RELATIVE LIPSCHITZ-SATURATION.

By Josepn Lipman.*

Introduction. We discuss algebraically the notion {due to Pham and
Teissier [6]) of relative Lipschitz-saturation of rings. Among other things, we
examine the radicial nature of this operation (Proposition (1.4)), and its com-
patibility with étale localization (Section 3) and with certain base changes (in
particular, with completion (Corollary (2.6), Example (5.2)).

Then (Section 4) we consider the relation between relative Lipschitz-
saturation and the relative saturation studied by Zariski in [8] and [9]. Under
mild assumptions, we find that the Zariski-saturation of a ring is contained in
the Lipschitz-saturation, with equality in the hypersurface case (for the precise
statement cf. Corollary (4.2)). We have consequently an alternative approach to
most of the “soft” properties of saturation which are given by Zariski in [GTS]
{cf. remarks following Corollary (4.2)).

Actually our results are presented in a more general setting than the
corresponding ones in [GTS]. This indicates that the Pham-Teissier definition of
relative saturation is more amenable to algebraic manipulation than that of
Zariski. It must be emphasized, however, that we do not obtain here any new
insight into the central “hard” results of [GTS], namely those pertaining to the
structure, automorphisms, and properties of transversal parameters of one-
dimensional saturated local rings, and to the connections with the theory of
equisingularity. Thus, our contribution is to the technique rather than to the
core of saturation theory.

This paper could not have been written without the guidance of Zariski’s
theory; and the paper owes much to his interest during its preparation.

1. Miscellaneous Properties. All rings will be commutative, with iden-
tity; “subring” means “subring containing the identity”; all homomorphisms of
rings are understood to preserve the identity.

The definition of relative Lipschitz-saturation is based on the concept of
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integral dependence on an ideal (a concept introduced by Priifer [7]). Given an
element x and an ideal I in a ring R, we say that x is integral over I if x satisfies
a relation of the form

Flx)=x"+a;x" '+apx" 2+ -+ +a,=0

for some integer n >0, with ¢, €1' for i=1,2,...,n. An equivalent condition is
that in the polynomial ring R[X] (X an indeterminate) the element xX is
integral over the subring R [IX]=R @IX ®©12X%@ - - - . (Thus statements about
integral dependence over ideals can often be conveniently reformulated in
terms of integral dependence over rings.) The set I consisting of those elements
of R which are integral over I is an ideal, the integral closure of I in R. The
usual closure properties hold: I C I=L and ICJ=IC].
We will make use of the following observation:

Lemma (1.1). Let J1,Jo,.... ], be ideals in R whose product ] ,J,...J, is a
nilideal. If x is integral over I (modulo I)) for each i=1,2,...,n, then x is
integral over 1.

Proof. Let F;(x)=0 (mod.J;) be an equation (as above) of integral de-
pendence for x over I (modulo J,). Then

F(x)= L F(x)eldy -1
i=1
so that for a suitably large integer r we have F(x)"=0, and this is an equation of
integral dependence for x over I.
Now we come to the basic definition.

Definition (1.2). Let R be a ring and let g: A— B be a homomorphism of
R-algebras. (In other words, we are given a sequence of ring-homomorphisms
R—AS B.}) The Lipschitz-saturation A*=A%, of A in B, relative to
R—A->B, is the set

*={xEB|x® 41— 1@« is integral over the kernel of
the canonical map B® B—~B®,B}.

(This kernel is generated by all the elements g(a)®1—1Q®g(a), a€ A).
A is saturated in B (relative to R—A—B) if A*=g(A).
(Usually A will be a subring of B, and g: A— B will be the inclusion map.)

Some elementary properties of this operation on algebras are listed below.
Straightforward proofs are omitted.




1. A*is a subring of B, containing g(A). (The proof uses the identity
@1 - 1Quxy={(xQ1Y y®I-1I®y)+ (1Vy)(x@1 - 1®x)

and the fact that the integral closure of an ideal in B® 4B is again an ideal)

2. (Closure properties). Assume that A is an R-subalgebra of B, and for
any ring C with ACCCB let C*=Cf  (the sequence R—C—B being the
obvious one). Then

(i) ACA*

iy ACCCB=A*CC*

(iii) (A*)*=A*
(Hence A* is the smallest ring between A and B which is saturated in B relative
to R.)

3. (Functoriality). Given a commutative diagram

R —> A —gi' B

) J ) bs

R —> A — B
we have that

AL C(AYS, .

4. (Inductive limits). Given a ( filtered) inductive system of sequences

R,—A,—B,
with inductive limit
R—>A—B

there is a natural isomorphism

lim (A5 n — Afg-

-_—
Q

5. (Direct products). Let g,:A;—B; (i=1,2,...,n} be homomorphisms
of R-algebras, and let g: A— B be the direct product of these maps:

= a) 5 (1 5)s




W . § T T s mmee mrms s

Then
Ti
A§,5= H (Ai)fi[,ﬁ
i=1

{Here the proof is a bit lengthy, though still straightforward. (Cf. also remark (ii)
following Proposition (3.1).)]

