ABSOLUTE SATURATION OF ONE-DIMENSIONAL
LOCAL RINGS.

By JosEpx LipMaNn.*

Introduction. A closure operation, absolute saturation, is defined within
certain commutative rings (Section 1). The definition is closely related to—and
was inspired by—Pham and Teissier’s definition of “Lipschitz-saturation” [4, p.
650). The main result (Section 2) is that for a reduced one-dimensional
noetherian local ring o which is complete, with residue field of characteristic
zero, if k is any field of representatives and x is any transversal parameter, then
the k((x))-saturation i,y of o (cf. [L, p. 968)) is identical with the absolute
saturation of o (within the integral closure A of o in its total ring of fractions
F).

Some basic results of Zariski’s theory of saturation [GTS I, II, III] are direct
consequences. First of all: k((x))-saturation is an intrinsic operation on o, i.e. it
does not depend on the choice of k and x (simply because k and x do not enter
into the definition of “absolute saturation”). Furthermore: 0, can also be
characterized intrinsically as being the smallest among those rings between o
and A which are saturated in Zariski's sense, i.e. with respect to some (variable)
subfield of F. (This is because any Zariski-saturated subring of A is absolutely
saturated (remark (c), Section 1).) ‘

As will be apparent from numerous references, this paper has many points
of high-order contact with Zariski’s work. 1 do feel, however, that the above-
mentioned main result merits an independent treatment. Enough preliminary
material from Zariski’s theory is included in Section 0 to make the proof
self-contained (modulo standard commutative algebra).

After this paper was completed, I received a preprint of E. Boger (7], in
which he obtains still another proof of the intrinsic nature of k((x))-saturation.
Bogers work makes use of the notion of Lipschitz-saturation, but his results do
not contain the theorem given here in Section 2. On the other hand his proof,
like Zariski’s, shows that saturated rings have many automorphisms.
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Throughout, A will be a noetherian semi-local ringt which is equidimen-
sional of dimension one, complete, reduced (i.e. without nonzero nilpotents),
integrally closed in its total ring of fractions F, and which contains a field of
characteristic zero, K will be a subfield of F—necessarily of characteristic zero
—such that F is finite-dimensional as a K-vector space.

0. Preliminaries. For the most part, the material in this section is taken—
with minor alterations—from the aforementioned papers of Zariski.

1. F has just finitely many prime ideals p;, b,, ..., b;, all of them maximal,
and F is canonically isomorphic with [I*_,F/p,. For each i=1, 2,...,h the field
F/p, is finite over K; hence if Q is a fixed algebraic closure of K, then the set

H, = {all K-algebra homomorphisms ¢: F—Q with kernel p,}

is non-empty and finite. We choose once and for all one member of H; and call
it ;. F;=y,(F) (=F/p,) is a subfield of & containing K, and the map

h
i=]

given by
¥(n)=(n,mg--., M)
(my=y(n) fornEFand i=1,2,...,h)

is a K-algebra isomorphism.
For each i=1,2,...,h, F, is the field of fractions of its subring y,(A). Let A,
be the integral closure of ;(A) in F,. Then

h
¥(A)= ] A

f=1

(so that actually A,=y;(A)). (Indeed, if n€ F and ¥(n)&l"_,A,, then for each
i there exists a monic polynomial f;(X)EA[X] such that ,(f:(2)=0; if
f=fife - fi, then ¢, (f(n))=0 for all i, whence f(1)=0, and so nE A (since A
is integrally closed in F); from this the assertion is immediate.] For con-
venience, we shall identify—via ¥~F with [I"_F, and A with [I?_ A,.

The following proposition is somewhat peripheral—though not entirely

11t is understood that all rings are commutative, with identity; that homomorphisms of rings
always preserve the identity; and that subrings of a ring always contain the identity of that ring,




irrelevant—to our objective, which is to prove the theorem in Section 2. The
proposition could be omitted, with little subsequent effect, if we simply took its
conclusion as an additional condition to be imposed throughout on A and K 1.

ProrosiTion (0.1) (cf. [GTS I, p. 578, Prop. 1.4]). If A, K are as above,
then A is a finite A K-module, and AN K is a complete discrete valuation
ring with field of fractions K (so that [3, p. 307, Corollary] for some field k of
characteristic zero and some element x, ANK is the one-dimensional power
series ring k[[x]] and K = k((x))).

The proof of {0.1) is based on:

Lemma  (0.2) [6, p. 60). Let R be a complete (or, more generally,
henselian [5, Section (30.3))) local domain of dimension >0, and let v be a
discrete rank one valuation of the field of fractions of R, with valuation ring
R,. Then RCR,.

