Di exist; by definition DiEE+.

For any D ~rjEj in E+, we have, for i==I,2, ... ,n,
j

Hence

240

(D. Ei) ==-niai

«D-~njDj).Ei) (D. Ei)-ni(-ai) 0
j



RATIONAL SINGULARITIES

so that, by definiteness of the intersection product (Lemma (14. 1)),

D- 2:n.D. == 0, i.e. D == 2:n.D..
j J j j j J

If also D ~mj Dj , then
J

I.e.

(i===I,2, ... , n)

so mi==ni for all i. Thus unique decomposition holds in E+, .and D 1 , D2 , ••• , Dn are
all the indecomposable elements in E+.

Suppose, conversely, that unique decomposition holds in E+. We first observe
that there cannot be more than n indecomposable elements in E+. Otherwise there
would be a relation

(Di . Ej) == -o~ 0ij

(any indecomposable summand of Bi will do). By the previous paragraph, every
element in E+ must be a linear combination of D1 , D2 , __ ., DIP with integer coefficients,
and therefore o~ divides all the integers {(C _Ei) ICEE+}. We will find a curve CiEE+
such that (Ci - Ei ) === -Oi. Since 0i divides o~, this will prove that o,~

There exist integers Cij such that ~cij(Ej'Ei ). If M is any sufficiently
large positive integer, n J

(Ai indecomposable, ri integers, ro>o) and so for r>max(lr1 1, Ir2 1, ... , ITnl) we
would have roAo+rA1 + ... +rAn ==(r1 +r)A1 +_. _+(rn+r)An contradicting unique
decomposition.

Now there exist elements BiEE+ (i 1,2,. __ , n) such that (Bi - Ej ) 0 if i
in fact, if (bij ) is the inverse matrix of ((Ei _Ej ) ), and N is a negative integer such that Nbij

n

is an integer for all i, j, then setting Bi ~ NbikEk we have (Bi . Ej ) NOij <0. It
k=l

follows that there is an indecomposable element Di of E+ and a positive integer o~ such
that

is as required, and the lemma is proved.
Returning now to Proposition (19- 1), and referring to the definition of H (§ 14)

we note that the triviality of H means that for any X as above, there exist elements D~

of E (i==l, 2, ... , n), such that, for all i,j,

(D~ _Ej ) -djoij

where, as in § 14, ~ is the greatest common divisor of all the degrees of invertible sheaves
on Ej • Such D; are, by definition, members of E+. Since obviously ~ divides OJ'
we see by Lemma (19 _2) that if H is trivial, then unique decomposition holds in E+

for all X.
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** *
To prove the converse, it will now be sufficient to show that there is at least one X

on which ~ == 'Oi for all i === I, 2, . _ ., n.
To begin with consider a commutative diagram

X g:. Y

\/r
Spec(R)

of proper birational maps, with X and Y regular, and an integral curve E on X with
exceptional support. Let d(E), 'O(E) be defined in the obvious way, i.e. d(E) is the
greatest common divisor of all the degrees of invertible sheaves on E, and 'O(E) is the
greatest common divisor of all the integers (D. E), where D is a divisor on X with excep
tional support.

Suppose first that F === geE) is a curve on Y; then E is the proper transform of F
on X. As we have seen (cf. proof of Lemma (IS- I)) d(F)===d(E). Furthermore 'O(E)
divides 'O(F), because there is a divisor D on Y with exceptional support such that
(D.F) 'O(F); and then we have (D'.E)=='O(F) where D'==g*(D) (cf. §IS). It
follows for example that if 'O(F) == d(F), then 'O(E) divides d(E) and so 'O(E) == d(E).

Suppose next that geE) is a single point on Y. Then '0 (E) == d(E) ==hO(E). In
fact, by the factorization theorem (Theorem (4 _I)) g factors as

X Ul Y U2 Y U3 Y
~ l~ 2~

where gl is such that gl(E) is a curve on Yl' isomorphic to E, and g2(gl(E)) is a single point P
on Y2 such that g2 is the map obtained by blowing up P (so that gl(E)==g2 l (P)). Now,
as in the proof of Lemma (I S. 2), we have

(gl(E) ·gl(E))==-hO(gl(E))

and so o(gl(E)) divides hO(gl(E)). But clearly hO(gl(E)) divides d(gl(E)). Hence

o(gl(E)) == d(gl (E)) == hO(gl(E)).

By the preceding remarks (with F ==gl(E)), we conclude that:

o(E) == d(E) d(gl(E)) == hO(gl(E)) == hO(E).

Now let h: Z ~ Spec(R) be some desingularization, and let G be an integral
curve on Z with exceptional support.

Lemma (19.3). - Let il be a divisor on G. Then there exists a proper birational map
h : Y -+Z, with Y regular, such that, if F is the proper transform of G on Y and j : F -+G is
the induced map, then j*(il) is the restriction to F of a divisor D on Y with exceptional support.

Remark. The existence of X with di == '0,; for i I, 2, ... , n can now be shown
as follows: let G1 , G2 , •• _, Gm be all the integral curves on Z with exceptional support,
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let G G1 , and choose Ll in Lemma (19-3) so that Ll has degree d(G1) on G1 ; if Y==Y1,

F F l are as in Lemma (19.3), then J*(Ll) has degree d(Gl ) d(Fl ) on F l , and
consequently a(Fi ) == d(Fl ); similarly we can find Vi' Fi with ,a(Fi ) == d(Fi ) for
i == 2, 3, .. -, m; then if X is a desingularization of Spec(R) which dominates
Yi , Y2' . _., Y m , the discussion preceding Lemma (19-3) shows that X is as desired.
(Such a desingularization X exists, as can be seen by letting W be theJoin ofYl , Y2 , • • ., Ym

(cf. § 8) and applying B) of Proposition (1. 2)).

ProofofLemma (19. 3). - Let Ll', Ll" be divisors for which such y', D', resp. Y", D",
can be found. Let Y be a desingularization dominating Y' and V':, let F be the proper
transform of G on Y, and let D~ (resp. D~') be the inverse image of D' (resp. D") on Y.
Then clearly D~ D~' induces on F the inverse image of Ll' d" .

Hence, in view of Lemma (1 1. 2), we may assume that Ll is an effective divisor
with support at a single point P of G. Let x be a non-zero element in (OG ,P defining d,
and let x be an ,element of (!)z,p whose image in (OG,P is x. The divisor (x) of x on Z
has the form

(x) C C'

where each component of C, and no component of C', passes through P. We will
choose h: Y~Z so that the proper transform [C] on Y of the divisor C does not meet F
at any point of h- 1(P). Then we will have

h*(C)==[C] D+D'

where D is such that the image under h of its support is the point P, while the image
under h of the support of D' does not meet P. Since C induces on G a divisor Ll + Ll',
with P~supportof L1' , h*(C) induces j*(d) +j*(Ll'), the support ofJ*(Ll) being contained
in h- 1(P), while the supportofJ*(Ll') does not meet h-i(P). It is therefore evident that D
is a divisor with exceptional support inducing j*(A) on F, as desired.

We obtain Y as follows. Let Vo be the discrete valuation corresponding to G,
and let Vi' V2 , ••• , Vr be the discrete valuations corresponding to the components of C.
Note that

for i>o.

for i>o

By blowing up, we can find W dominating Z such that the sheaf (x, t)(Ow is invertible.
Then we can find a regular Y dominating W. What remains to be shown is that for i>o
the center of Vo on Y does not meet the center of Vi on Y, i.e. there is no po~nt y on Y
such that Vo and Vi are both non-negative at (!Jy,y. But for any y on Y, either x/t or t/x
is in Oy, y' and since

for i>o
we are done.
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§ 20. The Blain theoreBl.
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NA-(D1.+ D2+·· ·

Theorem (20.1). - Let R be a two-dimensional normal local ring, with maximal ideal m,
having a rational singularity. Let R be the completion of R, and let R* be the henselization of R.
The following conditions are equivalent:

I) In R, factorization of m-primary complete ideals into simple complete ideals is unique.
I') In R, factorization of complete ideals into simple complete ideals is unique.

2) R is factorial.
2') R* is factorial.

Proof. - We have already seen (Corollary (17 0 2)) that 2) and 2') are each equi
valent to the triviality ofH(R), and so is I) (Corollary (18.2) and Proposition (1901)).
I') trivially implies I). Conversely, the triviality of H(R) implies that R is factorial
(since Pic(U) ~H, cf. Proposition (17. I)) from which it is immediate that every complete
ideal is in a unique way of the form PI, where P is a principal ideal and I is an m-primary
complete ideal; it follows at once that I) implies I'). Q.E.D.

Remarks. - I. Let R be any two-dimensional normal local ring. If R has an

algebraically closed residue field, then the condition that R is factorial implies that R has

a rational singularity. (Theorem (17 0 4), and note that R, being excellent, can be
desingularized.) Hence also R has a rational singularity (Proposition (16. 5)).

2. Any two-dimensional regular local ring R satisfies the conditions of
Theorem (20. I). In § 25 we describe quite explicitly the non-regular R which satisfy
these conditions.

§ 21. SODle consequences of unique *-factorization.

With notation as in § 18, we investigate further the condition of unique *-factoriza
tion of m-primary complete ideals into *-simple complete ideals (cf. Proposition (18. I)).

Lemma (2101). For a fixed desingularization f: X ~ Spec(R), unique decomposition
holds in E~ if and only if (i): unique decomposition holds in E +, and (ii): E~ E +.

Proof. We need only show that if unique decomposition holds in E~, then E+ fE~.

We first remark that by negative definiteness, there exists D in E such that (D. Ei)<o for
all i, and then by Theorem (12. I) (iii), lO(-D) is ample. Consequently, given D'EE,
there exists an integer N such that both ND and D' ND are in E# ; in other words,
E~ generates the group E. Since E is a free abelian group of rank n, there must therefore
be at least n indecomposable elements in E#. But, as in the proof of Lemma (19. 2),
unique decomposition implies that E~ has at most n indecomposable elements. Thus
there are precisely n such elements, which we may name D1 , D2 , ••• , D n , and these form
a free basis of E. n

Now suppose that A .~ tiDi is such that -A is ample. If N is a suitably large
~=1

positive integer, then

244



RATIONAL SINGULARITIES 245

u'
0-+ (Oc ~ 2' -+:%" -+ 0

Since every element in E# is of the form ~niDi with all ni> 0, we conclude that
~

t1 , t2 , • • ., tn are all >0.
Finally, if BEE+, B=~SiDi' then

'It

because (B.Ej)<o and (Di.Ej)<o for all i, with (Di.Ej)<o for some i (since
(D.Ej)<o (D as above) and D1 , D2 , ••• , Dngenerate E). Hence (Theorem (12. I) (iii))

~(Si I)Di is ample, and so, as we have just seen, Si 1>0 for all i. Thus Si>O
'l-

for all i, and therefore B is in E#. Q.E.D.

We will need the following elementary lemma.

Lemma (21.2). Let A be a local ring, let f: X -+ Spec(A) be amapoffinite type, and
let C be a one-dimensional integral closed subscheme ofX with exceptional support (cf. § 12). Let 2
be an invertible sheaf on X, let S = EB Sn be a graded A-algebra, and let tJ; : S -+ EB r(X, 2@n)

n~O n~O

be a homomorphism of graded A-algebras with associated map r: G(~) -+ Proj(S) (cf. [EGA 11,
§ 3-7]) such that G(tJ;)nC is not empty. Then (2.0»0 and (2.0)=0 if and only
if 0 ~G(~) and r(0) is a single point.

