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INTRODUCTION TO RESOQLUTION OF SINGULARITIES
Joseph Lipman*
ABSTRACT

These lectures will be strictly introductory in nature. The object is
to communicate some feeling for the resolution problem by focusing on a

selected few of the many methods available for dealing with singularities of
surfaces.

Lecture 1: Generalities on curves and surfaces . . . . + + 4+ + « +» P.191
Lecture 2: Jung's method for local desingularization., . v s » s D.204
Lecture 3: Embedded resolution of surfaces (char. 0). « « « « « « P.218

INTRODUCTION

The problem of resolution of singularities, simply put, is to prove {or
disprove):

(RES) For any algebraic variety X over an algebraically closed field X
there exists a proper map £:Y + X, with Y non-singular {smooth),
such that f is an isomorphism over some open demse subset U of X
(i.e. £ maps £~ 1(U) isomorphically onto U).

Df course we can generalize (RES) by allowing k to be, say, an
excellent local ring!, or by throwing k out altogether and letting X be
an arbitrary reduced locally noetherian excellent scheme (in which case Y
should be regular, i.e. the local rings of points on Y should be regular).
We can also require that U be the set of all regular points of X, and that
f be obtained by successive blowing up of nice subvarieties.?

AMS(MOS5) subject classifications {1970) . Primary 14B0S5, 14E1S, 14H20,
14315, 32C4s5.
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11, Hironaka's work this is found to be necessary, even for proving
(RES) when k is an algebraically closed field.

2Rpr a definition and discussion of "blowing up" cf. [Hi, chapter 0,
§2].
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But even as it stands (RES) poses a fundamental question, which is
unanswered when k 1is of characteristic > 0 and X has dimension 2 4.°?

In those cases where (RES) has been proved (cf. historical remarks
below} the proof has usually been by induction on the dimension d of Xx.
As part of the inductive step from d - 1 to d, it has been necessary to
establish something akin to the following theorem (“"Embedded Resolution" or
"Simplification of the Boundqry"), with dim.X' = d:

(EMB) Let X'- be a non-singular algebraic variety over k, and let W
be a closed subvariety of X', with dense complement. Then there
exists a proper map £:Y + X', with Y mnon-singular, such that £
induces an isomorphism of Y - f'l(W) onto X' - W and f'l(W) is
a divisor on Y having only normal crossings.

"Normal crossings" means that for each y e Y, the defining ideal of
f'l(W) is generated locally around Y by an element of the form

a1,47 29 .
El Ez "'Ed vwhere {Eliz,...,ed} is a regular system of parameters
(= local coordinate system} at y, and each a; z 0.

Divisor with normal crossings

E] . , ) .
Nevertheless, at present - as in the past - not many people ars working
on the problém. Rt this Institute, tKe only report on recent prograssnin
the area was Hironaka's lecture on Girmud's theory of "maximal contact",
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Here are some brief historical indications.

(RES) was proved for curves over the complex numbers € in the last
century by Kronecker, Max Noether, and others {cf. chapter VI in [N-Bj). I

will say a few things about the one-dimensional situation at the beginning
of Lecture 1 below.

Several approaches to proving (RES) for X a surface over € were
proposed by Ltalian geometers (cf. chapter ! in [Z1]). One such z2pproach,
due to Albanese, has turned out to be quite practicable (Lecture 1, §5).

The first completely rigorous proof was given by Walker in 1936 [W1]. What
he did, basically, was to show how to patch together "local" resolutions
constructed by Jung in 1908 [J]. His methods (and Jung's) were in part
complex analytic; but the whole line of argument can be carried out alge-
braically, and this is what will be done in Lecture 2. Another proof based
on Jung's work was given, in the canteit of analytic geometry, by Hirzebruch
[Hz]. Jung's ideas havé, in addition, infiuenced a number of other works on
resolution (cf. end of Lecture 2).

Purely algebraic proofs for surfaces over fields of characteristic zero
were first given by Zariski [Z2]), [Z4]}* (Lecture 1, §§2, 3}. Zariski's work
on resolution in the late 1930's and early 1940's culminated in the memoir
[26], in which he proved (RES) for surfaces, with f obtained by successively
blowing up points and non-singular curves of maximal multiplicity ("theorem
of Beppo Levi"), and then deduced (RES) for three-dimensional X (always
with char.k = 0). More recently, Zariski found a simpler prcof of the
possibility of desingularizing surfaces by such a procedure [Z7]. A still
simpler proof, due to Abhyankar [unpublished] will be presented in Lecture 3.

In his great 1964 paper [H1]), Hironaka proved (RES) and (EMB) for any
equicharacteristic zero excellent scheme. At the same time he solved the
corresponding problems for real analytic spaces and locally for complex
analytic spaces. In the last few years he has solved (affirmatively} the
global resolution problem for complex spaces. The main ideas of this
solution are outlined in the preprint [H6), and details have begun to appear
[H7].

For k of characteristic > 0, most of the published results are due
essentially to Abhyankar. (For an introduction to his work cf. {A4].) In

his Harvard thesis (1954) Abhyankar proved (RE5) for dim.X = 2 and %k of
any characteristic; some years later [Al] he disposwd of the more general
case whare k 1is an excellent Dedekind dommin with perfect resldue Fields.
(In fact he has announced a proof for dim.X = 2 mend k a&any excellent

l'All of Zariski's papers on resolution are in volume 1 of his collected
works [Z8]. oL




domain [AS, §5}.) 1In his book [A3], Abhyankar deduced (EMB) for dim.X' = 3
from a previously developed algorithm of his on monic polynomials [AZ];
and he also obtained (RES) for dim.X = 3 and char.k £ 2,3,5.

At the same time (January, 1967) that Abhyankar announced his most
general results on surfaces [A5, §1 and §5], Hironaka announced a proof of
(EMB) for X' an arbitrary excellent scheme and dim.W = 2.5 Hironaka's
results include Abhyankar's; but full details of the proof have not yet
been published (cf. however [H2], [H3], [H4], [HS]).

X * *

Apology. For lack of time, and because of its technical complexity,
Hironaka's fundamental work will hardly be touched on. I can only express
the hope that these lectures will help the reader to acquire the right
frame of mind for exploring Hirenaka's work on his own.

SAbhyankar and Hironaka were both at Purdue University during the Fall
semester of 1966,




LECTURE 1: GENERALITIES ON CURVES AND SURFACES

§1 Curves

§2 Local uniformization

§3 Desingularization of surfaces by blowing up and normalizing

§4 Minimal desingularization; rational singularities; factorization theorem
§5 Albanese's method

51. Curves.

Max Noether dealt with singularities of projective plane curves, to
which he applied a succession of well-chosen guadratic transformations of
PZ. [I£ the curve C has a singular point at Q, choose coordinates so
that (i) Q = (1,0,0); (ii) C has no other singular point on any of the
coordinate axes XO =0, Xl =0, Xz = 0; and (iii) these axes are not tan-
gent to C at any point. ©Now apply the transformation (xo,xl,xz) >
(Xlxz,xzxo,xoxl). For details cf. e.g. [W2, chapter III, §7].}

A careful analysis of the effect of such transformations on the singu-
lar points shows that eventually the curve is transformed into one having
only ordinary multiple points (i.e. points at which C 1looks locally like
several distinct lines through the origin).

Ordinary multiple points
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are being used which blow the coordinate axes down to points; for each inter-
section of € with a coordinate axis, a branch of the transformed curve

will pass through the corresponding point.

D

To avoid such irrelevancies, one can isolate the effect of the trans-
formations on the peints in which one is really interested (viz. the
oriéinal singular points); this leads to the intrinsic (coordinate-free)
notion of locally quadratic transformation (blowing-up points). Quite

generally:

successive blowing up of singular points transforms

any projective curve X into a nen-singular

projective curve Y;

50 we have (RES) in this case.

Conceptually, one can achieve the same thing by one operation, namely
normalization (cf. [Z2-M]).® But the method of successive blowing up gives
us a step-by-step analysis of the original singularities, leading to the
notions of equivalent singularities, equisingularity, etc., (notions which
cannot be pursued here).

Incidentally, the desingularization Y may not be embeddable in PZ,
even if X 1is. However any sufficiently general projection of a non-
singular curve from P" into P3 will still be non-singular, and into P
will have at worst finitely many ordinary double points (nodes), cf.