CoroLrary (0.3) (F. K. Schmidt). If in (02) R is a complete discrete
valuation ring, then R = R.

Proof of (0.2). Let x €m, the maximal ideal of R. R being henselian, 1+ x
has an Nth root in R for every integer N prime to the characteristic of R /m;
hence v(1+x) is divisible by every such N, so v(1+x)=0, and 1+x€& R, ie.
x€R,; thus mC R,. Furthermore we have for any y €R and any n >0 that
y"xEmCR,, so that no(y)+ v(x)>0; taking x50 and n> v(x), we see that
o(y)>0,ie. yER, Q.ED.

Proof of (0.1). Let ¢, ¢,,...,4 be as above. We have already seen that
fori=1,2,...,h, A;=1;(A) is an integrally closed domain with field of fractions
F,;={,(F); moreover A, is complete and semi-local (since A is), so A is local [CA
p- 283, Cor. 2]; and finally, since A is equidimensional of dimension one,
therefore A, is also of dimension one; thus A, is a complete discrete valuation
ring. Since [F;:K]< o0, therefore A,N K is a discrete valuation ring with field
of fractions K; and furthermore Corollary (0.3) (with R= A;) implies that A, is
the integral closure of A;,N K in F,. Since F, is separable over K (K being of
characteristic zero) it follows that A, is a finite A;N K-module.

We show next that the discrete valuation ring A,N K is complete. The
completion B; of A;N K is a subring of A, (since A;N K is clearly a subspace of
A;); since A, is a finite A; N K-module, so therefore is B;. But the maximal ideal
of A,NK generates that of B, and the residue fields of A,NK and B, are

tTo be precise, this would make the definition of “Zariski-saturated subset of A” (cf. 3 below)
more restrictive, thereby weakening Corollaries 2 and 3 in Section 2.




canonically isomorphic; therefore Nakayama’s Lemma shows that A,n K= B,
ie. A,N K is complete.

From Corollary (0.3) we see now that ANK=A,NK for all ¢, j
=1,2,...,h.

To complete the proof, we show that ANK=A,NK (i=1,2,...,h). (Since,
as before, A=Il"_,A, and, as above, 4, is a finite A, K-module, it will follow
that A is a finite AN K-module)) If nEANK, then g=y¢,(n)EANK, so
ANKCA;NK. Conversely, if n€A,NK, then there exists £EA such that
Y =7 (j=L2,...,h) (because nEANKCA, and A=]" A, via the ).

j=1

But then y,(n~£)=0 for all j, so n—£=0, whence yEANK. QUED.

Before proceeding, the reader may find it helpful to refer to Example
(0.16) below.

2. Let K=k{(x)) be as in (0.1), with algebraic closure {. Let L C{ be a
finite algebraic field extension, necessarily separable, of K. The integral closure
R of k[[x]] in L is a finite k[[x]]-module, hence a complete semilocal domain
[CA p. 276, Theorem 15), i.e. a complete local domain [CA p. 283, Cor. 2], and
consequently R is a complete discrete valuation ring. The residue field of R is
finite over that of k[[x]]; it follows easily that the algebraic closure k;, of k in L
is a maximal subfield of R, i.e. a field of representatives [CA pp. 280-281]. So R
is the power series ring k; [[7]] for some 7.

For suitable n >0 we have then

(=]
x=1" 2> a7 {a,Eky, ap#0).
p=0
Let k* be a finite normal field extension of k containing k; and such that the

polynomial X" —a, splits into linear factors over k* (whence k* contains n
distinct nth roots of unity). Setting

u=(x/aym")—1

=(a,/ ap)r+(ay/ ap)r®+ - -
we have, in k*[[7]], that x=¢", where

t=ra)/"(1+ u)l/n

=Taé/n(l+%u+-2!|‘;ll‘(%'“l)u2+"')

(a}/™ being some root of X" — a, in k*). Moreover, k*{[r]] = k*[[t]].



