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Introduction. This paper deals (except in §4) with one-dimensional
commutetive rings. It originated with the observation that if 4 is a com-
plete one-dimensional local domain with an algebraically closed residue field
of characteristic zero and if 4 is safurated (cf. §5) then the embedding
dimension of 4 is equal to the multiplicity of 4. The proof was based on
the fact that if A is saturated then A is an “Arf ring,” that is to say 4
satisfies a certain condition studied in detail some twenty five years ago by
C. Axf [1]. 'The next observation was that the condition of Arf made sense
for arbitrary one-dimensional local rings, and that it still implied the equality
of embedding dimension and multiplicity. This naturally raised the question
whether any one-dimensional saturated local ring satifies Arf’s condition, and
this question was answered in the affirmative by Zariski (cf. §5).

The first two sections are an outgrowth of the above observations. We
work throughout with a one-dimensional semi-local Macaulay ring A. (It is
inconvenient in practice to be restricted to local rings.) An open ideal I in
A is “stable” if the length of A/I* is given by the characteristic polynomial
of I for all integers n >0 (cf. Corollary 1.6). In Theorem 1.9 we find,
for fixed n > 0, that I is stable if and only if the length A, of I»/I™* is
equal to the multiplicity u of the ideal I. (For any » =0, the inequality
As = holds, and moreover if A,=p, then Ap=p for all m=n.) In
particular, if 4 is local then the maximal ideal of A is stable if and only
if the embedding dimension and multiplicity of A are equal (Corollary 1.10).
In 1.3 and 1.5 we interpret the characteristic polynomial and the stability
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of I in terms of the ring A? obtained by blowing up I; the principal results
along these lines (Proposition 1.1 and Theorem 1.5) generalize some parts
of Northeott’s paper [5]. There are also some more technical, but useful,
facts about stability involving “I-transversal ” elements (cf. 1.7, 1.8, 1. 11),
and some remarks concerning the behavior of stability under various types
of ring extension (cf. 1.4, 1.12).

In §2, the main result (Theorem £.2) is that 4 is an Arf ring
(Definition 2.1) if and only if 4 satisfies one of the following (equivalent)
conditions:

(i) Every integrally closed open ideal in A is stable.
(i) For every local ring B infinitely near to 4, the embedding dimen-
sio: of B is equal to the multiplicity of B. '

(The definitions of “integrally closed ideal” and infinitely near” are
reviewed in §2.)

§ 8 is & direct generalization of some (but not all) of the theory developed
by Arf in [1]. Assume for simplicity that 4 is a complete one-dimensional
local domain. (We assume less in §3.) Among all Arf rings between 4
and its infegral closure 4 there is a smallest, denoted 4”.and called the “Arf
closure” of 4. The basic facts about this closure operation are:

(1) “Arf closure” commutes with “quadratic transform ” (i.e. blowing
up of the maximal ideal) (Theorem 3.35).

(2) 4’ is a local ring with the same residue field and the same multi-
plicity as 4 (Theorem 3.4).

(3) The embedding dimension of 4’ is equal to the multiplicity of A’
(This is a part of the above mentioned Theorem 2.2.)

A consequence of (1) and (2) is that 4 and A’ have the same multiplicity
sequence (Corollary 3.7; the definition of “multiplicity sequence *” precedes
Proposition 3.6). Moreover there is an inequality for the length of the
A-module 4/4 in terms of the multiplicity sequence of A (Theorem 3.9)
which, because of (1), (2), (3), becomes an equality if and only if A — 4’;
and it follows that for any 4, 4’ is the largest ring between 4 and 4 having
the same multiplicity sequence as 4 (Corollary 3. 10). (We may remark here
that the multiplicity sequence is one of the most important “geometric
invariants” associated with A.)

Corollary 8.8 is a characterization of Arf rings by means of the *semi-
group of values”.

In §4 we turn to another aspect of the theory. With 4 and 4 as above,
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consider the subring A% of 4 consisting of those elements z such that
2®1l=1@z in A®4 4. (Thus Spec(4*) is obtained from Spec(4) by
factoring out the equivalence relation defined by the map Spec(d) — Spec(4)).
It had been suggested by Grothendieck that A* might serve the same purpose
as the saturation 4 of A. Zariski showed that this was not so by giving an
example of two local rings 4, and 4, belonging to equivalent singularities
of plane curves such that 4,* and 4,* are not isomorphic (whereas local
rings of equivalent singularities have isomorphic saturations), Zariski also
showed that, always, A’ C A* C 4 where A’ is, as above, the Arf closure of
4 (Propositions 4.5 and 5.1); and he conjectured that 4’— A* The
central result of §4 is that this is so if 4 contains a field (Corollary 4.8).
The question remains open in the mixed characteristic case.

Actually, the construction of 4* (unlike that of A’) applies to arbitrary
commutative rings A, and some of the results in § 4, notably Theorems 4.2
and 4.11, are not restricted to the one-dimensional case.

In §5 we review the definitions needed to discuss saturated rings, and
then indicate the relation between Arf rings and saturated rings. In addition
to the results of Zariski mentioned before, we give an example showing that
the Arf closures of local rings belonging to equivalent singularities can vary
in continuous families. (This raises some interesting questions about the
moduli of Arf rings, which we do not pursue,)

This paper was inspired by discussions with Professor Zariski during
his visit to Purdue University in the spring of 1970. I wish to express my
appreciation both for the motivation and for the many useful suggestions
which he provided.

1. Stable ideals in one-dimensional semi-local rings. In 8§81-3 4 will
be a commutative semi-local noetherian ring of Krull dimension one; we
assume also that the radical M (== intersection of the maximal ideals of A4)
contains a regular element (non-zerodivisor) of A, i.e. 4 is a Macauloy ring.
4 will be the integral closure of A in ils total ring of fractions. Note that
if B is a ring between 4 and 4 such that B is a finitely generated A-algebra,
then B is also a semi-local one-dimensional Macaulay ring.

The length of an A-module E will be denoted AME), or, if necessary,
MAs(E). An ideal I in A is open if I contains a regular element of A, or,
equivalently, M* C I for some n > 0, or, equivalently, A(A4/I) is finite.

The following proposition describes the ring A! obtained by blowing up
an open ideal I in 4. First, some more notation. For any two A-submodules
E, F of 4 set

E:F=={ycA|yFCE).
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If I is an ideal in A, then I:I is a subring of 4, and for any n=0,
In: In gl’n-}l: I-n-r-:l.‘

ProrosiTION 1.1, ZLet I be an open ideal in A and let AT be the

ring |JI*: In. Then:
n>0

(1) AI 4s a finitely generated A-module, and Al==1I: I for all
suffictently large n.
(1) TYAI==zA! for some regular element z in AL
(iii) If B is any ring between A and 4 such that IB is a principal
ideal in B, then A C B.

Proof. We first prove (iii). If IB is principal, say IB —wB, then w
is a regular element in B because I contains an element which is regular in
A (hence also in B)., If yI»CI* (y€ 4), then ygI*"BC I"B, i.e. yw" € w"B,
so that y€ B (since wn is regular in A). Thus A/C B.

Next we note that in proving (i), we may replace I by any one of its
powerg J? (s > 0). Once (i) has been proved, we know that A7 is semi-local,
and so (ii) becomes equivalent to: there exists an Al-submodule J of the
total ring of fractions of A such that IJ = A7 (cf. for example [2, Chap. 2;
p. 148, Thm. 4, and p. 143, Prop. 5]). Hence if I®4A7 ig principal, i.e.
I3J" = AT for some J’, then I(I*-2J") == A7, so that JAI is principal. In other
words, after proving (i) we may also replace I by I* in proving (ii).

Now there exist an integer s> 0 and an element z€ I¢ such thet
It =17 for all sufficiently large integers r. [Since A is one-dimensional,
there exists € A whose leading form & in the graded ring G = @ I*/MIx

n=0
is of positive degree, say s, and such that @ is an irrelevant ideal in @

(i.e. VZG contains all homogeneous elements of positive degree) ; then for all
large r, It*2/MIr+e C £@, i.e. Irte/MI*s = Z(I"/MI"), i.e. IS =gl MI*,
so by Nakayama’s lemma I™*$==zI"] Replacing I by I, we may assume
that s=1. :

Note that « is regular, since for large r, ©d 2 zI” == I, Any member
of A7, being in I*: I for some n, is of the form z/2", z€ I*; and conversely,
for any n > 0 and any z € I we have, for sufficiently large r,

(2/a")Ir*n == (g/an) gn 7 = 217 C I™*n
so that z/2"€ 4 (cf. remarks (a) and (b) mear the beginning of §2), and
hence z/zn€ Ir+n: [rn C AL Thus

A1={f;|n>0,z€1'"}



i.e. A*A[x’x’ ’x] *)
where {z1,%5,' - -,2;} is any set of generators of the ideal 7 in A. So Af
(& 4) is a finitely generated module over the noetherian ring 4, and since

LICIE: G- CIn: I -

is an ascending sequence of A-submodules of 47, (i) is proved. The preceding
expression (¥) for 47 also makes it evident that JA! =24, Q.E.D.

CoroLrLARY 1.2. Let f: A— B be o ring homomorphism, where B is
elso ¢ one-dimensional semi-local Macoulay ring. Assume that if « is regular
in A then f(z) is regular in B. Then if I is an open ideal in A (so that IB
i an open ideal in B) there is a unique extension of f to a homomorphism
fI: AT—> BB, The corresponding map

fI(B) : B®4 Al BIB
18 surfective, and fl 5, is an isomorphism if B is flat over A.

