Appendix to Chapter 11

By JoseEPH LipMaN

In this appendix we will reconsider, from a different point of view,
the main ideas of the foregoing Chapter II (referred to as “‘the text”’).

1. Let f be a non-singular irreducible projective surface over an
algebraically closed field %, with function field K/k. The (closed) points
of / are in one-one correspondence with their (two-dimensional) local
rings on f; accordingly we will simply call these local rings “‘points on f”.
In fact we will refer to any two-dimensional regular local ring with
fraction field K as a “point”’. A point O is said to be “infinitely near” to f
if 0 contains some point on f. This terminology is justified by the following
fact (ABHYANKAR, 2, theorem 3, p. 343): if O is infinilely near to | then
there exists a (unique) sequence of points

0,<0y< <0, =0

such that O, is a point on f, and for each 1 =1,2,...,r—1, 0, ;45 a
quadratic transform of Oy (i. e. O, is a point on the surface obtained from
/ by blowing up successively 0, 0, ..., 0,).

By associating to each point O, with maximal ideal m (0}, the “‘order
valuation” ordy (determined by the condition that for non-zero x € 0,
ordg (x) = max {¢ | x €m(0)*}) we obtain a one-one correspondence between
infinitely near points and prime divisors of the second kind with respect
to f (i. e. valuations of K/k centered at a point on £, and with residue field
transcendental over k) (cf. ABHYANKAR, 2, proposition 3, p. 336).

The text deals, in essence, with the free abelian group 4 on the set
of all prime divisors, of first and second kind, on f. After identifying prime
divisors of the first kind with integral curves on f (namely, their respec-
tive centers) and prime divisors of second kind with infinitely near points,
we can represent any element W of 4 uniquely in the foorm W= C + H,

where C is a divisor on f (= finite formal sum of integral curves) and
H = J}] 5,0, with infinitely near points O, and integers s,; s, is called
i-1

the “virtual multiplicity’’ of W at O,. To conform with the text, we denote
such a W by Cg and think of it as the divisor C together with the “base
divisor” H.

Now let /' be a non-singular projective surface birationally equivalent
to f, and let 4’ be the free abelian group generated by the prime divisors
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on /. We will define an isomorphism @, ,:4— 4'; @, ,(Cy,) = C'y
will be called the “transform” of C5 on f'. Suppose first that /* is obtained
from f by a quadratic transformation, i. . by blowing up a closed point 0
on f. Let T: f'=» f be the domination map, and let L' = T-? (O) be the
exceptional curve. Then, if ¢ is the virtual multiplicity of Cy, at 0, we
define C’5- by C' = T-{C) —4 L', H' = H — i 0 where T~1(C) is the
so-called total transform of C. Next assume only that the birational map
from /' to f is defined everywhere on {' (i. e. f* dominates f). Then the
Factorization Theorem of ZARISKI (cf. ZARISKI, 24, § II.1) asserts that
¥’ is oblained from f by a sequence of quadratic transformations. Hence by
repeated application of the preceding transformation process we obtain
the transform of Cy on f'. {One checks that this definition does not
depend on the choice of the sequence of quadratic transformations
leading from f to f.) Finally, in the most general case, we can always
find a non-singular surface f* dominating both f and f, and set 6,,
= (6, p) 1 o (Oy,y). (This is easily seen to be independent of the
choice of ")

One studies then those properties of Cg which are invariant under
Oy, for all f'. It is evident that in order to check that a property is
invariant, it is enough to consider only the case when ' is obtained from !
by a quadratic transformation. What is more, it can be shown that for
given Cy there is an f' on which the transform C’g. of Cy is an ordinary
divisor on /', i. . H' = 0. Thus, with each invariant property of C y there is
associated a property of ordinary divisors which is invariant under quadratic
transformations, and conversely. For example, if C and D are divisors on a
surface f, if /' is obtained from f by a quadratic transformation, and if ¢’
and D' are the total inverse images of C and D on f, then (C'- D)
= (C* D) and =(C’) = n(C) (where = is the virtual arithmetic genus).
Therefore it is possible to define énvariantly (and in just one way) the
virtual arithmetic genus of a Cy, and the intersection number of two
such objects. Explicitly, if H = 2 u,; 0,, G = X v, 0,, then

#(Cr) =n(C) ~ 3 Z pilpus — 1),
(Cr*Dg)=(C*D)— X pyv;.