Now take for L the compositum of all the fields y(F) as ¢ runs through the
set H of all K-algebra homomorphisms from F into . (Note that H is finite,
H=uU*_ H, with H, as in 1 above, and that for each Y EH, ¥(F) is 2 field
containing, and finite over, K.) For each 4 € H, {/(A) is a subring of L which is
integral over k{[x]]. We conclude:

(04) There exists a power series ring R*=k*[[t]] and an integer n >0
such that :

iy x=¢"

(iiy k* is a finite normal field extension of k containing n distinct nth
roots of unity;
and such that for all K-homomorphisms  : F—Q, we have

(i) Y(F)SF*=k*((1)); and

(iv) R* is the integral closure of Y(A) in F*,

Remarks. (a). F* is a Galois extension of K: indeed, the degree [F*: K]
is easily seen to be n[k*:k], and we have at least that many automorphisms of
F*/K; namely, for each of the n nth roots of unity a in k* and for each of the
[k*:k] k-automorphisms o, of k*, there is a unique K-automorphism ¢ of F*
such that

(05) o( S bpt")= S oolb)a%?  (b,ek¥)
p=0 p=0

The Galois group G of F*/K consists therefore precisely of all 6 as in (0.5).
(b) Since F* admits L-isomorphisms into £, we may as well assume that

F*CQ. Then
(0.6) H={o°yloE€G,i=1,2,....h}.
(H as above; ¥, asin 1).

(¢) For each i=1,2,...,h, A,=y,(A)Ck*[[¢]], and since A=I"_ A, (cf.
1), each element 7 of A is of the form '

(07) 772(1?1:7}2:---,17;,)
o0 o 00
=( > a,th, > ag,t,..., a,,pt”)
p=0 p=0 p=0

(g, Ek* for 1<i<h,0< p< o).



We fix a ring R*=k*[[t]] as in (0.4), with R*C R, and denote by “ord”
the valuation of F*=k*((t)) associated with R*:

ord (§) =sup {n EZ|{ € t"R*} (§EF*)

3. For elements , { of A, we say that n dominates { (with respect to
K = k((x))) if for any ¢, ' € H: the quotient
Y(n)~¥'(n)
P(§)-¥'(¢)
is integral over A K (= k[[x]]) if $(£)#/(2), and ¥ (n)=y/(n) if $() =¥'(2).
The relationship of domination does not depend on the choice of f.
Furthermore if ¢:A—A’ is a ring-isomorphism, extending to an isomorphism
@:F-F' of total rings of fractions, then 7 dominates { (w.rt. K)=¢(n)

dominates ¢{{) (w.r.t. P(K)).
If ord is the valuation defined above, then clearly: v dominates { if and

only if, for any ¢, Y €H
ord((n) —¢'(n)) >ord (¢($) —¥({)).

A subset T of A is said to be K-saturated (in A) if T contains every element
of A which dominates an element of T. For any S CA, the set

§=§, = {n€ A|n dominates some member of $ (w.r.t. K)}

is evidently the smallest K-saturated subset of A containing S; S, is called the
K-saturation of S {in A). The usual “closure” properties hold:

~
-~

@) ScS (i) SCTCA=SCT, (i) S=S§.
A being fixed, we say that a subset S of A is Zariski-saturated in A if there
exists a field K as in (0.1) such that S=§,.

Lemma . If §, §,,....8y are in A, then there exist positive integers 1,
Ta.e.., Ty sSuch that each one of §,8,,...,{y dominates r\{; + 1§+ ... + 13y

Proof. (cf. [GTS II, p. 878, Prop. 1.3]). By assumption A is a Q-algebra
(Q=field of rational numbers). For ¢, ¥’ € H, the set

Vo™ [ (P1> P+ +On) €Q"|ord { ‘P( é Pfgi) - ’J”( 'él p:&; ) ]

> min {ord[‘P(ff)—‘V(f;)]} J

I<i< N




is easily seen to be a proper Q-vector-subspace of Q. Hence there exists a point
(r1,75,...,1y) with positive integer coordinates lying outside the finite union
U Vo (¥ € H), and this is as required. Q.E.D.

CoroLLary (0.8).  Let A, K be as before and let S be an additively closed
subset of A(n;,m, € S=n,+n, €S). Then n€ S, if and only if, for any §, Y’ in
H there is an element { (= $4.p) in S such that

(09)  ord(¥(n)—v'(n)) > ord (¥($) = ¥(£)).

Proof. If n dominates £€ S then (0.9) holds with {=§ (for any y, ¥").
Conversely, if §.p ¢ 18 as in (0.9), then, S being additively closed, the Lemma
shows that there is an element £ in S dominated by each one of the by E
HY); clearly 7 dominates this ¢,

CoroLLaRy (0.10). Let A, K, S be as in (0.8), with § non-empty. Then S
is a subring of A containing AN K.