Proof. Let Q be a point in r(C n G(t.lJ)). For some n>o there is an element
tES n such that QESpec(S{t)), so that C meets r- 1(Spec(S(t))) X u where u ~(t)

(cf. [EGA 11, (3.7.3)]). If 2'=i~(2®n), where ic : C-+X is the inclusion map,
then u induces a section u' of 2' over C such that Cu' = C n X u =t= 0; consequently we
have an exact sequence

where Supp(ff)=C-Cu' IS of dimension <0. Thus

n(2.C) degc(2')=x.(2') X((Oc)
=X(:%")
-hO(:%") >0.

For (2.0)=0 it is necessary and sufficient that Supp(:%") be empty, i.e. O,£Xu •

This is certainly the case if O.£G(~) and r(O) is a single point ,(necessarily Q). Conver
sely, if Cf.Xu , then Cf.G(~), and r(O) is a closed subscheme of the affine scheme
Spec(S(t)), with r(O) proper over the closed point of Spec(A); this implies that r(C)
is a single point. (Alternatively, if PEr(C), P =t= Q, then, assuming P to be closed, as
we may, we could choose t so that P$Spec(S(t)), i.e. C 1: X u .) Q.E.D.

Let R be as usual. For any ideal I in R, denote by W1 the normalization of the

scheme obtained by blowing up I, i.e. W1 Proj( EB In), where In is the completion
n~O

of In. Note that W 1 is of finite type over Spec(R) (Corollary (6.4)).
Proposition (21.3). - (i) If unique *-factorization holds for m-primary complete ideals

in R, then for any *-simple m-primary complete ideal I, the fibre on W1 over the closed point of
Spec(R) is irreducible.
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(ii) When the hypothesis of (i) holds, if we denote by VI the discrete valuation of the quotient
field K of R whose center on WI is the reduced closed fibre, then the association of I to VI sets up
a one-one correspondence between *-simple m-primary complete ideals and valuations of K which
dominate and are residually transcendental over R.

Proof. To say that the closed fibre on W I is irreducible for all I as above is
to say:

(i)' Let f: X -+ Spec(R) be a desingularization, and let D be an indecomposable element
of E# = E~; then (D .E) = 0 for all but one of the integral exceptional curves E on X.

(Proof. As in § 18, for any such D we ~ave {f}( -D) IlPx for some I as above,
and conversely for any such I, there is an X such that I{f}x {f}( -D), where D is an
indecomposable element of E#=E~. Fix a corresponding pair I, D, and set ~=I{f}x.

As in Lemma (6.3), let

In Lemma (21.2), take S = EB r(X, ~®n), and take ~ to be the identity map, so that
n.2,O

G(~) = X, since 2 is generated by its sections over X. r is proper and birational, hence
surjective, and so the closed fibre on W I is r(f-1 {m}); also, since W I is normal, any one
dimensional integral closed subscheme of W I is the image under r of a unique integral
curve on X. Thus by Lemma (2 I . 2), the closed fibre on W I is irreducible if and only
if (2.E)=0 for all but one E, i.e. (lP(-D) .E)= -(D.E)=o for all but one'E.)

By Proposition (18. I), Lemma (2 I . I), and Lemma (19. 2), unique *-factorization
implies condition (i)'.

(Remark. - Since E# generates E, one finds, using Lemma (19.2), that (i)' implies
unique decomposition in E+. ,Thus if E+ always equals E# - which is the case, for
example, when R has a rational singularity (Theorem (12. I)) - then (i)' is equivalent
to unique *-factorization).

(ii) If I and] are distinct *-simple m-primary complete ideals, and f: X -+ Spec(R)
is a desingularization such that I{f}x, ] {f}x are both invertible, then I{f}x, ] (!)x are distinct
indecomposable elements of E~ = E~; hence if El (resp. E J) is the unique integral
curve with exceptional' support on X such that (l(!)x.EI) =1=0 (resp. (](f}x.EJ) =1=0)
then E1=I=EJ (cf. Lemma (19.2)). However, from the proof of (i) it is clear that El
(resp. E J ) is the center of VI (resp. vJ ) on X. Thus VI =1= VJ •

Now if V is a valuation dominating Rand residually transcendental over R, then
the center of V on some regular X is an integral curve E; for instance if r1 , r2 in Rare
such that v(r1 /r2) >0 and the residue field of r1/r2 is transcendental over the residue field
of R, then we can choose any X on which the ideal (r1 , r2){f}x is invertible. For such
an X, there is an indecomposable element of E~, say I(!)x, where I is a *-sirnple
m-primary complete ideal of R, such that (I{f}x.E) =1=0. Then, as above, the center
of V on W I is the reduced closed fibre; in other words v=vr • Q.E.D.

We continue to assume that *-factorization in R is unique. The next proposition
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describes a " reciprocity" relation among *-simple m-primary complete ideals. Let I, VI'

be as in Proposition (21 -3). If f: X ~ Spec(R) is a desingularization such that I(Ox
is invertible, and El is the center of VI on X, then I(Ox is an indecomposable element
of E~= Ei , and § 19 shows that (IlOx * El) = dI , where dI is the greatest common
divisor of degrees of invertible sheaves on El. Note that dI does not depend on the
choice of X (cf. proof of Lemma (15 _1)).

Proposition (21.4). - Suppose that unique *-Jactorization holds for m-primary complete
ideals in R. Let I and J be two *-simple m-primary complete ideals. Then, with the notation
of the previous paragraph, we have

Proof. Let f: X ~ Spec(R) be a desingularization such that both I(Ox and J(Ox
are invertible. Let El, E2 , ••• , En be the components off- 1({m}), and let V1 , V2 , • • ., Vn
be the corresponding discrete ,valuations, the numbering being such that v1 = VI' V2 = VJ •

n n

n

(D1 • D2) = ~ vi(J) · (D1 • Ei)
1

n

=V1(J) · (D1 * El) + .~ Vi (]) • 0
~=2

--dI·VI(J)·

Similarly, (D1 .D2) -dJ.vJ(I). Q.E.D.

The final result in this section is to the effect that " the transform of a simple
complete ideal is simple ". To be more precise, let f: X -+ Spec(R) be a desingula
rization, let I be an m-primary complete ideal in R, and let f be the completion of I (Ox •
(Note that f=I(Ox ifR has a rational singularity, cf. Proposition (6.5).) The transform
oj'I on X is defined to be the ideal f' = ff- 1 (cf. remarks preceding Proposition (3 * I)).
f' is complete since multiplication by invertible lOx-modules does not affect completeness
(Remark e), § 5).

Given two lOx-ideals f, .Yt we will say that f divides .Yt if there is an (Ox-ideal :lI'e
such that f£1=.Yt.

Proposition (21. 5). ~ Assume that unique *-Jactorization holds for m-primary ideals in R.
Let f: X ~Spec(R) be a desingularization, let I be a *-simple m-primary complete ideal in R
and let f' = ff- 1 be the transform of I on X (cf. preceding remarks). If / and .Yt
are complete coherent (Ox-ideals such that f' divides / :Yt, then either f' divides / or f'

divides :Y{'.

Proof. - Let f.Yt=J'Yt'. Let /'=//-i, :Y{"=.Yt:Yt-t, :lI'e'=:lI'e;e-l. We see
easily, since X is regular, that /'ff' ~J'£1' and consequently we may assume that

f = /', ;j("=:Ye', £'=£". Then (Ox/ / has zero-dimensional support, so that for
sufficiently large n, mnlVx~/. Similar remarks apply to :Ye, £1, ...f'. Since
(f-1)-12.f2.IlOx and I is m-primary, we see that also /.(f- 1)-12.mn lOx for large n.
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Now, as in the proof of Lemma (21. I), there is an m-primary ideal L such that
.P=L(!Ix is an ample invertible (!Ix-ideal. For any p>o we have

Jp:tt'p=J~p

where Jp J. (J- 1)-1.'pP

:Ytp=:Yt'pP

:Y? =;ytJ'p2P•
P

Note that Jp, :Yt
P

' ~p all contain mn{Ox for sufficiently large n (depending on p). It
will be enough for us to find a p such that J divides either Jp or :Yt

P
' since then by

splitting off invertible factors as in the beginning of this proof, we can conclude that J'
divides either J or :Yt.

We choose p large enough so that Jp, :Yt
P

' ~p are all generated by their global
sections. According to the above remarks, J = r(X, Jp) is an m-primary ideal,
and moreover, since Jp is complete, so is J (Lemma (5.3)). Similar remarks apply
to K = r(X, :Ytp) and H = r(X, ~p). Also since Jp:tt'p is a complete ideal
(Theorem (7. I) ), G r (X, Jp:Ytp) r (X, J ~p) is a complete m-primary ideal in R
containing both JK and IH. Since Jpffp (JK) {Ox, and J~p is contained in the
completion of (IH) (!Ix, it now follows from the remark following Proposition (6. 2) that

G *K I*H.

By unique *-factorization in R, we conclude that I divides either J or K in the
sense of the * product, say J = I * M. Then

Jp =J{Ox (I *M) {Ox

is a complete ideal, which is contained in, and therefore equal to, the completion of (IM) (!Ix

(Remarkf), § 5). Thus, ifJt is the completion of M{Ox, we have

(Theorem (7.1)). Q.E.D.

VI. PSEUDO-RATIONAL DOUBLE POINTS
AND FACTORIALITY

In part VI, the aim is to round out the results of § 17 and § 20 by describing in
detail those two-dimensional normal local rings R which have a rational singularity
and a trivial group H(R). In § 22 we find that any such R has multiplicity 2.

In § 23 we characterize rational " double points " as being those two-dimensional normal
local rings of embedding dimension three whose singularity can be resolved by quadratic
transformations only. Using this fact, we describe explicitly all rational double points
together with their associated group H (§ 24). It then appears that the only ones with
trivial H are essentially those considered by Scheja in [19].

Of particular interest is the case when R has an algebraically closed residue field k
(cf. Theorem (17.4)). In this case, if k has characteristic 9= 2, 3, 5, and R is not regular,
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then the completion R must be of the form Sj(U2+V3+W5
) where S is a three-dimensional

regular local ring with regular parameters u, v, w (cf. Theorem (25. I); also Remark (25. 2)
for the exceptional characteristics) _ This result was previously proved by Brieskorn
for local rings on two-dimensional complex spaces [7].

§ 22. Trivial H implies multiplicity 2.

Let A be a noetherian ring and let f: X -+ Spec(A) be a map of finite type.
As in § 13, a curve on X is understood to be an effective divisor with one-dimensional
support.

We begin with some lemmas about exceptional curves on X (relative tof; cf. § 12).

Lemma (22. I). Let F1 , F2, ... , Fp be integral exceptional ~urves on X and let
p

F ~ n·F· with positive integers ni _ Assume that H1(F) o. Then for some J we have
i= 1 ~ ~

Proof. - If F'==~n~Fi' with o<n~<ni (i==I, 2, .. . ,P), then (f)F' is a homo-
~

morphic image of @F' whence, F being a curve, H1(F') is a homomorphic image of
H 1(F) o. Thus X(F') hO(F')_ If the assertion of Lemma (22. I) were false, then it
would follow that for each i,

I.e.