Proof. f extends uniquely to a homomorphism fr: 74— T where T,
T’y are the total rings of fractions of 4, B respectively. If 7 exists, it must
be obtained by restricting fr to A’; the expression (*) for A! (and the
similar expression for B!Z) shows that fr(47) C BB, so ! does indeed exist
(uniquely). Again (*) shows that fl(s) is surjective. The final assertion

follows from the fact that B®, T can be identified via fr with a subring
of Tp. (B®1AI—>B®, T, is injective if B is flat.) Q.E.D2

Definition 1.3. An open ideal I of 4 is stable (in 4) if AI—1: I,
or, equivalently, JAT=1.

CoroLrary 1.4. (i) I* is stable for some n> 0.

(ii) If I is stable, then I™ 4s stable for all m = n.
(iii) Let f: A— B be as in Corollary 1.2. If I is stable in A, then
IB is stable in B; and the converse is true if B is faithfully flat over 4.
(iv) I 4s stable in A if and only if IAp is stable in Ap for all mazimal
tdeals P of A.
Proof. (i) follows from (i) of Propesition 1.1 since clearly 47— A
for any #>0. Similarly (ii) holds because I"AT=]"z JnAT—]Im for
*1.1 and 1.2 could be deduced from the gemeral theory of blowing-up, but it seems

more reasonable, since we are working only with one-dimensional rings, to proceed as
we have, In any case, these results are more or less “ well-known.”



m=mn. The first assertion of (iii) holds because, in view of Corollary 1.2,
IA!=1I> (IB)B'® =1IB. The second assertion of (iii) holds because when
B is faithfully flat over A we have (in view of Corollary 1.2) IB = (IB)B'E
if and only if the canonical map I ®,B— IAI®, B is an isomorphism, i.e.
if and only if the inclusion map I— IA7 is an isomorphism. Similarly Idp
is stable in A for all maximal ideals P if and only if the canonical map
IR Ap—>TAIQ®,4 Ap is an isomorphism for all P, i.e. if and only if I->TA!
is an isomorphism. Q.E.D.

Let I, A be as above, and set
p=u{l) =xra(47/147)
ve=v(I) =Aa(41/A),
THEOREM 1.5. With the preceding notation we have, for all n >0,
A(4/I?) = un—v
with equality if and only 1f I 1s stable.

Remark. Since I is stable for all large n (Corollary 1.4), Theorem' 1.5
shows that the characteristic polynomial [7; p. 285] of the ideal I is yn—v;
in particular, pu(I) 4s the multiplicity of the ideal I (a special case of the
well-known “projection formula” {4; §(23.4)]).

Proof. Let TAl ==2zA! with = regular in A7 (Proposition 1.1). Then
for all £ > 0, we have

DAL AT o gt AT/t AT o AL/ AT

(issmorphic A-modules) and it follows that
n-1
AMAL ALY = S A(TtAL/TAT) =— un.
=0

Hence we have

A(AI/IP) m=y - MA/I7) = un 4 A(IA1/]7)
so that
AA/IMY — (un—v) = (I"AL/I*) =0

with equality if and only if 74 ~= ]~ Q.E.D.
CoROLLARY 1.6, I ds stable if and only if for all nZ= n,.
A(I7/I) == u(I).

Proof. TIf I is stable and nzZn, then I and I*** are stable, and
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1.5 shows that A(4/I*) —A(A/I*) =pu(I) as required. Conversely if

A(I7/I"2) == p for all nZZn,, and if A(A/I%) == un,—y,, then the charac-

teristic polynomial of I is pn-—v,, whence vo—v, and so I™ is stable.
Q.E.D.

The next Theorem (1.9) improves on Corollary 1.6. It will be con-
venient first to introduce some more terminology.

Definition 1.7. An element z of the open ideal I in A is I-transversal
if gI*==I" for some integer n > 0.2

Lemma 1.8(i) below (along with (ii) of Proposition 1.1) gives the
existence of I-transversal elements whenever A7 is a local ring,

In the general case we see, as in the proof of Proposition 1.1, that z
s I-transversal if and only if z€ I and the image of x in I/MI generates an
wrrelevant ideal in the graded ring @ In/MI*. Thus the argument given in

n=0
[4; §(22.1)] shows that, if /P is infinite for each mazimal ideal P in A,
then there exist I-tramsversal elements for e'very open tdeal I in A.
(Actually it is easy to see that z is I-transversal if and only if: z is a
superficial element of I' (cf. [4; §22]) and Vzd = V/T.)

Lemya 1.8. (i) An element z in I is I-transversal of and only if
zAT =TAT,

() If @ is I-transversal and n >0 then zl*— Jw if and only if In
is stable.

" Proof. If gI*=1Iv, then 2I"A?=J"1Al and since IAI is generated
by a regular element of A! (Proposition 1.1) it follows that wAl—TIAL
Conversely if zAl==TA! and I* is stable, i.e, IA! =17, then

oIt — ol" Al = v (TAT) = [,
proving (i) (cf. Corollary 1.4(i)) and the “if”» part of (ii). Finally if
2I* =I*** then by induction I*r —arl» for all r > 0, and since z is regular
(z4d D I"*), we have

Al = JImr: [mr = In: In
0

i.e. I* is stable. Q.E.D.

THeorEM 1.9. If I is an open ideal in A, with multiplicity u(I), then
for all n=0 we have

2 Cf, remark (a) following Corollary 1,10 for a clarification of the term * trans-
versal.” ’
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I/ = (1),
and for n >0 equality holds if and only +f I 4s stable.

Proof. Let Py, P,,- - -, P; be the maximal ideals of 4. Following a
suggestion of M. Nagata, we reduce to the case where A/P; is infinite (for
all ¢) in the standard way: let X be an indeterminate, let § be the multipli-
cative system

3
S=A[X] —-—H PA[X]
and let A (X} be the ring of fractions
A(X) =A[X]s.

Then A(X) is a semi-local ring with maximal ideals P,A(X) (i=1,2,- * -, 1),
and A(X)/P;A(X) is isomorphic to the fleld of rational functions of ome
variable over A/P;. Moreover, for any n=0, since 4 (X) is flat over 4,
and since the maximal ideals of A generate maximal ideals of 4 (X), we have

A (/1) = hax) (IPA(X) /T A (X))

i.e. I and TA(X) have the same characteristic function; in particular p(I)
== u(TA(X)), and A(X) is one-dimensional. Finally I» is stable if and only
if [IA(X)]» is stable because of Corollary 1.4(iii) (or Corollary 1.6).

Thus, and in view of the remarks following Definition 1.7, we may
assume that there exists an I-transversal element z. 2 is regular (since zA
contains some power of I) and therefore multiplication by # gives an iso-
morphism of A-modules A/I"—=->zA4/zI* (n=0). Hence

AMA/zd) =MA/zAY + A(zd /2]y — A (A/I7)
=A(d4/al") —A(4/IM)
== A (I"/2I")
= A(In/In2) (since zIn C Im1)

with equality if and only if #I*=1I", Since al*=I"1 for large n, we
have A(4A/24) =p(I), and in view of Lemma 1.8(ii), the Theorem is
proved. 7 Q.ED.

If A is a local ring, the embedding dimension of A, emdim(4), is
A(M/M?). The multiplicity of A, which we can denote without fear of
confusion by p(4), is, by definition, u(3). For I=M, n=1 in Theorem
1.9, we have:
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CororLrARY 1.10, If A is local then
eradim (4) = pn(4)
w'_ith equality if and only if the mazimal ideal M is stable.
Remarks (a). From the last part of the proof of 1.9, we obtain:

An element x in I is I-transversal if and only if = is regular and

w(I) =A(4/24) (=up(2d)).
(b). The following fact will be used repeatedly in the sequel:

If = is a regular element in 4 and J is a finitely generated A-submodule
of 4 containing o regular element of A, then

MA/zA) = AT /2T).

(Proof. For a suitable y regular in A, we have that I =yJ is an open
ideal in 4, and clearly A(J/2J) =A(I/2I); but in proving 1.9 we have
seen that A(4A/24) =x(I/zI)).

The following criteria, not depending on Theorems 1.5 and 1.9, will
be very useful:

Lewma 1.11. An open ideal I in A is stable if and only if there exists
an element « in I satisfying one of the following equivalent conditions:

(1) IPe=al
(ii) = 4s regular and Iz is a ring.
(iii) @ is regular and Izt = AL

Moreover, if I is stable and = is any I-fransversal element, then (1), (ii),
(iii) kold.

Proof. We first check the equivalence of (i), (i), and (iif). If
I*=2zI, then = is regular (since Az D I?) and (Jz')*—1Izx", i.e. Iz is
closed under multiplication, so that (i) = (ii). Conversely if (Izr*)?— Iz,
then I*==gl, i.e. (il) > (i). Obviously (iii)= (ii). Finally, if (i) holds,
then 217 — I+ for all r 2 1, and the proof of Proposition 1.1 shows that 4!
is the least subring of 4 containing Iz; since (i)= (ii), Iz is itself a
ring, so AT—Tz*; thus (i) (iii),

Now IA?==xA! for some z in A (Proposition 1.1); and if I is stable
then JAI=1T so that € I; in other words, there exists an 7I-transversal
element (Lemma 1.8(i)). The rest follows from Lemma 1.8(ii) (with
n=1}. Q.E.D.
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We conclude this section with an application of Theorem 1.9.