6. (Faithfully flat descent).- Let R>A S B be as in (1.2). Tensor this
sequence with a faithfully flat R-algebra R’, and denote the resulting sequence

by R'—»a 5B (A’=AQ®gR’, etc.) If A" is R’-saturated in B’ (i.e. (A")} g
=g'(A")) then A is R-saturated in B (i.e. Af p=g(A)).

Proof. Let f: B—>B’ be the canonical map. By (1) and (3) we have
g(A)CALRCf T (A5 =f " (g(4).
But there is a natural commutative diagram of R-module homomorphisms
B/g(A) -
@ f

1 T

==

(B/ga)®R  —>  B/g(A)

where 8 is an isomorphism, and the canonical map « is injective (since R’ is
faithfully flat over R {1, Ch. 1, p. 50, Prop. 8]); hence the map _f induced by fis
injective, i.e. g{A)=f"1(g'(A"), and the conclusion follows.

7. (Contraction). Given a sequence of ring homomorphisms
g f
R—>A-—>B——>B’
assume that
either: (a) the kemel of f is a nilideal and B’ is integral over f(B)
or: (b) B’ is faithfully flat over B (via f).
Then

Af r =f" I(Af;',n)-




Proof. Consider the commutative diagram

)
B®,B —> B®,B

Foury, ’ brear

&
B'®:B —> B'®,B

¢ and ¢’ being the canonical maps. It is clear (by considering generators) that

ker (¢') =ker (¢)- (B'®zB’) (“ker” =“kernel of””)

Now, if (a) holds, then the kemel N of f®yf is a nilideal. (To see this it
suffices to show that every prime ideal p in B ® B is of the form (f®f)"Yq)
for some prime ideal q in B'® 3B’ (so that p contains N). But p is the kernel of
a map « of B@gB into an algebraically closed field F; to this map there

corresponds a pair of maps B, F with the same “restriction” to R; because of

the assumption (a) these two maps can be “extended” to maps of B’ into F;
there results a map :B'®zB'—F whose composition with f®f is «; the
kernel of 8 is the desired g.)

So, assuming (a), (7) results from the following lemma (with h:S—T
replaced by (f®,f): B&zB—->B'®4B’, and I by ker(¢)):

Lemma . Let h:5—T be a ring homomorphism whose kemel is a nilideal,
and such that T is integral over h(S). Then for any ideal I in S (with integral
closure I) we have

i=h~Y(TT).

Proof. It is clear that h(I)C IT. Conversely if x€S and y=h(x) is
integral over IT, then, in the polynomial ring T[X], yX is integral over the
subring T[(IT)X], and this ring is integral over its subring h(S)[A(I)X] (being
generated over the subring by the elements of T). Hence there is an equation

y"+by" '+...+b,=0
with b, € h(I}, say b;=h{a), g, €T’ (i=1,2,...,n). So
F{x)=x"+ax" '+... +a,€ker(f),

and for suitably large r, F(x)"=0. Thus x is integral over I, and the lemma is
proved.




Similarly, if (b) holds, it is enough to prove the preceding lemma assuming
only that T is faithfully flat over S. In this case, if h(x) is integral over IT, then
an equation of integral dependence shows that, for some 7> 0,

h(x) €1(LLx)""'T
whence

" €h T I(L2)" T)=1(1,x)""".

(By faithful flatness we have h~}JT) =] for all ideals J in S.) We conclude that
x is integral over I. Q.E.D.

Remark. More generally, it can be shown that the conclusion of {7) is
valid if we assume only the following condition on f:

“For every B-algebra V which is a valuation ring, there exist two prime
ideals gCp in V® B’ whose inverse images in V are respectively (0) and the
maximal ideal of V.”

For a sequence of homomorphisms R—R’—A—B, (3) shows that Afr
CAg g The following proposition gives conditions under which these two
saturations are equal.

Recall first that, given a ring homomorphism k: T— T, we say that T' is a
radicial T-algebra (via h) if for every prime ideal p in T there is at most one
prime ideal g in 7" such that h ~*(g)=p, and furthermore for any such pair p, g
the map T/p—T’/q induced by h makes the field of fractions of T" /q purely
inseparable over that of T/p. Equivalently: any two distinct homomorphisms of
T” into a field have distinct compositions with h; or againi t'®1-1@¢ is
nilpotent in T'® T’ for all ¥ €T’, i.e. the kernel K of the canonical map
T'® T'~>T' is a nilideal (cf. [2, p. 246, Prop. (3.7.1))).

We shall say that T’ is an unramified T-algebra if the above kernel K is
finitely generated (which is the case, e.g., if T' is a ring of fractions of a finitely
generated T-algebra) and furthermore satisfies K2=K (i.e. the module of
differentials Q7.,, = K/K? vanishes). It is equivalent to say that K is generated
by a single element e such that e*=e¢. (For if K is finitely generated and
satisfies K2= K, then a standard argument shows that K(1—e)=0 for some
e €K, and this ¢ is as required.)