[Z-M], [8, p. 46, Theorem 1]. Thus any curve is birationally equivalent to
a non-singular curve in P3, and to a projective plane curve having only

nodes,

*Both methods work equally well for any reduced excellent one-dimensional
scheme X. The idea is that blowing up a singular point of X gets you a
scheme lying “strictly closer™ than X to the normalization X;_ since X is
finite over X, affer finitely many blowing-ups you must get X itself, and
X is regular.
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We ailso have (EMB) for a curve W in a non-singular surface X'. (Here

again the methed will work for one-dimensional subschemes of arbitrary two-
dimensional regular excellent schemes.). We proceed as follows. Let

fl:xl + X' be obtained by blowing up a point x € X' at which W has a
singularity. f, induces an isomoxphism over X' - {x}. Let W, be the
closure in Xl of fEI(W - {x}). Then the map Wl + W induced by f1 is
identical with the one obtained by blowing up x, considered as a peint of
W. Hence by repeating the process sufficiently often (blow up & singular
point X, of wl to get fZ:X2 + Xl, let W, be the closure in X, of
fél(wl - {xl}), etc. etc.) we resolve the singularities of W, so that we
have

F_ = flofze. . .Ofn

with Hn non-singular., (In the following picture n = 1).

fil(x), 4 non-singular rational curve

—_— "|||||||||||||||l'
X

1

The irreducible curves in Xn whose image under Fn is a single
point are all non-singular. So, after replacing X' by Xn and W by
F;l(W), we may assume that each irreducible component of W is non-singular.
But with this assumption on W it is easily seen that if m > 1 is such
that Wm is non-singular (in other words, the irreducible components of W
have become completely detached from each other in Xm), then Fél(W) has
only normal crossings.
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Inverse image of W
has only normal
crossings

(formerly X1)

(Here, strictly speaking, we should blow up x, to detach the components of
Wz and obtain a non-singular Ws; but we needn't bother, since WZ already
has a normal croésing at xz.)

£2, local Unjiformization,

We turn now to surfaces, and begin with Zariski's approach to the
problem of desingularization. Until otherwise indicated, "surface" means
"irreducible two-dimensional algebraic variety over a field k of charac-
teristic zero',

Zariski's first step was to prove a much weakened version of (RES)
called local uniformization:

(LU) Let X be a surface, and let ¥ be a valuation of the function
field k(X), with v centered at x e X. Then there exists a
birational projective map £:Y + X such that v is centered

on Y at a point y where Y is smooth.

(Subsequently Zariski proved (LU) for varieties of any dimension over
a field of characteristic zero [23].)

For surfaces Zariski gave two ways of deducing (RES) from (LU) [z2],
[Z4]. The second is much shorter, but the first gives us a nice canonical
desingularization process (blowing up and normalizing) which we discuss in
§3 below.

® * ¥

To get some sort of picture of what (LU) means when Xk = €, think of a
valuation centered at x as being a little arc A on X emanating from
X, and (after replacing Y by some complex neighborhood of y) think of Y




as being a bounded open disc around y e Cz, containing a little arc A?
emanating from y, with f£(A') = A. Here £ is no longer birational, but
rather a2 holomorphic map inducing an isomorphism from an open dense subset
of Y onto a (complex) open set V of X, £-1 being given on V by
rational functions.

£ (x)
)
Fd 7 ~
'
r/ . A
; \
! £
l e
\ /
\ \ /
~ ' s
Y (before shrinking) X

(LU) says that X can be covered - not only pointwise, but, so to
speak, arcwise - by such "local parametrizations"’ (in fact by finitely
many of them, if X is compact, as one sees using the compactness of the
"Riemann manifold" cf. [Z5] and also the introduction to {Z3]).

Example (Jung [J]). Let x be the origin on the affine surface

X = {(E,m,2) € €3¢ = g5n)

Consider the following three parametrizations of X, (u,v) being coordinates
in the unit disc DCEZ.

I £ = usv3 n=yv L = u3v2
I1. £ = u3v n = uv2 ] uzv
I11. ’ £ =u n= uzvs T = uv

Together these three parametrizations cover a neighborhood of x. For any

valuation Vv centered at x, one of them can serve as the desired £. (And
they are all required: for example to 1lift the arc £ = ts, n = ts. T = t4
to an arc centered at the origin of the unit disc take u =1t, v = t2 in

I1: no such lifting is possible via I or III.) Of course the unit disc is

.
In [W1]}, these are called "wedges™.




not an algebraic variety; but in I, for example, we can solve for u and

v in terms of &, n, &:

u = Ez/cs, v = (t #0)
50 that I can be factored as
Y 3 ¢t
,i/,r”,;r l projection
D —g—> X &e——y ¢3

where Y 1is the variety whose general point is (&,n,z, Ez/cs) [(E,n,z)
being, by abuse of notation, the general peint of X] and X is the local
analytic isomorphism given by

3,2

Alu,v) = (u5v3, v, utve, u).

IT and III can be treated similarly.

This example is too special in two respects., First of all, A extends
to an algebraic isomorphism from all of Ez onto Y; in general (for
instance if we start with a non-rational surface X) this can’'t happen; our
parametrizations will be given by convergent power series in u, v, rather
than by polynomials, '

Secondly, I, II and 111 happen to patch together into a single map
Z = X which desingularizes an entire neighborhood of x. In general, if we
cover a neighborhood of a point by local parametrizations, they will not
patch together, nor will it be clear how to modify them so that they will
patch. This is precisely the difficulty in deducing (RES)} from (L.

§3. Desingu

larjzation of Surfaces b:

Let X be a surface, and let Xo be the normalization of X. The set
IO of singular points of Xy is finite. Blow up EO’ and let X; be the
normalization of the resulting surface. We have than a projective map
fl:x1 - XO inducing an isomorphism Xl - fil(EDJ > X5 - EO’ and such that
the inverse image of any point in IO is one-dimensional. ‘Repeating the
same process (blowing up the singular set and then normalizing) we get a
sequence

£ . £
X > X > e > X —=> Xg.




Using (LU}, Zariski showed in [Z2] that this process must terminate, i.e. X

n
is non-singular for some n.

Example. Let S be the normal surface in ¢3 given by the equation

72+ X3 4+ ¥7 = 0. The origin is the only singular point (in other words the
only point where the first partial derivatives of 22+ x5+ ¥v7 an vanish).
Blowing up this point, we obtain a surface S1 which is again normal; in
fact, 1f R 1is the coordinate ring of S:

3

R = €[X,Y,21/7¢2% + X3 + ¥7) = €x,y,2]

then S1 has an open covering by two affine surfaces Si, S;, whose
coordinate rings are respectively

CIX,Y,2]/(2% + x + Y'x%)

-
H

1= Rly/x, 2/x]

8]

G{x, yix, z/X]

CIX,Y,217(2% + X3y + ¥°);

e
"

]
n

1 = RIx/y, z/y] = Clx/y, vy, z/¥]

Si is smooth, while S; has just one singular point, at the origin.

Blowing up the singular point of S;, we get a surface S2 covered by
two affine surfaces Sé, SE whose coordinate rings are respectively

Clx/y, yi/x, z/x)

=
1

3 = RYLY/ (x/y), (2/y)/ (x/¥)]

CIX,Y,21/(2% + X%y + X3v%)

mn

RY m[X/yz, ¥y, 2/¥%)

5 = RYLx/Y)/y, (2/¥)/y]

n
n

e

CIX,Y,z1/2% + ¥3v% + ¥¥y,
The element (z2/x)/(x/y) 1is integral over Ri, and

RYL(2/X)/ (x/Y)] = €[x/y, y2/x, 2y/x®} = €[%,Y,23/(2% + ¥ + x¥%),

Since the surface ZZ

+ Y+ XYS = 0 1is smooth, Si hqs a smooth normali-
zation. Similarly by adjoining (z/yz)/y to RE, we see that SE has a
smooth normalization. Thus the normalization Sz of 52 is smooth, and

s0 we have a desingularization T+ § with T = SiLng.




In this example, one finds that the inverse image on T of the
singular point of § consists of a pair of rational curves El, Ez’ with
intersection numbers (El-Ez) =1, (El.El) = -1, (EZ-EZ) = -2. E1 is non-
singular, while E2 has a simple cusp (with completed local ring
isomorphic to C([U,V}]1/(U% - V3)).

The .curve E1 can be blown down, so that T - § factors as T -+ T0 + 3,

where T0 is a smooth surface on which the inverse image of the singular

point of S 1looks like this:

“q. cusp

rational curve

(T0 can be obtained more directly from § by blowing up the ideal
(x, yz, z) and then normalizing.)

§4. Minimal Desingularization; Rational Singularities; Factorization

Thecorem,

It is a fact that any surface S over € has a unique minimal
desingularization S* + S, i.e. a desingularization through which every
other desingularization £:5' + S factors (uniquely):

s*
£* .
”,,”’/a l (diagram commutes)

s *——;———9 8




{This is mentioned in [H1], p. 151; a proof can be found in (B; Lemma 1.6].
For the same result in the case of arbitrary reduced two-dimensional
excellent schemes cf. [L, p. 277, Cor. (27.3)]1}.

The above example (§3) shows that successive blowing up and normaliza-
tion does not always produce the minimal desingularization.

There is one class of normal singularities for which Zariski's process
does give the minimal desingularization - the class of rational singularities.
This fact, along with other applications of rational singularities in
resolution questions, comes out of the following properties, [L, parts I and
11].

Let X be a normal surface having only rational singularities® (X may
be smooth) and let £:Y + X be a proper birational map. Then:

(A) If Y is normal, then Y has only rational singularities.