((F-Fi ) . Fi ) >2hO(Fi )

(F.Fi ) (Fi ·F,J+2X(Fi )·

Now observe that the function

K(D) (D _D) 2X(D)

is an additive function of curves D ~t4Fi. Indeed
t

K(D1 D2) == (D1 - D1) +2(D1 - D2) + (D2 - D2)

2X(D1) +2X(D2)-2(D1 .D2) K(D1) +K(D2)·

If then, as above (F _F,J K(Fi ) for all i, then

(F. F) = ~ni(F -Fi ) ~niK(Fi)
~

=K(F)
(F .F) 2X(F)

I.e. 0 > 2X(F) 2ho(F)

which is absurd. Q.E.D.
Lemma (22.2). - Let E, F be distinct integral exceptional curves on X such that En F

is non-empty. Suppose that H 1(E +F) == o. Then (E. F) === max{hO(E), hO(F)}.

Proof. - As in the proof of (22. I), we have H 1(E) == H 1(F) = o. Hence

o<hO(E+F) X(E F) =X(E) +x.(F) (E.F)
=hO(E) +hO(F)-(E.F).
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o -+ J -+ (!Jx -+ j*((!Jc') -+ R:j*(J').

But A) of Proposition (1.2) shows that RJ*((!Jx')==o (by [EGA Ill, (1.4.15)]
the question depends only on the local rings of the points on X) and this implies that
RJ·*(J') 0 (the question is local on X, so we may assume that J ~ (!Jx, whence
J' ~ (!Jx'). Thus we have an isomorphism

Since (E. F) is positive and divisible by both hO(E) and hO(F), this inequality can hold
only if (E.F) max{hO(E), hO(F)}. Q.E.D.

Lemma (22.3). - Let P be a closed point on X such that (!Jx, P is a regular two-dimensional
local ring, and let j: X' -+X be the map obtained by blowing up P. Let C be an exceptional
curve on X, and let C' be the curve j-1(C) ==j*(C). Then the canonical maps

HP(X, (!Jc) -+ HP(X/, (!Jc')

are isomorphisms for all p >o.

Proof. - Let J (!Jx (- C), J' == J (Ox' (!Jx' (- C'). One checks that the isomor-
phism (!Jx -+ j*((!Jx') induces an isomorphism of J onto j*(J'). Hence there is an exact
sequence

(!Jc~J* ((!Jc') •

This proves (22.3) for p == o. Also, since (!Jc' IS a homomorphic Image of (!Jx',
RJ*((!Jc') o. The standard exact sequence

o -+ H 1(X,j*((!Jc')) -+ H 1(X', (!Jc') -+ HO(X, RJ*((Oc'))

leads therefore to the isomorphism

H1 (X, (!Jc) ~ H1(X', (!Jc')·

This proves (22.3) for p I. For P>I, there is nothing to prove. Q.E.D.
Lemma (22_4). - Let F be an integral exceptional curve on X, and let d(F) be the greatest

common divisor of all the degrees of invertible sheaves on F. Suppose that X is regular at each
point through which F passes, and that H 1(F) == o. Then d(F) < 2hO(F).

Proof. If F is a regular curve, then the canonical divisors on F have
degree -2hO(F).

Suppose then that there exists a point P of multiplicity [.l> I on F. P is a closed
point of X, and the local ring of P on X is two-dimensional and regular. Let j : X' -+X
be the Inap obtained by blowing up P; then F' ==j*(F) F1 [.IF2 where F1 is an integral
exceptional curve on X' (namely F1 is the proper transform of F) and F2 ==j-l(P)red.

Let f(P) == QESpec(A). The residue field k(P) is a finite algebraic extension of
the residue field k(Q), of degree, say, 0, and we have

(F2 - F2) -hO(F2 ) -0

(cf. proof of Lemma (15. 2) )• Moreover

((F1 [.lF2) • F2) 0

(cf. ~) in § IS). Hence
(Ft· F2) = [.lo.
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By (22.3), HI(F1 +[LF2) H I(F)=o, whence H I(F1) HI (F2) H 1(F1 F2) 0. (22.2)
shows therefore that

so that

Now, by (22.3),

hO(F) hO(F1 t-tF2) X(F1 t-tF2) X(FI) X(t-tF2) (Ft· [LF2)·

But, by induction on [L, we have

Thus

so that

I.e.

[L(t-t- I)
hO(F1) [LhO(F2) (F2 • F2) -[L(F1 • F2)

2

= ILO +ILO_IL(IL-I) (-O)-IL-ILO
2

I.e. O<0[21L + 1L(IL;I) -1L2
]

O<3tJ.-tJ.2

tJ.<3·

Since [L> I, we must have tJ. 2, and

hO(F)=O[2.2 + 2(2~I) _22
] =0.

Finally d(F) d(F1) (cf. proof of Lemma (15. I)) and

d(F1) divides (Ft .F2) == [La == 2a == 2hO(F). Q.E.D.

We come now to the main result of this section.

Proposition (22. 5). Let R be a two-dimensional normal local ring having a rational
singularity. If the group H(R) is trivial, then R has multiplicity <2.

Proo..f. - Let f: X -+ Spec(R) be the minimal desingularization of R (cf. Theo
rem (4.1)). Ht(X) == 0, and for every exceptional curve C (relativetof), X(C)==hO(C).
From the contractibility criterion (§ 27) (1) and negative-definiteness (Lemma (14. I))
we have that:

If E is any integral exceptional curve on X then

(l) § 27 is independent of § 22. Actually, starting with (19.2), (2 I .2), and (7. I), one can avoid using the
contractibility criterion.
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Let Et, E2 , ••• , En be all the integral exceptional curves on X. We will show
in a moment that for each i, K(Ei ) = 0 (cf. proof of Lemma (22. 1) for the definition
and properties of K). Since K is additive, it follows that K(0) == 0, i.e.

(0.0)= 2X(0)=-2hO(0)

for every exceptional curve 0 on X. We may as well assume that R is not regular;
then Proposition (3. 1) and its proof show that if nt is the maximal ideal of R, then mlOx
is invertible, say mlOx == lO(-0), and HO( lOx/mlOx) == RIm,
I.e. hO(C) 1.

Finally, the proof of Corollary (2303) (which is completely independent of the COllside
rations of this section) shows that the multiplicity of R is (000) 2, as asserted.

The fact that K(Ei ) 0 is an immediate consequence of Lemma (2204) and:

Lemma (22. 6). - For each i == 1, 2, 0 0 ., n let di> 0 be the greatest common divisor
of degrees of invertible sheaves on Ei . Then, for each i,

either (i)

or (ii)

-(E. E.)=d.>hO(E.)to 1< 1< t

-(Ei·Ei ) 2di 2hO(Ei)·

(j 1, 2, ... , n)

Proof. - The triviality of H(R) implies that for each i there exists an exceptional
curve Di such that

(Di·Ej ) -~~ij

By Lemma (22. 1) we can choose j so that

«Di-Ej ) .Ej ) <hO(Ej ).

If j 9= i, this means that (Ej . Ej ) <hO(Ej ) , contradicting the assumption that
f: X ~ Spec(R) is the minimal desingularization. Hence j t and

- d.-(E .. E.) <hO(E.).
'" ... 'l- ...

But di=r.hO(Ei) and -(EioEi)==sdi where r, s are positive integers, and the preceding
inequality gives

-r+sr<l.

Since - (Eio Ei ) >2hO(Ei ) we cannot have r = s = 1. So the only possibilities are
s I, r> I, which gives (i), and S==2, r==l, which gives (ii). This completes the proof.

§ 23. Some special properties of pseudo-rational singularities.

In this section we give some facts about lengths of ideals which will be of further
use. We also characterize among" embedded" two-dimensional local rings of multi
plicity two those which have pseudo-rational singularities (roughly those which remain
normal under any succession of quadratic transformations) and those which have rational
singularities (roughly -- those which can be desingularized by quadratic transformations
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alone) (cf. Proposition (23.5)). This characterization will enable us to give explicit
descriptions (§ 24).

Let R be a two-dimensional normal local ring with maximal ideal m, and let
j: X -+ Spec(R) be a proper birational map. Since R is normal, HO( (Ox) == R; also,
the support ofH1

( (Ox) is contained in the closed point of Spec(R), i.e. the R-module H1
( (!Jx)

has finite length which we denote by h1((!Jx).
For any m-primary ideal J in R we denote by :A(]) the (finite) length of the

R-module RI]. If I is an m-primary ideal in R, and j: X -+ Spec(R) is as above, we
have for any n> 0

In~HO(ln(!Jx) ~HO((!Jx) = R

so that HO(lnlDx) is also an m-primary ideal in R, and :A(Ho(lnlDx)) is a well-defined integer.
Suppose further that l(!Jx is an invertible (!Jx-ideal, and let C be the curve on X defined
by IlDx . Then C has exceptional support relative tof, and so X(C), (C.C), are well
defined integers.

Lemma (23. I ). Let j: X -+ Spec (R), I, C, be as in the preceding remarks, and let n> 0

be such that H1(ln lDx) = o. Then

A(HO(In l1lx)) = - (C. C) (:) X(C). n+ h1
( l1Ix)·

Proof. - From the cohomology sequence associated with the exact sequence

o -+ In lDx -+ (!Jx -+ (!Jne --* 0

we deduce that

and

Thus

HO(nC) ~ HO( (!Jx) jHo(ln(!Jx) RjHo(ln(!Jx)

H 1(nC) ~H1((!JX)·

x(nC) = :A(Ho(ln(!Jx)) _h1
( lDx ).

An easy induction, based on the relation

x(C D) X(C) X(D) (C. D)

(cf. Proposition (13. I)) shows that

x(nC) =-(C. C) (:) +X(C). n

and the conclusion follows.

Corollary (23.2). - Let R and I be as above, and let j: X -+ Spec(R) be the map

obtained by blowing up I (i.e. X=Proj(EB In)). Then with C as above we have,jor all suffi-
. l 1 n>Octent':} arge n, -

A(P)=- (C. C) (:) +X(C) .n+h1(l1IX)·

Proof. - Since In(!Jx = (!Jx(n) [EGA 11, (8. I .7)] we have H 1(In(!Jx) = 0 for all
sufficiently large n, and moreover HO(In (!Jx) for all sufficiently large n [EGA Ill,
(2.3.4)]. Thus the conclusion follows from Lemma (23. I).
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(n>o).

Corollary (23.3). Let R be a two-dimensional normal local ring, with maximal ideal m,
having a pseudo-rational singularity, and let I be a complete m-primary ideal in R, of'multiplicity (L.
Then for all n>o

,,(P) [.1.(:) ,,(I) .n.

Proof. - Let W be the scheme obtained from Spec(R) by blowing up I. By
definition of " pseudo-rational " there exists a proper birational map f: X -+ Spec(R)
such that X dominates W (so that l(Ox is invertible) and H 1(X, @x) o. For any
n>o, In@x is a homomorphic image of @~ for some finite t, and since H 2 vanishes for all
coherent sheaves (the fibres off being of dimension I) we have therefore H1(In@x) == o.
Moreover, since I is complete, so is In (Theorem (7. I)), and cf. § 9) and therefore
In==HO(InCOx) (Proposition (6.2)). Lemma (23.1) now gives

(C.C)(:) x(c)·n

Bydefinitionof"multjplicity", -(C.C)==(L. Also, setting n==l, we get X(C)==A(I).
Thus

Q.E.D.