ProrosiTioN (1.3). Given a sequence of ring homomorphisms R—R’— A
—B, if R’ is either radical or unramified over R, then

oo Ak
AB,R""AB,R"




Proof. In either case, the kernel K of the canonical map R'®R'—»R’

contains an element ¢’ such that (¢)?=¢’ and K C Ve’ .1 Consider the com-
mutative diagram of canonical maps

o s
R'®,R" —> B®.B —> B®,B

“

B®..B

Ex

The kernel J, of ¢ is generated by #(K), and so if e=8{e") we have

e€],CVe and e’=e.

V¥, being surjective, maps the kernel I of ¢ onto the kernel of ¢'. So if
xEAL g, then, in BO®pB, ¥=x281~-1®x is integral over I (modJ],). But,
setting

Jy={B®B)(1-e¢)
we have that X is integral over I (modJ,): indeed

X —a=0 (modJ,) (a=xec ], CI).

Since J, C Ve and e(l— e)=0, therefore J,J, is a nilideal. Hence Lemma (1.1)
shows that ¥ is integral over I, i.e. x €A g. Thus Af o. C Af ¢, and, as remarked
above, the opposite inclusion is given by (3). Q.E.D.

The next proposition expresses the “radicial” nature of saturation,

ProposiTioN (1.4). Given R-A%B, if B is integral over g(A) then
A} p is a radicial A-algebra (via g).

Proof. Let C=Ajz. We must show, for c€C, that c®1—1®c¢ is nilpo-
tent in C® , C. Applying the canonical map ¢:B® pB—B®& , B to an equation
of integral dependence for ¢c®;1—1® ¢ over the kernel of ¢, we find that
c¢®1-1&c is nilpotent in B® , B. Since B is integral over C (2 g(A)), we can
argue as in the proof of (7a) above to see that the kernel of C® ,C—»R®,Bisa
nilideal, and the conclusion follows.

}This means that the diagonal map takes Spec{R’) homeomorphically onto an open subspace
of Spec(R’) X gpecirySpec(R).




2. Quasi-Normal Base Change. Let R—A S B be as before, Tensoring

this sequence with an R-algebra R’, we obtain a sequence R'—>A' 5B
(A’=AQ®gzR’, etc). Let I (resp. I') be the kernel of the canonical map
BQ®zB->B® /B (resp. B'®¢.B'—-B'® ,.B’). We have

g(A)=R'[h(A)]CB’

where h is the composition of the canonical map B—B’ with g: A~ B; hence
the ideal I’ in B’®px.B’ is generated by all the elements h(a)®1-1Qh(a)
(a€A), or in other words: I'=1(B'®.B’). (B’®p.B’ is a B ®,B-algebra via
the canonical map B®y;B—B'®y.B'.) Consequently, if I, I’ are the integral
closures of I, I’ respectively, then we have '

I(B'®zB)CT (2.1)

In a variety of interesting cases, equality holds in (2.1) (cf. discussion
following the next proposition).

ProrosiTion (2.2). If R’ is flat over R, and if equality holds in (2.1),
then, with notation as above,

(A')g'.n' = (Ag,n) ®RR"

Proof. Let 7;, 7, be the R-module homomorphisms from B into
(B®,B)/1I given by

7,(B)=b®1 (mod.1),  1,(b)=1@b (mod.I).

Let 7}, 75:B'~—(B'®,.B") /I’ be similarly defined. We have, by definition, an
exact sequence of R-module homomorphisms

T~ T2

0—>A% p—>B — (B®,B)/I (2.3)
and similarly, an exact sequence of R'-module homomorphisms

T —To

0—> (A")5 pr —>B —> (B'®.B")/I".(2.3)

Using the functoriality of saturation (Section 1, (3)) we get a natural commuta-




tive diagram

0—> (A3g)®zR’ —>B®iR'—> B'®y.B'/I(B'®y.B")

« { s

0—> (A% & —> B —> B'®gB'/I'

where the first row is obtained from (2.3) by tensoring with R’ and making the
canonical identification

(B®,B)®,R'=B'®,.B,

and the second row is (2.3)". (The verification of commutativity is left to the
reader.) The first row is exact because (2.3) is exact and R’ is flat over R; the
second row (2.3)" is also exact. Equality in (2.1) means that the map B is
bijective, whence « is bijective. Q.E.D.

We shall show that the following condition on the R-algebra R’ guarantees
equality in (2.1), and then give examples of algebras for which the condition
holds.

(Ngg): If C is any R-algebra, and D is a C-algebra in which C is
integrally closed,t then also C®gR’ is integrally closed in D®z R’

If (Ng /) holds, and T is any R-algebra, then clearly (Ny r) holds, where
T’ is the T-algebra T®RR’. In particular, if B is an R-algebra, and B’
=B ® R/, then, since

B'®,B =(B®,B)®4R,

we see that (N} ) holds for the pair

T=B®yB, T =B'@B

Hence the fact that (Mg 5.) implies equality in (2.1) is contained in the following
lemma:

LemMa (2.4). Let T he aringand let T be a T-algebra such that (Ng, 1)
holds. If 1 is an ideal in T, with integral closure I in T, then IT’ is the integral
closure in T’ of the ideal I'=1IT".

{1f h: C— D is the structural map, then “C is integrally closed in D means “h(C) is integrally
closed in D."