Proof. 1If u), n, € S, then so do T~ My and 1,7, as follows easily from
(0.8) and the identities

Y — M) — V(m—ng)= [4’(’11) - 'V("’h)] - [‘P("iz) = ‘1/(7?2)]

4‘(??17?2) _4’ 711”?2) [‘P "?1 (m)][‘#(na)]+[¢’(n1)][¢(n2)"¢'(n2)]-

If nEANK, then ¥(n)—¢'(n)=0 for all §, Y EH; hence n dominates
every element of A, and so (since S is non-empty) n€S; thus ANK CS.
Q.E.D.

4. Proposrrion (0.11). Let A and K= k((x)) be as in (0.1), and let o be
a local subring of A containing k[[x]}= AN K. Then the saturation 5 =0, is a
local ring, and if m, n are the maximal ideals of o, © respectively, then the
canonical map o/ m->5 /n is bijective, and mA =nA.1

Proof. Let o, be the ring 0+ mA. Then o/m—s0, /mA is bijective, so mA
is a maximal ideal of 0,; on the other hand, every maximal ideal of A contains
mA (since A is integral over o, cf. (0.1)), whence mA is the only maximal ideal
of o, (since A is integral over 0,). We shall show that if n € A dominates { €0

to and & are readily seen to have the same total ring of fractions, say F ¥, so we may assume
that A is the integral closure of o in F*, In this case we find, from the “projection formula™ [CA
p- 299, Cor. 1), that the multiplicity of an m-primary ideal I in 0 is equal to the length of the
o-module A/IA. Consequently, what Proposition (0.11) says is that 5 is a local ring having the
same multiplicity as o (cf. [GTS II, p. 900, Prop. 3.7.]).




(w.rt. K=k((x))) then n €o0,. (This means that  Co,, whence © is a local ring
with maximal ideal n=mAN7%, and 5 /nCo,/mA; (0.11) follows at once.)

Since o is a finite k[[x]]-module (cf. (0.1)) we see that o is a complete local
ring and that the integral closure k, of k in ¢ is a maximal subfield of o, hence is
a field of representatives. We have then: k[[x]]Ck,[[x]]Co, and if K, is the
fraction field of k[[x]], then K C K, CF and AN K, =k {[x]]. Since any k((x))-
homomorphism of F into an algebraic closure of k((x)) is also a k((x))-
homomorphism, it follows that n dominates { w.r.t. k;((x)). We may therefore
assume that k=k,. Then {=b+{’ with b€k and {'Em, and n dominates {’;
so we may assume that { €m. This being so, we shall show that

(0.12)  nek+(x8)A  (Co,).

Let 7,=27_0a,t" be as in (0.7) (1<i<h), and let g,=inf{pja,t
Zk[[x]]}). If g;= co (i.e., 7, Ek[[x]]) let o be the identity automorphism of F*; if
q; < 0, let o be an automorphism of F*/K such that o(a,, t%)+# g, t% in either
case, ord (o(n,) — ;) = g; (cf. (0.5)). With

w=(n- 3 ) er=u(F)

P<q

we have (setting {; =¢,({))
ord(§;) <ord(a(§;)— ;) [since ord(a({;)) =ord ({,)]
<ord{o(n;)—m)  [since n dominates §]
= g;=ord ().
Hence 0/ € {;A,, and (since (2, ¢ ., a,t") € xk[[x]])
(0.13)  (m—ao) € xk[[x]]+ {4 Ci(x §)A.

Furthermore, 0 <ord({;) (since { €m), so 0<gq,, whence ag,,€Ek; and since 7
dominates ¢,

ord(ni—nj)>6rd(§i—§j)>0 (4,j=12,...,h)

so that a,,= ay, for all 4, j. Thus
A=dyn=...=aqy=a (say), a€k,

and hence (since A =1II"_,A,, so that (x,{)A=1I"_ ¥, (x,{)A) (0.13) gives (0.12).
QE.D.




5. The following simple lemma helps to elucidate the structure of
saturated rings (although we will not use it explicitly for that purpose).

LemmMa (0.14). Let n € A be as in (0.7). Then for each m > 0 we have that
7™ =(a,, t™ as t™, ..., a,,t™) dominates q

(so that any saturated set containing m also contains all the 7™, m
=0,1,2,...)
Proof. For any i, j=1,2,...,h, and 0,7 € C (the Galois group of F*/K),
we have (in view of (0.5))

(015)  ord[e(n)—7(n)]

p=90

g

=ord § (oﬁ(aip)ap_TO(afp)Bp)tp] (a"=p"=1)
| p=0

<ord [(og(a;,) 0™ 74(a;,) B™) ™

=ord[o(a;,t™) ~7(a,,t™)].
Taking j=1, r=identity, we see that

[o(n)=n]=[o(amt™) = g, t"]
and therefore g, t™ € K (%,) CF,, so that
a.t"EFNR*=4A;, (i=12,...,h).