ProposITioN 1.12. Lel py, ps,- - -, pr be the associated prime ideals of
(0) in A; for each i=1,2,- + -,k let 4;=A/p;, and let ¢; be the length
of the artinian local ring Ap,. Let I be an open ideal in A and for cach i
let I;==1IA; (so that I; is an open ideal in A;). Then I 1s stable in 4 if and
only if: I is stable in A; for each ¢ and

() M (/1) = Sha, (WT2) 6

Proof. If I is stable then so is Iy by Corollary 1.4(iii) (or else by
Lemma 1.11(i)). Furthermore we have A4 (I/I*}) = p(I) (Corollary 1.6 or
Theorem 1.9) and similarly As, (Zi/1?) =pu(l;) (where p(l;) is the multi-
plicity with respect fo A; of the ideal I,)., But by [4; §(23.5)] we have

k
#(I) “EP(IC) "6
so that (**) holds.
Conversely, if each I; is stable and (**) holds, then we conclude that
Aa(I/I1*) = p(I) so that I is stable (Theorem 1.9). Q.E.D.

2. Arf rings. After some technical preliminaries, we recall the defini-
tion, suitably generalized, of a class of rings studied by Arf in [1] (ef. also
[3] for some geometric interpretations) ; we will call such rings “Arf rings.”
The defining condition, while not very exciting in itself, is convenient to
work with. Theorem 2.2 gives some more inieresting characterizations of
Arf rings. We will also see that Arf rings behave well with respect to some
standard types of ring extension (cf. 2.3, 2.7, 2.8, 2.9).

We will need some basic properties of integral dependence over ideals,
which we review briefly before proceeding, Notation remains as in §1.
Recall that an element z in 4 is said to be integrally dependent on the ideal
I if 2 satisfies a relation

e T e e . (n>0)

with a;€ I’ for j==1,2,- » -,n. Tt is equivalent to say that in the poly-
nomial ring A[T], the element 2T is integral over the graded subring

A[IT] =A@ ITQIT? - - -.

From this latter condition it follows at once (by well-known properties of
integral dependence over rings) that the set T consisting of all elements in
A which are integral over I is an ideal in 4. I is called the integral closure
of I in A, We have the usual closure properties:
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i) ICI (obvious).
(i) 1ICJI=>ICT {obvious).
(i) F=71 (because every element of I7, and
hence of A[IT], is integral over
A[ITT).

I is said to be integrally closed (in 4) if I—=7. For any ideal I, I is the
smallest integrally closed ideal in A containing I.

Bemarks. Without fear of confusion, we will continue to demote by A
the integral clousure of 4 in its total ring of fractions (not the integral
closure of the unit ideal in 41!).

(a) If x is regular in A and z is iniegral over the ideal zA then
z/2 € A.

(To see this divide an equation of integral dependence of z over z4.
2%+ baant L bxtent b L bt =0 (ed,1=j=n)
by a#).

Couversely, if z/z€ A then z is integral over zA.
(b) If 2€ A, J is an ideal of A, and 2l CJI, where I is some ideal
of A containing a regular element, say z, then 2 is integral over J.

(Indeed, for any finite basis {z,%,,- - -, 2} of I we have

. _
n’i""izl-cﬁﬁj (1:=1,2,' ' ,t,G,_fEJ)
i.e.
¢
0= 2 (oy—23) 2 (Kronecker 8y)
iz

whence do; =0 (1=7=1t) where d is the determinant
4= det(c;;—z&u).

Hence dz == 0, i.e. d=0, and this is an equation of integral dependence for
2 over J).
(¢) Let J I be two ideals of A, where I contains a reqular element
of A. Then I _J if and only if
I o J

for some integer n= 0.
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(For, if Int—=JI» and 2€ I, then
gIn CIm = JIn

whence # is integral over J by remark (b)
Cenversely, if I C J and {z,,%,,* - *,2:} is a basis of I, then an equation
of integral dependence for #; over J shows thaf, for some integer n;,

Zim € JIn-t (t=1,2,- - -,1).
It follows easily that any monomial z,"uz,M- « @™ of degree
Me=ty Myt - M S04 - - 0e—1
lies in JI™' (since m;==n; for at least one 4); consequently

Jm = JIm—l

for any m > ny 4-n, 4+ + - npg—1¥).

(d) As a particular case of (¢) we have:

An element x of an open ideal I in A 18 I-fransversal (Definition 1.7)
if and only if every element of I is integrally dependent on x4, i.e. (remark
(a)): # is regular and 2€ I z/z€ A.

(e) (This will be used only in the proof of Proposition 4.5).

Let A’ be an A-algebra such that, if B is any A-algebra and C s o B-
algebra in which B is integrally closed, then also B®4 A’ is integrally closed
in C@uA’. If I is an ideal in A with inlegral closure I in A, then the
integral closure of I’ =1A’ in A’ is IA’.

{(The condition on A’ is satisfied, for example, if A’=As where § is
a multiplicative system in 4 [2, Chap. 5; p. 22, Prop. 16], or if 4’ is a
polynomial ring over 4 [2, Chap. 5; p. 19, Prop. 13]).

(Proof. Let C=A[T], Bi=A[IT]. The integral closure of B in
C is a graded ring B==A @ IT @ - - [2, Chap. 5; p. 30, Prop. 20]. It
follows that the integral closure of A'[I'T] in A'[T] is A’ DIATH- - ).

Definition 2.1. Let A be as in §1. A is an Arf ring if there exists
an I-transversal element for every integrally closed open ideal I in 4 (cf.
remarks following Definition 1.7) and if the following condition is satisfied:

(#) whenever «, y, z in 4 are such that # is regular and both ¥ and 2
ave integral over z4 (i.e. y/w,2/z€ A, cf. remark (a) above), then yz€ zA.

The usefulness of this definition will become more apparent as we
proceed. There are many examples of Arf rings in [1]. For the moment,




we give only a counterexample: it can be checked that if F, is the field with
two clements, then the complete local ring 4 —F,[[X,¥]]/XY (X 4 T)
satisfies condition (#), but there is no M-iransversal element, M being the
maximal ideal.

We need also to recall the notion of a local ring infinitely near to 4.
Detine the sequence of semilocal rings

A=4,CA,C4,&- - -QA_

by taking, for each 1= 0, 4., to be the ring obtained from A4; by blowing
up the radical of 4;. A local ring of the form (44) p, where P is a maximal
ideal in A, is said to be infinitely near o 4.

TeeoREM 2.2. The following conditions on A are eguivalent:
(i) A 1is an Arf ring.
(ii) Every integrally closed open ideal in A is stable.
(iii) If B is any local ring infinitely near to A, then the embedding
dimension of B is equal to the multiplicity of B.

Proof. (i)=> (ii). Suppose that 4 is an Arf ring, let I be an integrally
closed open ideal in A, and let = be an I-transversal element. We must show
that Tz* is a ring (Lemma 1.11). But if y/2, 2/2 are two members of Iz,
then y/x,2/x € A (remark (d) above) and so yz€ z4, i.e.

Lol == {(we A).

Since w/z € A and I is integrally closed, remark (a) shows that we€ I, and
so Iz is closed under multiplication, as required.

(i) = (i). If (ii) holds, and J is an integrally closed open ideal in 4,
then J?—=wJ for some w in J (Lemma 1.11) and this w is J-transversal.
If =, y, # are now any elements of 4, with & regular, and if I is the integral
closure of 4, then z is I-transversal (remark (d)), and I*—==I (Leroma
1.11) ; hence if both y and z are integral over x4, then yz€ I* C 4.

(ii) => (iii). Because of Corollary 1.10 it is enough to show that if
(ii) holds in A, then (ii) holds in every local ring B infinitely near to A.
Tt is even enough to show that (ii) holds in each of the rings A, appearing
in ihe definition of “infinitely near” (preceding Theorem 2.R); for, B is a
localization of such an 4, and so if J is an integrally closed open ideal in B,
then J = IB where I is the inverse image of J in A;; but I is easily seen to
be integrally closed and open in A, and if I is stable then so is J, because
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of Lerama 1.11(i) (or Corollary 1.4(iii}). By induction, we are reduced
to showing that: if (ii) holds in 4; then (ii) also holds in 4,,,. Now clearly
the radical of 4; is integrally closed in 4, and so the conclusion results from
the following:

Lemua 2.8, Let A be as usual, let 1 be o stable integrally closed open
ideal in A, and let = be an I-transversal element, so that Al=Iz* (Lemma
1.13). Then J <> Jz 43 a one-one correspondence between integrally closed
open A-ideals J &I and integrally closed open Alideals, and such a J is
stable in A of and only if Ja is stable in AL, In particular, if condition (ii)
of Theorem 2.2 holds in A then it also holds in AL

Proof. We first show that (Iz*) (Jz*) C Jz* when J is as in Lemma
2.3; it follows then that J2- is an ideal in A7 =1Ia". Clearly (Iz7) (Jz1)
Clz?, so (Ia)J CICA. Moreover if y€ Izt and ze€ J, then it is
immediate (since y€ 4) that yz is integral over 24 CJ, and since J is
integrally closed in 4,yz€J. Thus (Iz*)J CJ, i.e. (Iz!)(Jzt) CJa 2,

J7* is an open ideal in Jo? since J (and hence Jz-!) contains a regular
element. Also, if y€ Iz-* and ¥ is integral over Ja, then yr€ I C A and
y@ is integral over J, so yo € J and y € Ja*; in other words Ja! is integrally
closed in Iz

Conversely, let J” be an integrally closed open ideal in Iz-!. Then
obviously J'z is an open ideal in 4, JzCI. If ye 4 is integral over J'z
ther y€I (since J’2 C I and I is integrally closed) and hence yz™* is an
element of J=* which is integral over J, i.e. yz-* € J”, i.e. y€J'z; thus J'z
is irtegrally closed.

Finally J is stable in A if and only if J2—=wJ for some w in J
(Lemma 1.11), i.e. if and only if (Jz?)%=== (wat) (Jo ), i.e. if and only
if Jz* is stable. This completes the proof of Lemma 2.3.