Corollary (23.3) shows that if R is a two-dimensional normal local ring, with
maximal ideal m, ofmultiplicity 2, having a pseudo-rational singularity, then for all n>o

A(mn
) == n2

•

Lemma (23.4). - For a local ring R with maxinzal ideal m the following conditions are
equivalent:

(i) A(mn)==n2 for all n>o.

(ii) The completion R is of the form SjxS where S is a three dimensional regular local ring,
with maximal it/eal, say, M, and xEM2

, x$M3
•

Proof. Suppose (ii) holds. The graded ring E9 Mn/Mn+1 is isomorphic to a
n2:.o

polynomial ring in three variables over S/M == RIm and the irlitial form of x in
this graded ring is a homogeneous polynomial of degree two, which generates the
kernel of the natural surjection

E9 Mn/Mn+1-+ f1j mn/m n+1 (m == mR)
n~O n~O

It follows easily that the (Rjm)-vector space mnjmn +

(n 2 2)_(:)=2n+ I for n>o, and so

1

.~ (2i I) n2
•

~=O
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Conversely, if (i) holds then m/m2 has dimension 3 over R/m, so that by Cohen's

structure theorem R is of the form S11, where S is a three-dimensional regular local ring
and 1 is an ideal in S. Also m2 /m3 has dimension 5 over Rim, so that I contains an
element x such that XE:NP, X~M3, M being the maximal ideal of S. 1 must be generated
by x; for, as above, the S-module S/(Mn+ xS) has length n2 for all n>o, and by
hypothesis, S/(Mn+ I) has the same length; hence Mn+ xS Mn+ I, and so

If.nQo(Mn+xS) xS

Thus R==S/xS. Q.E.D.

We can now proceed to a characterization of " pseudo-rational double points ".
Let R be a two-dimensional normal local ring having a pseudo-rational singu
larity. Proposition (8. I) and Proposition (I _2) (and cf. § 9) lead to the following
conclusion:

a) If
(n>o)

is any sequence in wllich each Ri (o<i<n) is the local ring of a point on the scheme
obtained by blowing up the maximal ideal of Ri - i , then Rn is normal.

If R has a rational singularity, Theorem (4. I) shows that:

b) R can be desingularized by quadratic transformations alone, i.e. there exists
a sequence

of quadratic transformations with X n regular.

Conversely:

Proposition (23- 5). - Let R be a local ring with maximal ideal m such that for all n>o,
A(mn

) == n2
• If the preceding condition a) (respectively b)) holds, then R is a two-dimensional

normal local ring of multiplicity 2 having a pseudo-rational (respectively rational) singularity.

Proof. Lemma (23-4) shows that R, and hence R itself, is a two-dimensional
Macaulay local ring of multiplicity 2. Certainly R is normal if a) holds. If b) holds
then, since quadratic transformations do not affect non-closed points, we see that for
eacll prime ideal:p in R other than m, Rp is regular; by Serre's criterion [EGA IV, (5.8.6)]
(or otherwise) we conclude again that R is normal.

Assume that a) holds. Let g: W ~ Spec(R) be a projective birational map.
By the theorem on elimination of points of indeterminacy by quadratic transformations
and normalizations (cf. Appendix), and in view of a), there exists a sequence

gt g2 gq
Spec(R) = Zo *- Zl +- Z2 *- ... +- Zq

of quadratic transformations such that Zq is normal and dominates W. What we must
show is that H 1

( (f}Zq) = o. Similarly, if b) holds, we must show that H i
( (f}x

n
) == o.
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Corollary (23. 2) (with I m) shows that H1((9z) o. It is equivalent to say
that R1g1*((9z) == o. We will show in a moment that every two-dimensional local
ring R' on Z1 either is regular or satisfies the same hypotheses as R. Thus if RI! is the
local ring of the point which is blown up to give the map g2' then we can repeat the
argument to show that R1g2*((9zJ=0. (Remarks: (i) The sheaf R1g2*((9Z) is concen
trated at the point which is blown up; hence to show that this sheaf vanishes, we may
first replace Z1 by Spec(RI!) [EGA Ill, (1.4.15)]. (ii) If RI! is regular, Lemma (23.2)

still applies since :A((m"))n (:) for n>o. Also, in this case, all the local rings which

appear on Z2 but not on Z1 are regular.) Since Z1 is normal, g2*((9ZJ = (9Z1' aIld
so the exact sequence

o~R1g1*(g2*(9Z) ~R1(g1 og2)*( (9zJ ~g1*(R1 g2*(9Z)

1I I1

o o

(arising from the Leray spectral sequence for glog2) shows that R1(gl og2)*((9Z)===o.
Continuing in this way we conclude ultimately that R1(g1 og2 o ... ogq)*((9Zq) 0, i.e. that
H1((9Zq) 0 as required. In a similar way, we can see that H1((9x

n
) o.

So let R' be any two-dimensional local ring belonging to a point on Zl. Then R'
dominates R, and as in tIle proof of [EGA IV, (7.9.3)], there is a unique local ring R*

belonging to the quadratic transform of Spec(R) such that R* and R' have the same
completion. Let S, M, x be as in Lemma (23-4). Then R* is of the form S*jx*,

where S* is a three dimensional local ring on the quadratic transform of S, and x* is the
transform of x in S*, i.e. x* = xt- 2 where t is a generator of MS*. If R' (and hence R*)
is not regular, then x* E (M*)2, x* rt (1Jf*) 3 (M* being the maximal ideal of S*), and it
follows easily that all the hypotheses of Proposition (23.5) which hold for R also hold
for R'. This completes the proof.

Remark. - For the case of complex spaces, the preceding characterization of
rational double points is given in [6; Satz I].

§ 24. Explicit description of pseudo-rational double points.

Let R be a two-dimensional normal local ring of multiplicity two having a pseudo
rational singularity. Since A(m2)=4 (Corollary (23-3)) every minimal basis of the
maximal ideal m of R consists of three elements. We shall classify R by studying its
behaviour under successive quadratic transformations, and by relating this behaviour
to certain conditions involving, more or less explicitly, a suitable basis {x,y, z} of m.
We also prove converse statements of the type: "If R is any local ring, with maximal

ideal m generated by elements x, y, Z satisfying... then R is a two-dimensional normal
local ring having a (pseudo-)rational singularity." In other words the conditions to
be introduced characterize (pseudo-)rational " double points ".
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Basically, the,idea is to take a two-dimensional local ring of multiplicity two whose
maximal ideal is generated by three elements, say x,y, .<:, to subject this ring to a succession
of quadratic transformations, and to see what conditions on x, y, Z, guarantee that the
resulting rings are all normal (cf. Proposition (23.5)). This approach involves a detailed
and rather tedious examination of numerous cases. For orientation, the reader may
analyse a ring of the form l

k[[X, Y, Z]]f(Z2_F(X, V))

(k a field) from this point of view.

** *
Suppose now that R has a rational singularity, and let f: X -7 Spec(R) be a desin

gularization. We introduce a notation which conveniently conveys some useful infor
mation about exceptional curves on X. A symbol of either of the following types

a

a-b I
b

where a, b are positive integers will stand for a pair of integral exceptional curves E, F,
on X such that hO(E) = a, hO(F) = b, and En F is non-empty. We can combine these
symbols into diagrams such as

g

I
a-b-c-e-f-h

I I
d k

which stands for a configuration of nine integral exceptional curves El' E2 , ••• , E9 such
that hO(E1) a, hO(E2) b, ... , hO(E9) h, and such that the non-empty intersections of
pairs of E's are those - and only those - indicated by the short straight lines.

We will speak of such diagrams as configuration diagrams. When we speak of the
configuration diagram on X, we mean the diagram which contains as many integers
as there are exceptional integral curves on X in other words the largest configuration
diagram associated with exceptional curves on X.

** *
If R has a rational singularity, then, while classifying R as indicated above, \'\tTe will

obtain the configuration diagram on the minimal desingularization X of R, as well as

the group H = H(R), which is in this case isomorpllic to the divisor class group of R
(cf. (I 6 .3), (I 7. I)).

We will say that" the exceptional curve on X is of type C " if C is the configuration
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diagram on X. It will be found that the following types (and no others) of exceptional
curves can occur on X:

An : I-I 1-.".

Bn 1-2-2-." .-2

en 1-1-1 ... -1-2

D n

1-3

1-1-2-2

(n>2 components).

H Zn+l-

(n~ I components, including the first one).
H of order 2/d, d = I or 2 (cf_ following discussion)_

(n~3 components, including the last one).

H==Z2·

(n~4 components, including the last two)_

H==Z2XZ2 if n is even; H==Z4 if n is odd.

H trivial.

H trivial.

E6 H Z3-

I

I
I

E7 I H Z2-

1-1-1-1-1-1-1 H trivial.

(These are just the " Dynkin diagrams ", cf. for example [N. Jacobson, Lie
Algebras, Interscience, 1962, pp. 134-135].)

It is always possible to determine the group H once the configuration diagram
on the minimal desingularization X is known (except for diagram Bn , cf. below).
If El, E2, ... , En are the integral exceptional curves then, by definition of H, we need
to know the intersection matrix ((Ei . Ej )) and also, for each i == I, 2, ... , n, the
integer d(Ei ), which is the greatest common divisor of all the degrees of divisors on E i -

As in the proof of Proposition (22.5), let C be the curve on X such that

(D( -C) m(Dx. Since C ~niEi (ni>o for all i) and since R has multiplicity two, we
have, as in (22.5), t

o K(C) ~n.K(E.).. t t
t

Since X is the minimal desingularization (Ei . Ei ) <-2hO(Ei ), I.e. K(Ei ) <0 for all i.
Hence K(Ei ) 0 for all i, i.e. (Ei " Ei ) ==-2hO(Ei ).

The configuration diagram now gives us the intersection matrix because, gIven
two integral curves E =f F on X such that E n F is non-empty, we have

258
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Furthermore it follows that if, say, hO(E) <hO(F), then d(F) divides and hence
is equal to - hO(F). This remark gives us d(F) for all the integral curves represented
in the above configuration diagrams except for the one represented by the integer" I "

in the diagram I -3 or in the diagram 1-2-2- ... -2. In the first case, if E (resp. F)
is the curve represented by " I " (resp. " 3 ") then as we have seen

(E.E)== -2 (E.F) == 3

Thus d(E) divides both 2 and 3, and so d(E) I. In the remaining case, if E is the curve
represented by " I "in 1-2-2-... then (E. E) == - 2, so that d == d(E) == I or 2.

Since H 1(E) == 0, it is seen at once that any divisor on E of positive degree is linearly
equivalent to an effective divisor on E, and it follows easily that d == I if E has an
(Rjm)-rational regular point and 2 otherwise.

It can now be verified by simple computations with generators and relations that
in each case An' ... , E8 , H is as specified.