(B) If f 1is obtained by blowing up a point of . X, then Y is
normal.

(C) (Factorization Theorem} If all the local rings of points on Y
are factorial, then f is obtainable by successively blowing up

points.

[(A) and (B) enter into the proof of (C}.]

(C), with Y the minimal desingularization of X, shows that X can
be minimally desingularized by blowing up points (normalization being

UNnecessary) .

Furthermore, using suitably formulated local versions of (A) and (C),
one can make Zariski's proof that (LU) = {desingularization by blowing up
and normalization) work for any reduced excellent two-dimensional scheme
[L, §82]. In this context (LU) can be taken to mean:

(LU) (bis) If R 4is an excellent two-dimensional local domain and
v is a valuation of the quotient field of R such that
the valuation ring RV contains R, then there exist
elements Xj,X,,...sXp in Ry such that the local

ring

R[xl,xz,...,xn]q (q = {x e R[xl,...,xn]|v(x) > 01

is regular.

®In case X is proper over a field, what this means is tnat X(@x} < X(ﬁx,)
for any preper normal surface X' birationally equivalent to X (where
x(By) = ho(@x) - hl(ﬂx) + hz(@xJ = arithmetic genus of X.)




To prove (LU)(bis), even when R is complete (a special case to which
the general one reduces without much trouble}, is quite difficult. As
indicated before, proofs were announced by Abhyankar and Hironaka in 1967,
but the complete details have yet to appear in print.

§5. Albanese's Method.

A pretty method of Albanese [Alb] was revived in 1963 by M. Artin, who
showed [unpublished} that it could be used to simplify greatly the resolution
problem for surfaces over fields of any characteristic. The method extends
in a straightforward way to irreducible projective varieties V of any
dimension d over an algebraically closed field k. We sketch the basic
idea?®,

For convenience we shall say that "n:W - Wl is a permissible
projection” if W is a positive-dimensional irreducible closed subvariety
of a projective space M over k, m is the projection of M into PY1
from a point w on W of multiplicity u < deg.W ("'deg" = "degree of"},
and Wl is the c¢losure in PM-1 of w(W-w). The condition p < deg.W
guarantees that dim.wl = dim.W, so that we have a finite algebraic field
extension k(W)/k(Wl), whose degree we denote by [W:Wl] (the generic

Covering degree of W over Wl). It is easily seen that

(5.1) [W:Wll(deg.wl) = deg.W - u

(Cut W, by 2 generic linear space L of complementary dimension in PM'I;
1 A
then consider " ~(L)MW...).

Assume that V = Vo gJPN and that V 1is not contained in any hyper-
plane of PN. Let r be a fixed integer. We are going to try to find a
succession of permissible projections

n n m
(5.2) Vo=t vy L5 v, —— L el oy
such that
(5.3) every point on V., has multiplicity < T/[Vg:V ).

By the "projection formula", it will then follow that on the normalization of
Vn in k(VO) - a variety birationally equivalent to V - every point has
multiplicity < r.

*For the raw technical details - which are quite elementary - cf. [A3, §12],
Abhyankar uses the result in his proof of (LU) for 3-dimensional varieties
over fields of characteristic » (3.




0f course we want r to be as small as possible, and in fact, as we
will now see, if we begin with a suitable prejective embedding of V, then
we can succeed with r = d! (4 = dim.V). In particular, for curves (d = 1),

this will give another proof of (RES).

We begin by projecting into PV 1 from a point vo on Vy of
multiplicity > r and < deg.V (if there is such a point); call this
projection. mg, and let Vl be the closure of "O(VO - vo). Next, choose
a point v, eon Vi of multiplicity > (r/[VO:Vll) and < deg.Vl, and
preject into PN-Z from vy; call this projection 7, and let V, be
the closure of nl(Vl - vl). Now choose a point v, on Vz of multiplicity
> (r/[vo;vz]) and < deg.Vz, etc.etc.etc. Continue in this way as long as
possible; obviously the process must stop after a finite number of steps:
in other words we obtain a sequence (5.2) such that every point v on Vn
of multiplicity >(r/[V0:Vn]) must have multiplicity = deg.Vn (i.e. V_ 1is

n

a cone with vertex v)}. So it will suffice to show that Vn cannot be a cone.

First of all, (5.1) gives

[VO:Vljdeg.Vl = deg.VO - (mult. of vOJ < deg.V0 -r - 1.

Similarly,
[V,:V,]deg.V, < deg.V; - (r/[Vg:Vy D) - 1
whence

[VO:Vzldeg.v2 < [VU:VI]deg.V1 - r - [VD:VI] < deg V0 - 2r - 2.

Continuing in this way, we find that

[VO:Vn]deg.Vn b deg.V0 - n(r + 1).
So we have the crude inequality
(5.4) n{r + 1} ¢ deg.vo.

Next, if Vn is a cone with vertex v, then a generic linear space L
through v of dimension N - n -~ d + 1 will intersect V_ in deg.V,
distinct lines. Hence the inverse image in PN oof L (under the composed
projection ﬁn_lown_ZO...ono) will cut VU in a curve having at least
deg.Vn irreducible components. Setting

c = c(VO} = min{degree of irreducible curves on VU}

we conclude that

(5.5) {deg.V_ Jc < deg.V,




But Vn is not contained in any hyperplane of PNhn (otherwise, taking
inverse images, we would find that VO is contained in a hyperplane of PN,
contrary to assumption). An easy argument shows that consequently

deg.Vn >N -n - d.
So from (5.5) we get
(N -n - d)c < deg.V0
i.e.
(5.6) ’ N -4 - cqldeg.v0 < n,

Combining (5.6) and (5.4), we have

N-4d- c‘ldeg.vo < (r+ 1)'1deg.v0.

We conclude, therefore, that if
(5.7) ot 12 deg.Vy/(N - 4d - ¢ ldeg.vy)
then Vn is not a cone (and hence every point on V

< r/[VO:Vn]).

Now finally consider the embedding

n has multiplicity

v — vg c PN (%)

of V via the linear system of sections of V by hypersurfaces in PN of
degree & (or equivalently, for large &6, via the very ample sheaf 6&(6)).
Vg is not contained in any hyperplane of PN(G! Any curve on VO has,
degree 2 &, since cutting by hyperplanes in PN(G) corresponds to cutting
by hypersurfaces of degree 6 in PN; thus Cs = c(Vg) > §. For large 6,
N{6) + 1 is given by XG@V(G)), while (1/d1)deg.Vg is the coefficient of
nd in the polynomial X&ﬁv(ns)). From these remarks, it follows that

lim  deg.Vo/(N($) - d - céldeg.vg) = !
& » o

So for large 6§, if VD = Vg, then (5.7) holds with r = (avy.

In summary, the argument has given us the existence of a normal variety
birationally equivalent to V, and on which each point has multiplicity
£ (dY) (d = dim.V).

* * *




If V 1is a surface (d = 2), then we have a surface birational to V,
and on which every point has multiplicity <€ 2. To prove resolution for
surfaces as in §3 above, all that is really needed is the weaker form of (LU)
in which Y is required only to be biratiomally equivalent to X (the map
f need not exist.) So we are reduced to "uniformizing" valuations centered
at double points.

Taking advantage of the good behavior of blowing up and normalization
vis-A-vis completion, we come down to proving (LU)(bis) for complete local
rings R of multiplicity 2. In such an R there exist elements u, v, such
that the field of fractions of R is the sanme as that of a ring

R' = k[{u,v]]E] Wl = E(u, Vv + g(u,v)

(f,g € k[{u,v]], g # 03 and £ = 0 when char. k # 2). There is no harm in
assuming that R = R'. An application of (EMB) to the curve g = 0 (resp.
fg = 0 if £ # 0) in the surface Spec(k[[u,Vv]])(cf. §1} gives us a further
reduction to the situation where i

u(u,v)uavb

g(u,v)

and, in case f # 0,
- c d
flu,v) = vy, vluv

where u and v are units in k[[u,v]]. At this point, if the
characteristic of k is # 2, then after normalizing,at most one blowing up
will be needed to resolve the singularity of R,

On the other hand, when k has characteristic 2, the analysis of the
situation is much harder. It is recommended to the interested reader to
play around a little with this case, as a gentle initiation into the
intricacies of Abhyankar's algorithms.




LECTURE 2: JUNG'S METHOD FOR LOCAL DESINGULARIZATION

We noted in Lecture 1 that for surfaces resolution of singularities —
for example by a succession of blowing-ups (of points) and normalizations —
can be deduced from local uniformization. A fruitful method for achieving
local uniformization on a surface X over an algebraically closed field %k
of characteristic zero was given by Jung in 1908 [J]. Jung's ideas have had
a great influence on subsequent work on the resclution problem: last time
the work of Walker and Hirzebruch was mentioned, and further instances will
be indicated at the end of this lecture.