Thus 7™ €l"_,A,= A. Because of (0.8) (and since w,=1y,(7), a,,t™=1,(n"™),
etc.), (0.15) tells us that ™ dominates 7. Q.E.D.

Example (0.16). We drop, for just a moment, all the notational conven-
tions previously made. Let o be a reduced complete one-dimensional noetherian
local ring with maximal ideal m, and assume that the residue field o/m has
characteristic zero. Let k be a subfield of o such that {o/m:k]< oo, k being the
canonical image of k in o/m. (For example, k could be a field of representatives
[CA pp. 280-281]). k is obviously of characteristic zero. Let x be a parameter of




0, .. & non-unit regular element of o (equivalently: the ideal xo is primary for
m). o is then a finite module over its power series subring k[fx]] (cf. [CA, p. 293,
Remark]).

Let K be the field of fractions of k[[x]] and let F be the total ring of
fractions of o:

F= 0[1/1] = 0®k[[x]]K'

F is a finite-dimensional K-algebra. Taking A to be the integral closure of o in
F, we return to the situation described in (0.11),f but from a somewhat
different path. This is actually the approach which will be taken in Section 2.
Note that in this example it is clear that AN K =k[[]], and furthermore A
is a finite AN K-module (because, as in 1, A=II"_ A, and for each i, F is a

finite separable field extension of K, whence A4, is a finite k[{x]]-module.) In
other words, Proposition (0.1) is obviously satisfied here.

L. Absolute Saturation. We shall say that a homomorphism of commuta-
tive semi-local rings ¢:B->C is continuous if ¢(rad.B)C (rad. C), where “rad”
means Jacobson radical (= intersection of all maximal ideals).

Definition (1.1). Let S be a subset of A (where A is as in Section 0). The
absolute saturation of S in A,S’ in symbol, is the set consisting of all elements
1 in A such that: for each valuation ring R, (with valuation v) and each pair of
continuous homomorphisms ¢,¢,: A—R,, there exists an element { in S such
that

0(@1(n) — g(m)) > v(¢:($) —95($)).
S is absolutely saturated (in A) if S=8§".
Remarks (a). It is immediate from the definition that the usual closure
properties hold for absolute saturation:

(i) $¢8; (i) SCTCA=S'CT; (i) S"=§"

Hence §' is the smallest absolutely saturated subset of A containing S.
(b). Arguing as in (0.10) (replacing ¢, ¥’ by ¢,, ¢,) we find that if § is
non-empty then S’ is a. subring of A. (It is not necessary here that S be

tIn (0.11) we did not assume that o and A have the same total ring of fractions, but for our
purpose-—which is to study 5x—this makes no difference (cf. first sentence in footnote following
(0.11)).




additively closed. We need to know that S is non-empty in order to show that
1€8°) '
(c). If S is additively closed, then it follows from Corollary (0.8) that

S’ C Sy

(Indeed, any ¢, ¢’ in H induce continuous homomorphisms from A into the
valuation ring R* of “ord”, cf. (0.4).) In particular, if S is aedditively closed and
Zariski-saturated (i.e. S= §K for some K), then S is absolutely saturated. (In
this case 5= S is actually a subring of 4, cf. (0.10).)

The following remark, which allows us to impose certain restrictions on ¢,
and ¢, in Definition (1.1), will be useful. Notation is as in 1 of Section 0.

(d). Let R=R, be a valuation ring and let ¢,,¢,:A—R be continuous
homomorphisms. The kernel of ¢, contains one of the minimal prime ideals
p;NA, and so ¢, =8,°y, for some i with 1<i<h, where 8,:A,—»R is a
continuous homomorphism (A, =4,(A)). #, can be extended to ¢F:R*—R,
where R* is as in (0.4), and R is the integral closure of R in some algebraic
closure of the field of fractions of R. So we have a commutative diagram

A
%
4 —> R
1. e
R* —> R
#

If 1 is a maximal ideal of R then

(¢T)_l(ﬂ)ﬂAi=9f1(nﬂ R)

which is the maximal ideal of A, since nN R is maximal in R, and 8, is
continuous; we conclude that (¢¥)~'(n) is the maximal ideal of R*; thus ¢ is
also a continuous homomorphism. In a similar way, we have ¢,=8,°y; for
some j with 1< j< h, and 8, extends to a continuous homomorphism ¢3: R*
—R.