** *
We begin the detailed description ofpseudo-rational double points R by considering

the associated graded ring of R with respect to m, i.e. the ring EB m n jmn + 1
• Let

n.z.0

k==Rjm, let X, Y, Z be indeterminates, and let cp: k[X, Y, ZJ --)- EB mn jm n + 1 be a
n.z.0

surjective homogeneous homomorphism of degree zero. (Such a homomorphism can be
detern1ined, for example, by choosing a basis {x,y, z} of m and setting cp(X)
(respectively cp(Y), cp(Z)) equal to the image of x (respectively y, z) in mjnt2

).

Since dimk (mn /m n + 1
) 2n I for all n>o (Corollary (23.3)) we see easily that the

kernel of cp is generated by a single form Q(X, Y, Z) of degree two.

For the (unique) quadratic transfornlation T 1-+Spec(R), the closed fibre is

C == Proj( EB mnJm n + 1
). C may be identified with the projective plane curve (not neces-

n>O

sarily reduced) whose homogeneous equation is Q(X, Y, Z) o. One finds that the
singular locus of C is a linear variety of dimension 2 -1", where 1" is the least number of linear
combinations of X, Y, Z in terms of which Q can be expressed, i.e. 1" is the smallest
possible dimension of a subspace V of kX kY kZ such that Q lies in the
subalgebra k[V] of k[X, Y, Z]. (If k has characteristic =F 2, this results easily from the
fact that Q can be written as a linear combination of 1" squares of linear forms. If k has
characteristic 2 one may, for example, make use of Zariski's mixed Jacobian criterion
for simple points (cf. [23]). Details are left to the reader).

If R' is the local ring of a closed point on T 1 , then R' jmR' is the local ring of a
closed point P' on C. If P' is a regular point of C, i.e. if R' ImR' is a discrete valuation

ring, then since mR' is principal, the maximal ideal of R' is generated by two elements
and so R' itself is regular. Thus, when 1" == 3, we have:

CASE I: C == Proj( EB mn jmn + 1
) is a regular curve.

n.z.0
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Here R is completely desingularized by one quadratic transformation, and the
exceptional curve C either is a non-degenerate conic, smooth over k, or is defined by
an equation of the form aX2+ bY2+ Z2==0 with k ofcharacteristic 2 and [k2(a, b) : k2]==4.
According to the remarks at the beginning of this section, H is cyclic of order 2jd, where
d I or 2 according as C does or does not have a k-rational point.

Suppose conversely that R is any local ring ,,,,ith maximal ideal m such that

EB mnjmn+l~k[X, Y, Z]jQ (k=Rjm)
n2:0

where Q is a form of degree 2 such that the projective plane curve Q (X, Y, Z) 0

is regular. Then as above R is desingularize"d by one quadratic transformation, and so
by Proposition (23.5) R is in fact a two-dimensional normal local ring having a rational
singularity.

** *
We consider next the case 'T == 2. Then, as we have seen, C has a unique singular

point, and the corresponding point P on the quadratic transform T 1 of Spec(R) is the
only possible singular point of T 1.

Over the algebraic closure of k, Q becomes a product of two linear factors. Let K
be the splitting field of C, i.e. the least field containing k over which Q splits into two
linear factors. Since clearly Q(X, Y, Z) is, determined by R up to a k-linear change of
variables, K depends only on R. If Q is a product of linear factors over k then K k.
Otherwise Q is irreducible and assunling, as we may, that

Q(X, Y, Z)==aX2+bXY +cY2 (a, b, cEk)

we have a =fO, and K is obtained from k by adjoining 'a root of the equation
aX2+bX+c==o; thus [K: k]==2.

Now we examine the behaviour of Q and K when R undergoes a quadratic
transformation. Assuming always that Q- aX2+bXY cy2 as above we have, with
suitable generators x,y, z of m, and elemen~s <x, ~, Y ofR whose residues mod. m are a, b, C

respectively,

Let R' be the local ri,p.g of the point on T 1 corresponding to the unique singular pointiofC.
We know that R' a~so has a pseudo-rational singularity. When C is identified as before
with the plane curve, de~ned by Q(X, Y, Z) 0, the singular point has co-ordinates
(0, 0, I); hence R' has the same residue field k as R, mR' zR', and the maximal ideal m'
ofR' is generated by x'==xjz,y'==yjz, z'==z. Since m3R'==z3R'==(z,)3R'" division~f

the above relation. by Z2 gives

If R' is regular, there is nothing more to be done. If R' is not regular, then R' is again
a pseudo-rational double point (cf. proof of (23.5), for example), and

<X(X')2+ ~(xy') +y(y')2Ez'm'
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(otherwise z'E(x',y')R' and so rn' (x',y')R'). If we replace R, x,y,z by R', x',y',z' in
the above discussion about graded rings, we see then that the <:orresponding q is of the form

q(X, Y, Z)==aX2+bXY +cY2+dXZ eYZ+fZ2 (a, b, c as before; d, e,fEk).

Setting Z == 0 we see that "t" >2. If "t" == 3 we have achieved a reduction to Case I.
Suppose that "t" == 2. We can then write

q(X, Y, Z) (P1 X q1Y r1Z)(P2 X Q2Y f 2 Z) (Pi' Qi' ri algebraic oyer k)

If Qsplits over a field L2.k, then setting Z==o, we see that P1' Q1' P2' q2 may be assumed
to lie in L, and then comparison of the coefficients of XZ, YZ in the two expressions
for q shows that r1 , r2 also are in L; in other words q splits over L. Conversely if q
splits over L, then we may assume that Pi' qi' riEL, and again setting Z == 0, we see
that Q splits over L. So Q and q have the same (least) splitting field, namely K.

The next step, if R' is not already regular, is to blow up R' so that we have a
sequence of quadratic transformations

f: T2 ~ T1 ~ Spec(R).

We are interested in the closed fibre f- 1
({ m }) on T 2. The irreducible components

of this .fibre are of two kinds, namely those belonging to the inverse image C' of {m'}
and those belonging to the proper transform C* of C. C* can be identified with the curve
obtained by blowing up the singular point on C.

Lemma (24- I'). Assume that R' is not regular, and let C', C*, K be as above.

(i) If "t" == 3, then, as in Case I, C' is regular and T 2 is regular. In this case, if K = k
then C' has a k-rational point, so that C' ~P~.

If "t" == 2, then C' has a unique singular point, and T2 is regular outside this point. In
this case, if K then C' is a pair of projective lines over k meeting at the singular point of C' ;
if K =F k then C' has no k-rational regular point.

(ii) If K =F k, then C* is k-isomorphic to the projective line Pk. If K == k, then C* is a
pair of disjoint projective lines over k.

(iii) Each point of C* n C' has residue field K and is regular on both C* and C' (hence
also on T2). The intersections ~f C* and C' on T2 are all transversal~

(iv) If K == k and "t" ==2, then each irreducible component of C* meets precisely one
irreducible component of C' (just once, transversally) and vice-versa.
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Granting Lemma (24- I) for the moment, suppose further that R has a rational
singularity. Then R can be desingularized by successive quadratic transformations,
so we can deduce, by repeated application of Lemma (24 _I), a complete description of the
case 't" = 2, as follows.

CASE 11 a: C Proj( EB mn jmn + 1
) is a reduced curve with two distinct components.

nz.0

In this case K = k and the exceptional curve on a minimal desingularization
of R will be of type I - I - I - I - _ . _- I, each component being isomorphic to P~.

CASE n b: C = Proj( EB mn jmn +1
) is reduced and irreducible, and has precisely one

nz.0
singular point.

Here K::f k and the exceptional curve on a minimal desingularization will be of
type 1-2-2-2- ... -2. The components for which hO = 2 are k-isomorphic to Pk,
and the component call it C" for which hO = I is just like C' in (i) of Lemma (24 _I).
H has order 2jd, where I if C" has a k-rational regular point (in which case CIf
is k-isomorphic to P~) and 2 otherwise.

We return now to the proof of Lemma (24. I).

We begin with (iii). Let S be the local ring on T 2 of a point through which both C'
and C* pass, and let m'S tS, so that t 0 is the" local equation" of Cf. Then SitS
is the local ring of a point on the plane curve Q: (X, Y, Z) 0, and since z' jt vanishes
along C*, Sj(t, z' jt)S is the local ring of a point on the scheme

Proj(k[X, Y, Z]j(Q:(X, Y, Z), Z)) ~Proj(k[X, Y]jQ(X, V))

which is a reduced zero-dimensional scheme, all of whose points have residue field K.
Thus t, z' jt are regular parameters in S (and in particular z' jt 0 must be the local
equation of C*). This proves (iii).

I t is now clear that C* is a regular curve. When K =F k, C and C* are irreducible;
in this case, to see that C* ~ P~, we need only note that the field offunctions k(C*) = k(C)
is a purely transcendental extension of K. Indeed, if (u, v, w) is a generic point of the plane
curve C, then ujv satisfies the irreducible equation

a(ujv)2 b(ujv) c= 0

so that K=k(ujv). Hence

k(C)=k(ujv, wjv)=K(wjv)

and since k(C) cannot be algebraic over k, wjv is transcendental over K, as required.

The (straightforward) proofs of the remaining assertions of Lemma (24. I) are left
to the reader.

Finally we examine the converse situation, namely let R be any local ring with
maximal ideal m such that

(k Rjtn)
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where Q is a form of degree 2 such that the projective plane curve Q(X, Y, Z) 0

has just one singular point. As above we find that this condition is " stable" under
quadratic transformations, namely if R' is the local ring of a closed point on the quadratic
transform of R, and if m' is the maximal ideal of R', then R' is " at least as good as R "
in the sense that either R' is regular or

where Q: is a form of degree 2 such that the curve Q: == 0 has at most one singular
point. (We have tacitly made use here of the fact that the condition "A(mn

) == n2 for
n>o" is stable, cf. proof of (23.5).)

Moreover, if R is normal, then so is R'. For R' is a Macaulay ring, so we need
only check that R~ is a discrete valuation ring for every height one prime ideal l' in R'.
Now R~ RpflR unless l' n R m; so we need only check those l' which contain m.
For such 1', since R' /mR' is the local ring of a point on the curve Q(X, Y, Z) ==0, which
is a reduced curve, we see immediately that 1'R~ == mR~ . Thus 1'R~ is principal and
so R~ is a discrete valuation ring.

It follows now by (23.5) and (r6. 2) that if R is normal, then R has a pseudo

rational singularity, and if the completion R is normal, then R has a rational singularity.
Actually in specific examples it may be possible to check, without first assuming R to
be normal, that R can be desingularized by quadratic transformations. Then again
(Proposition (23.5)) we can conclude that R has a rational singularity.

Examples. - Let k be a field, and let a be an element of k which is not a square
in k. Let b =F 0 be an element of k, and let n be a positive integer:

(i)

We find easily that R is desingularized by n quadratic transformations and that H
is trivial.

(ii) R k[[X, Y, Z]]/(X2_ay2+bZ2n+2)

(with [k2(a, b) : k2
] == 4 if k has characteristic 2).

Mter n quadratic transformations, the" local equation" X 2-aY2 bZ2n +2 0

becomes X 2-aY2 bZ2 0, and then one further quadratic transformation gives a
desingularization (cf. Case I). In the total exceptional curve on the desingularization,
the component CIf (cf. description of Case lIb) is the regular projective plane curve
whose equation is

The group H is trivial if this curve has no k-rational point. Otherwise H is of
order two.