(iii) > (ii). et J be an integrally closed open ideal in 4 ; assuming
that (iii) holds for A we want to prove that J is stable. We may as well
assume that J>£ 4. Let I be 2 maxzimal ideal in 4 containing J; in view
of Corollaries 1.4(iv) and 1.10, condition (iii) of Theorem 2.2 (with
B =A, the localization of A at I) entails that I is stable. If z is an I-
transversal element, then, as in Lemma 2.3, Jz! is an ideal in Al =TIz,
and if Jz~ is stable in A7 then J is stable in 4. Furthermore we have

A (A1/T27) S A (T2 /T o)
= Xa{1/J)
< A (4/T).
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Thus if we could show that (iii) holds for A7, then the desired conclusion
would follow by induction on As(4/7). '
It will therefore suffice to show that if I is any mawzimal ideal of A,
then every local ring infinitely near to Al is also infinitely near to A. This
just involves straightforward technical points, as follows. First note that
blowing up commutes with localization: let J be any open ideal in 4, and
let S be a multiplicative system in A such that the ring of fractions 4s
is one-dimensional and Macaulay (so that JAg is an open ideal in As);
then the rings (47)s and (4g)/4# are canorically isomorphic (Corollary 1.2,
with [—=J, B—Ag). Next, let @ be a maximal ideal in AT and let
P=QnNA. The preceding remark gives {up to canonical isomorphism)

(ApYidr=(Al)p (=ATQu4dr);

hence (A!)q, which is a localization of (AT)p at ome of its maximal ideals
is infinitely near to the local ring Ar. The conclusion then follows from:

LevMMA 2.4, Let A be as usual. Then:

(i) A local ring B is infinitely near to A if and only if B is infinitely
near to Ap for some maximal ideal P in A.

(ii) If B’ is a local ring infinitely near to A, and B is a local ring
infinitely near to B', then B is infinitely near to A. '

[(i) shows then that if B is infinitely near to 47, then B is infinitely
near to (A7) for some maximal ideal @ in Al, and since, as above, (47)e
is mfinitely near to Ap, (i) gives that (A!)q is infinitely near to 4 ; finally
(ii) (with B’ == (41)q) shows that B is infinitely near to A4, as desired.]

Proof of Lemma 2.4. Bearing in mind the commutativity of blowing
up and localization, and the fact that if § is a muliiplicative system in 4
such that Ag is one-dimensional and Macaulay then MAs is the radical of Ay
(M being the radical of A), one sees that if

A=A4,C4,CA4. - CAE

is, as usual, the sequence of rings derived from A by successively blowing up
radicals, then (up to canonical isomorphism)

Ag=(4o)s C (41)sC (42)s & - & (4n)s & -

is the sequence derived similarly from Ag. (i) follows easily. As for (ii),
if B’ is a localization of some A; at one of its maximal ideals, then by (i)
B is infinitely near to 4;, and hence to 4.

This completes the proof of Lemma 2.4 and Theorem 2.2,




- JUDLEn LIUNLAN.

COROLLARY 2.5. (i) A is an Arf ring if and only if Ap is an Arf
ring for every mazimal ideal P of A.

(i) If 4 is an Arf ring and B is a local ring wnfinitely near to A,
then B’ is an Arf ring.

Hzample. If the multiplicity of M, p(M), is =2, then 4 is an Arf ring,

Proof. If B is a one-dimensional Macaulay local ring with u(B) =2,
then emdim (B) == u(B), because emdim(B) =u(B) (Corollary 1.10) and
emdim (B) == 1> B regular=> u(B) ==1. So the assertion follows from the
general fact that if B s infinitely near to 4, then p(B) = pu(M). [As in
the proof that (ii)= (iii) in Theorem 2.2, we are reduced to showing that
if M, is the radical of A, =AM, then #ay (M1) = pa(M)., However, since
MAy==4d, with  regular in 4, (Proposition 1.1), remark (b) following
Corollary 1.10 (with J = 4, — 4,2:) gives

A.A_ (Al/MAl) HA_:{ (Ag/MAg) é)._{l(Ag/ﬂf[Ag) :é.;‘.,{i(Az/MIA_?)

i.e. (Theorem 1.35)
pa(M) Z pa,(3).]
% * %

Tn what follows (2.6, 2.7, 2.8), we consider a ring homomorphism
7+ A— B where B is also a semi-local one-dimensional Macaunlay ring. We
assume that the map f is continuous, i.e. if J is an open ideal in B, then
f(J) is an open ideal in 4. (It suffices to check this for mazimal ideals J
in B, i.e. f*(J) should be a mazimal ideal in A for each such J .) We look
for conditions under which “4 is an Arf ring” implies “B is an Arf ring
(or vice-versa (2.9)).

ProrosiTioN 2.6. f: A - B being as above, suppose that every integrally
closed open ideal in B is extended, 1. e. of the form IB for some ideal I in A.
Then if A 1s an Arf ring, so is B.

Proof. Using (ii) of Theorem 2.2, we can argue just as in the middle
of the paragraph preceding Lemma 2.3.

CoroLLARY 2.7. If A dis an Arf ring then so is B in ony one of the
following situations (f being the obvious map in each case) :
(i) B=4s where S is a multiplicative system in A (such that Ag
18 a one-dimensional Macaulay ring).
(ii) B=AJd, the completion of A.
(iii) B=A/J, where J is an ideal in A none of whose associated prime
ideals is mazimal.




PROPOSITION 2.8. f: A->B being as above, assume that B is o flat
A-module and that MB is the radical of B. (M s, as always, the radical of A).
Assume further that if @ is ¢ mazimal ideal of B, then B/Q 4s a separable
field extension of A/(QNA). (Our conclusion will also hold if “B” is
replaced by “A” in this last assumption.) Under these conditions, if A is
an Arf ring then so is B.

Proof. Let A=A, CA:C4,C - be as in the definition of “infi-
nitely near” (preceding Theorem R2.2), and let B=B,CB, C B, & - -
be similarly defined. Then in view of (iii) of Theorem 2.2, and Corollaries
1.4(iv) and 1.10, A is an Arf ring if and only if the radical M, of 4; is
stable in A4; for all 4=0; and similarly for B. By induction on i, we shall
show that B;— B®.4; and that M;B; is the radical of B;. In view of
Corollary 1.4(iii), this will prove Proposition 2.8.

If B;—B®44; and M;B; is the radical of B;, then B, is flat over 4,
and Corollary 1.2 shows that

By == BB =B, @y, Ajs1 =B B4 4.

Moreover, evéry maximal ideal in By, contracts to a maximal ideal in B
(since Bj,, is integral over B), hence in A, hence in 4., in other words
M;.,Bi, is contained in the radical of By,. Also, since 3, contains a
regnlar element and B;,, is flat over Ay, the ring Bi/MuaBia is zero-
dimensional, and we have only to prove that it has mo nilpotent elements.
But
Bin/MinBis = (B/MB) @au(Ava/Mus)

and the conclusion follows in a straightforward way from the separability
assumptions in Proposition 2.8, and the fact that the temsor product is com-
patible with direct products of algebras [i.e. if C is a ring and By, B,,- + +, By,

F,F,- - -,F, are C-algebras, then there is & canonical isomorphism of
(-algebras

(11 ) ®o(§ﬁ’j):—>gm®cpj]. Q.B.D.

In connection with Proposition 2.8, cf. also Corollary 4.9.

ProrositioN 2.9. Let B be a faithfully flat A-algebra, with B a one-
dimensional semi-local Macaulay ring. If B is an Arf ring then A 1s an
Arf ring.

Proof. Tet A(X) be as in the proof of Theorem 1.9, and let B(X)




be similarly defined. It is easily seen that B (X) is faithfully flat over 4 (X).
By Proposition 2.8, B(X) is an Arf ring. If we knew that 4(X) was an
Arf ring, then the proof of Proposition 2.8 would show that 4 is an Arf
ring (use the “converse” part of Corollary 1.4(iii)). We may therefore
assume that 4/P is infinite for every maximal ideal P in 4, so that every
open ideal in 4 hag transversal elements.

It remains then to be seen that the condition (#) in Definition 2.1 is
satisfied. We may identify 4 with its image in B. @iven z, y, z as in (#),
we have (by flatress) that z is regular in B, and clearly y, 2, are both integral
over zB. Hence yz€ tBN 4 =~ zA. :

3. Arf closure, We assume throughout this section that 4 is a finitely
generated A-module (notation as in §1).

(Tt follows that 4 and its completion 4 are reduced: for if w is a nil-
potent element in 4 and = is a regular element in the radical M , then

A(w/z) S A(w/z*) - - C 4(w/er) C A (w/em) C- - -

is a strictly increasing sequence of A-submodules of A unless w—0; hence
4 is reduced, 4 is a direct product of semilocal Dedekind domains, (4)"
is a direct product of discrete valuation rings, (4)* is reduced, 4 is reduced,
and incidentally (4)* =4 @4 4 is the integral closure of 4 in its total ring
of fractions. Conversely, it A is reduced then 4 is a finitely generated 4-
module (cf. [4; §(32.2)]).)

ProPoSITION-DEFINITION 3.1. Among the Arf rings between A and A
there is one, A’, which is contained in all the others. A’ will be called the
Arf closure of A.

Proof. Let ACBCA, B being an Arf ring. Let 7 be any open ideal
in 4, let J==IB and let J be the integral closure of J in B. Then (with
notetion as in Proposition 1.1):

(*) IATCJB' CJBTCB.

To see this, note first of all that IB’ ==JB’ is principal, so that AIC B/
(Proposition 1.1), which gives the first inclusion in (*). Next we have,
for some n >0, JJ*==J» (remark (¢) mear the beginning of §2), and
since JB ig principal, generated by a regular element of B7, it follows that
JB = JBT; thus, by Proposition 1.1 again, B/ C B7, whence the second
inclusion. Finally, since B is an Arf ring, J is stable in B (Theorem 2.2),
j.e. IBT=JCB.




