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In proposing a construction for the local Picard scheme of a complete local ring
of mixed characteristic (with perfect residue field), Grothendieck has raised the following
problem (2):

Let R be a local Artin ring with perfect residue field k of characteristic p >0, and let
f: X --? Spec(R) be a proper map. Give a natural construction of a group-scheme P locally of
finite type over k, together with an embedding

Pic(X) '-+ P(k)

which is bijective if k is algebraically closed.

(1) Supported by National Science Foundation grant GP-2g2I6 at Purdue University.
(2) Quoted from a letter to the author dated September Ig69.
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16 J08EPH LIPMAN

Under certain conditions the local PicaI'd scheme should be obtained by factoring
out a discrete group from an inverse limit of such P's (cf. [SGA 2, pp. 189-191]) (1).

If the usual PicaI'd functor PicX/R of X over R is an R-scheme, then we can take P
to be Greenberg's realization of PicX/R over k (cf. [Gr, § 4]). In the application to
local Picard schemes, however, the maps of the above type 1: X -+ Spec(R) which
appear are very far from being flat, so we cannot expect PicX/R to be a scheme.
Grothendieck's idea is that, even so, the 1ppf sheaf associated to the realization of PicX/R

might still be a k-scheme. This turns out to be correct, and therein lies the theme of
this paper.

Example. - Let T be a three-dimensional regular local ring with regular parameters u, v, w, and algebraically
closed residue field k; let 8 = T / (u3+v3+w3); let Z be the desingularization of 8 obtained by blowing up the
maximal ideal m of 8; let R = 81m2 and let X = Z ®s R. Then Y= Xred is the projective plane cubic curve
over k defined by the equation 1J3+V3+W3 = 0, and it can be shown that thefppf sheaf associated to the realization P'
of PICX/R is PicY/k. For any k-algebra A, we find that P'(A) = PicY/k(R(A)/9JlR(A)), R being the Greenberg

algebra associated to R (cf. Appendix A). P' is an etale sheaf, but P' is not equal to its associatedfppf sheaf PiCY/k

(there is a natural surjective map R(A)/9JlR(A)--+A whose kernel is nilpotent, but not, in general, zero). Thus
P' is not a k-scheme, and consequently PiCX/R is not an R-scheme (2).

A detailed discussion of the main results is given in § 1. (At first sight it will
seem that the functor P which we study is not the one just described; this apparent
anomaly is set straight in Remark (I .8).) Our basic results and methods are motivated
by the classical theory of the PicaI'd functor of a scheme over a field. (In fact, in the
special case when P(!)x === (0), so that X is actually a k-scheme, our functor P becomes
identical with PicX/k .) However there are new difficulties to be dealt with. For
example, as in the classical case, a number of questions about P are treated by
" linearizing " them; but whereas in the former case the linearized questions are trivial,
this is hardly so in the present situation. Indeed, the solutions of the linear problems,
as exemplified by Theorems (2.4) and (8. I), constitute the main methodological
novelty (3).

A weaker version ofI)arts I and 11 was distributed as a preprint in late summer, 1971.
Part I in its present form. was worked out during a visit to Harvard University in the
fall semester of 1971, and the results were presented there at a semInar held in

january, 1972 •

It remains to thank Professor Grothendieck for the generous communication, In
the above-mentioned correspondence, of his ideas on the local Picard scheme, and for
his subsequent encouragelnent.

(l) Boutot [Bt] gives a different type of construction (equicharacteristic case).
(2) To prove the assertions in this example, I need Corollary (0.2), Proposition (A.I), Corollary (C.6),

and considerations of the type found in the first half of § 2.

(3) Our results are further developed in [L], where they are used in proving (for example) that for a
complete local ring A with algebraically closed residue field, if A is factorial then so is the formal power series ring A[[T]].
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THE PICARD GROUP OF A SCHEl\lE OVER AN ARTIN RING

o. Preliminaries (sheaves; Witt vectors).

17

All rings are understood to be commutative, with identity; "subring" means
"subring containing the identity"; all homomorphisms of rings preserve identity
elements.

Let k be a perfect field of characteristic p::>o. There is a fully faithful embedding
of the category of k-schemes into the category of covariant (set-)functors of k-algebras:
to the scheme Z is associated the functor

hz(A) = Homk(Spec(A) , Z).

We may therefore think of certain functols (viz. those which are, up to isomorphism,
of the form hz) and their morphisms as schemes and morphisms of schemes. For example
we shall say that a functor F is an algebraic (resp. locally algebraic) k-scheme if F ~ hz , where
Z is a scheme of finite type (resp. locally of finite type) over k. If, in addition, F is a
functor into the category of groups (equivalently: Z is a group-scheme) then we say
that F is an algebraic (resp. locally algebraic) k-group.