(iii) A more complicated In appearance - example along these lines is the
ring discussed by Scheja in [19; Satz 6].
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** *
We turn now to the case 't'==l. We may assume that Q(X, Y, Z)==Z2, so that

with a suitable choice of generators x,y, Z of m we have Z2 Em3. If R' is the local ring
of a closed point on the quadratic transform of R, then mR' is principal, say mR' tR'.
From the fact that R'/mR' is the local ring of a point on the two-fold line Z2 0, we
find that the image of zlt in R'/mR' is a non-zero element whose square vanishes. In
particular, zlt is a non-unit in R', so that either mR'==xR' or mR'==yR'. We may
therefore assume, for definiteness, that t x. Then R'/(x, zlx)R' is the local ring of a
point on the line and it follows that the maximal ideal m' of R' is generated by
x'==x, z/x, and y' F(ylx) where F(T)ER[T] (T an indeterminate) is a monic
polynomial of lowest possible degree such that F (yIx) Em'. Clearly the degree of F
IS also the degree [R'/m': Rim].

The relation Z2 Em3 can be written in the form

z2_G(X,y) Ezm2

where G(U, V) ER[U, V] (D, V indeterminates) is a homogeneous form of degree 3
R' being as above, with mR'=xR', we obtain upon dividing by x2,

(ZIX)2- xG( 1 ,yIx) Ex(zjx)R'

Now R' is regular if and only if G(I,yjX) is a unit in R'. For if G(I,yjX) is a unit,
then (1) shows that xE(zjx)R', so that m' is generated by the two elements zjx andy',
and R' is regular. Conversely, if R' is regular, then m' is generated by two of the three
elements x, zjx,y'. But x cannot be one of these generators, since R'lxR' contains a
non-zero nilpotent element, as we have seen. Hence xE(m')2, and zlx,y' are regular
parameters for R'. It follows therefore from (1) that G(1,y jx) is a unit (otherwise
(ZjX)2 E ( m')3).

Let G(U, V) Ek[U, V] (k==R/m) be the form obtained from G(U, V) by reducing
the coefficients modulo m. G(U, V) is not identically zero. For, if all the coefficients
of G(U, V) were in mR'==xR', we could divide (1) by x2 to obtain an equation of
integral dependence for zlx2 over R'; but R' is normal (since R is assumed to have a
pseudo-rational singularity) and so we would have zlx2 ER', i.e.

zjx E xR' == mR'

which is not true, as we have remarked. It follows from the preceding paragraph
that there is a one-one correspondence between the set of non-regular R', and the
set of irreducible factors of G(U, V) over k. In particular, there are at most three
such R'.

We assume now that R' is not regular, i.e. that G(I,yjx)Em'. IfF(T) is as above,
then there is a polynomial peT) ER[T] such that

G(l, T)-F(T)P(T) EmR[T]
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(because, " modulo m ", F(T) is the minimum polynomial for yjx over the field Rjm).
It follows from (I) that

(zlx)2-xF(ylx)P(yjx) Ex(zjx)R'+xmR'
I.e.

(Z')2_xy' P(yjx) EX'z'R'+(x')2R',

The situation is very simple if P(yjx) is a unit in R', because then the graded ring of R'
with respect to m' is isomorphic to

k'[X, Y, Z]j(Z2-aXY-bXZ-cX2)

(k' == R' jm'; a, b, cEk'; a 9= 0) and this is seen at once to be the homogeneous coordinate
ring of a smooth plane conic having a· k'-rational point. Thus (Case I above) R' will
be completely desingularized by one quadratic transformation.

P(yjx) is certainly a unit if G(U, V) has no multiple factors over k. From the
foregoing considerations, we now obtain quite simply the following cases. (Details are
left to the reader.)

CASE m a. - G(U, V) is irreducible over k. R has a rational singularity, and the
total exceptional curve on a minimal desingularization of R is of type 1-3. One
component is isomorphic to the projective line over k, while the other is (k-)isomorphic
to the projective line over the splitting field of G.

CASE m b. G(U, V) is the product ofa linear and an irreducible quadratic factor over k.
R has a rational singularity, and the total exceptional curve on a minimal desingulariza
tion of R is of type 1-1-2. Two of the components are isomorphic to projective
lines over k, while the third is isomorphic to a projective line over the splitting field of G.

CASE m c. - G(U, V) is a product of distinct linearfactors over k. R has a rational
singularity, and the total exceptional curve on a minimal desingularization of R is of type

/1I"I

all components being isomorphic to projective lines over k.
Conversely the preceding arguments show that if R is any local ring with maximal

ideal m such that

(k=Rjm).

and such that m is generated by three elements x,y, z satisfying a relation of the type

z2_G(X,y) Ezm2

where G(U, V) ER[U, V] is a form of degree three such that G(U, V) is non-zero and
has no multiple factors over k, then R can be desingularized by quadratic transformations,
and consequently (Proposition (23.5)) R has a rational singularity.'
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** *
There remains to be considered the possibility that G(U, V) has multiple factors.

With a suitable choice of x,y, we may assume that either G(U, Y) Uy2 or
G(U, V) aV3 (0 =FaEk).

We first examine the case G(U, V) UV2
• According to our previous considera

tions there are precisely two non-regular points on the quadratic transform of R, namely
those in whose local ringy, x/y, z/y (respectively x,yjx, zjx) generate the maximal ideal.
The first of these will be desingularized by one quadratic transformation. The second
call it R' is more interesting. For this R', equation (2) becomes

(3)

(x' ==x,y' yjx, z' ==zjx). This shows first of all that R' either is of a previously considered
type (Case 11 a, 11 b, III b or III c) or is again of the type under discussion at this
moment. In other words we have a situation which is " stable " under quadratic
transformations.

To complete the description we must examine the behaviour of exceptional curves
when R' is blown up. Let C, C*, C' have the same meaning as in the discussion of
Case 11 (but relative to the rings R, R' which we are now considering). Let R" be
the local ring ofa closed point on the surface obtained by blowing up R', through which C*
passes. In R" there is then a prime ideal :p such that :p n R' contains x', but :p n R j: rn'.
By (3) :pnR' also contains z'. Hence m'R" y'R" and x"==x'jy', z"==z'jy' are
non-units in R". These conditions determine R" uniquely; the maximal ideal of R"
is generated by x",y" ,and z".

From (3) we obtain, in R",

As a consequence, we find that R" is not regular. To see this, note that the associated
graded ring of R' with respect to m' is of the form

k'[X, Y, Z]jq(X, Z) (k' == R' Im')

Q: being a form of degree 2 (cf. (3)); it follows that R" jm' R" is not regular, since it
is the local ring of the singular point (0, I, 0) on the curve q (X, Z) o. Hence if R"
is regular, then y"E(m")2 and x", z" are regular parameters. But (4) shows that, with
suitable cx, ~ER",

which cannot be if x", z" are regular parameters. So R" is not regular. However (4)
also shows that R" is completely desingularized by one quadratic transformation, the
inverse image C" of { m"} being isomorphic to p~ (cf. Case I).

By definition C* passes through R". Also every component of C' passes through R"
(since every component of the curve q(X, Z) 0 passes through (0, 1,0)). Hence C"
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is met by the proper transforms of C* and of the components of C'. It is simple to check
that through any point of C" there passes at most one integral exceptional curve other
than C".

If R has a rational singularity, it will be desingularized by quadratic transfor
mations. By repeated application of the foregoing considerations, it is now straight
forward to deduce the following:

CASE IV. - G(U, V) is the product over k of a linear factor and the square of another
(distinct) linear factor. The total exceptional curve on a minimal desingularization of R
is of one of two types:

a)

b) 1-1-1-... -1-1-2

r components

(r): 3)

The components are all isomorphic to p~ except for the component for which hO 2,

and this component is k-isomorphic to the projective line over a quadratic extension of k.

We leave to the reader the formulation and proof of a suitable converse. (Note:
if V is the prime ideal (x', z')R', then V is the only prime ideal in R' containing mR',
and (3) shows that VR~ is principal, namely VR~ (z')R~).

** *
We deal finally with the case G(U, V)==aV3 (a=t= 0). For suitable x,y, z genera

ting m, we have then

(5)

with 1), lX, ~, yER, 11 I, lX a (where" " denotes" residue mod. m "). The beha-
viour of R will depend on the nature of the form

(k==Rjm).

If P(X, Z) is not a square in k[X, Z] we leave (5) as it is. When P(X, Z) is a square,
there is an element 3 in R such that

1JZ2 + ~ZX2 + yx4 == (z + 8X
2)2 mod (z, X

2)2m.

Setting w == Z +8x2 (so that (z, x2)R == (w, x2)R) we obtain a relation

I)'W2 cxy3 ~'WX2 y'X4E(X3y, X2y2, xyw,y2w)R

where YJ' I (mod. m) and ~', y' are non-units. Hence we obtain

YJ"w2+ exy3 + px3y + (jX
5E(X3

W, x2y2, xyw,y2w)R
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with YJ" == 1 (mod. m). We may as well assume that YJ" 1; also we may as well
write z for w; in other words if P(X, Z) is a square, then there are generators x,y, Z

of m with

(5')

By performing quadratic transformations, and with arguments of the type we have
already used, we now obtain the following classification. Details are left to the reader.

CASE V. G(U, V) is a constant multiple of the cube oj" a linear form over k. R has
a rational singularity; the total exceptional curve on a minimal desingularization is as
indicated below under the appropriate conditions on ~, y, p, cr. Conversely, if R is any
local ring with maximal ideal m such that

E9 mn/mn+l~k[X, Y, Z]/Z2
n2:. 0

and such that m has a basis x, y, Z satisfying a relation of the form (5) or (5'), with
YJ 1 (mod. m), <X a unit, and ~, y, p, cr subject to one of the following conditions, then R
has a rational singularity.

CASE Va. The form P(X, Z) is irreducible in k[X, Z]:

1-1-2-2

CASE Vb. - P(X, Z)=(Z+pX)(Z+qX) with p, q in k, p=t= q:

1-1-1-1-1

CASE Vc. P(X, Z) is a square in k[X, Z] and p is a unit in R:

1-1-1-1-1-1

CASE V d. - P(X, Z) is a square in k[X, Z], p is a non-unit in Rand (j is a unit in R:

1-1-1-1-1-1-1

This completes the classification of rational and pseudo-rational double points.

§ 25- Rational factorial rings.

In this final section we give necessary and sufficient conditions for R to have a
rational singularity and a trivial group H. The conditions are expressed in the form
of relations satisfied by suitable generators x, y, Z of the maximal ideal m. Because of
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Proposition (22 _5) and the classification in § 24, we already have such relations; the idea
now is to choose x, y, Z so that the relations become as simple as possible. In particular
we characterize all complete two-dimensional factorial local rings with algebraically closed
residue field (Theorem (25- 1), Remark (25-2)).

Theorem (25 - I ). Let R be a two-cJimensional local ring with maximal ideal m such
that Rim is an algebraically closedfield of characteristic =F 2, 3, 5. Assume that R is not regular.
The following conditions are equivalent:

(i) The completion R is factorial.

(i)' R is normal, and the henselizationR* of R is factorial.