Now let A be the ring generated over A by all the elements in 1A!
with I ranging over all open ideals in 4. Then, from what we have just
seen, Ay € B. Replacing 4 by A in the preceding, we can construct a
new ring A= (dw)w &B. Repeating the procedure, we obtain a
sequence of rings

ACAHCAn - "&B

(with A = (A@w) @ for each i>0). Since B is a finitely generated
A-module, we have A ==4 ) =A4mn=""" for n sufficiently large.
To prove Proposition 3.1, it is enough now to show, for such n, that A
is an Arf ring.

It I is an integrally closed open ideal in A (s, then A S 4w
—A (. But clearly if €] and y€ (dm)7 (& 4) then zy is integral over
2d,my CI so that zy€I; thus [(Awm) S, ie I'is gtable in A(,y. By
Theorem 2.2, Ay is an Arf ring. Q.E.D.

Remark. 1f A/P were infinite for every maximal ideal P, then Proposi-
tion 3.1 would be trivial, since only the condition (#) of Definition 2.1
wouid be involved.

CoROLLARY 3.2. Let B be an Arf ring, and let f: A— B be a homo-
morphism such that f(z) is regular in B whenever = is regular in A. Then
f extends uniquely to @ homomorphism f': 4’— B, and f’ (A7) is an Arf ring.

Proof. f extends uniquely to a homomorphism f: £— B, and we need
only show that 7(4’) € B. If I is any open ideal in 4 and J ==IB, ther
Corollary 1.2 shows that 7(4?) C B/, whence f(J47) CJB'C B, and it
follows that F{d ) & B (cf. proof of 3.1). Repeating the argument, we
get F(Ad) ©B, -, f(Adm) € B, - -, and for large n this gives f(4") C B.
Furthermore Corollary 2.7 (iii) shows that 7(4") is an Arf ring.

COROLLARY 3.3. “Arf closure” commutes with completion and localiza-
tion. In other words, if B=A4 (resp. B=Ag for some multiplicative system
S in A such that B is one-dimensional and Macaulay), then B’ = (A’)" (resp.
B = (4")s).

Proof. In either case let f be the composed map A— B— B, and let
f:A’—>B be as in 3.2. There is a canonical isomorphism B®, A’
=25 B[ (A")] (since B is flat over A), so that, after identifying, we have

BCB®A'CPH,

But B®4 A’ = (47)* (vesp. (4’)s) is an Arf ring (Corollary 2.7) and
hence B®, 4" =B, Q.E.D.




In conneetion with 8.3, ef. also Corollary 4.9.

TuroREM 3.4. Let A’ be the Arf closure of A and let C be any ring
between A and A’. Then:

(i) For every mazimal ideal P of A there is precisely one mazimal
tdeal Q of C such that QNA=P. In particular if A is a local ring then
so 1s C. _

(i1) For eack P, Q as in (i), the fields A/P and C/Q are canonically
180mOorphic.

(i) For each P, Q as in (i), the local rings Ap and Oy have the same
multiplicity.

Proof. Because of Corollary 3.3, we may replace 4 by Ap, i.e. we may
assume that A is local. As usual, M will be the maximal ideal of A, and 4
will be the integral closure of A. It is easily checked that 4 - M4 is a local ring
with maximal ideal M4, and that the canonical map 4/M~— (A + MAY/MA
is an isomorphism. With notation as in the proof of 3.1, we have
IATC A 4 MA for every open ideal I in 4, whence 4,y C A+ MA. Hence
4 is a local ring, with maximal ideal My, — MA N 4y, and

Ay +Mnd =4 + MA.
So we may repeat the argument to obtain
Ay CA4p C- - Chm C- - C A4 M4

For n large, this gives 4 C A 4+ MA. (i) and (ii) follow at once.

Now if @ is the (unique) maximal ideal of C, then Q=MANC, so
Q4 —=MA. The multiplicity of 4 is A (AM/MAM) (Theorem 1.5), and
this is the same as A\ (4/MA), (cf. remark (b) following Corollary 1.10,
with 4 replaced by 4™ and J by A). Similarly the multiplicity of ¢ is
Ao{4/QA). But since 0/Q =A/M is the only C-module of length one, we
see that

A (A/QA) =M (A/QA) = Aa(A/MA).
This proves (iii). Q.E.D.

Remark. Theorem 3.4 also follows from Proposition 4.5 and Theorem
4.2.

THEOREM 3. 5. “Arf closure” commutes with quadraitc transform.”
In other words, with the usual notations, if M’ is the radical of A’, then

(42) = (41) M.
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- Proof. Let C'= A, go that MC — z( for some regular z in C' (Proposi-
tion 1.1). As in the proof of Proposition 3.1, we have 20 (= MAM)C 4,
so that z€4” and CCA4’: z4d”. But A’: x4’ is an Arf ring: for if
y€ 4’: x4’ then yz € I where I is the integral closure of A’ in 4 (remark
(a), §2), whence A”: 24’ == Iz"! = (A4’)/, which is an Arf ring (Lemma 2.3
and remark (d), §2). Therefore also ¥ C A’: z4’, i.e, A+ 20" C A’.

Now the radical of the ring A 4 (" is 2C”: indeed if @ is any maximal
ideal of 4 + 2’ then Q@ D M, whence @ 2D M(2C") == (20")?, s0 Q 2 z(”; and
on the other hand we have a surjective homomorphism 4/M — (4 4 2C")/z(’,
so that (4 4+ (") /z(C" is a direct product of fields. Since (20”)?=z(z("),
the radical «(” is stable in 4 4 2C” (Lemma 1.11(i)), so the ring obtained
from 4 4 #C’ by blowing up its radical is 20": 20 =C": (= (’. Since
zC” is stable and ¢” is an Arf ring, it follows from (iii) of Theorem 2.2
(and ef. Corollaries 1.4(iv) and 1.10) that 4 4 2C” is an Arf ring. But
ACTAS200C A and so A=A+ 20, M =a(’, and

(A = ' = (AMY, Q.E.D.

For developing some consequences of 3.4 and 3.5 we need to recall the
notion of the branch sequence of A along ¢ mozimal ideal N of A. As
before, we consider the sequence of semilocal rings

A=4,C4,C4.C---C4

in which, for each =0, 4, is the ring obtained from A; by blowing wp
the radical of A, TLet B; (=B;(¥)) be the local ring (4:)was,. The
sequence By, By, B, - is called the branch sequence of A along N.

The members of any such branch sequence are, by definition, infinitely
near to 4, and every local ring B infinitely near to 4 occurs in some branch
sequence, Let us denote the multiplicity of such a B by ps. If Mp is the
maximal ideal of B and f: 4 — B is the canonical map, then B/Mp is an
algebraic field extension of A/f-*(Ms), of finite degree 8z. If B;= B;(N)
is as above ({==0,1,2,- - -) then the sequence of pairs

(F'Bu 831‘. ) 0={<en
will be called the multiplicity sequence of A along N.

ProrosiTioN 8.6. Let N be a mazimal ideal in A. If By, By, Bs,- + « i
the branch sequence of A along N, then (B,), (B, (B.)’,: + * is the branch
sequence of A’ along N, where ' denotes, as usual, Arf closure.

Proof. The assertion is a straightforward consequence of the commu-

™~
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tativity of Arf closure with quadratic transform and localization (Theerem
3.5 and Corollary 3.3), account being taken of Theorem 3.4(i). Q.E.D.
From Theorem 3.4, we now obtain: :

CororLLaRY 3.7. If 4, A’, N are as in Proposition 3.6, then the multi-
plicity sequences of 4 and A’ along N are the same.

CororLrArY 3.8, (DuVal [3]). If 4 is a complete local domain with
algebraically closed residue field, so that the mulliplicity sequence of A
along the unique maximal ideal of 4 can be written (uo, 1), (g1, 1), (pz, 1), - « +,
then 4 is an Arf ring if and only if the semigroup of values of elements of A
(for the discrete valuation with valuation ring A) is

{OJPO:F'J+#1JF0+M1+P'2;' - }

Proof. Note that A is a finitely generated A-module, and that the
branch sequence A=Ay, 44, 4o, - - of 4 is such that 4,=A4 for large =.
Keep in mind that 4 and 4’ have the same multiplicity sequence (Corollary
3.7). It is easily checked that 4 = 4’ if and only if 4 and A’ have the same
semigroup, and hence it is enough to show that 0,p,pp 4y, * - is the
semigroup of A’. This is clearly true if 4’== 4 ; by induction (on the least
n such that 4%,=A4) we may therefore assume that the statement holds for
the ring (A7)M = M’zt, where M’ is the maximal ideal of 4’, and z is
M'-transversal (cf. Lemma 1.11), But the value of # is

MA/2d) mm M A/ ML) == o

(cf. proof of Theorem 38.4), and so the statement follows for 4 Q.E.D.
Under our standing assumption that 4 is a finitely generated A-module,
it is easily seen that the 4-module 4/4 has finite length, say L. If 4 is the
local ring of a rational point P on an algebraic curve I', then L is the increase
in the arithmetic genus of T' over that of the curve I obtained from I' by

resolving the singularity at P. The next theorem gives some information
shout L.

THEOREM 8.9. Lef p8 be as in the remarks preceding Proposition 3. 6.
Then

A(A/4) Z 2 bn (up—1)
where B runs through all the branch sequences of A along mazimal ideals
of 4; and equality holds if and only if A is an Arf ring.

Proof. Let the rings 4,C A4, C A4, - -C 4 be as in the definition
of “branch sequence” (preceding Proposition 3.6). Fix an 1=0, let
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My, My + -, M, be the maximal ideals of A and let B; be the local ring
(Ad)w, 1=j=1t). We shall show that

¢
AA (AGI/A“) _2'_!%88’ (F’B; - 1)

with equality ¢f and only if emdim (B;) = s, for all j. Then, in view of (iii)
of Theorem 2.2, summation over all ¢ will give the desired result.