Let R_ be the localization of R at one of its maximal ideals n. Then R, is
the valuation ring of a valuation © which is an extension of ¢ [CA, p. 27, Cor. 2],




If 9, { €A, then clearly

o(¢{n) — d2(n)) > 0(6)($) — 92($))
if and only if

5 w(n) ~ a2 (% (m)) > B(e1 (% (6)) - #3(4,(8))
These considerations lead to the following conclusion:
€S’ if and only if: for each valuation ring R,, each pair of continuous

homomorphisms ¢%, $3 : R*—R,, and each pair i, j with 1 < i, j < h, there exists
an element { in S such that

U(‘i’f(ni) - ‘1’;("?;)) > 0(¢T(§i) —‘1’3(5}')) ('ﬂ:‘ = Hbi("?)s etc.)

2, Equality with Zariski’s Saturation. Notation remains as in Sections 0
and 1. Let o, m, K=k((x)), F, A be as in Example (0.16). We say that the
parameter x of o is transversal if mA = xA, This means that for any non-unit £ of
o we have £ExA, i.e. (with y; as in 1 of Section 0)

(&) €4, (0)A, (i=1,2,...,h)
or, equivalently,
ord(y;(¢)) zord(x)  (i=12,...,h)
{cf. 2 of Section 0).
Since k is infinite, transversal parameters exist.}

THEOREM . If x is a transversal parameter of o, then the k{(x))-saturation
of o in A is identical with the absolute saturation of o in A:

D (an="9"

CoroLLaRY 1. The k{(x))-saturation of o in A does not depend on the
choice either of the field k or of the transversal parameter x.

tLet (£,,85,....4y) generate the ideal m; for 1<i<h, 1< j< N, let

N
V‘f = { (apaz» . ':aN) € kNl'lbd(gy) ﬁ#&,( El asgs)Af } N
so
Then V,, is a proper sub-k-vector-space of k¥, and for any (by,by,...,by) €KY — U, ,V,,, Sh¢, isa
transversal parameter.
The adjective “transversal” comes from the fact that xA =mA < the ideals xo and m of o have
the same multiplicity (cf. footnote following (0.11)).




In fact, 5, can also be characterized as being the smallest Zariski-
saturated ring between o and A:

CororLary 2. [GTS III, Appendix A, Lemma A9] If 0C S CA, where §
is additively closed and Zariski-saturated in A, then

Ok(p< S.
Proof.

S$=§ (Section 1, Remark (c))

Do’ {Section 1, Remark (a))

=3x(xp (by the Theorem).

CoroLLary 3. If o is Zariski-saturated in A then o is k{(x))-saturated
in A.

Proof. Take S=o in Corollary 2.

Remark. The cited Lemma A9 is one of the main facts proved in [GTS].
Actually, since our definition of “Zariski-saturated” refers to any field K such
that [F: K] < co, Corollary 2 is marginally stronger than Lemma A9.

Proof of Theorem. We already know that o' Cd (=0 (Section 1,
remark (c)), so we need only show:

If n€D5 then nE€0’; in other words if ¢,, ¢, are continuous
homomorphisms of A into a valuation ring R, (with valuation v), then there
exists { €0 such that

o(¢2(n) ~92(m)) > 0{1(8) — #o($))- (2.1)

By Proposition (0.11), 8 Co+mA, so if &3 then there exists £€0 such
that

n—§EmMA=xA

(x being a transversal parameter). If n —£€ 0’ then 4 €0, so we may replace 7
in (2.1) by n—£, i.e. we may assume that  ExA, whence (cf. (0.4))

ord (n,) 2 ord(x)=ord{(¢t")=n
(=), i=12,.... k). (2.2)

Furthermore, as in (0.14), ™ €3 for all m > 0. Now in the finite k[[x]]-module




. R* (RF=k*[{t]] for i=1,2,...,h), x-adically topologized, we clearly have
n=3%_m"™; moreover o' is a closed subspace of II'.,R* [CA, p. 262,
Theorem 9); so if we can show that ™ &0’ for all m, then n &0/, as required.
By (2.2), n™ =0 if m < n. Thus, we may assume in proving (2.1) that u is of the

form

n=(a,t™ a,t™,....q,t™ | (m>n;a,a,,...,a,Ek*) (2.3)

By remark (d) of Section 1, we may also assume that

& =97 Y, ¢2=¢;°“l’j

(for some i, § with 1<, < h, ¢f, ¢3 being continuous homomorphisms of R*
into R,). Then

o1(n) = do(m) =07 (n) — &3 (n,) = dF(a;t™) — 93 (a;t™).