We shall use freely the language of topologies and sheaves on the category ofk-algebras,
as presented in [DG, chap. Ill, § I]. Here we review briefly a few pertinent points.
For a k-algebra A, a finite family (Bi)i E I of A-algebras is said to cover A for the fpqc
(resp. fppf; resp. etale; resp. Zariski) topology if the Bi are flat over A (resp. flat and
finitely presented; resp. etale; resp. rings of fractions of the form Af=A[IJf], fEA)
and if furthermore the union of the images of the Spec (Bi ) in Spec (A) is all of Spec (A) .
A covariant set-valued (or group-valued, or ring-valued) functor F of k-algebras is said
to be a sheaf (for a fixed one of the above topologies) if the following condition holds:

For any k-algebra A and any covering family (Bi ) i E I the canonical diagram

F(A) -+ IJF(Bi ) :t QF(B/8)ABj)
", '£,J

is exact.
For a fixed topology, there is associated to any functor F-into the category of

sets, or of groups, or of rings-a sheaf F'" -into the same category-and amorphism
of functors F f-) F'" such that any morphism of functors F -+ G with G a sheaf factors
uniquely through F f-) F"'. F'" is obtained from F by " pasting together elements which
agree locally". More precisely, for a k-algebra .A we say that ~1' ~2EF(A) agree locally
if there exists a family (Bi)i EI covering A such that the canonical images of ~1 and ~2

in F (Bi ) are the same for each i EI; this defines a functorial equivalence relation R (A)
on F(A), whence a quotient functor Fo===FJR, and F'" (A) is the direct limit of the
kernels of the diagrams

IJFo(Bi ) ~ QFo{Bi®ABj)
, 'd

as (Bi)iEI runs through "all" covering families of A. Fo(A) can be identified
(functorially) with the image of the canonical map F(A) -+ F'" (A).

17
3



18 JOSEPH LIPMAN

The abelian functors (i.e. functors into the category of abelian groups) and their
morphisms form an abelian category, and the abelian sheaves are the objects of a full
abelian subcategory [DG, p. 33 I, (3.5)]. The functor F f--t F'" from the category of
abelian functors to the category of abelian sheave~ is exact; its right adjoint, the inclusion
functor of the category of sheaves into that of presheaves, is left exact [ibid., (3.6)].

The following observation will be very useful:

Lemma (0.1). - Let B be a k-algebra. Then there exists afiltered inductive system (B(L)(LE J

of B-algebras such th~t each B(L is a free finitely generated B-module, and such that if

B=limB(L
~(L

then BP = B (i.e. the Frobenius endomorphism Xf--tXP of B is surjective).
(Note that 13 is a flat B-algebra, and that Spec(B) ~ Spec(B) is surjective, since

13 is integral over B; so 13 is faithfully flat over B.)

Proof. - If the system (B(L) (L EJ has the required. properties, relative to B, and
ifB' is a homomorphic image ofB, then clearly the system (B(L®BB')(LE J has the required
properties relative to B'. Thus it suffices to treat the case B =k[(Xy)], where (XY)YEG
is a family (not necessarily finite) of independent indeterminates. In this case, let Q
be an algebraic closure of the field of fractions of B, and for each pair rx = (L, n), where
L is a finite subset of G and n is a positive integer, set

B(L=B[(X~-n)YEL]£Q.

The B(L form, in an obvious way, an inductive system (in which the maps are just inclusion
maps), and one checks that this is as desired. Q.E.D.

Corollary (o. 2). -- Let F~G be a morphism of functors of k-algebras, such that
F(B) ~G(B) is bijective whenever B is a k-algebra with BP= B. Then the associated morphism
of fpqc sheaves F'" ~G'" is an isomorphism. The same is true for the associated morphism
offppf sheaves, provided that F and G commute with filtered direct limits.

Proof. - Using Lernma (0. I) (and the" note" following it) we see that associated
fpqc sheaves can be constructed (as before) entirely out of covering families (Bi)i E I in
which, for all i, Br = Bi (for if Bf =f= Bi , then by Lemma (0. I) we can replace Bi by
a faithfully flat Bi-algebra Bi with Bl = Bi ); the assertion of (0. 2) for fpqc sheaves results.

From the method of construction of associated fppf sheaves, the second assertion
is a straightforward consequence of the following two facts:

(i) For any k-algebra B, if ~1' ~2EF(B) have the same image in G(B), then there
exists aB-algebra B' such that B' is a free finitely generated B-module-and hence a
flat finitely presented B-algebra [EGA 0 I, p. I 36, Cor. (6. 3 . 7)]-and such that ~1

and ~2 have the same image in F(B').

18



THE PICARD OF GROUP A SCHEME OVER .AN ARTIN RING

(Proof: Let B be as in Lemma (0. I); then F(B)~G(B) is bijective, so ~l' ~2 have
the same image in F(B); but F commutes with direct limits...)