Proof. Let X be an indeterminate, and let
C,=T[IX]CcD=T[X].

The integral closure of C; in D is a graded ring C=T®IX & - - (cf. beginning
of Section 1, and [AC, Ch. 5, p. 30, Prop. 20]). We have a natural surjective
map of graded rings

C,®, T —>T'[I'X]

and hence the integral closure of T'[I'X] in T'[X] is the same as that of

C;®,T". Because of (N 1), we see that this integral closure is the canonical

image in T'[X] of C®,T’, viz. T'@IT'X®D - - - ; the conclusion follows.
Q.ED.

We say that an R-algebra R’ is a quasi-normal R-algebra if R’ is flat over
R and (N ) holds. So the hypotheses of Proposition (2.2) are satisfied
whenever R’ is a quasi-normal R-algebra.

Examples of quasi-normal R-algebras:

(i} R’=R,, where M is a multiplicatively closed subset of R {AC, Ch. 5,
p. 22, Prop. 186].

(i) R'=R[X,X,...,X], with independent indeterminates X,,...,X,.
[AC, Ch. 5, p. 19, Prop. 13]

(iif) I R’ is étale over R (i.e. finitely presented, flat, and unramified) then
R’ is a quasi-normal R-algebra [ECA 1V, (18.12.15)].

We say that a ring § is locally normal if for every prime ideal p in S the
local ring S, is an integrally closed domain. If § is noetherian, then 8 is locally
normal if and only if S is a finite direct product of integrally closed domains (cf.
[EGA 01, p. 145, Section (6.5.1)],

We say that an S-algebra S’ is normal over S, if §' is flat over S and for any
prime ideal p in S and any finite purely inseparable field extension K of the
field of fractions of S/p, the ring $’® ;K is locally normal.

(iv) If R and R’ are noetherian, and R’ is normal over R, then R’ is a
quasi-normal R-algebra [EGA IV, (6.14.5)].

(v) Let R be an excellent ring [EGA 1V, (7.8.2)}, let I be an ideal of R,
and let R be the L-adic completion of R. Then R is normal over R {[EGA 1V,
(7.4.6)].

(vi) If k is a field of characteristic zero and K is any field extension of k,
then the power series ring K [[X},X,,...,X,]] is normal over k[[X,,X,,...,X,]].




(This follows from [EGA IV, (18.11.10)). More general examples, involving
formally smooth algebras, are indicated in [EGA IV, (7.5.4) (i) and the sentence
preceding it].) |

(vi) If R’ is a quasi-normal R-algebra and R” is a quasi-normal R’
algebra, then R” is a quasi-normal R-algebra.

(viii) If R’ is a quasi-normal R-algebra and T is any R-algebra, then
T'=TQ®gR’ is a quasi-normal T-algebra.

(ix) A (filtered) inductive limit of quasi-normal R-algebras is a quasi-
normal R-algebra.

Consider once again a sequence R—A— B. In case B is the integral closure
of A in its total ring of fractions, we may set

AR=Ag R
and refer to it as the R-saturation of A (omitting any explicit reference to B).

Proposition (2.5). Let R be a noetherian ring and let A be a reduced
R-algebra such that every prime ideal in A consisting entirely of zero-divisors is
a minimal prime ideal. (In other words, the total ring of fractions F of A has
Krull dimension zero.) Let R’ be a noetherian R-algebra, normal over R, and
set A’=AQgzR’. Then

(A5 = (AD) @R,

Proof. Let B be the integral closure of A in F. Since R’ is normal over R
we can apply Proposition (2.2) to conclude that

(A5.m=(AX)®RR"  (B'=B®yR’).

Thus it will suffice to show that B’ is the integral closure of A’ in the total ring
of fractions F’ of A".
Since R’ is flat over R, it follows that

A'CB'CF@®zR'=FQ®,A'CF.

(The last inclusion results from the fact that every regular element in A remains
regular in A’). B is integral over A’, and since R’ is quasi-normal over R, B’ is
integrally closed in F®,R’; hence we need only show that F® R’ is integr-
ally closed in its total ring of fractions F'.

For each prime ideal g in F, F, is a reduced local ring of Krull dimension
Zero, i.e. Fq is a field; thus F is a locally normal ring, and hence F & g R’ is also
locally normal [EGA 1V, (6.14.1)]. So our conclusion follows from the simple




fact that every locally normal ring S is integrally closed in its total ring of
fractions T.

(Proof. Let x€ T be integral over §, and let I={s€§|sx€S5}. If ¢ is any
prime ideal in §, then T, =T ®S, is canonically contained in the total ring of
fractions of §, and since S_ is an integrally closed domain, the canonical image
of x in Tq lies in Sq. It follows easily that ISq = Sq, i.e. I Zq, and since this holds
for every g, therefore I is the unit ideal in §, i.e. x€8S.)

CoroLLARY (2.6). (Permutability of saturation and completion). Let
R, I, R be as in example (v) above, and let A be a reduced R-algebra which is a
finite R-module. Then

(A)i=(43)".