Let
v=min {0(¢}(2)), 0(¢3(t))}.
Then
nr < o(¢F(27) — 93 (7)) = vy (x) ~ () (2.4)
and
mp < o(¢F(at™) - ¢F(a;t™)) = v(¢, (1) — bo(m))- (25)

If equality holds in (2.4), then, since m > n, (2.1) holds with {=x, and we are
done.
So we assume henceforth that

np < o(43(7) — 93 (t")). (26)
It then follows that

v=o(3(t) = o(65(¢)) < . (27)

We shall now prove (2.1), with n as in (2.3), by induction on m. 7
dominates some element y in o (by definition of §, cf. 3 in Section 0). Arguing




as in the second paragraph of the proof of (0.11), we may assume that
yEmC xA, so that yP=0 for p<n. By (0.14), y'P €5 for all integers p >0,
and so (since we are proceeding by induction) we may assume that y'P €0’ for
n < p<m. As in (2.5), we have, for all p,

o(6:1(y%) —¢,(4?)) > pr.

Suppose that for some p<m

(o, yP) — oo( y®)) = pr. (2.8)
Set
z=y— 2 y'9
g<p

Then 2z €0, so there exists { €0 such that

0(9,(£) —95(L)) < v(91(2) —9,(2)).
But

¥ (z—y®) et R
so that

o(o1(z—y®)) = o{e} otz - y®)) >(p+ 1> pr
(v >0 because ¢}, ¢35 are continuous homomorphisms); similarly
o(9a(2—y*#)) > pr.

In view of (2.8), we conclude then that
v($1(2) — $o(2)) = 0{91 (2= y™) - 92— y¥)

+61(y?) = 4y(y?)) = pr.
Since {cf. (2.5))
pr < my < v()(n) — y(n))
we have finally that
v(¢1(8) = 92(8)) < 0(ey(2) — da(2)) = pr < v(1 () — $2(n))
and so (2.1) holds.




So we assume henceforth that

{4y y®) —og(y®))>pr forp<m. (2.9)

We may further assume that, if E is the residue field of R, and ¢,, ¢y:k*—E
are the homomorphisms induced by ¢}, ¢3, then ¢, and ¢, have the same
restriction to k. (Otherwise, v(¢;(c) —y(c))=0 for some ¢ in k, and (2.1) holds
with { =c.) Since k* is normal over k (cf. (0.4)), we have then

$,=6,°p for some k-automorphism p of k*. (2.10)

Lemma (2.11). Under the preceding assumptions (2.6), (2.9), (2.10), there
exists a k((x))-automorphism & of F* such that, if 6, =¢} °¢ and 0,= ¢, then:

(i) ¢.n)— 4’2(71)[ = ¢'T('ﬂf) - ‘P;("’?,')] = 91("?;;) - 92("?,‘)

(ii) u(zig—l)>0 (8,(2) =0 by (2.7)).

(iti) o(8y(a)—0,(a))>0 foranyaEk*.
Before proving (2.11), let us see how it enables us to complete the proof of

the Theorem. Let T be the set consisting of all elements £ in R* such that there
exists ¢ in k[[x]] with

v(8,(§) - 8,(£)) > v(6,(8) - B(8))-

Using the identities in (0.10) (with ¢, ¢ replaced by 4, 8, and 7,, Ny by &}, &),
we see that T is a subring of R*. Since 6,({)=¢,({) and 8,(8)=py(¢) for all
¢ €k[[x]], (2.11) (i) shows that for (2.1) fo hold (with  as in (2.3)), it suffices
that at™ € T. Using (2.11), we shall now prove that:

(a) t9€T forg>n.
(b) k*CT.
(Since T is a ring and m > n, this implies that a;t™ € T, as desired).
Proof of (a). (cf. [GTS I, p. 623, Lemma 7.1])). By (2.11) (ii) we have

0,(¢)
B(t)

=1+u, o{u) >0.




Hence for any integer g >0

8,(t9
By(t9)

L

=(1+u)’=1+qu  (mod.u?),

so that (since v(1?) > v(qu), g being a unit in R)
0(8,(29) = 85(29)) = 0(B,(t)-qu) =g+ o(u)  (cf. (27)).
This implies, for ¢ > n, that
o(0,(t7) = 05(£%)) > v (8, (") ~ y(t")) = 0(8y(2) — 8(x))
and so t7€T.