Now since 4../4; is of finite length, we have an isomorphism of A;-
modules

t
A{,.,.I/Ai &’E Oj/B;

where C;=B;®4, 4v1. O is obtained from B, by blowing up the maximal
ideal M;B;(Corollary 1.2). Hence by Theorem 1.5 the Bj-module C;/B;
has length = pp,—1, with equality if and only if M;B; is stable, i.e.
emdim (B;) = gz, (Corollary 1.10). The conclusion follows easily. Q.E.D,

CoroLrary 3.10. Let A’ be, as usual, the Arf closure of A, If B is
@ ring between 4 and A, then BC A’ if and only if A and B have the same
mulliplicity sequence along each mazimal ideal of 4. In particular, A’ is
the largest subring of A among those which contain 4 and have the same
multiplicity sequences as A.

Proof. If A and B have the same multiplicity sequences then so do A’
and B’ (Corollary 3.7). Since 4’C B, 3.9 gives

Ar{d/B"y Zap (A/B') = rse (A/47)
whence B/ — 4’,

Conversely if B C A’, i.e. B”=A4’, then 4 and B have the same multi-
plicity sequences (Corollary 3.7).

4. Strict closure of rings. We define the “strict closure” of one ring
in another, study some basic properties of this operation (4.1, 4.2) and
examine its behavior under flat extemsions (4.3, 4.4, 4.10). The main
results (4.5, 4.6, 4.11) bring out the relation between Arf rings and rings
which are strictly closed in their integral closure,

Let A be any ring (commutative, and having o multiplicative identity
1=14) and let B be a subring of 4 (with 1,€ B). For any ring C such
that BC C'C 4 there is a canonical surjective ring homomorphism

oz(===oc,l,3,o) : A@zu‘i—)A@cA
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whose ‘kernel is the ideal in 4 ®z A generated by the set of elements
{c®1—1®@c¢|ceC}. '

In particular « is an isomorphism if and only if ¢'C B¥, where B* is the
subring of 4 given by

B*—{(s€4|2®1=1®¢z in A®pA4)}.

It is immediate that, always, B* C 0% (use @4,z¢c), and that (B¥)*—B*
since ¢ p pe 15 an isomorphism). ' ,

We say that B is strictly closed in 4 #f B=B*? For any B, then, B*
is the smallest strictly closed (in A4) ring between B and A; we call B* the
strict closure of B in A.

LEMMA 4.1. Let BCCCA be as above, and suppose that the
canonical map .
0: AR d > A A

is an isomorphism. Let P be a prime ideal in B. Then there ts at most one
prime ideal Q in C with the properties that QN B=P and QAN C=0Q.
If such a Q exists, then the fraction field of B/P is canonically isomorphic to
that of C/Q.

Proof. The condition that « be an isomorphism “respects change of
base” in the following sense: if B’ is a B-algebra, and for any B-algebra B
we let B’ be the B'-algebra E®p B’, then, if a is an isomorphism, so also is
the canonical map.

o A Qp A A Q¢ A,

(Let C > ¢V d A’ be the canonical maps. If ¢c®1=1Q¢in 4 Qe A
for all ¢ in C, then ¢/ ®1=1Q ¢ in A" Qp 4, where ¢’ = g(f(c)); conse-
quently ¥ ®1=1® " in A’ Q®p A’ for all &’ in the B'-subalgebra g(C") of
A’ generated by all such ¢7.)

Furthermore, if B’ is a field, and o’ is an isomorphism, then the canonical
images of B’ and ¢’ in A’ are equal. (For, if € A’ and « ¢ image of B, then
z®1 and 1®¢e are linearly independent over B’ in 4'®p A’'=A4"Q¢ 4’,
so that c® 1541 ® 2, whence z ¢ image of (".)

*In the terminology of Grothendieck, this means that the inclusion map B+ 4 is
a strict monomorphism in the category of commutative rings with idenfity. In case
A is integral over B, it also means that Spec(A4) —» Spec(B) is an effective epimorphism
of schemes.
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- Now take B’ to be the field of fractions of B/P. Then B’—=RByg/PBg
where § is the multiplicative system B—P in B, ¢ — ('s/P(ly, A’ — Ag/PAg,
and the preceding assertion about the equality of the images of B and (¥
in A’ leads to the conclusion that if « is an, isomorphism, then the canonical
homomorphism

B: B,g/PB.g-) 03/PA3 M Os

s surjective. Thus if PAgN Cys4Cs then g is an isomorphism and
PAs N0 Oy is a mazimal ideal of Cj.
Finally, if @ is a prime ideal in C such that Q N B = P and QANC=4Q,
then '
PAsNCs T QAsN Cg=0Q Cy5£ (s

so that the mawimal ideal PAs N Cy is equal to QCy. It follows that Q is
uniquely determined by P, which is the first assertion of the lemma, and
the above map 8 gives the isomorphism in the last assertion. Q.E.D.

Bemark. Tt is easily seen that Q exists if and only if PANB=P,

TmzoreM 4.2. Let B be a noetherian local ring and let 4 be a subring
of the total ring of fractions of B such that ADB and A is a finitely
generated B-module. Let B* be the strict closure of B in A, and let O be
a ring such that B C C B*. Then:

(i) For each prime ideal P of B there is a unique prime ideal Q of (!
such that Q N B=P. In particular, C is a (noetherian) local ring,
(ii) For each P, Q as in (i), the fraction fields of B/P and C/Q are
canonically isomorphic.
(iii) The local rings B and C have the same multiplicity.

Proof. Since A is integral over B, there exists a prime ideal P’ in 4
such that "N B = P; setting @ — P’ 1 C, we have NB=P,QANC=9;
hence the first two assertions follow from Lemma 4.1, (C is obviously
noetherian, and € is local because for every maximal ideal My of C,
M¢ N B= M3, the unique maximal ideal of B ; 8o there is just one such M)

As for (iii), the proof of Lemma 4.1 shows that Mo=MpANC, so
that Med — MpA. Furthermore, since € is a local ring with the same residue
field as B, we have for any C-module M of finite length,

Ao (M) =ap (M) (A =1length).
(It is enough to check that every C-module of length ome is also a B-module




of length one; but C/M¢ is the only such C-module.} Now by [4; §(23.4)],

pa(Mp) = pp(Mpd)
(p == multiplicity)

ro(Me) = po(Med )
and the preceding remarks show that
ps(Mpd) = po(MpAd) = pe(Mcd).
Thus,
ua(Mp) = po(HMe). Q E.D.
“ Strict closure” is well-behaved with respect to fla¢ base change:

ProrosirioN 4.8, Let A be a ring, let B be a subring of A, and let B’ be
a flat B-algebra. If B is sirictly closed in A then B’ is strictly closed in
A=A @z B, and the converse is true if B’ 1s fasthfully flat over B.

Proof. Let r;, v, be the B-module homomorphisms from A into A ®z 4
defined by 7, (2) =2®1, r,(z) =1®2. To say that B is strictly closed
in A is to say that the sequence of B-module homomorphisms

inclusion To—Ty
B : > A > A ®B A

is ezact, Tensoring this sequence with B’ we get (modulo canonical iso-
morphisms) the similar sequence for B’ and A4’, and the conclusion follows.

CoROLLARY 4.4. Let A be a ring, let B be a subring of A with strict
closure B* in A, and let B’ be a flat B-algebra. Then the strict closure (B)*
of B in AQpB is B*Q@y B,

Proof. As in the beginning of the proof of 4.1 (with €' = B*) we have
("=B*Qz B°C (B')*. But by 4.8, ¢ is strictly closed in 4 ®zB".
Q.E.D.

We turn next to the relation between strict closure and Arf closure.

ProrosiTionN 4.5. (Zariski). Let 4, A be as in §1. If A is strictly
closed in A then A is an Arf ring.

Proof. If A/P were infinite for every maximal ideal P in 4, the proof
would be quite simple: given z,y,2€ 4 with 2 regular and y/2€ 4, z/z€ 4
we have (in AQ4)

Fo1=LesiVs®
z r Tz T
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s0 if 4 is strictly closed in 4 then yz/z ¢ 4 ; thus condition (#) of Definition
2.1 holds for A.

For the general case, we use the following fact: if I is an integrally
closed open ideal in A, and if 4 is strictly closed in AZ, then I is stable in A.
(In view of Theorem 2.2(ii), this will prove Proposition 4.5, because A is
strietly closed in A, hence a fortiori in A7 for all such I )

To prove the above fact we may replace I by IA(X), A(X) being as in
the proof of Theorem 1.9 (remark (e) in § 2 shows that JA (X) is integrally
closed, and Proposition 4.3 shows that 4 (X) is strictly closed in A7®4 A (X)
=A(X)1A®D (Corollary 1.2); finally I is stable if and only if TA(X) is
stable (Corollary 1.4(iii)). So we may assume that there exists an I-
transversal element ». If y€ I, 2€ I, then y/2 ¢ 47, 2/z ¢ A%, (Lemma 1. 8(i)),
and we conclude, just as in the beginning of the proof of 4.5, that yz/x€ A,
But since yz/z* = (y/z) (2/x) € A, we see at once that Yz/x is integral over
A C I, whence y2/z€ 1. Thus I*C 2], i.e. I is stable (Lemma 1.11(i)).

Q.E.D.

In the next theorem, we prove the converse of Proposition 4.5, under
the assumption that 4 contains a field. It would be nice to get rid of this
assumption (or, failing this, to show that the assumption is necessary).