Actually, as observed by Walker [W1]}, a slight elaboration of Jung’'s
method gives us a '"local resolution” theorem which says considerably more
than local uniformization:

THEOREM: There exists a family of desingularizations
(.Y, + Ux)xex’l where U  1is an o?in neighborhood of
X, the restriction of fx to Yx - fx ({x}) 1is the
normalization of Ux - {x}, and furthermore for all x
outside some zero-dimensional subset S of X, fx is

just the normalization of U, itself.

Resolution for X follows at once from the Theorem: assuming, without
loss of generality, that U, NS = {x} for each x in S, cover X by the
open sets Ux (x € 8) +together with the open set U0 =X - 8; let
fO:Y0 - U0 be the normalization of UO; then because of the uniqueness
properties of normalization it is evident that the local desingularizations
fx‘ (x € 8) and f0 will patch together to give a global desingularization
£f:¥Y + X, where the restriction of f to Y - f'l(S) is the normalization

of X - 5,2

YIn other words Yx is smooth, fx is proper, and for some open dense
subset Vx of U fx naps f;l(vx) isomorphically onto Vx.

2cf. also [Wl, p.343, Theorem 4].




&

X3

£, £, , fx induce same map (normalization) over overlaps; so they patch.

Now let us outline & proof of the Theorem. The Theorem is local on X,

so we may assume that there exists a finite map (= branched covering)

m:X + 2 of X onto an open subset Z of affine 2-space over K. Let
DC Z be the critical (or discriminant) variety for w, i.e. the smallest
closed subset of Z over whose complement 7 is an etale covering.

{Equivalently: D consists of those =z in Z such that the number of
{geometric) points in n'l(z] is less than the covering degree of 7.]
D has dimension < 1. '

m

—_—
(degree 5)
’ z

| I

The first step is to reduce to the case where D has only normal
crossings. This is done by applying embedded resolution to DCZ, as
follows. Let SD be the (zero-dimensional} set of singular points of D,
and let S = n'l(SD). As we saw in Lecture 1, there exists a map g:2' » Z,
obtained as a succession of blowing-ups (of points), such that g induces
an isomorphism 2Z' - g'l(SD] + 7 - SD and such that g_l(D) is a curve
having only normal crossings, together with some isolated points (corres-
ponding to the isolated points - i.e. the zero-dimensional components - of D).
Let X' be the fibre product X Xg Z' and let g':X' =+ X be the projection.

Then g' induces an isomorphism




Xt - g7 l(s) = x - s,

It will clearly be enough, therefore, to find a desingularization £':Y' + X'
which induces the normalization map over X' - g“l(S).

@ @
ie' lg

___TI'_*
Z

We will show that:

") Every singular point of X', the normalizatjon of X', can be
resolved by blowing up a zero-dimensional ideal in its local

ring.

("Zero-dimensional™ means "containing some power of the maximal ideal'.)

The existence of the desired £':Y' » X' follows immediately, since
all the singularities of the normal surface X' are isolated.. (In fact, as
will drop out o6f the following proof, the image of every singular point of
¥' under the composed map X' + X' + 2' is 2 double point of g'l(D).)

* * *

To prove (*), we begin by formulating it in more algebraic terms.
Consider a two-dimension regular local ring Q with residue field k
(algebraically clesed, characteristic zero) and field of fractions K; 1let
Q@ be the integral closure of Q@ in a finite field extension L of K, and
let R be the localization of Q at one of its maximal ideals. Let u, v
generate the maximal ideal of Q. The problem is then to show that if
Q[1/uv] is &tale over Q[1/uv] (i.e. Spec(Q) is étale over Spec(Q) out-
side the two '"lines™ u = 0, v = 0), then Spec{R) can be desingularized
by blowing up a zero-dimensional ideal.

For this, we may pass to completions?, i.e. we may assume that Q is

a4 power series ring k[{u, v]] and R = §.

*This would not be necessary if we were in the analytic category.




Suppose then that R[1/uv] is &tale over Q{1l/uv]. A basic observation
is that for some integer a > 0

K = k((u,v)) C L k(e v/

(This was proved classically by topological methods, the point being that the
complex plane minus two intersecting lines is topelogically the product of
two punctured discs, so its fundamental group is Z x Z. A purely algebraic
proof was given by Abhyankar [Amer. J. Math., 77 (1955) p. 585].) By Galois
theory we find that L 1is generated over k({u, v}} by a collection of
"monomials™ uB/avY/“ where the pair (B,y) rtuns through some subgroup of
Z x Z. Elementary considerations then show that

L = k((ulfc, Vl/d))(ullcnvp/dn)

where ¢, d, n, p are non-negative integers (with nc and d both

dividing «), p <n, and (n, p) = 1. Setting u = ullc, v = vlld, we have

L = k((u, v)){w) (w = ul/n\-rp/n}-

From mow on we write u for u and v for v. Thus:

R is the normalization of the ring

Ry = k[[u, v, w1 = k[[U, v, W11/ (w" - uvP);

more explicitly:

(**) R = k{[u!/", vI'P)]NL = free k[[u, v]]-module with basis
i/np(i)/n
(u VP ) 0 fi<n
where 0 < p(i) < n

and
pi (mod.n)".

p(i)

Example (ﬁ =S, p=2).

o
I

= k[[u’v’“1/5v2/5,u2/5v4/s,u3/5v1/5,u4/5v3/51]

1/Sv2/5’u3/5v1/5}]_

k{[u,v,u

*R is the ring of invariants of the cyclic_group of k-aytomorphisms of
k[[ulfn,v1 n1] generated by ¢, where ¢(u1§n) = en'PuI?n, ¢(v?}n) = eyi/n
(e = primitive n-th root of unity). A detailed study of such "quotient
singularities" has been carried out recently by Riemenschneider [Math. Ann.
209 (1974), pp. 211-248].




(Remark., We note in passing that if R[1/v] is étale over Ql1/v],
then n =1 and R is regular, Hence every point of X' which does not
lie over a double point of g-l(DJ is already smooth.)

It is convenient to work with R0 instead of R. As we will scon see,
it is quite simple to desingularize Spec(Ro); and of course every
desingularization of Spec(Ro) factors through Spec(R), so we will have a
desingularization of Spec(R) too. In fact the procedure to be used will
indicate how to compute explicitly a zero-dimensional ideal in R whose
blowing up is a'desingularization, thereby proving (x).

One can avoid the explicit computation - at some cost, perhaps, in
understanding - by using the fact that any desingularization of a two-
dimensional normal local ring is obtainable by blowing up a zero-dimensional
ideal. (Because of the negative-definiteness of the intersection matrix of
the components of the closed fibre, there exists a relatively ample
invertible sheaf supported on the closed fibre...)

Alternatively, since R is a quotient singularity we know - once some
desingularization has been shown to exist - that R has a rational singu-
larity (cf. E. Brieskorn, Inventiones math. 4 (1968), p. 340]). Hence
{Lecture 1, §4) R can be minimally desingularized by successively blowing
up _points, and from this (*) follows at once.

* * *

To desingularize Spec(Ry), let

b ¢
e * Zj+1 —Is Ij 1

¢
S ———y El 0, 20 = Spec(R,)

be the sequence such that ¢; . is obtained by blowing up the unique reduced
irreducible subscheme L. of Ej whose image in EO is the "line" v = w = Q.
It is routine to verify (ef. following example) that there is, for each j,
just one closed point o, on Lj, that all other closed points on Zj are
regular, and that the maximal ideal in the local ring of Uj on {j is

generated by three elements uj, vj, wj satisfying a relation

n. p.
J oo uv
W quJ

j (0 <n., 0 ¢ p.).

J ")

Moreover, if Pj # 0, then

j+1Pjer © MyP5e

Hence for some J >> 0, we must have Py = 0; so ¢y 1is regular, and
Iy~ Iy is a desingularization.
The following example should make clear vhat's going on.




Example (n 10, p 7.

RO = k[[u,v,w]]

L is given by v

0
(1)

Rl = Ro[v/w]

Setting u, = u,

1

The inverse image of L

10

W = UV7

=% = 0; blowing this up, we get

21 = Spec(R;) U Spec(R})

Ri = Ro[w/v].
= v/w, Wi = W, We have
3 _ 7
¥l T U
Vo= Vi, W= Wy,

in Spec(Rl) has two components, given by

0

vy 2w =0, up = w = 0; the second maps onto u =v =w =10, s0
Llr\Spec(Rl) is vy = w = 0. Ina similar way, we see that LlrWSpec(Ri)
is empty.

. Next, (u,v,w)Ri = vRi, and the ideal (u,v,w)R1 is invertible wherever
vy # 0 (atr such points uy is a multiple of wl); thus (u,v,w) is
invertible on Zl = L;. It follows that any point outside L, is regular
{note that the quotient of the corresponding local ring by the principal
ideal (u,v,w) is regular.,.}. Finally, there is just one closed point oy
en L, defined by the maximal ideal (ul,vl,wl)Rl.