(ii) For any k-algebra B, if 1)EG(B), then there exists B' as in (i), and ~EF(B')

whose image in G(B') is the same as that of 1). (Proof: similar to that of (i).)

** *
We shall make frequent use of the Witt vectors; all the facts we need concerning

them are immediate consequences of those few which we now review. (For details
cf. (for example) [8, pp. 45-53].)

Let k be, again, a perfect field of characteristic p>o. The k-ring-scheme W of
Witt vectors has as its underlying scheme Spec:(k[Xo, Xl' X 2 , ••• ]) (where (~)i.2.0 is
a family of independent indeterminates). Addition and multiplication are defined by
certain polynomials

(i>o)

so that for any k-algebra A, addition in

W(A) ={(ao, al , a2, ... ) IaiEA, i >o}

is given by

(ao, ai' a2, ... )+ (a~, a~, a~, ... )

= (So(ao, a~), Sl(aO, al , a~, a~), S2(aO, al , a2, a~, a~, a~), ... )

and similarly for multiplication, with Pi in place of Si. As for explicit formulae, we
will need only the following three:

(i) So(Yo, Zo) = Yo+Zo
(ii) P(ao, ai' a2 , • • .) = (0, aC , af , ar, . . .)
(iii) (a, 0, 0, 0, ... ) (ao, ai' a2, ... ) = (aao" aP al , apt a2, ... )

The ring W(k) is a complete discrete valuation ring whose maximal ideal is
generated by p and whose residue field is k. For any complete local ring R, with perfect
residue field K, and any homomorphism k~K, there is a unique homomorphism W(k) ~R
making the following diagram commute:

W(k) ~ R

1 1
k ~ K

If R is an Artin ring, with maximal ideal m, and if [K: k]< 00, then the preceding
map W(k) ~R makes R into a W(k)-module of finite length. (Consider the filtration
R2m2m2 2m3 2 ... )

19



20 JOSEPH LIPMAN

Let N be an integer>o. The k-ring-scheme WH of Witt vectors of length N is such
that for any k-algebra A

WH(A) =={(ao, al , • •• , aN - l ) IaiEA, 0 <i<N},

addition and multiplication being given by the above polynomials Si' Pi (0 < i < N).
As a scheme, then, Wl{ is the affine space Spec(k[Xo, Xl' . - -, XN - l]). Wt(A) is
canonically isomorphic to A (this follows from (i) and (iii) above). We have a " trunc
ation" homomorphism of ring schemes PN: W -+W H given by

PN(A) : W(A) -+ Wl{(A) is surjective for all k-algebras A, and from (ii) above we see that

ker(PN(A)) 2pNW(A),

with equality if AP == A.
Similarly, if M> N, we have a truncation map PNM: WM-+WN, and clearly

PN == PNM 0 PM·

I. Discussion of results.

In this section we describe, and comment on, the main results of the paper.
Let us say that a scheme X (with structure sheaf (!Jx) is complete if the following

two (equivalent) conditions hold:

a) HO(X, (!Jx) is an Artin ring, and the canonical map X-+ Spec(HO(X, (Ox))
is proper.

b) There exists an Artin ring R and a proper map X-+Spec(R).

In what follows we consider a triple (X, k, L) with

- X a complete scheme,
- k a perfect fielcl of characteristic p>o,
- L : k -+ HO(X, {OX)red a ring homomorphism via which HO(X, {OX)red is a finite

k-algebra.

(For any ring S, we set Sred == S/ (nilradical of S).)

X and k being as above, there is another way of looking at L which is actually the
point of view we will take throughout most of the paper. HO(X, (!Jx) is a product of
local Artin rings whose residue fields are finite over k, so L lifts uniquely to a homomorphism
from the Witt vectors W(k) to HO(X, (Ox), and by this lifting HO(X, (f}x) becomes a
finite W(k)-algebra (cf. §0). Composing the finite map Spec(HO(X, (Ox)) -+ Spec(W(k))
with the natural map X-+ Spec(HO(X, (Ox)), we get a map

f: X -+ Spec(W(k))

20



THE PICARD GROUP OF A SCHEME OVER ..I\N ARTIN RING 21

and clearly:

(i) f is proper;
(ii) f(X) is supported in the closed POillt of Spec (W(k)) ; i.e. there exists an

integer N>o such that pN{!}X=(O) (so that X is proper, viaJ, over the ring WN(k)
of Witt vectors of length N).

It is easily checked that in this way we obtain a one-one correspondence between triples (X, k, L)
as above and triples (Y, k, g) with Y a scheme and g : Y -+ Spec(W(k)) a proper map
such that g(Y) is supported in the closed point of Spec(W(k)).