(ii) There exists a basis {x,y, z} of m and units tt, ~ in R such that

'Z2 tty3 + ~x5 = o.

(iii) There exists a basis {x*,y*, z*} of the maximal ideal m* of R* such that

(Z*)2 +(y*)3 + (X*)5 = o.

(iv) There exists a three-dimensional regular local ring S with regular parameters u, v, w

such that
R~ S/(u2

VB w5
).

Proof (i) <:>(i)/. - R can be desingularized if its completion R IS normal
(Remark (16_2)); hence the equivalence of (i) and (i)' is given by (17.3) and (17- 2).

(i) =>(ii). - By (17-3) and (17-2), (i) implies that R has a rational singularity
and that H(R) is trivial. Proposition (22 _5) shows then that R has multiplicity two.
Since Rim is algebraically closed, " 1 " is the only integer which can appear in the
configuration diagram on a minimal desingularization of R. The only possible diagram,
then, is Ea (cf. earlier part of § 24) and we must therefore be in Case V d of § 24, so that
for a suitable basis {x,y, z} of m there is a relation

(6) Z2 ~y3 tx4y ~X5 +px3z + qx2y2 rxyz ~z = 0

where ex and ~ are units in R, and p, q, r, s, t are in R (this is derived from equation (5')
in § 24, where p is a non-unit i.e. pE(X,y, z)R; also we have put ~ in place of er).

Setting
z' = Z +(PI2)X3 + (rI2)xy + (SI2)y2

we have

for suitable ex', t', ~', q', with ex' == ex, ~' == ~ (mod. m). In other words, for suitable x,y, Z

we may assume in (6) that p = r = s o.

Next, setting
(u arbitrary)

we find similarly that in (6) we may assume further that q='ux.
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x' x+zy

and choosing suitable values for u, v we find that in (6) we can take p==q
proving (ii) .

(ii) => (iii). - Since R* Im* = Rim is algebraically closed of characteristic =1= 3, 5
and R* is henselian, Cl is a cube in R* and ~ is a fifth power. Since m* mR* it is now
clear that (ii) => (iii).

(iii) => (iv) => (i). - Since R IS also the completion of R*, it follows at once

from (iii), in view of the Cohen structure theorem, that R is a homomorphic image of
R S/(u2 v3 w5

). But in Case V d of § 24 we have seen that R is factorial; since

dim.R dim.R 2, we must therefore have R R. Q.E.D.

Remark (25.2). - If Rim has characteristic 2, 3, or 5, we must change
Theorem (25. I) somewhat. (i) and (i)' remain the same, but for the relation in (ii)
we have two or more possibilities, as indicated below, with Cl and ~ units in R. (iii) will
now state that Cl and ~ can both be assumed to be I if R is henselian. The corresponding
change in (iv) is obvious.

Characteristic 5:

where y is one of:

a) 0;
b) y.

Characteristic 3:

where y is one of:

a) 0;
b) x3

;

c) x2
•

Characteristic 2:

where y is one of:

a) 0;
b) x3

;

c) x3y;
d) x2y;
e) xy.

Proofs are omitted. As in (ii) of Theorem (25- I), they are computational (though
somewhat more involved, especially for characteristic two).
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** *
Remark (25-3). Let R be a two-dimensional normal local ring with maximal

ideal m. Without any further assumption on Rim, we have actually shown that R
has a rational singularity, a trivial group H, and the configuration diagram E8 if and
only if R satisfies (ii) of Theorem (25- I) (cf. also Remark (25-2)).

The other types of rational singular points with trivial group H can be
discussed silnilarly. The results are given below. For simplicity, we assume
that Rim has characteristic =1= 2. Once again proofs are computational and are
omitted.

Configuration
Diagram

Bn : 1-2-2- - - _-2

(n components)

Relation on suitable generators x,y, Z of m.

Z2 exx3 ~x2y yxy2 + oy3 0

(ex, ~, y, oER, and ifCi, [3, y, ~, are the respective residues
mod. m, the form

CiX3 +[3X2y +yXy2 +~y3

is irreducible over Rim).

exz2+y3 + ~X4 == 0

(-(X not a square in Rim; Rim of characteristic =t= 3)
If Rim has characteristic 3

exz2 +y3 + ~X4 yx2y2

with (x, ~ as above, y 0 or 1.

(-Ci~ not a square in Rim).
Or:

where (x, ~ are such that the curve

Z2 CiY2 [3X 2 0

has no rational point over RIm.

Example (25-4). Let R be henselian and suppose that RIm is the field of real
numbers (or, more generally, any real closed field). From the preceding, we see that R
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has a rational singularity and trivial H if and only if m is generated by x,y, z satisfying
one of the following relations (1):

Z2+y 3 x5=o (Es)

Z2+y 3 x4=0 (F4)

z2n+y2 x2=0 (Bn)
z2n+1+y2 x2 0 (Bn)

(n~ I)
t

APPENDIX: TWO FUNDAMENTAL THEOREMS ON SURFACES

§ 26. Elimination of indeterminacies by quadratic transformations and
nonnalization.

Throughout this section S will be an arbitrary scheme (not necessarily separated),
and q:>: X-+Y will be an S-rational transformation (= " S-application rationnelle "
[EGA I, § 7. I]) of S-schemes X, Y, where X is a surface and Y is separated and offinite
type over S. Associated with q:> is the diagram

G

i\
X y

where G is the graph of q> [EGA IV, (20.4.2), (20.2.7)]. A point of indeterminacy of q>

is a point of P(G) at which q:> is not defined.

Suppose now that X is integral, with field of rational functions K, and let f: X' -+X
be a separated birational map (X' integral). We have a commutative diagram

Spec(K)

(birationaJ) / <jI ~

X' ) X'xsY

X ---.--..)0y

where r.Y is a rational section whose domain of definition is the same as that of q:>oJ.

The graph G' of q:>of is the (reduced) closure of the image of Spec(K) in X'X sY;

G' is birational and of finite type over X'. Identifying X'x sY with X'xx(Xx sV),

(l) We assume that R is not regular~
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we see at once that Spec(K) ~ X'x sY factors through X'xxGS;X'x sY; thus G' is
a closed subscheme of X'xxG. (In fact G' is just the join of X' and G over X.) We
may regard tJ; as a rational section of G' over X'; then if r is the graph of tJ; we have a
commutative diagram

r ~ G'

\/
X'

from which we conclude that tJ; and rpof have the same points of indeterminacy.
We may - and, for simplicity of language, we shall- regard X and X' as models,

i.e. as collections of local domains with quotient field K; then f becomes the map which
associates to each local riIlg R' EX' the unique local ring REX such that R' dominates R.
When we consider G' in this way, the domain of definition of rpof (Le. that of tJ;) consists
of those R' EX' which dominate an element of G' (equivalently R' EG') (cf. [EGA I,
§ 6. 5]); thus the points of indeterminacy of rp of are those R' E X' which are dominated !J..v, but
not equal to, some element qf G'.

** *
We say that a valuation v of K has center R' on X' if v dominates R'. We say

that v is exceptional (for rp) if it has a center on G which is not a closed point of G, while
its center on X is two-dimensional. G, being birational and of finite type over X, is
of dimension 2; thus the center on G of an exceptional v must be one-dimensional,
so that v is discrete, of rank one. There are at most finitely many exceptional v. For X and G
have identical dense open subsets V x , VG, and so the closure of the center on G of an
exceptional v must be an irreducible component of G-UG ; thus there are at most
finitely many possible centers, and each such center, being one-dimensional, is the center
of at most finitely many v.

The proof of the main theorem in this section will depend on the following property
of points of indeterminacy:

With the preceding notation (X being integral), assume that X' is normal. If R'EX'
is a point of indeterminacy for rpof then R' is the center, on X' of a valua.tion which is exceptional
for rp (1).

Proof.' Suppose that R'EX' is dominated by, but not equal to, some exEG/.
By Zariski's ," Main Theorem" [EGA Ill, (4.4.8)] there is such a ex which is residually
transcendental over R'. Let Q (resp. R) be the unique local ring on G (resp. X) domi
nated by ex (resp. R'). Since G' is a subscheme of X'xxG, the residue field of ex is
generated over that of R' by the canonical image of the residue field of Q; hence Q is
residually transcendental over R. It follows at once that any valuation of K domi

nating ex (and hence also R') is exceptional for rp.

(l) The converse is also true provided that R' is two-dimensional.
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** *
Theorem (26. I) (Zariski). Let cp : X~Y be an S-rational transformation, where X, Y

and S are as in the beginning of this section. Then there exists a birational closed map f: X'~X
which is obtained as a succession of normalizatiolls and quadratic transformations such that the
S-rational transformation cpof has no points of indeterminacy.

Proof. - Since the normalization of X is a disjoint union of normal surfaces, we
may as well assume that X is integral and normal. The preceding discussion shows
then that there are at most finitely many points of indeterminacy of cp, all of codimension
two on X. Let gl: Zl~X be ootained by blowing up a point of indeterminacy of cp,
and let hi: Xi~Zl be the normalization of Zl. If cp 0 gi 0 hi has no points of indeter
minacy, we are done. Otherwise, repeat the process with (Xl' cpoglohi) in place
of (X, cp). Continue in this manner. If the process ever stops, the theorem is proved.
If not, there is obtained an infinite sequence X+-Xf~-X2+-... of normal surfaces.
(In order to be canonical, we could have defined gi to be the map obtained by blowing
up simultaneously all the points of indeter:r,ninacy of cp. g2' g3' . .. would be defined
similarly). In any case, we are led to the following statement, which is somewhat
stronger than Theorem (26. I) :

Theorem (26.2). Let S, cp : X ~Y, be as above, X being normal and integral, with
jzeld of functions K. Let

(~~):

be a sequence of normal surfaces and birational maps with the following property:
(P) For each i >0 there is a point XiE Xi such that Xi is a point of indeterminacy of

cpohoJ;o ... oli, and such thatfor all yEli-+;(xi ) the maximal ideal of l'9x· . is contained in a
~, Xl

proper principal ideal of l'9x . y.
2+1,

Then the sequence (~) is finite.
Proof. - Assume that (~~) is infinite. For each i ==0, 1,2, ... choose a point XiEXi

such that Xi satisfies condition (P). Each such Xi being the center of an exceptional v,
of which v there are only finitely many, some exceptional v must dominate i'fl:finitely many Xi.

There results an infinite sequence of two-dimensional local rings

Rl<~<R3<·· ·

with field of fractions K such that (i): the maximal ideal of each Ri is contained in a
proper principal ideal of R i + 1 , and such that (ii): all the Ri are dominated by a single
discrete rank one valuation v which is residually transcendental over them. This is impos

sible, because (i) implies that the valuation ring R" must be equal to iYoRi (er. argument
in middle of p. 392 of [25]). Q.E.D. -

§ 27. Rational contraction of one-dimensional effective divisors.