THEOREM 4.6. Let A and 4 be as in §1, and assume that 4 contains
a field F with 14€ F. If A is an Arf ring, then A is strictly closed in 1.

Proof. We consider the sequence of Tings
A=4,C4,C4,C---C4

where A, is the ring obtained by blowing up the radical of 4; (5=0). We
will show that (i): g Ap (=lim 4,) =4, and that (ii): 4 is strictly closed
n=0 - .

n

in 4, for each n=0. Tt follows (since ® commutes with lim) that
~>

AQsA=1im (4,®44,)
-

(]

and hence that 4 is strictly closed in A.

To prove (i), let z,9€ 4, with & regular and y/v€ 4. We must show
that y/x€ 4, for some n=0. We do this by induction on the length
Aa(4/zA). If this length is zero, then z is & unit in 4 and y/z€ A, If the
length is not zero, then z lies in some maximal ideal P of 4, and since y is
integral over A C P, also y€ P. Since the radical M is of the form PQ
for a suitable ideal @, and M4, (= (P4,) (@4.)) is principal, therefore P4,
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is principal, say P4, = z4, with 2z regular in 4, (cf. proof of Proposition 1.1).
Then z is not a unit in 4, (since A4, is integral over 4), and zz7%, yz* € 4,.
~Using remark (b) following Corollary 1.10 we see that

Ma(A/zA) = ra(ds/aAy) 2 Ay (A1/2zA,) > Aoy (As/z2Ay).
By the inductive hypothesis, we have for some n >0
y/a: — yqu/ﬂ:z_l € (A:_)n-—], = Aﬂ)

and so (i) is proved.
We prove (ii) by induction on #, there being nothing to prove if n=0.
Let us assume then that A is strictly closed in A,, and deduce that A is
strictly closed in Ap.;.
_ To begin with, we may assume that A is local, because first of all
localization at a maximal ideal of 4 “commutes” with the sequence
A, C 4, C A, C- - - (cf. proof of Lemma 2.4); secondly Ap is an Arf ring
if 4 is (Corollary 2.5); and finally (as is easily checked), if Ap is strictly
~closed in (Ap)n=A4,®4 Ap for all maximal ideals P of 4, then A is strictly
closed in A,.
~ Nsxt, let A* be the strict closure of 4 in An..; by Lemma 4.1 and its
proof, A% is a local ring, with maximal ideal M* = M4, N 4%, and the
canonical map A/M — A*/M* is an isomorphism. Let a€ A% ie 2Q1
=1Q®2 in 4dp ®4 4, We wish to show that € A. The preceding remarks
show that £ —y € M* for some ¥ in A, so we may assume that 2 € M*, Since
A is an Arf ring, there exists an M-fransversal element z in 4, and

Zhny == MAp, — M*44sy
(Lemma 1.8(i)). Hence, in particular, #/2€ 4,...
If we could show that #/2 € 4,, then we would be done, because 4, — Mz
(Lemma 1.11(iii)), whence € M. Since 4, is an Arf ring (Lemma 2.3),

the inductive hypothesis allows us to assume that 4, is strictly closed in A.,.,,
so it would be enough to show that, in An. ®4 dps

2/2Q1—1Q2/2=0,
Now, in A,y ®4 4,4, we have
tQ@1—1®z=2z[(z/7) ®i—1® (2/2)] =0.
Our conclusion will follow then, from:

LeMma 4.7. Let 4, 4 be as in §1, with 4 Zocal,r and assume that A
contains a field. Assume also that the mazimal ideal M of A 4s stable, and




lot A, == AM — Mz, 2 being M-transversal. Let C be a ring with A, & CC A.
Then the kernel of the canonical map a: C ®4 € —> C®4; O is the annthilator
of zin 040 ‘

Proof. The kernel of @, being generated by elements of the form
y®1—1®y, y€4,, clearly annihilates # (since yz€ A). To prove the
converse, we may asumme that 4 is complete: for, in the first place, the
maximal ideal MA of A is stable (Corollary 1.4(iii)), and clearly z is M4-
{ransversal ; secondly, since 4 is flat over 4, we have d; = (A)MA =A@, Ay;
and finally we have a commutative diagram (with ¢ =C0®44)

7 4
0®yC———(0®y,0

e
o
0®: 0 ——>0Q4C

with g injective (since € ®a4, € = (0 ®4, C) @4 4), which shows that it suffices
‘to prove Lemma 4.7 for a.

Assuming now that A is complete, let & be a field of representatives
of 4, so that A contains the power series ring %{[2]]. Let w=§a¢®4 by

1

_ i
(a;, b€ C) be such that zw==0 in 0®,C. Then, in 0@y U, We have

z§m®b5=§cj® d;(a:;@l-—l@m,)
£=1 =1
(¢;, € 0sa,€ 4).

After subtracting from the z; suitable elements of ¥, we may assume that
;€ M, whence :v,-/z € 0, so that (Stﬂl in C®k[[z]] 0)

z(2m®bi—zc,®dj(%®1—1®%))=o.

If we know that z is a regular element in C'®ypeyy €, then it follows at once
that 3 0, ®4, by==0, and we are done. But 2 is regular in C, i.e. € is a flaf
E[[#]]-module, so CQyp; C is also 2 flat k[[2]]-module, and hence 2 is
regular in € ®y; C. Q.E.D.

CorOLLARY 4.8. Let 4, A be as in Theorem 4.6, and assume .that V)



i a finitely generated d-module. Then the Arf closure of A coincides with
the strict closure of 4 in A.

CoroLLARY 4.9. Let 4 and A be as in Theorem 4.6, and lot B be a
flat A-algebra such that B is a one-dimensional semi-local Macaulay ring
such that B&u A is integrally closed in its total ring of fractions. Then:

(i) If A is an Arf ring, so is B.
(i1) If 4 is a finitely generated A-module, and A’ is the Arf closure
of A, then B®s A’ is the Arf closure of B.

(4.8) and 4.9 follow easily from 4.3, 4.4, 4.5 and 4.6).

Remarks. Corollary 4.9(i) is stronger than Proposition 2.8, provided
that 4 contains a field. For, as in the proof of 4.6, we have 4 = J 4,, and

a=0
similarly the integral closure B of B is |J B,; but under the conditions of

n=0

2.8 (cf. proof of 2.8) B,—B®, 4,, whence B—B®, 4.

Does 4.9(i) still hold when A does not contain a field? It might be
easier o answer this question than the corresponding one for Theorem 4. 6. _

& * %

The next lemma indicates that one-dimensional local rings should play
a special vole in questions about strict closure. Recall that a noetherian ring
4 is said to satify condition (8,) if the ideal (0) has no embedded associated
prime ideals, and 4 satisfies condition (8.) if 4 satisfies (81) and furthermore
no prineipal ideal generated by a regular element in A has embedded asso-
ciated primes.

Lemma 4.10. Let A be a noetherian ring satisfying condition (S2),
and let A be the integral closure of A in its fotal ring of fractions, Then:

(1) 4 4s sirictly closed in A if and only if Ap is strictly closed in
Ap=A Qs Ap for every prime ideal P in A such that Ap has Krull dimen-
sion one.

(ii) 4 satisfies the condition (#) in Definition 2.1 if and only if Ap
satisfies (#) for every P as in (i).

Proof. (i). If A is strictly closed in A then Ap is strictly closed in Ap
by 4.3. Suppose, conversely, that 4, is strictly closed in A» whenever
dim.Ap=1. Let € 4 be such that 2®1=1®z in Q. 4; we want to
show that € 4. Set s =wu/v (u,v€ 4; v regular) and let I be the ideal




{wed|ws€A}. Thenul Cvd,so if ¢ 4, i.e.u¢ vd, then I is contained
in some associated prime ideal P of v4 ; since 4 satisfies (5,;) and » is not a
unit in 4, we have dim. dp==1. But (2/1)®1=1® (2/1) in ApQu, 4p
whence, Ap being strietly closed in Ap, z/1€ Ap, i.e. I T P. This contra-
diction shows that z€ 4.

(ii) We prove first that if A safisfies (#) and if 8 s a multiplica-
twely closed subset of A, then also the ring of fractions Ag satisfies (#).
Indeed, let x=a/s, y="0/s, z==c/s be elements of Ag (a,b,c€ 4; s€8)
such that y and 2z are integral over the ideal z45. We must show that if 2
is regular in Ag, then yz€ zdg. It is easily seen that for some & in S, &b
and §'c are integral over the ideal ad, and so, since A satisfies (#), our
conclusion would follow immediately if ¢ were regular in A.

It suffices to show that @ + d is regular for some element d in the kernel
K of the canonical map 4 — A5 since a/s= (a4 d)/s for any such d.
Let py, o 5P pspes - ',Pr;”, 207 ¢ 5 pe”, be all the minimal
prime ideals in A, the notation being such that

L4

ECp,ps 5 pn; KQP{,Pa",' Y Y DN M
a€p1',- ‘ ',Pn"; aﬁpx”,‘ ) ':pﬂ"”'

Note that a¢ p; (1=4i=n), since otherwise ¢ would be a zerodivisor in
A/K C As, contrary to the assumption that z==a/s is regular in Ay, Now
Iet d be such that

dGKﬁp1”ﬂp2"ﬂ' ‘ 'npn"”
dgp’Up/U- - -Ups.

Then a4 d does not lie in any minimal prime ideal of 4 and so, since 4
satisfies (8,), ¢ -+ d is regular in 4, as required.

Thus, if A satisfies (#), then Ap satisfies (#) for all prime ideals P
in A.
Next, assume that Ap satifies (#) whenever dim. dp=1. Let z,y,2€ 4
be such that « is regular and both y and z are integral over the ideal zA;
we want to show that yz€ 24. Let I be the ideal {w€ A | wyz€ z4}. Then
y2l Cad, so if yz¢ x4, then I is contained in some associated prime ideal P
of 24 ; since 4 satisfies (S.), dim.Ap==1, so Ap satisfies (#) and hence
yzAp C 2dp, i.e. I L P. This contradiction completes the proof. Q.E.D.