For any scheme Z, Pic(Z) denotes, as usual, the group of isomorphism classes of
invertible (!}z-modules (1). Using inverse images of invertible sheaves, one makes Pic(Z)
into a contravariant functor of schemes, which can be identified via Cech cohomology
with the functor H1(Z, {!}iJ ({!}i=sheafofunits of{Oz) [EGA 01, pp. 124-126].

Our basic goal is, roughly speaking, to endow Pic (X) with some natural structure - depending
on L - of locally algebraic k-group.

One way of doing this is given by Theorem (I. 2) just below. There are other
reasonable, and seemingly different, approaches but they lead to the same result
(cf. remarks (1.7) and (1.8) at the end of this section).

For any k-algebra A, let

XA = XQ9W(k) W(A)

(X being a W(k)-scheme via the aboveJ, and W(A) being a W(k)-algebra in the obvious
way). XA - and hence Pic(XA ) -varies functorially with A.

Definition (I. I). - The (covariant) functor P=P(X, k, L) from k-algebras A to
abelian groups is the fpqc sheaf associated to the functor Pic(XA).

Theorem (1.2). - P is a locally algebraic k-group.

The proof of (I. 2) occupies §§ 2-4; briefly, it goes as follows. Let.Af be the
Nilradical of (!Jx, let X n (n>o) be the subscheme of X defined by the {Ox·Ideal.Afn
(so that X n = X for large n), and let P n be the fpqc sheaf associated to the functor
Pic(Xn,A) = Pic(XnQ9w(k) W(A)). We proceed by induction on n. To begin with,
P 1 turns out to be the usual Picard functor of the scheme Xl = X red over the field k;
so by a well-known theorem of Murre and Grothendieck, P 1 is a locally algebraic k-group.
Then, to pass from P n-1 to P n' we use the truncated exponential map x~ I +x to reduce
the problem to one of representing a functor defined in terms of cohomology of coherent
sheaves: more specifically, to proving Theorem (2.4) (for details cf. § 2). Section 3
is devoted entirely to Proposition (3. I), which allows us in § 4 to apply some simple
facts about Greenberg modules (Appendix A) to complete the proof.

(1) Pic(Z) is a set because, for example, every invertible ~z-Module is isomorphic to a subsheaf of the sheaf G
given by G(U) = IT (!Jz, z (U open in Z).

zEU

21



22 JOSEPH LIPMAN

The foregoing inductive process also yields some information about the relation
of P to Pt: for example, the canonical homomorphism P~P1 is quasi-compact, with
unipotent kernel and cokernel. (For this, and other related results, cf. (2. 5), (2. 7)
and (2. 1I) in § 2.)

** *
For Theorem (1.2) ·to be useful, we need more information about the relation

between Pic(XA) and P(A), for k-algebras A. More precisely, we want to know some
thing about the kernel and cokernel of the canonical map Pic(XA) --)0- P(A). In part 11
(§§ 6, 7) we obtain results in this direction under the assumption that AP== A (i.e. the Frobenius
endomorphism x~xP of A is surjective). In particular-and probably most signifi
cantly-these results apply when A is a perfect field.

The main result of this sort is Theorem (7· 5) :
If AP = A, then, with k1 = HO(X, lOX)red' there is a natural exact sequence

o--)o-Pic(k1<8)k A red) -+Pic(XA) --)o-P(A) --)o-Br(k1<8)kAred) --)o-Br(XA)

(Here" Br" denotes" cohomological Brauer group ".)
Theorem (7. 5) contains most of the results of § 6 as corollaries. These corollaries

have to be proved independently, however, because they are used, to a large extent,
in the proof of (7.5). Specifically, what is needed is Corollary (6.11): if pet is the
etale sheaf associated to the functor Pic (XA) , then the canonical map

pet(A) --)o-P(A)

is bijective whenever AP === A.
(We also mention here that the proof of (7.5) uses (via Corollary (C.6) of

Appendix C) the following remarkable property of Witt vectors (Lemma (C. 2) ): if
B is an etale A-algebra (A being a k-algehra) then Wm(B) is an etale Wm(A)-algehra (m> I).)

Here is another example (further indications about § 6 are given in the remarks
at the beginning of part 11):

If K is a normal algebraic field extension of k such that every connected component of Xred

has a K~rational point, and ~f A is a perfectfield containing K, then Pic(XA) --)o-P(A) is bijective.

(By (6.9), Xred (8) k K has Cl section over k1 (8) k K, so the assertion is a special case of (6. 7). To derive it
from (7 .5) we need to see that the map Br(k1 (8) k A) --)0- Br(XA) is injective; this map is defined in § 7 to be QC 0 ~-1,

where QC, (3 are as in the canonical commutative diagram

Br(k1 (8)k A)
y

but because of the above mentioned section, y is injective, whence so is QCo~-I.)