2. There is another interpretation of the theory which may make it
seem more natural, For this purpose, one makes use of the ZARISKI-
RIEMANN space Z of K[k, which is the set of valuation rings of K/k
topologized by taking as basic open sets those of the form Uy, where S is
a finite subset of K and .

' Us={z€Z|S<3}

(cf. ZARISKI-SAMUEL, 4, Ch. VI, § 17). Z is also a ringed space with the
structure sheaf &z whose ring of sections over any open subset U of Z is
theintersection of all members of U. Thus it makes sense to speak of (locally




principal) divisors on Z. For each surface f’ as above, and each /"’ dominat-
ing /', the domination map f’— ' (resp. Z-» {') induces the “inverse
image” map from the group of divisors Div(f’) to the group of divisors
Div(f'"} (resp. Div(Z)}. It is easily shown that

{*) Div(Z) = lim Div (/") .
r

A key fact is that there is a family of isomorphisms
@, : 4’ Div(2)

(', A', as before) such that, for any projective non-singular surface f
birationally equivalent to f, we have

Oy, = (Op) 1 0 Oy

Thus a member of 4’ may be viewed as the representative on f’ of a
divisor on Z, and then its transform on f* is the representative on f" of
the same divisor. In other words, the “invariant” theory oullined above is
nothing but the theory of divisors on Z.

The existence of the isomorphisms @, follows at once from () and
the fact that any C’g. on /' transforms into an ordinary divisor C"’ on a
suitable dominating surface: @, (C'y’) is then the inverse image of C”
on Z. We can obtain more explicit descriptions of @, and ;! in the
following way:

For any divisor D on Z and any valuation v of K/k, there exists x ¢ K
such that D is equal to the divisor of x in some neighborhood on Z of the
valuation ring of v (D is locally principal). If £ is another such element
then v(x) = v(x'), and hence we can define (D) to be v(x). For example,
if H and ©,(H) are as above and O is infinitely near to f, with “quadratic
sequence” .

0,<0,<++-<0,=0
then one finds, with
m,; = maximal ideal of O;,

ordg () = ;}é‘g (ordo (%)),

s; = virtual muitiplicity of H at 0,
that

{o9) ordo(O, (H)) = = 3 scordo(m)

This formwla determines ©,(H) since a divisor on Z is easily seen to be
determined by its values at all the prime divisors on f (and v(€,(H)) = 0
for all v of first kind). We may remark here that in the text the integer
ordg {m,) is called “the multiplicity of O; on 2 branch of lowest order
passing through 0,, O, .. ., 0,,, 0"




With the divisor 2 we can associate a divisor C on f, namely
C=C(D)= Z‘ ord (D)L

where L runs through all integral curves on / and ordy is the discrete
valuation corresponding to L. The divisor

D, = D — (inverse image of C on Z)
~(0,(C)

may be called the “base part of D, with respect to /"

For any point O on a surface /', we define the viriual multiplicity of D
at 0, s, (D) in symbol, to be the integer — ord, (D,). (For a given point O,
this integer does not depend on the choice of f'.) Then one shows that for
almost all points O infinitely near to f, so (D) vanishes, and, with

H=H(D) =) s,(D)-0 (O infinitely near to f)
(]

we have
, 6,(H) = D,
i e
Gr1(D)=Cg (C, H, as above) .

3. While we have dealt only with divisors and base divisors, the
emphasis in the text is on linear sysiems, with base conditions. To relate
the two, we first remark that any non-zero x in X defines a divisor (x)
on Z whose corresponding object @1{(x)) on the surface f is just the
usual divisor div,(x) of x on f (with zero base divisor). It follows at once
that two divisors D, and D, on Z are linearly equivalent (i.e. D, — D,

= (x) for some ) if and only if, for the corresponding C;, g, = O7*(D,)
{# =1, 2) we have that C, is linearly equivalent to 6‘2 (in fact C -G,
= div,(x)) and H, =

We say naturally that Cp20if@,(Cq) = 0,i.eif

{a) v(C) = 0 for all prime divisors v of first kind on f;i.e. Cis a
positive divisor on f, and

(b) ordy (@,(C)) + ordy{@,{H)) = 0 for all O infinitely near to /.

In view of (»x), (b) simply says that the divisor C “satisfies the base
conditions imposed by H”.