Now blow up L1 to get 22. Since W1/V1 is integral over Rl, we
find that
{2) I, = Spec(R,) USpec(R{)
Ry = Ry[¥y/vi] = Rylv/w, wé/vy.
Setting Uy = Uy = u, Yy = vy o= v/, W, = wllvl = wz/v, we have
3 _ 4
Wy = U,V
Here L2 is the subscheme of Spec(Rz) defined by Vy =W, = ¢, and
o, is the point Uy = vy, =W, = 0.
Blowing up LZ’ we get
(3) I3 = Spec(Ry) UsSpec(R])
Ry = R,[w,/v,] = R [v/w, wo/v?]
3 2tz T2 0 ?




3 - - _ 3,2
and Wy = UgVg (u3 =u, vy = v/w, Wy = W /v©y.

L2 - Spec(Rs) is defined by Vg = wWg o ® 0.

(4)

-~
E-1
1

= Spec(R4)LJSpec(Ra)LJSpec(Ri)

Ry = Rylvg/ug] Rylw?/vE, v3rut]

Ry = Rylwg/vyl = Ry(v/w, wi/v3]

wslvz)

: 3,.4
uv, ‘ (u4 su, v, =v fw, Wy

L)
b
]

Spec[R&) is regular, and L4 C Spec(Rd) is given by Vy = W, = 0.

(5)

L'}
v
H

= Spec(Rs)LJSpec(Rg)LJSpec(R&)LJSpec(Ri)

Rg = Rylv,/w,] = Ro[vS/u’]

Ro[v3/w4, w v}

u

Ry = Rylw,/v,]

2
W = Ucvg (u5 =u, vg = vs/w7, we = w3/v ).

The point o € Spec(Rs) defined by the ideal (us,vs,ws) = (us,vs) is
regular, and ZS is a desingularization of Spec(RO), as desired.

REMARKS 2. In the above desingularization process the map ¢. is

finite precisely when n; < pj. When n; > py, then ¢;1(cj) = Pl

Z- In the preceding example, the rings RS’ Ré, R&, Ri appearing in
the expression for 25 each give rise to a "wedge" of Spec(RoJ (cf. Lecture
1, §82). From Rg, for example, we get, with Vi =V /w4, Wy = w7/v5,

u = v*wi v = vai W= vfwz.
This is precisely the kind of wedge which Jung constructed in his proof of
local uniformization. (The example in Lecture 1, 52, éorresponds ton =35,
p=3.)

3. Walker observed that Jung's wedges (c¢f. remark 2) could always be
pasted together to give a ‘local désingularization. (This is illustrated by
the preceding example.) A more explicit description of what happens (for
any n, p) was given by Hirzebruch [Hz]: 1let

bl L - ton; 22
= h1 E;T bS' e p (continued fraction; each bJ )

n-p s




Then the above described desingularization | of Ry is covered by
Spec(Ti), 0£1i¢s,

V. T Y. V. v, - u. V.,
T. = RU[V i 1’ w 1+1/v 1+1] = R[v l/w 1 1+1/v 1+l]

1

where the integers wu., v. (0 2 3 € s + 1) are defined inductively by

] J
IJD = 0, Ul =1, uj"‘l = bjpj - l-lj_l
vo =1, vy = 1, vJ+1 = ijJ - UJ-l

(It can be shown that Hgep = Ms Vgup  P.)

Furthermore, the desingularization | is minimal (cf. Lecture 1, §4).
The reduced closed fibre, as given by Hirzebruch, is a chain of non-singular
rational curves intersecting transversally, and with self-intersections
“Bys-bysesbg.

o 0 o vene o

3 by

Example (n = 10, p = 7, as in the above example.)

1
Rea-53 (by = 4, b, = 2, by = 2)

4. (This was shown to me by E. Viehweg.) We can get } from R by

blowing up the ideal I generated by the elements CgsCsennsCy defined by
v v A"
€y =V ¥ 2w S
L

¢, = ci_l(w /v ) (0 <1 %s8).
- Indeed,

- -1y € ¢ cg

Ti R[Icl ] R[E‘;: q,---, C—l].

I is not zero-dimensional, but consider the following elements a., b
(0 £ 1 < 35):




let p = My +Fup a4 B, choose an integer T > u/n, and set

a. = civrn—u-rp

o
"

ci(ur/w“J = a]._(w/w.r)rn'u

Using the fact that nvj > puj (0 € j € s), one checks that all the a; “and

bi are in R; and the ideal T which they generate is zero-dimemsional

(since bS = u' and a, = vl, A > 0). Moreover, since
w/v ¢ TO, v/w € T, {0 <1i¢<s)
one see¢s that
Spec(T,) = Spec(R[faal]) o) Spec(R[ib&l])
Spec(T;) = Spec(R[ib 1) D Spec(R[Ia ]) o (0<igs).

Thus | is alse gotten by blowing up I, and (*) is proved,

(This proof of (*) can be made somewhat shorter: just pull the ideal I
out of a hat, and show directly that blowing it up gives a regular scheme!)}

5. It is a curious fact, given without proof by Zariski in 1954
{Z8, p.521], that if }' > Spec(R) is the blowing up of the closed point of
Spec(R), then every singular point on Z' is rational of type A

the completion of its local ring is isomorphic to

i.e.

m!

k[{U,V, W11/ (W™ - gy (m21).

More precisely, Zariski's result is that if we set (as we may, uniquely)

then the singularities onmn 7' are in one-one correspondence with the integers
i such that hzi > 1, the singularity corresponding te i being of type
Ahz e

One way to see this is to begin by noting that if E Ez,...,ES are
the components of the closed fibre on I  (remark 3), and 1f E is the cycle
E1 + E2 L ES, then E, E $0 for all i (1 54 < s), with equality if
and only if i # 1, i # s, and b = -2. Thus E 1is the "fundamental cycle",
and the theory of ratiomal 51ngular1t1es tells us that

I' = Proj( 8, H°( #(-nE))

From this, and from the relation between the b's and h's, we can reach the
desired conclusion.




Presumably however there is a more direct and elementary proof, starting
from the explicit description (**) of R. Since - as is easily shown
blowing up a2 singularity of type Am leads to a scheme with just one
singularity of type Am_2 (and no singularities at all if m =1 or 2), this
will give us another way to show that R <can be desingularized by blowing up
only points. This type of desingularization descends through completion, so

wWe will have ancother proof of (*). [Cf. also Remark at end of this Lecture.]

6. There is an illuminating approach to the problem of desingularizing
R, due to b. Lieberman:

Any unramified covering of C!' = e - {xy = 0} can be realized by a
map 6:C' + C' of the form
(Vv,w) =~ (vd. v PE,IEy (0 £ p <nj (n,p) = 1).

From a complex analytic point of view, the problem is to find a manifold Y'
containing C' as a dense open subset such that 8 extends to a proper map
of Y' » €%, with @(Y' - C') C {xy = 0}. It is well-known that this can

be accomplished by starting with GZ D C' and successively blowing up points.
Making things explicit, one comes up with essentially the same formal calcu-
lations as before, but with a different motivatien. (Roughly, what we did
before was, instead of successively blowing up points of indeterminacy of 8,
to blew up their inverse image on the graph of 0.)

[}

Algebraically speaking, let €{v,w} be the ring of convergent power
series, let u = v Py™ and let G = C{v,w)(u); then the completion of G
at the maximal ideal generated by wu, v, w is our old friend R0 {with
k = €). Lieberman'’s approach produces a desingularization of G, and hence
of Ry.

* * &

Examples. We illustrate Jung‘s'method by describing local resclutions for
some singularities of multiplicity two. Consider the origin (0,0,0) on
the surface defined over % by w? = £flu,v) (£(0,0) = 0). If m 1is the
projection te the (u,v)-plane, then the critical variety D is given by
£flu,v) = 0. '

A

w" = {(u - alv)(u - azv)...(u - anv)

=

{al,az,...,an, distinct elements of k).

Di.u = a;v

/




D is resolved by one blowing up:

(Here E is the curve coming out of the point u = v = 0, and D! is the
proper transform of D).

When n is even, say n = 2g + 2, X' is already mon-singular
{notation as at the beginning of the lecture.}) The inverse image on X' of
the original singularity (0,0,0) is a non-singular double covering of E,
ramified at the points pl,pz,...,ng+2, hence hyperelliptic of genus
£ = (n-2)/2. The self intersection of this curve is -2.

When n is odd, the inverse image of E on X' is a non-singular
rational curve mapping isomorphically onto E. The singularities of X'
occur at the points liying over the Pi; and they are rational, of type A
so they are each resclved by one blowing-up. On the resulting desingular-
ization, the inverse image of (0,0,0) locks like

1!

n non-singular
rational curves,
with self-
intersection -2,

each one meeting
e o F  transversally
F: a non-singular
rational curve F
with self- o
intersection
n+l

In either case, the resolution obtained is minimal.

wl = - . v’y (cf. Lecture 1, &3),

It

One finds that on X' there is just one singularity, which is rational
of type Al. Blowing this up, we get a desingularization of (0,0,0), on
which the inverse image of (0,0,0) 1looks like




-8 -2 -4

(A1l curves non-singular rational; 2ll intersections transversal; self-
intersections as shown.)