Bemarks. (a) Tt is easy to check in 4.10(i), that Ap is the integral
closure of Ap in its total ring of fractions. (Use the fact that 4 satisfies (S,)).



(b) If P is a non-maximal prime ideal of A, then A/P is infinite,
since every finite integral domain is a field. Hence the local ring Ap has an
infinite residue field, and if also dim.Ap==1, then Ap satisfies (#) if and
only if Ap is an Arf ring.

Thus, and in view of 4.5 and 4.6, 4.10 gives:

TaeoreM 4.11. Let A, A be as in 4.10, and assume thet A contains
a field F (with 14€ F). Then A is strictly closed in A if and only if Ap
is an Arf ring for every P as in 4.10; and in particular if A has no mazimal
tdeal P such that A/P is finite ond dim. Ap =1, then A is strictly closed
in A if and only if A sotisfies the condition (#) in Definition 2. 1.

5. Connections with saturated rings. We first recall some terminology
from Zariski’s theory of saturation of rings (cf. [6]).

Let A be a one-dimensional Macaulay local ring, with maximal ideal M,
and let 4 be the integral closure of 4 in its total ring of fractions . We
suppose that there is given a subfield K of F, containing the element 1 of F,
such that I is finite-dimensional as a K-vector space and such that 4 is integral
over B=A N K. R has a unique maximal ideal, namely Mp=M N K ; we
shall suppose also that B/My is an infinite field.

Let @ be an algebraic closure of K. There exist finitely many K-algebra
homomorphisms ¢: F— Q. For each such , ¢(F) is a subfield of @ con-
taining K, and ¢(4) is a one-dimensional local subring of ¢(F) containing,
and integral over, K. Let F# be the compositum of 2ll the fields y(F) (y
running through Homg o (RB,Q), and let vy, - -, v, be all the (non-
trivial) valuations of F# which are non-negative on B. The v; are discrete,
rank one, valuations, finife in number, because the integral closure Bf of R
in F# is the same as the integral closure of any y(4), and hence (by the
theorem of Krull-Akizuki, cf. [2, Ch. 7; pp. 29-81]) RB# iz a semi-local
Dedekind domain.

For elements 5, £ of F, we say that 4 dominates ¢ (with respect to X)
if, for any u; as above, and any two K-homomorphisms ¢y, ¢ of F into Q@
(hence into #'#) we have:

vl () — ¢ () 1 = w95 () — g (&) ].

Finally, 4 is saturated with respect to K if 4 contains every element of A
which dominates an element of A.

ProrosiTioN 5.1 (Zariski), With notation as above, if A is saturated



with respect to K then A is strictly closed in A (i.e. if €4 and 2®1
=1Q®z in AQ 4, then z€ 4). '

Proof. Let ¢€ 4 be such that e®@1=1@2 in A®,4; it suffices to
show that 2 dominates some element of A. The kernel of the canonical map
AQ®pd—> A Q4 A consists of all sums of elements of the form

at@b-—~a@chb— (a®b) (c®1—18¢) (a, b€ A;c€ 4).

Thus, in A ®g4, we have

z@1—1 ®m=§(at®bt) (c:®1—1Q¢)
izl
(a,li€ A€ A).

From any two K-homomorphisms y;,yx: F— @, we obtain a homomorphism
¢;®yy: A®gA~>0, which applied to the preceding equation gives

h
94(2) — (@) = Z v (ae)ge(be) [¥s(cr) —nlo)]
It follows at once that z dominates ¢ € A, where ¢ is given by:

Temua 5.2. With A, B, Mz as above, let ¢, ¢o,* * +, ¢n be any elements
of A. Then there exists an element c€ A such that ¢ is dominated by each
one of ¢4, €z * ¢, 0

Proof. (cf. [6; p. 971, Prop. 1.6]). Let ¥V be the E-submodule of 4
generated by ci, ¢z, * -, ¢ For each v;, ¢y, Yy 8s in the definition of domi-
nation, set

Vip={2€ V| i($3(2) —yz(2}) >11;1ti;1h[154(¢5(0t) —yx(e)) ]}
Then Vi is an R-submodule of 7, and V5=V since at least one ¢; is not
in Vﬁk.

Now V/MrV is a vector space over the field R/Mz (which is an infinite
field, by assumption); and if f: V— V/MzV is the canonical map then, by
Nakayama’s lemma, f( Vi) 5= V/MeV, so that

V/MgV ?éiLijf (Vi)
whence .
V 7é U V{jk.
£, 5.5

Any ¢ in V lying outside U Vi will be as required. Q.E.D.
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CorOLLARY 5.3. If A is saturated with respect to K, then A is an Arf
ring.
Proof. This results from Propositions 4.5 and 5.1. A more direct proof,

avolding altogether the notion of strictly closed”, follows easily from the
identity

W) =) =D 1)~ ()] + () () — ()

—%(%)%(%) [¥s(z) —yn(2) 1.

(Cf. Definition 2.1; and use Lemma 5.2 with CLe=, C; =1, C=2).
Q.E.D.

& * *®

Suppose now, for simplicity, that 4 is a complete one-dimensional local
domain. It follows from 5.3 that the saturation Ag of 4 (—smallest sub-
ring of 4 containing A4 and saturated with respect to K) always contains
the Arf closure 4”. A’ may or may not be equal to Ax, as is shown (in a
strong way) by the following example:

Let k[{#]] be the power series ring over an algebraically closed field %
of characteristic zero, and let 4 — E[[2,y1] S k[[£]], with

$=tp
Y=l qfet g fart . . . (m € k),

Where p < ¢ are two relatively prime positive integers. (4 is the local ring
of an algebroid plane curve with one characteristic pair.) The saturation 4
of 4 with respect to k((*)) is the smallest ring among those of the form
Axi) with 0s£2€ M (ef. [6; Corollary 1.10]). One checks that

A’ - k[[tp, tq, tq-u’ tq+2’ - ]]

Now A’==4 if and only if 4’ and 4 have the same semigroup of values.
By 8.7 and 3.8, the semigroup of 4 is

0:#05#‘0+!L1;H0+!‘1+F’2;' e

- where po, gy, iz, + - is the multiplicity sequence of A. This sequence is found
as follows : let

g=—ap--b 0<b<p
p.-.:cb-l—d 0==d<h




(Buclidean algorithm). Then

Po==j1==" " ‘iga=p
P == g4 =" ° '=F-a+o-1=b
Paso=='"" = d ete. ete.

From this we conclude easily that: A=A if and only if =1 (mod p).
ES * *

We conclude with an example of a family of equivalent, non-isomorphie,
plane curve singularities whose Arf closures are equally non-isomorphic.
Recall that two plane algebroid curves have equivalent singularities if and
only if they have isomorpbic saturations [6; §2]. The example shows, then,
that the operation of “Arf closure” does mot serve, as saturation does, to
“%kill the moduli” of equivalent plane singularities.

Let % be a field of characteristic zero, and let K[[{]] be the power
series ring in one variable over k. Let n be a positive integer and let
@ = (@, 0s," - *, @) be a sequence of elements of k. Set

A— Aa—F[[z,9]]
where

o == f2n+l
Y= {3n+2 + a’ltSnw + a2t3n+4 _l__ PR + an_lténﬂ.

Then A represents a plane algebroid curve with ome characteristic pair
(2n 41,80 -+ 2). If 4, is the quadratic transform of 4, 4, of 4,, 4, of 4,,
etc. . ., then the multiplicities of A, A4,,4, A5, - - are easily seen to be
en+1,n41,n,1, - - (4,=k[[£]] for r=3). From this (ef. 3.7 and
3.8)—or by direct computation—we find that the Arf closure of 4 is

A’ = A =Ek[[2,y]] + k[ []].

Now let 8= (by, bz - *,bns) be another sequence of elements in k. We
write a=g if there exists an element ¢5£0 in % such that

(@2, G2, * * ¥ 5 Onz) = (€1, gy~ -, 0" 0na )

It is clear that if @==p then Ap is mapped isomorphically onto Ao, as 45"

is onto 4, by the k-automorphism of %[[#]] which sends ¢ to ¢f. Conversely:
If as=8, then AJ and Ag are not k-isomorphic (and a fortiori A« and

Ap are not k-isomorphic). '
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Indeed, if 44" and Ag" are k-isomorphic, then there exists a power series
7 of order 1 in %[[#]] such that

(i): =1cdy
and

(i) 1 782 bstR o o p b, et € A
Setting

rm (L Qi Bl o o T - )
we see af once, from (i), that dy—d,—" - -=d, =0, and hence that
T L BupSies e o o b, AL e gBeR (fSmsE L. gh f8mes L.
+ %1y i) (modulo #4+2),
From (ii) it then follows that
(81, @25+ * *, Gpy) = (Cby, €%yt =, " by ). Q.E.D.

One last remark: if % is algebraically closed and if (@, a4, - *, @,
by, b2, * *,bna) are independently transcendental over the prime subfield of
k, then A," and Ap’ are isomorphic, since there exists an automorphism 6 of k
with (@) ==b; (4=1,2,- - ,n—1), and 4 can be extended to an auto-
morphism of k[[f]] leaving ¢ fixed. On the other hand, if =3 then
az B, so that 4. and Ay are not k-isomorphic. It follows that there s no
automorphism of Ao extending 6. Thus Arf rings can be less “rich” in
automorphisms than saturated rings (cf. [6, Theorem 1.16]).

PUorbvE UNIVERSITY.
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