Here “"" denotes “I-adic completion,” and otherwise notation is as in the
remarks immediately preceding Proposition (2.5). (2.6) is obtained from (2.5) by
setting R’ = R; for R is normal over R, and furthermore, R is pseudogeometric
[EGA 1V, (7.8.3) (vi)] so that the integral closure B of A in the total ring of
fractions of A is a finite R-module, as is A} CB; hence [AC, Ch. 3, p. 68,
Theorem 3]

A=A® R, (A% =Az®,R.

3. Compatibility of Saturation with Etale Localization. Let T be a ring,
A T-algebra T is said to be éfale if T’ is finitely presented, flat, and unramified
over T (cf. definition preceding Proposition (1.3)). As mentioned before (ex-
ample (iii), Section 2) an étale T-algebra is quasi-normal over T.

Prorosition (3.1). Let R—A—B be as usual, let A’ be a (filtered)
inductive limit of étale A-algebras, and let B'=B® ,A’. Then the canonical
map

(A;.R) ®AA"")(A’)§',R (3.2)
is bijective.

Remarks. (i). In the special case when A’=A® R’ where R’ is an étale
R-algebra, Proposition (1.3) gives

(803, = (A%~

Thus, in this case, Proposition (3.1) follows from Proposition (2.2).



(i) Let M be a multiplicatively closed subset of A. Then the ring of
fractions Ay, is, in an obvious way, the inductive limit of the étale A-algebras
A[1/f}{f €M), and so (3.1) gives the compatibility of saturation with rings of
fractions:

(AfR)u= (AM)};M,R-

Further, if N is a multiplicatively closed subset of R consisting of elements
whose image in Ay is invertible, then R—A, factors canonically as
R—Ry— Ay, and from (1.3) we get

(AM)EM,R = (AM)E,,BN-

It follows directly that the notion of saturation globalizes: if f:X—>Y is a
morphism of schemes, & =0y, and % is a quasi-coherent @ -algebra, then
there is a (unique) quasi-coherent @-algebra @ *C 9 such that, for each x € X,

@x* = ( @x)’%,,efm *

(It is illuminating, for example, to think about the compatibility of satura-
tion and products (Section 1, (5)) from such a scheme-theoretic point of view.)
Similar remarks apply to algebraic spaces.

Proof of Proposition (3.1). (). In the first place, if A'= lim A, (A, étale

over A) then the canonical map (3.2) is easily seen (in view of (:i) of Section 1)
to be the inductive limit of the canonical maps

(Ag,ﬂ) ®AAa_>(Aa)§a.H (Ba =B ®AAG)'

We may therefore assume that A’ is actually étale over A.
(II). Let I (resp. J), be the kernel of the canonical map

B®,B—>B® B
(resp.) B'® B'—>B'®,.B’
and let I, J be the respective integral closures of 1, J.
Define the maps 7,,7,: B—(B®,B)/I by
11(b)=b®1 (mod.I)  7,(b)=1®b (mod.I).

Note that (B®yB)/1, as a homomorphic image of B®,B, has a natural
A-module structure, and so 1, 7, can be regarded as A-module




homomorphisms. We have similar A’-module homomorphisms 1}, 75:B’
—(B'®z.B")/J, and (cf. Section 1, (3)) a natural commutative diagram whose
rows are exact (since A’ is flat over A):

(11 Ta) @ LA

0—> Afz®,A" > BG,A —> ((B®gB)/I)®, 4’
J I - Uy
-T2
0—> (A% x — B’ —> (B'®,B')/J

We have, moreover, the natural identifications
((B®xB)/I)®,A'=((B®,B)/1))

((B®zB)/1)®, A =((cb®@dcack)/1,)®,A"  (I,=1/I)
=(B’'®,B')/I'B(B'®,a’)
and
(B'®xB)/i=(B'®, B/, (Lh=]/])
and after these identifications are made, y is given by
v[x®y (mod.I,(B'®,.B)}]=x2®y (mod.J;)  (x,yEB’).

Thus it will suffice to show that J,=I,(B’® ,.B’), or in other words, that

J=I(B'® B +]. (3.3)
(III). Let I’ be the kernel of the canonical map
B'®zB'—>B’'®,B".

I’ is generated by all the elements h(a)®1—1®h(a) (a€A, h:A—>B’ the
natural map), so that

I'=I(B'®4B).

Since A’ is étale over A, and since
B'®.B'=A'"®,(B®B)® A’

therefore B’®zB’ is étale, and hence quasi-normal, over B®gB. So, by




Lemma (2.4),

I[(B'®yxB’)=I"  (the integral closure of I). (3.4)

So (3.3) becomes

J=I'+]. (3.5)

(IV). As in the proof of (1.3), we see that the kernel of B'®,B’
~—>B’® ,.B’ is generated by an idempotent element; hence

I=(V'e} (e*=e(mod.I"))
and so

(1-eJcr. (3.6)

To prove (3. 5)—and hence Proposmon £3.1)—let z€E€J, so that z satisfies an
equation ¢

2+ 1z gz i L+, =0 (rE).

Multiplying by (1— )", and using (3.6), we deduce that

(1~e)zel’
ie.

z—ez€el,

and since ¢z € J, therefore z€1"+J. Thus JCI'+]. The opposite inclusion is
obvious, and so the proof is complete.