This is certainly not a minimal resolution. Blowing down the .-1's,
we get three mon-singular raticnal curves meeting transversally at a point:

) Fl

Blowing down Pé, we get two non-singular rational curves meeting tangentially
at one point (intersection multiplicity 2):

Fy o

-5 -1

Finally, blowing down Fg, we get the minimal desingularization on
which (as in Lecture 1) the inverse image of the original singularity (0,0,0)
is an irreducible rational curve with a cusp, having self-intersection -1.

!

* * *

Here are three examples of the influence of Jung's idea of simpliffing

singularities by resolving critical varieties (for suitable projections).




I. As a graduate student, Abhyankar tried to adapt Jung's method to
surfaces over fields of positive characteristic. He found (with netation as
above) that even when g'l(D) has normal crossings, the structure of R
may be gquite horrible (cf, [Amer. J. Math. 77, (1955), 575-592]).

As an example of what may happen, consider the peint P = (0,0,0) on
the surface

w? 4 wv3 * u5 =0

over a field of characteristic 2, The critical variety for the projection
into the (u,v)-plane is the line v = 0. P is an isolated singularity,
hence normal, but one checks easily that on the blowing up of P, the inverse
image of P is a singular curve; so P is not even a rational singularity.

But then about ten years ago, Abhyankar discovered that in certain
cases (projections giving _¢yclic Galois coverings of degree = characteristic
of the ground field) if one keeps on blowing up certain {possibly smooth)
points of the critical variety, even when the critical variety has only
normal crossings, then eventually a stage is reached where the structure of
R becomes essentially as simple as in the characteristic zero case. (R is
& "Jungian domain"™, in Abhyankar's terminology.) This discovery was a key
point in his solution of the resolution problem for surfaces over excellent
Dedekind domains.

(In the above example, for instance, blowing up the point u=v = 0
and nermalizing in the function field of the given surface produces a sur-
face covered by two affine surfaces whose equations are respectively

wz + wuv3 *u=20
wz * Wy + vu5 = g,

The first of these is non-singular, while the second has just one singularity
(at (0,0,0}), the singularity being rational of type Ag.J

II. What Jung's method suggests for higher dimensions is to apply

~embedded resolution for divisors in a d-dimensional non-singular variety to
a certain critical variety in order to prove local uniformization on 4-
dimensional varieties. This idea works out well in characteristic Zero,
though the details are elaborate (cf. the main result (10.25) of chapter 10
in Abhyankar's book [A3]). In fact, using his generalization of Albanese's
method (Lecture 1, §5), Abhyankar is able teo make the idea work over fields
of characteristic > (d!). This is his approach to local uniformization on
three dimensicnal varieties over fields of characteristic > (3'}. (The main
difficulty is to prove embedded resolution for surfaces in non-singular
threefolds.)

IIT. 1In 1954 Zariski proposed a global version of the local inductive
procedure mentioned in II, as a method for resolution of singularities in
characteristic zero [Z8, pp. 512-521]. 1In other words, apply embedded
reselution to a certain (d-1)-dimensional critical variety in a




non-singular d-dimensional variety, and then deduce embedded resolution

for divisors in a non-singular variety of dimension d + 1. So far this
idea has not met with much success, but it remains of interest as a possible
source of a simpler alternative to Hironaka's proof.

* * *

What we have done in this lecture is to use embedded resolution of
curves in non-singular surfaces to prove resolution for surfaces. But cur
resolution procedure is not an '"embedded' one, in that it is not entirely
made up of transformations of some non-singular ambient variety containing
the surface X to be resolved., An embedded resolution procedure, in
which Jung's method plays an important role, was given by Zariski in some
Lincei notes in the 1960's (cf. [Z7]). But Zariski considered only the
proper transform, and not the total transform of X, so that his result is
still not as strong as (EMB) (Lecture 1) for surfaces in threefolds over
fields of characteristic zero. However Zariski's work did stimulate
Abhyankar to find a very simple proof of the stronger result, In
Abhyankar's proof, embedded resolution is applied not to the discriminant,
but rather to thecoefficients of some Weierstrass polynomial. We will
discuss these matters in detail in Lecture 3.

Remark ("Added in proof"). The quotient singularity R <can be studied by
the methods of Chapter I of Kempf, Knudsen, Mumford and Saint-Donat's
Toroidal Embeddings I (Lecture Notes in Math., no. 339, Springer-Verlag),
where higher-dimensional analogues of R are also treated. In loc. cit.,
R is represented by the plane sector ¢ = (£0,€$+1) CZRZ, where EO = (1,0),
€s+1 = (p,n}, and (EO,ES+1) consists of all points cgo + dEs+1 with
¢, d real and 2 0. The desingularization
LR T Wy

I = US., Spec(Rlv /w1, w 1*1

. == s .
a "subdivision" ¢ = lJi=0(Ei’£i+1>’ with &, = (v;,u5).

V.
/v 1+1]) {cf. remark 3 above) corresponds to

Blowing up the maximal ideal of R corresponds to a coarser subdivision
g = (EO,RO)U(no,nl)U(nl,nz)U...U(nt_l,nt)U(nt,Esﬂ) where n, = £,
Ny = Es’ and NysMgs---sNy q aTe the "corners"™ (= vertices) lying strictly
between El and gs on the boundary (B) of the
convex hull of (6N Z%)-(0,0). [The "division
points" ny (0<i<t) can be characterized as being
the points (p,q) & ZZ for the which the line
pX + gqY = 1 has a segment (of positive length) .
in common with the boundary of the convex hull
of (6(\12]-(0,0), where
g = {(x,y)|ax + by 2 0 for all (a,b) € o}.]

To establish the result of remark 5, one
shows that precisely h,;_ ; of the £'s are in the {3=1+hy*h,+...+h,: )
interior of the 1ine segment joining n;.q to n; (I<ist).




LECTURE 3: EMBEDDED RESOLUTION OF SURFACES (CHAR. 0)

The main topic of this lecture is the following weak form of (EMB)
(cf. Lecture 1), for surfaces in non-singular threefolds:

(EMB*) Let X be a smooth irreducible three-dimensional variety over
an algebraically closed field k of characteristic zero, and
let S be a surface in X (i.e. S is a reduced pure two-
dimensional closed subvariety of X}. Then there exists a
proper map f£:Y + X, with Y smooth, inducing an isemorphism

Y - £ 1(Sing(8)) —=> X - Sing(s)
[Sing(S) = Singular locus of 8]

and such that Sy, the closure in Y of f-l(S - Sing(s)),
is smooth (whence the induced map f:SY + 8 is a desingu-
larization).

We will see that £ can in fact be obtained by successively blowing
up points and 'nice" curves.

As indicated earlier, (EMB*)} was proved by Zariski, first in [26) and
then again in (2Z7]. (The latter proof is discussed briefly near the end of
this lecture.} We shall present here 2 fairly detailed version of a pre-
viously unpublished proof due to Abhyankar (1966). This proof is in some
vague ways influenced by Zariski's, but it is simpler, and accomplishes more -
(see end of lecture).

0f course Hironaka [H1] has proved far more general results than those
to be mentioned in this lecture. But stilil Abhyankar's proof is worth being
acquainted with, because it brings out very nicely - and quickly - the spirit
and flavor of the subject.

* * #*

(EMB*) has many applications. In the first place, it gives us
Tresolution of singularities for surfaces (say, for simplicity, irreducible)
over k; for, since any irreducible surface S$' is birational to z surface
$ in P3 {= X), (EMB*) gives us a smooth surface (viz. SY) with function
field k(S'). This is the weakest form of resolution; but it shows that
every valuation of k{5')/k 1is centered at a smooth point on some variety

with function field Kk{(S5'); and even this weak form of local uniformization
is enough for Zariski's proof that any surface over k can be desingularized
by blowing up points and normalizing (cf. Lectuwe 1).




Secondly, (EMB*) is a central point in Zariski's proof of resolution of
singularities of three-dimensional varieties [26], and even more so© in
Abhyankar's treatment [A3]. (Abhyankar works alsoc over fields of positive
characteristié, in which case the proof of (EMB*) is far more involved.} In
order to deduce tesolution from local uniformization {which he had already
proved for varieties of any dimension [23]1) Zariski needed the following
theorem (“Dominance') on the elimination of the fundamental locus of a
birational transformation:

(DOM) Let h:X' + X be a proper birational map (X as above). Then
there exists a smooth variety Y and a commutative diagram of

/X

X €¢— X'

birational maps

f being obtained as a succession of nic¢e blowing-ups.

Zariski's approach to this theorem is first to reformulate it as a
statement about the elimination of the base points of a linear system A of
divisors on X. He then resclves the singularities of a generic member S
of A, according to (EMB*). Because of a theorem of Bertini, this creates a
situation where each base point of A is smooth on almost all members of A,
and under this condition, the matter becomes relatively straightforward.