22



THE PICARD GROUP OF A SCHEME OVER AN ARTIN RING

** *
Part 111 (§§ 8, 9) deals with the Lie algebras of various k-groups. An upper bound

for the dimension of the k-group P is given by the dimension of its Lie algebra, Lie(P);
this latter dimension is shown in Theorem (9. I) to be

(1.3) A(HI(X, (Ox)) + ~ A(coker(vt))
t2::o

where" A" denotes the length of a W(k)-module, and '.It is the canonical map

'.It : H1(X, pt (Ox) ~ H1(X, pt (Ox!pt +1 (Ox).

What we actually show in § 9 is that Lie(P) has the same dimension as Lie(H), where
H is the linear version of P, i.e. the fpqc sheaf associated to the functor H 1(XA , (OXA)

of k-algebras A. (By Theorem (2.4) H is an affine algebraic k-group.) The above
given dimension (1.3) can then be read off from the complete description of Lie(H)
contained in Tlleorem (8. I). This dimension is > A(HI(X, (Ox)), with equality if and
only if the k-scheme H is reduced.

In the classical case, when X is a scheme over k (i.e. P(Ox =(0)), the well-known
and easily proved fact is that Lie(P) is naturally isomorphic to HI(X, (Ox). In contrast,
the proof of Theorem (9. I) is long and tedious, depending on many other results in
the paper; and I could not find a natural isomorphism between Lie (P) and Lie (H) .
Hopefully this state of affairs can be improved upon.

As one consequence of Theorems (8. I) and (9. I) we have (cf. Proposition (8. 5)) :
If W(X,pt(OX!pt+1(OX)=0 for all t>o (for example if dim X=I) then P is

smooth, of dimension A(HI(X, (Ox)).

** *
To further acquaintance with the functor P, we add here some remarks concerning

the dependence of P on (X, k, L).

(1.4) Let Xl, X2, ... , xm be the connected components of X. For each j=I,
2, ... , m, Xi is open and closed in X, so Xi is a complete scheme and X=Ili=1Xj.
Let

pi = P(X', k, rc' 0 L)

where rc' is the projection map
m

rci
: HO(X, (Ox) red =.Il HO(Xj, (OXi)red ~ HO(Xi

, (OXi)red.
J=1

There is then a natural map
n

P~ Il pi
i=1

which is easily seen to be an isomorphism.
So we may, at our convenience, assume that X is connected. In this case HO(X, (Ox) IS

a local Artin ring, and HO(X, (OX)red is a finite field extension of k (via L).

23
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(1-5) P=P(X, k" t) varies functorially with (X, k, r.), In the following way.

Let (X', k', t') be anot.her triple satisfying the same conditions as (X, k, t), and let

P'=P(X', k', t'). Suppose we are given (g, 6) such that g: X'~X is a morphism of

schemes and e: k~k' is a homomorphism of fields for which the following diagram

commutes:

L'

--------+) k'
6

gO being the map induced by g. (It amounts to the same thing to require that the

corresponding diagram

(#)

X ~(---g---- X'

t
Spec(W(k)) (

Spec(W(6))
Spec (W(k'))

commute.) Let X* == XQ9W(k) W(k'), and let

t* : k' ~ HO(X*, (OX*)red

correspond to the projection map f* : X* ~ Spec(W(k')). (Note thatf* is proper, and

that pN(OX=(O) implies pN(OX*==(O), whence HO(X*, (OX*)red is finite over k', via t* (1).)
Let P*==P(X*, k', t*). l~hen:

(i) P*= 6*(P) == Pf2)kk'
(i.e. the funetor P* is the restriction of P to k'-algebras) ;

(ii) there is a natural homomorphism

p* -*P'.

To check (i), let A' be any k'-algebra, and observe that
Xl,=X*Q9W(k,)W(A/)=(X(8)W(k)W(k'))Q9W(k,)W(A/)=XQ9W(k)W(A')=XA,;

thus the functor Pic(Xl,) of k'-algebras A' is the restriction to k'-algebras of the functor Pic(XA) of k-algebras A,
and since restriction commutes with passage to associatedfpqc sheaves, (i) follows. As for (ii), (#) gives a natural
W(k')-morphism X'-*X*, from which we obtain, in succession, the functorial maps (for k'-algebras A'):

XA,-* Xl,
Pic(XA,) -* Pic(XA,)
P*~P'.

(1) In fact, since W(k' ) is flat over W(k), it is easily seen that
HO(X*, (OX*)j"ed = HO(X, (OX) red ®kk'I .

24



THE PICARD GROUP OF A SCHEME OVER AN ARTIN RING 25

(1.6) Notation remains as in the preceding remark (1.5). For any functor
F of k'-algebras, the functor 6*F of k-algebras A is defined by

6*F(A) === F(k' ®kA).