Thus, corresponding to |D|, the set of all positive divisors on Z
linearly equivalent to D, there is {with Cg = 67*(D)) the set of all
positive divisors on f which are linearly equivalent to C and satisfy the
base conditions imposed by H; this is the set denoted by |C|z in the text.
Our description of |C|g, being in terms of divisors on Z, #s automatically
invariant. In other words, if C’'g. is the transform of Cy on a birationally
equivalent surface f', then {C’|g- consists precisely of all the transforms of
members of |Cly. So we have the notion of “‘transform of a linear system
with base conditions”’.




4. Next we discuss “effective base divisors” and “proximity in-
equalities”. For any Cp, the set of all x (including # = 0) such that
divy(x) + Cg 2 O forms a finite-dimensional vector space V over k.
We assume that V = (0), i. e. |C|g is not empty. Then the sheaf V@, is
an invertible @;-module, so that V0; = @, (D) for some divisor D on Z.
Let C*g. = 67(D) be the corresponding object on f. The difference
Cg— C*ge is then 20 and it depends only on [C|g; it is called the
“fixed part” (or “unassigned base”) of |C|gz. |C|g is “reduced” if it has
zero fixed part. For example, the linear system |C*|g., whose members
are obtained from those of |C|g by subtracting off the fixed part, is
a reduced linear system.

We say that H is an “effective” base divisor on f if there is a divisor
C on f such that [C|g is a reduced linear system.

An effective base divisor is “simple” if it is not a sum of two other
non-zero effective base divisors. It can be shown that there is a one-one
correspondence O « H, between points infinitely near to f and simple
base divisors: if 0, < O, < -++ < 0, =0 is as usual, then the virtual
multiplicity of Hy at O, is ordy(m;} (m; =m(0), i=1,2,...,7), and
at all other infinitely near points is zero. Since H, has virtual multi-
Plicity one at O, the simple base divisors form a free basis for the group
of all base divisors.

To gain more information about this situation we use the notion of
proximity, For any two distinct points O C P we say that P is “proxi-
mate’” to O if the valuation ord, is non-negative on P. If O is infinitely
near to /, and H is a base divisor on f, we set

¢o(H) = so(H) — %'SP(H)

where P runs through all points proximate to 0, and s, (H), sp (H) are the
virtual multiplicities of H at O, P respectively.

. Theorem. For any base divisor H and any point O nfinitely near to f
let Hy, eq(H) be as above. Then ey(H) = 0 for almost all O, and

'H=230(H)'Ho-
allo

Moreover, H is an effective base divisor if and only if eo(H) 2 0 for all O
(3. e. the virtual multiplicities of H satisfy the “‘proximity inequalities” ).

5.Wemention, in closing, yet another approach, due to ZARISKI (2; also
ZARISKI-SAMUEL, 1, Appendix §), in terms of complete ideals. I S is any
coherent sheaf of ideals on f, then S0 is an invertible @,-module i. e
J Oz = 0z(—D), where D is a divisor on Z which we denote divg (f£).
In this way we map the monoid of coherent ideals homomorphically into
the group of divisors on Z. It is a fact that every divisor on Z can be
represented in the form divy(#) — divz(#) for suitable .7, F. The
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divisors on Z which correspond to effective base divisors on { are precisely
those of the form — div; (#) with .# such that 0,. 7 =0,

For given #, there is a largest (in the sense of inclusion) coherent
sheaf #* among those # such that div, (#) = divg(#). Such an £’ is
said to be “complete”. The complete coherent ideals form a monoid with
product S« #' = (4’ ¢'). {Actually, } being non-singular, Zariski
shows that ' ¢’ = (S’ #'Y, i. e. the product of complete ideals is com-
plete.) This monoid maps tngectively into the group Div (Z), and its image
generates Div(Z). Thus, divisors on Z can be thought of as formal
differences of complete ideals on f.

The preceding theorem is a geometric counterpart of ZaAriski's
theorem that every complete ideal on } is in a unique way the product of
simple complete ideals.

Further remarks on § 1. ZARISK: and SCHILLING (1) prove by valu-
ation-theoretic methods that on any surface F, an irrational pencil can
have base points only at singular points of F, slightly generalizing the
result stated in the text and extending it to charp. Zarisxi (5), (9),
and (24) studied the 2 BERTINI theorems algebraically, and considered
their extension to chars. It tumns out that the 1st one is false in charp,
except for instance for very simple linear systems like the system of
hyperplane sections of a non-singular surface; but that the 2nd is true in
the slightly weakened form — a reducible linear system is either the set
of divisors p" D, where D moves in an irreducible linear system, or else
it is composed of the curves of a pencil.