Abhyankar has extracted from Zariski's procedure its essential local
algebraic content, which turns out to be quite elementary, sc that he can give
a2 much simpler deduction of (DOM) from (EMB*) (cf. [A3, p. 52 and p. 229]1).
Abhyankar's argument is valid also in characteristic p > 0, where Bertini's
theorem may fail to hold.

Now (DOM) is (almeost trivially) equivalent with the following statement
("Principalization"):

{PRIN) Let X be as before, and let f# 0 be a coherent sheaf of
@X-ideals. Then there exists a proper birational map £:Y » X,
with Y smooth, such that j@Y is locally principal; here f
can be obtained as a succession of nice blowing-ups, and in

such a way that f induces an isomorphism over the dense open
subset of X consisting of those points x at which the stalk
j& is already principal.

(PRIN) reduces the strong embedded resolution theorem (EMB) (Lecture 1)
for a subvariety W of X to the case where W is of pure codimension one,
i.e. W is a surface (possibly reducible) in X. We will see at the end of




this lecture that a simple modification of the folldwing proof of (EMB*)
allows us to add to the conclusion of (EMB*) the further condition that
"f'l(S) has only normal crossings™. In this way, we see that (EMB) holds
for subvarieties of X.

Finally, recall that (EMB) was the basic point in Abhyankar's proof
{via Jung and Albanese, cf. end of Lecture 2) of local uniformization on .
threefolds,

‘(EMB*) ——> (PRIN)

-~

> — B _ '
(similaf‘éé\ > (EMB) for any subvariety of a 3-fold
proof) = '
=
(EMB) for
surfaces in

I 3-folds
! E(Jung,
\ i Albanese)
! N/

local uniformization

on 3-folds

=> (RES) for 3-folds
\J(DOM)
* ® *

PROOF OF (EMB*). 1. First of all, recall that the multiplicity of a point
s on 5 can be described as follows: we can represent the completed local
ring of s on S5 in the form

- A

5,5 = k[IT,U,V11/£(T,U,V)

for some power series f (T,U,V being local parameters at s on the smooth
threefold X); then the multiplicity vg; 1is the order of f, i.e. the
unique integer v such that

vhere fi = fi(T,U,V) is a form of degree i, with fv # 0. We say then
that s is a v-fold point of §, A point s is 1-fold if and only if S
is smooth at s. For each v, the set S(“) of points on § of multiplicity
2 v is closed in § [N, 540]. An irreducibie curve C on § is said to
be v-fold if C ¢ S(vj, c¢ S(v+1) (equivalently: the generic point of C
is v-fold).

Since S(v) is empty for v >> 0 (S being compact), we can set

Ve = max (v_).
S - s€S s




To prove (EMB*), it is clearly encugh to prove the weaker assertion obtained
by replacing "3y is smooth™ by the condition

USY < vg (if vg > 1).

2, We are going to construct Y from X by a sequence of
permissible transformations, a permissible transformation being one obtained
by blowing up either a point, or a smooth curve. One good thing about
permissible transformations is that they preserve smoothness, i.e. if X' = X
is a permissible transformation, with X smooth (as above), then alse X' is
smooth (cf. [Z8; p. 241]).

Some other good properties of permissible transformations are contained
in the following preliminary Lemma (cf. [Z6; 83,6]1):

LEMMA 1. Let P be a v-fold point of S.

(a) Let £:8' + S be obtained by blowing up P. Then
any point P' e £71(P) has multiplicity € v on
S$'; and any irreducible v-fold curve C' C f_l(P)
is smooth.

(b} Let g:S" + S be obtained by blowing up an irreducible
v-fold curve C .- on which P is a smooth point. Then
“g"1(P) is finite; any point P" e g'l(P) has
multiplicity € v on 8"; and any irreducible v-fold
curve C" C g'l(C) passing through P" is smooth
at PV,

Proof.! Let R (resp. R', resp. R") be the completed local ring of P on
S (resp. P' on §', resp. P" on S§"),
Using the Welerstrass preparation theorem we can write

R 3 K[[X,Y,21)/£(X,Y,2) = k[[x,Y,2]]
£0,Y,2) * 2¥ + 2,002V 2 v ag(x, M2V e s (x,Y)

where, for 2 € i % v, ai(x,Y) is a power series of order 2 i. (To get rid
of terms involving 21, we need that wv.1 # 0 in k.) Along any v-fold
subscheme of Spec(R), we have that

1zariski has somewhat stronger results in loc. c¢it.; his proof is valid also
in char. p > 0. We give the following char. (¢ argument because most of it
is used again later on anyway. (By oversight "X" and "Y" are used in the
sequel to denote indeterminates, and "f"” for power series; no confusion
should result.)
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so that
Z=10-= av(X,Y).

It follows that if C is a v-fold curve smooth at - P, then we may assume’
that the "germ".of C at P is givenby Z = X = 0, with ai(X,Y)
divisible by X' for 2 € i < v. Hence z/x is integral over R, and we
conclude that g'l(P) is fipnite, as asserted in (b).

Now it is easily seen that

R' & k[[X,Y,Z]]/£" (X,Y,2)

where, for suitable elements c¢, d e k, either

(i): £1(X,Y,2) = iv £0X,X(Y + ¢), X(Z + 4))
or
(ii): £1(X,Y,2) = 2 F(YX,Y,Y(Z + d)).

Y\)

Suppose, for example, that (i) holds. Then

Fr(X,Y,2) = z¥ + vaz¥ l ...,

so that P! has multiplicity ¢ v. Moreover, if some v-fold curve
c' C f‘l(P) passes through P', then first of all X =0 on C' (in fact
X=0 on f'l(P)); secondly, d = 0 (otherwise vd # 0 and P' has
multiplicity < v); and finally, as above, Z vanishes on C', so that C°'
is given at P' by I = X = 0. This proves (a).

The rest of (b} is proved similarly, starting with the power series

£1(X,Y,2) = 1o £(X,Y,X(2 + &) .

-

Q.E.D.

3. The underlying idea of the proof of (EMB*) is that by blowing up
certain Us-fold points often enough, one achieves a situation where the
maximal multiplicity vg can be lowered by blowing up smooth vs~fold curves.

To make this more precise, we introduce some convenient terminology.

Let v = vg. We say that a v-fold point s of 8 is good if the following
two conditions hold:

(i) Loc¢ally around s, S(v) is a curve having at s either
a smooth point or an ordinary double point (node)}.




(ii) Let
(*) ee. S, .+ 8. % ...+ S, >S5 =8

be any sequence in which, for each 1 2 0,

Si+l * 8, is obtained by blowing up an irreducible
v-fold curve on Si; and let fi:Si + S5 be the’
composed map S; + §; 4 *+ ... > S. Then, for any

i 2 0, every point of fil(s) which is v-fold for Si

lies on an irreducible v-fold curve of Si‘

The usefulness of this notion is brought out by the following
Proposition:

PROPOSITION 1. (a) The number of bad (= not good) vs-fold peints on

S is finite,

(b} If all vs-fold points on S are good, and if all

the irreducible ps-fold curves on S are smooth,

then for any sequence (*) as above there is an

i such that vsi < vg.
The Proposition results easily from the next lLemma. (Details are left to the
reader; for (b) of Proposition 1 use also Lemma 1(b)).

LEMMA 2: For any S with vg > 1, there exist only finitely many distinct
sequences

in which, for 0 £ i <n, 8 is obtained from Si by blowing

i+l
up an irreducible vs—fold curve whose image on § is a vs-fold

curve of S.

(Proof: Consider the generic points of the irreducible vs-fold curves
of § ...}

We can now reduce to proving the following:

THEOREM 1. Let v = Vg, and let ... -+ Si+1 ¢g Si T Sb =8
be the sequence such that ¢i is obtained by blowing

up all the (finitely many) bad v-fold points on Si
(i 2 0). ([Note that wvg, % v, (Lemma 1{a))]. Then
the sequence terminates, i.,e. for some n all the

v-fold points on Sﬁ are good.

Indeed, if Sﬁ is as in Theorem 1, then any irreducible v-fold curve
on Sh has as its singularities at worst nodes; blowing up all such nodes,
we get a surface S* on which all irreducible v-fold curves are smooth




(Lemma 1(a)); applying the Theorem to §* instead of $, we obtain, again
by Lemma 1(a), a surface on which all v-fold points are good and on which all
irreducible v-fold curves are smooth; and then Proposition 1(b} completes
the proof of (EMB*),

4. We sketch the proof of Theorem 1.

Theorem 1 is essentially local: since any surface Si has only finitely
many bad v-fold points, and since an inverse limit of non-empty finite sets
is non-empty, we see that if Theorem 1 fails, then there exists an infinite

sequence
(o) RyCRyCR, C ..

where R; is the local ring of a bad v-fold point on S{; S0 we must show
that such a sequence cannot exist.

Since multiplicities and blowing up behave well with respect to
completion, we can consider instead of (¢) the corresponding sequence of
complete local rings

%) Ry » Ry » &, » ...