To the above homomorphism P* -+ P' there corresponds a homomorphism

P-+6*P'

as follows: for any k-algebra A, the natural map i\-+k'C&kA determines, by functoriality,
a map

P(A) -+ P(k'®kA)===P*(k'®kA)

(cf. (i) above) which can be composed with

P*(k'@k A ) -+ P'(k'®kA) == 6*P'(A)

to give the desired functorial map

0A : P(A) -+ 6*P'(A).

For each A, then, setting A'===k'®kA, we have the natural commutative diagram

P(A}

In Corollary (6.13) we show:
If X=X' and g is the identity map, then the above homomorphism P-+6*P' is an

isomorphism.
In particular, if X=X' is connected, if k' == HO(X, (OX)red and 6 = L, then we have

P(X, k, L) = L*(P(X, k', I k,))

(I =identity map). In view of remark (1.4), this should allow us, whenever it seems
advantageous, to assume that X is connected, k = HO(X, (OX)red, and L= identity.

** *
Finally, we describe two other definitions of the functor P.

(I .7) In practice, X may be presented to us as a scheme proper over some parti
cular local Artin ring R whose residue field-call it k-is perfect of characteristic p>o.
(~ : k -+ HO(X, (OX)red can then be taken to be the map induced by R -+ HO(X, (Ox):

note that HO(X, (Ox) is finite over R.) In this case, a reasonable candidate for the Picard
functor (indeed the one suggested by Grothendieck, cf. Introduction) is the following:
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R is naturally a W(k)-algebra of finite length (§ 0) and so we have a corresponding

Greenberg algebra R together with an isomorphism of W(k)-algebras R ~ R(k)
(Appendix A, Proposition (A. I)). For any k-algebra A let

xi = X®R(k)R(A)

and let p# be thefppfsheaj'associated to the functor pic(Xf). The proof of Theorem (1.2),
slightly modified (§ S), shows that p# is a locally algebraic k-group.

How is this p# related to the previously defined P? Well actually they are
isomorphic (so that p# depends only on X, k and L!). To see this note first that p# is
also the fpqc sheaf associated to Pic (Xi) (because Pic (Xi) and p# clearly have the same
associatedfpqc sheaf; but P#, being a scheme, is anfpqc sheaf). Now since R is (canoni
cally) a W-algebra, we llave, for all k-algebras A, a functorial map

xi=X&)R(k)R(A) -+ X®w(k)W(A)=XA

which IS an isomorphism if AP=A (since then R(A) = R(k) ®w(k)W(A) (Prop
osition (A. I) (ii)); hence there is a functorial homomorphism

Pic(XA) .~ Pic(X!)

which is bijective if AP = i\; so by Corollary (0. 2) there results an isomorphism of associated
fpqc sheaves

~ #P(X, k, L) ---+ P .

It may be observecl that the proof that P is a k-group is somewhat neater than
the corresponding prooffi)r P#, because P does not take into account certain" finiteness"
features. On the other hand, the fppf result is stronger (for example, as we have just
seen, it implies that P is isomorphic to P#). Another bonus for working with thefppftop
ology is that for any algebraically closed field extension K of k, we know without further
ado that the canonical map

Pic(Xi)~p#(K)

is bijective [DG, p. 291, Remark I. IS].

(1.8) Let X, R, R, k be as in (1.7) above. What about the usual Picard functor
of X over R, namely th.e etale sheaf PiCX/R associated to the functor PiC(X®RT) of
R-algebras T? In general, ofcourse, PicX/Ris not an R-scheme. (Cf. [FGA, p. 232 -06];

for the applications we have in mind (cf. Introduction) X will not even be flat over R.)
Still, by a theorem of Greenberg [Gr, p. 643], if PicX/R does happen to be an R-scheme,
then the functor PicX/R(R(A)) of k-algebras A is a k-scheme; and this suggests that we look
more closely at the functor picX/R(R(A)), even when PicX/R is not an R-scheme.

As it turns out, however, Corollary (C. 6) implies that Picx/R(R(A)) is the etale
sheaf associated to the functor Pic (Xi) of remark (I. 7). Hence (cf. (I. 7)) the fppf sheaf
associated to thefunctor PicX/R(R(A)) is p# (=P).
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Furthermore, when AP = A then every etale A-algebra B· satisfies BP = B
(Lemma (6.12)), so that X~= XB (cf. (1.7)); hence PicX/R(R(A)) = pet(A) , where
pet is the etale sheaf associated to the functor Pie (XA) , and so (6.11) says: if AP=A,
then the canonical map

PicX/R(R(A)) -+ p#(A) = P(A)

is hijective.

I. - REPRESENTABILITY OF THE FUNCTOR P

2. Linearization.

In this section we "linearize" Theorem (1.2), i.e. we reduce the problem of
representing P to one of representing functors defined in terms of cohomology of coherent
sheaves. The technique is quite similar to that of Oort [0].