4. Comparison with Zariski’s Saturation. The comparison between the
relative saturation concepts of Pham-Teissier and of Zariski is based on Lemma
(L.1). To apply that lemma, we need some preliminary remarks concerning
geometrically unibranch domains and “universal going-down” homomorphisms.

An integral domain R is geometrically unibranch if its integral closure R (in
its field of fractions) is a radicial R-algebra. In particular, if R=R, i.e. R is
- integrally closed, then R is geometrically unibranch.

Let R be a geometrically unibranch domain, and let f: R—S be a ring
homomorphism making S integral over R and torsion-free as an R-module.
Then “going-down” holds for f if q is any prime ideal in S, and p’ Cf " ¥(g) is a
prime ideal in R, then p’=f"1(g’) for some prime ideal g'Cq. (This can be



deduced easily from the usual going-down theorem of Cohen-Seidenberg [AC,
Ch. 5, p. 36, Theorem 3], applied to f: R—f(R)[S]C L, where L is the total
ring of fractions of S, and f is the canonical extension of f.) Any polynomial ring
R[X] (X, an indeterminate) is also geometrically unibranch (its integral closure
being R [X] (cf. [AC, Ch. 5, p. 19, Cor. 1]), which is then radicial over R [X] (cf.
[EGA 01, p. 249, Cor. (3.7.6)(iii)])); and S[X] is an integral R [X]-algebra,
torsion-free over R [X]. Similar conditions hold for the pair R {(X,)], S[(X,)] for
any family (X,) of independent indeterminates. {Reduce to the case where the
family is finite, then use induction.) Thus, the class of R-algebras T such that
going-down holds for the canonical map fy.: T—S @ ¢ T contains any polynomial
ring over R. Since this class evidently contains with any T all its homomorphic
images, it must contain all R-algebras.t

In particular, going down holds for f;:S—>S®gS, and hence also for
fs°fi R—=S®,S. Consequently—and this is the only fact which we will need
below—if f:R—S is as above, then every minimal prime ideal in S®gS
contracts to {0) in R.

Now consider an integral domain R and an R-algebra B, B being integral
over R and torsion-free over R (so that R may be identified with a subring of
B). Let © be an algebraic closure of the field of fractions K of R. Say that n€ B
R-dominates { € B if, for any two R-homomorphisms i;, ,: B—, the quotient

)~ u(n)
‘P1(§ ) - ‘Pz(f )
is integral over R, (1f §,({)=o({) this is taken to mean that y;(n) = Yy(n).)
Lemma (4.1). In the preceding situation assume furthermore that R is

geometrically unibranch. Then 1€ B R-dominates { €B if and only if, in
BQ®:B, n®1—1Qn is integral over the ideal generated by { @1 —1®¢.

Proof. If n®1—1Q®n is integral over ({ @1 —1®{}B®,B) then there
exists a homogeneous polynomial of degree, say, n,

H(X,Y)E(B®,B)[X,Y]

such that H(X,0)=X", and H(n®1-1®7, {®1-1®{)=0. For ¢;, y, as
above, we obtain a map

Y, ®iy: B® B,
t(Added in proof). A stronger result, viz. that Spec(S}—+Spec(R) is universally open, can be

deduced from [EGA 1V, (14.4.4)], or, more simply, cf. H. Seydi, C. R. Acad. Sc. Paris, Série A, 271
(1970}, pp. 1107-1108.



and hence a relation

H (4y(n) = do(n)vr(§) = ¥(§)) =0,
where H(X,Y)= (¢, ®y,)H (X, Y) is a form of degree n with coefficients which

are integral over R, and H(X,0)= X". It follows easily that 7 dominates {.
Suppose conversely that n dominates {. Let S=R[9,{]CB, and let p be
any minimal prime ideal in S ® ; S. By the preceding remarks, p contracts to (0)
in R, Thus p is the'kernel of an R-homomorphism of S@yS into &, and (cf.
proof of (7a), Section 1) such a homomorphism is necessarily of the form
¥, @5, ¢y, Y, being R-homomorphisms of B into € (more precisely, the
restrictions to S of such R-homomorphisms). Since n dominates ¢, there exists a

homogeneous polynomial G(X,Y)& R [X,Y], of degree, say, m, such that

G(X,0)=x"
and

‘ G(‘PL("])"‘[&("’-’): ‘[’1(5)_%”2({)):0

G(n®1—-1®1,{®1-1®¢)Ep.

Thus, in S®,5, n®1~1®7 is integral over ({®1—1Q¢)(S®;S) modulo
each minimal prime p; and there are only finitely many such p since S ®.S is
finite over the integral domain R. So by Lemma (1.1) (with J,,J,...,J, the
various minimal primes in S®;S), n®1-1®7 is integral over ({ ®1-1Q¢)
(S®,S). Applying the canonical map S®;5—B ®,B, we obtain the desired
conclusion. Q.E.D.

Let R C B be as above and let A be a ring with R CA CB. Say that A is
R-saturated in B—in Zariski's sense—if every element of B which B-
dominates an element of A is itself in A, The R-saturation of A in B, Agy in
symbol, is the intersection of all such R-saturated rings between A and B; i.e.
Ap’y is the smallest such R-saturated ring.