Arguing as in the proof of Lemma 1, we find that

R, = K[IX,Y,21)/%, (X,Y,2)

-2 -
00Y,2) = 2V v 2, (x,1)2° 2 . a, (N2 s B, (6Y)

where a is a power series of order 2 i (2 €1 <wv); and furthermore,

n,i
for each n, either

) e, 1 (00) =S A JOXO + €)) (epe ks 2% <)
or .
(#4) 801, (YD = %{ a, ;(YX,Y) (2 €1 ¢v).

Now let C = be the algebroid curve Spec(k[[X,Y]]/HJ. a
where the product is taken over all j. such. that an,j £ 0,
Then the preceding remarks show that, module completion, Cn+1 is a cuosed
subscheme of the inverse image of C, under the map obtained by blowing up
the closed point of Spec(k[[X,Y)]). By the embedded resolution theorem for

curves in surfaces (Lecture 1), it follows that for lar € n, C has a
201 -arge n SDas a

1,30




normal crossing at its closed peint, so that

a. . B -
- n,iy, n,i s e
an,i un,i(X,Y)X Y ¢ (2 g1 < w)
where each LI is either a unit in k[[X,Y]], or identically zerc, and
]
®n,i * Bn,l z 2

It is straightforward to check that since R, is the local ring of a
: =0 for all 1i.

n,i

a+1 15 the local ring of a bad peint, we cannot

= ¢ for all i; hence if the above relation (#) holds, we must

bad v-fold point, we cannot have B
Similarly, since R
have Bn+1,i
have c, = 0.
In summary, we have, for large n,

v

v e s Boos s
£(x,¥,2) = 2V ¢ ¥ o (X, Y)x Mly Matgvtd
I j2g n,i

£, 0LY,2) = 2V . ‘g Irln+1’i(X,Y)Xan+l’iYBn+1,izv-i
where
either (un*l,i’ Bn+1,i) = (un,i + Bn,i - i, Bn,i) {2 <1 %)
or (Gney,is Pnel,i) ='(un,i, 03 * By - 1) (2<i<v)
X *® *

5. The whole matter can now be reduced to a game played with the (v-1)-

tuples of integer pairs (an,i’ 3n,i) 2 €1 ¢V,

For any real number p, {p} denotes the fractional part of o, i.e.
the number in [0,1) which differs from p by an integer.

We write "(o,B) $ (y.,8)" to signify "o ¢ y and B £ &".

LEMMA 3. I1f for some i, we have MnLi # 0 and

a. . B . a - B .
n,i o mL.i) oo [ Bed T for all j with wu_ . # 0
i 71 ] J

and if furthermore

(2] - (i) <n

then R, is the local ring of a gooed point.




Proof: Left to reader.

All that we need now is the following two numerical Lemmas, whose
(simple) proofs are omitted.

LEMMA 4., Let

Then 8

and if Gn,i,j <

Sa41,1,7 7 ®n,i1,j

CORCLLARY. There exists n, such that for each n 2 ng, and for
each i, j, we have &§_ . . 3 0, so that the Sequence

Nyl1,]
of pairs

cr.n . Bn’.
J ') 2

$jsw
is totally ordered.
Remark. If n is as in the Corollary, and i is such that u s F 0
_— 0 no:]-
ano,i Bno,i < no’j Bnolj . .
and 7 s —— S \—5—> 3 for all j with uno’j#O
then clearly for each n ny, we have Ma,i £ 0
a. . B_ . o . B . .
n,1 N, 1l < n,j n,J 3 i
and (_..i..?._., T ) < (j , J’ ) for 2all j with un,j £ 0.

LEMMA 5. If Bys i are as in the preceding Remark, then for some
‘n 2 ny, we have

EONLE

Hence (Lemma 3}, R, 1is the local ring of a good point.

This contradiction completes the proof.

* * *

Conciluding Remarks.
A. We have pPreviously mentioned Zariski's proof of (EMB*) {Z7]. This

=

proof, though net as elementary as Abhyankar's, has some attractive features.




In Zariski's approach, the "geod" singularities are those of
"dimensionality type 1", i.e. those s at which S 1s equisingular along
the singular locus (which is supposed to be a curve locally around s). If
all the singularities are good (in this sense), and if

is the sequence such that 45 is obtained from Si by blowing up the
singular locus (i 2 0), then for all i, the singular locus of S.1 is a
smooth curve, so that  ¢; is induced by a permissible transformation of
ambiemt threefolds; Si is finite over S; and for seme n, Sn is smooth.
Thus the problem is to get rid of the (finitely many) "bad" singularities,
those of dimensionality type > 1, which Zariski calls "exceptional

singularities".

Let v be the largest among the multiplicities of the exceptional
singularities. Zariski uses a Jungian type argument to show that after
the exceptional v-fold singularities are blown up often enough, those whose
multiplicity is not decreased become of a simple type, called "quasi-
ordinary". (This means that some neighborhood can be projected into the
affine plane in such a way that the branch locus has only normal crossings.)
A direct analysis of quasi-ordinary singularities shows first of all that
by blowing up the v-fold locus of S sufficiently often, one reaches a
sitvation where every v-fold exceptional singularity is "isolated", in the
sense that it does not lie on any v-fold curve of S; and secondly, that
the multiplicity of these isolated v-fold exceptional singularities can be
lowered by blowing them up often enough.

Repeating the process, one eventually eliminates the exceptional
singularities.

 For further insight into (EMB*), part III of {Z6] is recommended.

B. Finally, we indicate how Abhyankar modifies his proof of
(EMB*) to obtain the stronger version in which f"l(S) has only normal
crossings?. Actually it is convenient to show a little more; the precise
- and somewhat lengthy - formulation of the result is as follows:

A resolution datum R= (EO,EI,S,X) consists of three surfaces EO’ El,
S in a smooth threefold X, where each irreducible component of E, or
E1 is smooth, and E = EOUE1 has only normal cro§sings in X. (Either
or both of Egs E, are allowed to be empty.) <% is resolved at a point

s eS if & is smooth at s, and if EUS has only normal crossings at s.

Let v = v(@®) be the greatest among the multiplicities on S of points
at which @ is not resolved (v = 0 if & is resolved everywhere on 3);
and let & be the set of all such v-fold points., 4 is a closed subset of
S, of dimension £ 1. (A = s if v 1),

27ariski has recently found a proof of this stronger result, aleng the lines
of {Z7]. (Oral communication}.




An irreducible curve CC4A is permissible at a point s € C if C
has normal crossings with E at s [this means that there exist local
coordinates x, y, z at s (in X) such that E is defined near s by
xalyezzEs =9 (ei =0or 1) and C by x =1y = 0], and if there is no
irreducible curve C'Ca which has normal crossings with E at s and
which lies in more componenis of E1 than does C. (Any curve lies on at
most twWwo components of El). C is permissible if it is so at all its points.

A permissible transformation of % js a map g:X' + X obtained by
blowing up a subvariety B of 4, where B is either a point or a permis-
sible curve. The g-transform @' = (Eg»E{,8',X') of PR is defined by:

S' = proper transform of S [= closure in X' of g‘l(S-B)]

Ei = proper transform of El

-1
Eé & (EOLJB)reduced
unless Vg1 < Vg, in which case we set
]
‘El
Ep

-1
8 (EGVE UB) redyced
empty set.

&' is a resolution datum, and V(&) ¢ vi®) . It is clear what is meant By
. the transform of # under a succession of permissible transformations?.

The theorem to be proved is that a resolution datum (EO'EI’S’X) with
E0 empty can be resolved, i.e. there exists a succession of permissible
transformations f = £1°g;°... under which # is transformed into a
resolved datum (E§»E$,8*,Y). (Then S* is smooth, and f-l(S) has only
normal crossings in Y.) It is clearly enough to show that if v > 0,
then & can be transformed into a datum ®* with VR < v .

For the proef, one says that a peint s e A is pregood if locally
around s, & is a curve having either a simple point or a node at s, each
(formal) brancﬁ*of & having a normal crossing with E at s. s is a good
point if, roughly speaking, any v-fold point t obtained from s by suc-
cessively blowing up "locally" permissible curves is still pregoed. (In

other words there is a sequence s = Sg2532+++25, = t in which each 53541
"is a point lying over 5; on the surface obtained by blowing up a curve

which is permissible at s; ++.). The number of bad points is finite. 1f
all points of 4 are good, and if all components of A are smooth curves
then we can lower v(#), as desired, by successively blowing up components
of A, subject to the following restriction: never blow up a component B
of A if there is another component B' of A which Iies in more com-

ponents of El than B does.

In this way (cf. $3 above) one reduces to proving the central local
fact, viz. there cannot exist an infinite_"quadratic sequence" of bad w-fold
points. The technique for showing this is similar to that of §§4,5 above
except that one must work simultaneously with the local equations of EO,
El’ S. Details are left to the interested reader.

"To undersfand fully the motivation behind all the foregoing definitions, one
must woTk throurh the detailec nf the nrand Snddcotod Lot
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