We begin with some preliminaries. Consider a triple (Y, (f), J), where Y is any
topological space, (f) is a sheaf of rings (commutative, with identity) on Y, and J is an
(f)-Ideal (sheaf) such that /2= (0). Setting m===(f) IJ, we have the exact sequence

o-+J-+(f)-+m-+o.

Also if (f)* (resp. m*) is the sheaf of units of (f) (resp. m), there is an exact sequence of
(multiplicative) abelian sheaves

I -+ I +/ -+ (f)* -+ m* -+ I

((f)* -+ m* is surjective because J2 = (0).)
The two resulting long exact cohomology sequences (contra-) vary functorially with

the triple (Y, (f), J): given a second such triple (Y', (f)', J') and amorphism

(Y', (f)', J') -+ (Y, (f), f),

i.e. a pair (c.lJ, <p) where c.lJ : Y' -+Y is a continuous map and <p : c.lJ* ((f)) -+ (f)' is a homo
morphism ofsheaves ofrings such that <p(c.lJ*J) s;;J', we obtain canonical homomorphisms
of the two cohomology sequences defined as above for (Y, (f), J) into the corresponding
sequences for (Y', (f)',J') (cf. [G, Prop. (3.2.2)]); and if (Y", (f)",J") -+(Y', (!)',J')
is another morphism of triples, then these cohomology homomorphisms satisfy obvious
transitivity relations vis-a.-vis

(Y", (f)", J") -+ (Y', (f)', J') -+ (Y, (f), J).

The "truncated exponential" map exp from the (additive) abelian sheaf J to
the (multiplicative) abelian sheaf I +J is defined by

exp(a)=I+a (aEr(U,J); If any open subset of V).
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Since /2=(0), it~ls imnlediate that exp is an isomorphism of abelian sheaves. One checks
that exp varies functorially with (Y, (!),/): given (~, cp) : (Y', (!)',/')~(Y, (!),/) as
above, the resulting diagram

~*(/) !~ ~*(I+/) =1 + ~*(/)

commutes.

/' -------+-) 1+/'
exp

** *
Now let us return to the situation of Theorem (1.2), where we have a proper

map f: X --+ Spec(W(k)). Let JV be the Nilradical of (!)x, and for n> I let X n be
the subscheme of X whose underlying topological space is the same as that of X and
whose structure sheaf is (!)n==(!)X/JVn. For n>2 let /n=JVn-1/JVn, so that for any

k-algebra A we have an exact sequence of sheaves on Xn,A == Xn®W(k) W(A):

o--+/n(!)n A~(!)n A~(!)n-1 A~O, , ,

((!)m, A being the structure sheaf on X m, A' m> I). Since /~ = (0), we can apply the
preceding considerations to the triple (Xn,A' (!)n,A,/n(!)n,A) to obtain, for n>2 and
i >0, exact sequences (of abelian groups) which vary functorially with the k-algebra A:

. . '+1 ·+1 '+1
H~( (!)n,A) -~ Ht((!)n-l, A) ~H~ (/n (!)n, A)~ Ht ((!)n, A) ~Ht ((!)n-l, A)

HO( (!)~-1, A) ~Hl(/n (!)n,A) ~ Pic(Xn, A) ~ Pic(Xn _ 1,A) ~ H2(/n (!)n, A)

(The cohomology is taken on the topological space IXn,AI = IXAI. In (2.2) we have
identified I +/n(!)n, A with /n(!)n, A (via exp), and Hl ((!)r:, A) with Pic(Xm,A)' m >1.)

The proof of Theorem (I. 2) will be by induction on n. The inductive step from
n- I to n will be achieved by applying the next lemma to the exact sequences offpqc sheaves
associated to (2. I) and (2.2).

Lemma (2.3). - Let

F1--+F2~F --+Fs --+F4

be an exact sequence ofabelian sheaves on the category ofk-algebras with thefpqc (resp.fppf) topology.
Assume that Fl' F2' Fs, F4 are schemes, with F1 and F2 affine and algebraic over k. Then F
is a scheme, and the morphi'sm F --+Fs is affine. If, in addition, Fs is locally algebraic over k,
then so is F.

Proof. - Let C be the fppf cokernel of F1 --+F2 • Then C is an affine algebraic
k-group [DG, p. 331, (3.5) and p. 342, (5.6)]. Consequently, C is its own associated
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fpqc sheaf, so that C is also thefpqc cokernel of Ft~F2. So in either case (fppforfpqc)
ifK is the kernel of Fa~F4 (i.e. the inverse image in Fa of the zero-section Spec(k) ~F4)'
then we have an exact sequence of sheaves

o~C~F~K~o.

K is a closed subscheme of Fa, and if Fa is locally algebraic over k then so is K. The
conclusion follows now from [DG, p. 363, (1.8) and (1.9) (mutatis mutandis, cf. p. 297

(3· 3))]· Q.E.D.