CoroLLarY (4.2). Under the preceding circumstances (viz. R CACB, R

a geometrically unibranch domain, B integral over R, no nonzero element of R

a zero-divisor in B) we have that A} 5 is (Zariski-) R-saturated in B, so that
Apr CAE k-

If there exists in A an element y such that Agp=Rlylzr (ie. y is an
“R-saturator of A in B”), then

~ o AR
B,R_AB,R‘




Proof. The first assertion follows easily from Lemma (4.1). As for the
second, Lemma (4.1) shows that every element of R[y]* dominates y, so
R[y]*CR[y]™; hence

—

A~cArg(A™)=(R[y] J*C(R[y]*)*
=R{y]*CR[y] =A~. QED.

Remarks. (i) An example where A™# A* is described in the introduc-
tion to [GTS HI]. '

(i) If in (4.2) R is a one-dimensional noetherian local domain with infinite
residue field, and A is a finite R-module, then there does exist an R-saturator of
A in B (cf. [GTS 11, p. 878, Prop. 1.3] and also [4, p. 681, Lemma 5.2]). In this
case, therefore, A~ =A*.

(iii) 'With the hypotheses of Corollary (4.2), we see now, from Proposition
(1.4), that Ag R is a radicial A-algebra. (This is Theorem 4.1 of [8, p. 997]).

(iv) In the special situation where equality holds in Corollary (4.2), we
can deduce a number of results of {GTS III] from those in this paper. Most
notable is the compatibility of saturation and completion (Corollary (2.6) and
also example (5.2) below; [GTS III, Theorem 2.7]). Some other—more ele-
mentary—pairs of related results are listed below.

[This paper] [GTS 111]
Section 1, (3) Lemma A.8.(1)
Prop. (1.3) Lemma A.8.(2)
Section 1, (5) Prop. 1.9
Section 1, (6} Prop. 2.5
Remark (ii) following Prop. (3.1) Prop. 1.2

or Section 2, Prop. (2.2) and Example (i).

(v) Theorem 4.1 of [GTS IlI}—which asserts, with suitable hypotheses,
the preservation of multiplicity under saturation—has no analogue in this
paper. But the proof (loc. cit) applies almost verbatim to the case where relative
Zariski-saturation is replaced by relative Lipschitz-saturation. (Since A~ C A¥,
the resulting statement is actually stronger.)

(vi) 'Which definition of relative saturation is to be preferred? The deeper

results of Zariski’s theory, as it now stands, refer either to the one-dimensional
or to the hypersurface case, situations in which the two definitions agree. As far




as I know, for. every established theorem involving Zariski-saturation there is a
corresponding theorem involving Lipschitz-saturation, So the Pham-Teissier
definition enjoys, at present, a certain advantage, at least of generality (not to
mention its nice analytic interpretation [6]). But only future developments will
show which definition—if either—leads to more significant results in the
non-hypersurface case. (Added in proof: cf. [10].)

5. Saturation and Base Change in the Hypersurface Case. This rather
technical section is an appendix to Section 2. We show that under certain
circumstances, Proposition (2.5) holds with weaker hypotheses on the R-algebra
R’. The basic idea, due to Zariski, is to use techniques similar to those of [GTS
II1, Section 1] to reduce the question to the case where R and R’ are discrete
valuation rings.

Let T be a ring and let T” be a T-algebra. We shall say that a prime ideal g
of T is geometrically unramified in T' if, for every prime ideal p of T which is
minimal among those containing T, we have that g7, is the maximal ideal of
T, and that T,/ qT, is a separable field extension of T,/497,.

ProrosiTioN (5.1). Let R be an integrally closed noetherian domain, and
let A be an R-algebra of the form

A=R[x]=R[X]/f(X)

where X is an indeterminate and f(X)ER[X] is a monic polynomial with
non-vanishing discriminant. Let R’ be an R-algebra such that (i) R’ is an
integrally closed noetherian domain, (ii) R’ is flat over R, and (iii) every prime
ideal of height <1 in R is geometrically unramified in R'. Then, setting
A'=AQpR’, we have

(A)=(A})®R".

(Here Af is the R-saturation of A (cf. remarks immediately preceding
Proposition (2.5)); by Corollary (4.2) A% is also the Zariski-R-saturation of A in
its integral closure.)

Ezample (5.2). Let R be an analytically normal, pseudogeometric
noetherian local ring (cf. [5]). Then conditions (i), (ii), and (iii) of (5.1) are
satisfied by R’=R, the usual completion of R. (For (iii) cf. [EGA 1V, (7.6.4))).
So, with A as in (5.1), we have (cf. Corollary (2.6)):

(A)i=(A%)".