Let A be a noetherian ring and let f: X ~ Spec(A) be a map of finite type. As
in § 13, a curve on X will be an effective divisor with one-dimensional support. Let
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El, E2 , ••• , En be distinct integral curves on X with exceptional support (cf. § 12) such
that X is normal at every point XE UEi . We say that UEi contracts to a point (over the

'" 'lt

ground ring A) if there is a (separated) scheme Y of finite type over A and a proper
Spec(A)-morphism h: X---+Y such that h(U Ei ) is a single normal point P and such

'"
that h induces an isomorphism of X- U Ei onto Y-Pe

t

(Remarks. - Such an h is easily seen to be birational (even if X and Y are not
reduced). Moreover, the local ring S of P on Y is necessarily two-dimensional, and the
condition that P be normal is equivalent to the condition that h*((f)x) === (f)y; for the proof,
replace h by the projection h' : X'===X XySpec(S) ---+Spec(S), notethath'isproperand
birational, and that X' is a normal integral surface. Observe further that for XE U Ei ,

'"
(!Jx' x ===(!Jx x and that, by normality, S ~ n (!Jx' x; it follows that Y and h are unique

, , xeUE> ,

(up to isomorphism).) i ~

We say that UE i is rationally contractible if there exists h as above with R 1h*((f)x) === o.
'"

Suppose now that h contracts UE i to P. Then UEi h- 1(P) is connected
t t

([EGA Ill, (4.3.3)]). Furthermore, the intersection matrix ((Ei.Ej )) is negative-
definite. (The proof of (14. I), with S in place of R, applies to the present situation.)

As in ([4, p. 131-132]) there exists among the curves C ~ciEi such that (C.Ei)<o
'"for all i a unique smallest one, which is called the fundamental curve for UEi .

t

We are now prepared for the generalization of NI. Artin's contractibility criterion.
We reiterate that " curve on X " is to be construed as in the beginning of this section.

Theorem (27. I). - Let A be a noetherian ring and let f: X ---+ Spec(A) be a projective
map. Let El, E2 , •••• En be distinct integral curves on X with exceptional support (relative to f)
such that X is normal at every point of UEi ; assume further that UEi is connected and that the

t t

intersection matrix ((Ei . Ej )) is negative-definite. Let C be the fundamental curve for UEi .
t

Then there exists h :X~Y contracting UEi rationally over A to a point P if and only if X(C»o.
t

When this condition holds, Y is projective over A, the multiplicity of P on Y is (C2
) jhO(C),

and Y is regular at P if and only if (C2
) - hO(C) .

Proof. - We first prove necessity. Let h: X---+Y contract UEi rationally to the
t

point P, let S be the local ring of P on Y and let X' XXySpec(S). X' is a normal

surface and the inverse image D' on X' of any curve D = L diEi is a curve on X' which
i

is isomorphic to D. The cohomology groups of D' can be considered as finite-length
modules over S, and the residue field of S is a finite algebraic extension of that of the
point Q j(U Ei ) ESpec(A) (since P is a closed point of the fibre on Y over Q); thus

t

if we replace X by X' and A by S, the effect is merely to divide all the integers involved
in the t11eorem by the residual degree of P over Q. We may therefore assume to begin
with that A S is a two-dimensional normal local domain (with maximal ideal, say, m),
that X is a normal surface with H 1(X, (Ox):= 0, that h is a proper birational map
and that UEi is the support of the closed fibre j-l ({ m } ).

t

275



JQSEPH LIPMAN

By Proposition (3. I), the ideal m(9x is divisorial. But the irreducible compo
nents Ei of the subscheme defined by m(9x are defined by invertible (9x-ideals; hence m(9x
is invertible and so defines a curve C'. By (ii) of Theorem (12. I), C' is the fundamental
curve C of UE i • Since H 1

( (9c) vanishes ((9c being a homomorphic image of (9x), and
'It

since HO((9c) Sjm (cf. proof of (3. I)), we have X(C) hO(C) 1>0.
Moreover, the powers ofm are contracted for j (Theorem (7 . 2)), i.e. HO(mk (9x) mk

for all k>0; also H 1
( mk (9x) == 0 since mk (9x is a homomorphic image of (9~ for some

finite t; hence by (23. I),

A(mk
) =-(C. C) (:) +k.

This shows that S has multiplicity -(C2)==-(C2)jhO(C), and that S is regular
(i.e. A(m2)==3) if and only if (C2)==-I==-hO(C).

For the remaining assertions, the proof of Theorem (2. 3) of [3] can be imitated;
we indicate a bare outline, leaving the details to the interested reader. First of all,
the proof of Theorem 3 of [4], suitably modified, shows that if X(C) > 0 for the funda

mental curve of UEi then X(D»o for every curve D== ~diEi. (In making the indicated
" i

modification, all statements about the arithmetic genus p(D) of a curve D are to be
replaced by statements about X(D); in particular interpret p(D) <0 to mean X(D»o.)
Lemmas (I I .4) and (22. I) then enable the argument c) =:> a) of Theorem (I. 7) of [3]
to be carried out, the conclusion being that H 1(D) == 0 for all D == ~diEi.

Now our Proposition (I I . I) is applicable. As in Theorem (2.3) of [3] we can

therefore find a very ample invertible sheaf:YF on X and a curve D == ~diEi such that,
with eP ==:YF(D) , we have: "

a) (Y . Ei ) == 0 for all i.
b) The canonical map h of X into Y == Proj ( ffi r (X, y®n)) is everywhere defined,

and is an isomorphism outside UEi • n~o
"

(In proving this last statement, note that the Injection :YF~eP is an isomor
phism outside l) E i and observe the proof of the last assertion of [EGA 11, (4-5-2)].)

",

Lemma (2 I _2) shows, since (Y. Ei ) == 0, that h(Ei ) is a single point of Y for each i,
and since UEi is connected, h(U Ei ) is a single point. From [EGA 11, (3 -7-3)] and

" "[EGA I, (9-3-2)] it follows that h*((9x)==(9y; in particular h is dominant, and since X
is projective over A, h is surjective and projective. To see that Y is projective it is enough

to show that EB r(X, y0n
) is a finitely generated A-algebra. The construction of Y

n.2:: 0

is such that eP is generated by its sections over X; consequently if !/~!/(J.(Y)) is

the symmetric algebra 011 the coherent Spec(A)-modulef(2), then ffi 2 0n is a homo-
* n>O

morphic image ofj*(!/) , and so EB f (20n) is a finitely generated !/=-module [EGA Ill,
n.2::0 *

(3 · 3 - I)]. The conclusion follows.
It remains to be shown that R 1h* ((9x) o. For this purpose, we can 'replace Y
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by Spec(S), and X by the normal surface XXySpec(S), where S is the local ring of P
on Y. Let m be the maximal ideal of S. As in Lemma (12.2) it is sufficient to show
that H1 (<Vx /mk (Ox) vanishes for k>o. Since, as we have seen, H1(D)==0 for all

D == ~diEi it is enough to show that m(Ox contains a power of the ideal 1==((m(Ox)-1)-t,
~

because vi( defines a curve like D. Since X is quasi-compact, this is a purely local
question, and the affirmative answer results from the fact that for any XEX, (m(Ox)x
contains 1 x n (some power of the maximal ideal of (Ox). This completes the proof:

Corollary (27.2). Let Y be a normal surface having only finitely many singular points,
all cif which are rational singularities. If Y is proper over a noetherian ring A, then Y is projective
over A.

Proof. - Let ((): Y ~ Spec(A) be a proper map; we wish to show that (() is
projective. Arguing as in Corollary (2.5) of [3], we may assume that Y is regular
(cf. Theorem (4. I)). Note that if h: X~Y is a quadratic transformation then ({) is
projective if and only if ({) 0 h is, because of Theorem (27 . I) (and the uniqueness of contrac
tions, cf. remarks precedings (27. I)). The same holds true, by induction, if h is a product
of quadratic transformations; it will therefore be sufficient to find such an h with ({)oh
projective.

Chow's Lemma [EGA 11, (5.6. 2)] gives the existence of a proper birational map
g : W~Y such that ({)og is projective. By Theorem (26. I), there is a commutative
diagram

X t .",w

~/
y

with h a product of quadratic transformations. f is projective, SInce h is, and so
~oh == ~ogof is projective. Q.E.D.

Corollary (27.3). - (Cf. [6]; Lemma (1.6).) Let Y be a surface which admits a
desingularization g : Z~Y. Then Y has a unique minimal desingularization f: X ~Y (i.e. every
desingularization cif Y factors through f) . Z == X if and only if

(M) : (E2
) <-2x(E) for every exceptional integral curve E on z.

(Remark. - The terlninology of (M) needs a word of explanation: E is " excep
tional " ifg(E) is a single point Q of Y, and then (E2

) and X(E) are calculated over some
affine neighbourhood Spec(A) of Q.)

Proof. Mter normalizing, we may assume that Y is integral and normal. If
g : Z~Y is a desingularization, then Z carries only finitely many exceptional curves
(relative to g) and therefore it is clear that Z dominates a relatively minimal desingula
rization f: X~Y. Because of the Factorization Theorem (cf. (4. I)), Z X if (M)
holds. Conversely if Z X, then (27. I) and (27.2) show that no integral exceptional
curve E on Z satisfies simultaneously X(E»o (i.e. h1(E) == 0) and (E2

) -hO(E);
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thus either X(E) <0, in which case (M) holds because (E2)<0, or X(E) hO(E»o
and (E2

) <-2hO(E) ==-2X(E).

Let gl: Zl--+Y be a desingularization. We wish to show that Zl dominates X.
Starting from (26. I), for example, we can find a relatively minimal desingularization W
of the join of X and Zl. Zl dominates X if and only if W == Zl. Suppose W =t= Zl.
By the Factorization Theorem, we have a diagram

where h is a quadratic transformation with center, say, P. The image of F == h- 1(P)
on X is a curve E (otherwise W1 dominates X, contradicting the minimality ofW). Note
that E is an exceptional curve (relative to Y) and that F is the proper transform of E
on W. Also

(F .F) X(F) o.

We leave as an exercise the following fact (Lemma (22.3) is useful in the proof):

Let E be an integral curve on Z with exceptional support, let j : Z' --+Z be obtained
by blowing up a closed point x whose multiplicity on E is v>0. Let E* be the proper
transform of E on Z', let F'==j-l(X), and let E'==j-l(E)==E* +vF'. Then

(E. E) +X(E) == (E' . E') X(E') == (E*. E*) + X(E*) +X(vF')
(E*. E*) +X(E*).

Since there is a sequence of quadratic transformations

Z Z(O) +- Z(l) +- ... +- z(n) ==W

repeated application of the preceding fact shows that

(E2)+X(E»0

contradicting (M). Q.E.D.

(n>o)

Purdue University and Columbia University.
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Correction (added in proof). The last statement in Proposition (16.3), concerning
regular extensions, is not true in general, and similarly for the last statement in
Lemma (16'4). The trollble lies in the (incorrect) equality ~Flk==~E/K at the very
end of the proof of (16.4). This equality does hold, however, for the two cases in
which (16.3) is applied later on, namely K k (obviously) and K k((T)) ( fraction
field of the power series ring k[[T]]). In the latter case, since F has divisors which are
of degree> 0, and which are therefore ample, we can fix a projective embedding of FIk,
and the corresponding embedding for ElK; it is enough to show, for a closed point x E E
and its reduction XI E F (with respect to the unique discrete valuation ring R of K(x)
extending k[[T]]) that n == [K(x) : K] is divisible by n [k(x): k]; but this is clear
because if e is the ramification and f is the residue field degree of Rover k[[T]], then
if== nand n divides J.
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