Proof of (b). (cf. [GTS I, p. 642, proof of Lemma 9.2]). Let e €k* and
let
v
f(X)= 2 a,X*€k[X]
§=0

be the minimum polynomial of a over k. For any element ¢ in R*, we set

£=0,(8), £ =0,8).
We shall show that

f_ " } L] f_- " .2
ofa'=a")> min (o(a/~a})) (2.12)

(whence a € T, as required). Let

F0)= 3 xR, [X]

5=0

Fx)= 3 arx R [X].
0

Then since f(a)=0, therefore
fl@)[=6,(f(a)]=0
f"(a")[=6,(f(a))]=0.

Furthermore, if fy (resp. fy) is the derivative of f (resp. f*) then f, () is a unit in
k*, whence fy(a’) [=8,(fx(a)] is a unit in R, i.e. v{fx(a")=0.




We have therefore

Flat)=fa)="(a)= 3 (= at )oY
so that

o{ f'(a”)) >0£i2N{v(a;~a;’)}. (2.13)

Furthermore
fla"y=f(a")~f"(a)
=(a"—a')fy(¢) (mod.(a"~ a’)z).

But (2.11) (iif) says that v(a” —a’) >0, and we noted above that v(fi(a"))=0;
consequently

o f{a”))=v(a"-a'). (2.14)
(2.14) and (2.13) give (2.12).
It remains to prove (2.11).
Let B be the canonical image in E (the residue field of R,) of ¢¥(f)/¢%(1)
(recall that ¢](£)#0, cf. (2.7)). (2.6) gives 8" =1, and hence (cf. (0.4) (ii)) there
is an « in k* such that

a"=1 and ¢,(a)=g.
Let

w= E bptp (bPEk*)
p=0
o0

y= 2 6t* (¢, €k*)
p=0

(2.9) says that

o(¢1(B,t7) - 05(c,t?))>pr  (p<m)
and hence

i.e. (cf. (2.10))



whence
b=plc)a”  (p<m). (2.15)
Let o be the automorphism of F* = k*((t)) for which

a( > dpt”)= > p(dp)(at)p (d, € k).
p=0 p=0
Since p restricts to the identity map on k, and since a" =1, therefore ¢ restricts
to the identity on k[[t"]]= k[[x]], hence on k{(x)).

In view of (2.15), we have

ord (y,— o ( y,.))=ord(p§o(bp—p(cp)ap)tp) >m.

Hence m<ord(y;~o(y;) <ord(n;—a(n)) (because n dominates y w.rt.
k({x))). Since ;= g;t™, and m;=g,t™, this implies that n;=a(n), and (2.11) (i}
follows.
Next, we have _
(0 _stlod) _gilet) . o110
6,(t)  o3(t)  ox(t) T e3(t)
Hence, the image of 8,(t)/8,(t) in E is ¢,(«)/B=1. This proves (2.11) ii).
Finally, for a € k*, the image in E of

8,(a) — 6,(a) =% (a) — 1 (0a) = ¢3(a) — o}{oa)

is

do(a)— ¢, (p(a))=0  (cf. 2.10),
so (2.11) (iii) holds.
This completes the proof of (2.11), and of the Theorem.

PurpuE UNIVERSITY

REFERENCES.

{1j ©O. Zariski, “Studies in equisingularity, III. Saturation of local rings and equisingularity.”
American Journal of Mathematics, 90 (1968), pp. 961-1023,




{2] [GTS] O. Zariski, “General theory of saturation and of saturated local rings.” I, American
Joumal of Mathematics, 93 (1971), pp. 573-648. 11, American Journal of Mathema-
tics, 93 (1971), pp. 872-964. III, American Joumal of Mathematics, 97 (1975).

[3] [CA] O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, Van Nostrand, Princeton, 1960.

(4] F. Pham, “Fractions Lipschitziennes et saturation de Zariski des algébres analytiques com-
plexes,” Actes du Congrés Internafional des Mathématiciens (Nice, 1970), Tome 2,
pp. 649-654, Gauthier-Villars, Paris, 1971.

(5] M. Nagata, Local Rings, Interscience, New York, 1962.

(6] R. Berger, R. Kiehl, E. Kunz, and H. -]. Nastold, “Differentialrechnung in der analytischen
Geometrie,” Lecture Notes in Mathematics, No, 38, Springer-Verlag, Berlin, 1967.

(7] E. Boger, “Zur Theorie der Saturation bei analytischen Algebren,” Mathematische Annalen,
211 (1974), pp. 119-143.