Proof of (5.1). (I) We begin with some preliminary remarks on reflexive
R-modules. Let M be an R-module, let M be the R-module Homg (M,R), and
let M~ be the R-module Homgz(M',R). M is reflexive if the canonical map
c:M-—>M" is bijective, where ¢ is given by

[em)(f)=f(m) (meMfeM)

Any torsion element of M is clearly in the kernel of ¢, so if M is reflexive, then

M is torsion-free.
Let K be the field of fractions of R, and let P be the set of height one
prime ideals in R. If N is a finitely generated torsion-free R-module, then for

each p € P, we have
NCN,CN®gK  (N,=N®zR)),

and N is reflexive if and only if
N= O N,.
pEP

[AC, Ch. 7, p. 50, Theorem 2].

Finally, if M is a finitely-generated reflexive R-module, and R’ is any flat
R-algebra, then M @ R’ is a reflexive R’-module. [AC, Ch. 7, p. 53, Prop. 8].

(I} Now let A be as in (5.1), let F be the total ring of fractions of A, let B
be the integral closure of A in F, and let B’=B® 3 R’. We first observe that B
is a finitely generated reflexive R-module (whence B' is a finitely generated
reflexive R'-module). Indeed it is immediate that

F=A®gK=K[X]/f(X)

(K =fraction field of R), and since f has nonzero discriminant, F is a finite
product of separable field extensions of K; hence B is a finitely generated
torsion free R-module. Arguing as in Lemma 1.7 of [GTS I, we find that
B=nNB, (pEP), ie. Bis reflexive.

Let P’ be the set of height one prime ideals in R’. We shall show below

that:
(5.3) B, is locally normal for each prime ideal pE P".

It will then follow that:

(5.4) B’ is the integral closure of A’ in its total

ring of fractions F'.




For, if K’ is the field of fractions of R’, then we find easily that
F'=A'®pK'=A® K'=F®K'=B®,K'=B'®,K".

Furthermore, we have just seen that B’ is a finitely generated reflexive
R’-module, so that, in F’, B'= N B, (p € P'). If we know that each B, is locally
normal, then each B, is integrally closed in its total ring of fractions F’ (cf. end
of proof of Proposition (2.5)), and consequently B’ is integrally closed in F’,
whence the assertion.

(III) Next, using the functoriality of saturation Section 1, (3) and the
flatness of R’ over R, we get
(A2 R)®aR'C(A)n CB
For convenience, put

M=(A%R)®zR = AF®xR’
N=(A)zr =A%  (by(54))

Proposition (5.1) asserts then that M=N. Since B’ is torsion-free and finitely
generated over R’, so also are M and N, and for each p€ P’, we have

M,CN,CF".

So to prove (3.1) it will suffice to show—in addition to (5.3)—that

(5.5) A} is a finitely generated reflexive R-module

(whence M is a finitely generated reflexive R'-module, ie. M=NM, (pEF’)),
and that

(58)  foreach pEP', M, =N,

(whence NC N ,epN,= N ,cpM,=M). :

(IV) (5.5) is contained 'in Theorem 1.8 of [GTS III]; for, as remarked
before, A¥ is identical with the Zariski-R-saturation of A. [Actually what we
need here is that part of the proof of the cited Theorem 1.8 which follows (17)
(loc. cit), where it should be noted that the left-hand side of (17) is contained in
B because, as above, B=nN B, (pEP)].

(V) It remains to prove (5.3) and (5.6). Let pEP’, and let g be the
contraction of p in R. Then, setting A*=A} ;, A*=A*Q R, we have

M,=(A*®,R")® R =(A*® R, )®s R, =A*®, R;.



Since saturation commutes with localization {cf. Section 2 or Section 3) we have
Ar=(A)%
Similarly,
N,=(A")}, 0 ®pBy=(A))% 1
where
A,=A'®p.Ri=AQgR] =Aq®n,,R;;

B;=B'®,R/=B®,R =B &R,

If g =(0), we have Aq = Bq = F, whence
Mp = Np = Bz;'

If g#(0), then g has height one, (since Spec (R;)—Spec(R,) is surjective, R,
being faithfully flat over R,). Since p has height one, p is a minimal prime
divisor of g. By assumption, g is geometrically unramified in B’, and so is the
prime ideal (0) of R. Hence, if k is the residue field of R, we have

—k®y R, is a separable field extension of k
—K® g R, is a separable field extension of K.

It follows that R, is normal over R, (Section 2, example (iv)). Hence by results
of Section 2,

(Aq);;,ﬂq ®RQR;; = (A;)?;;,B,;
ie.

Mp =N,
This proves (5.6).
To prove (5.3), suppose first that g+ (0). Then, as above, R; is a normal

R -algebra, and since B, is locally normal, therefore so is B) [EGA 1V, (6.14.1)].
If g=(0), then

B;=B,®, R/=FQR,

But F is a normal K-algebra (since F is a finite product of separable field
extensions of K), and R is a discrete valuation ring, so again by [EGA IV,
(6.14.1)] B, is locally normal.

This completes the proof.
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1. The diagranﬁ in the middle of page 794 should be:

. B
'Y N

(B/e(AN®R  —  B/g(4)

2. On page 804, starting on line 6, read:

We have, moreover, the natural identifications

((B®rB)/I)®,A'=((B®,B)/1,)®,A" (L=I/I)
=(B'®,B")/1,(B'®,.B)

and

(B'®xB)/]=(B'®,B)/)y  (h=I/])
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