To be able to use Lemma (2.3), we need to know that certain sheaves are schemes.
In §§ 3, 4 we shall prove:

Theorem (2.4). - With notation as in Theorem (1.2), let ~ be a coherent (f}x-Module.
Thenfor all i>o, thefpqc sheaf associated to the junctor Hi(XA, ~®mX{f}xA) of k-algebras A
is an affine algebraic k-scheme.

This being granted, we can complete the proof of Theorem (I. 2) in the
following way.

First, the sequence (2. I) may be viewed as an exact sequence of functors of
k-algebras. The corresponding sequence of assoc:iatedfpqc sheaves is exact, and according
to Theorem (2.4) (with X==Xn or X n- l , ff=={f}n or (f}n-l) all the sheaves in this
sequence, other than the middle one, are affine algebraic k-schemes. From Lemma (2 . 3),
we conclude that the middle term (i.e. the sheaf associated to thefunctor Hi + l(/n{f}n, A) (i?-o))
is also an affine algebraic k-scheme.

Next, look at the sequence (2.2). Let H* be the fpqc sheaf associated to the
functor HO({f}:_l,A). We want to show that H* is affine and algebraic over k. By
Theorem (2.4) the fpqc sheaf-call it H-associated to the functor HO({f}n-l,A) is an
affine algebraic k-scheme, and clearly H is a ring-scheme over k. It is easily seen that
for any k-algebra A

H*(A) ~ {group of units in the ring H(A)}.

It follows that H* is isomorphic to the inverse image, under the multiplication map
H xkH~H, of the I-section of H (the isomorphism being induced by the first projection
of H xkH onto H). Thus H* may be identified with a closed subscheme of H xkH,
and so H* is indeed an affine algebraic k-scherrle.

Now, let P n be the fpqc sheaf associated to the functor Pic(Xn,A). For large n,
X n == X, and so Pn == P. For any n >2, we see, by the foregoing remarks, and by
Lemma (2.3) applied to the exact sequence of fpqc sheaves associated to (2.2), that
if Pn-t is a locally algebraic k-scheme, then also Pn is a locally algebraic k-scheme.

Thus we are reduced to studying Pt. But Pt is just the usual Picard functor PicXJk

of the reduced scheme Xl over k, i.e. thefpqc sheaf associated to the functor PiC(Xl®k A).
Indeed, by definition, Pt is the sheaf associated to

Pic(Xl ®W(k) W(A)) == Pic(Xl®k W(A) /(p));

29



JOSEPH LIPMAN

but there is a functorial map (induced by the truncation P1 of § 0)

W(A)/(p) ~A=W1(A)

which is hiJective if AP == A; hence there exists a functorial map

Pic(X1 ®kW(A)/(p)) --.)- Pic(X1®kA)

which is hiJective if AP = A; by Corollary (0. 2) we have therefore an isomorphism of
associated sheaves:

Since PicXJk is a locally algebraic k-group [M; SGA 6, Expose XII; A, § 7], we are
done (modulo Theorem (2. 4)).

** *
Theorem (2.4)-and hence Theorem (I .2)-being taken for granted, we add here

some remarks on the "Neron-Sev~ri" group 1to(P) (cf. (2.7)), and on the relation
ofP to Pt ==P(X1 , k, ~), where now Xl~X is an arbitrary nilpotent immersion (cf. (2.5)
and (2.11)). These results will not be needed elsewhere in this paper, but will prove
useful in future applications. We retain the preceding notation, except that % may
now be any nilpotent coherent (Ox-Ideal.

Proposition (2.5) (cf. [SGA 6, Expose XII, (3.5) and (3.6)]). - The canonical
map u: P -+ Pt is of the form Vo w, where v is a closed immersion, and w is affine, faithfully
flat and finitely presented. The kernel and (fppf) cokernel of u are unipotent algebraic k-groups.

Proof. - For the first assertion, and the fact that thefppf cokernel of u is a locally
algebraic k-group, it suffices that u be affine [SGA 3, p. 315]. Arguing as above we
see that the canonical map un:Pn~Pn-t is affine (n>2), whence so is U==U2 oUao •••

Next, consider the sequence

(n>2).

We shall see in the following two paragraphs that if the kernel and (fppf) cokernel of
both un+ 1 and Un are unipotent, then so are the kernel and cokernel of unoun+ 1 • Note
that all of these kernels and cokernels are in any case locally algebraic k-groups (since
Un+1 , un' and unoun+ 1 are affine maps) so if they are unipotent (hence-by defi
nition-affine, hence quasi-compact) then they are algebraic over k. To complete the
proof of (2.5) by induction, it will then suffice to show that the kernel and cokernel
of Un are indeed unipotent.

So suppose that ker(un +1) and ker(un) are unipotent. We have a natural exact
sequence of fppf sheaves

0-+ ker(un+ 1) ~ ker(unoun+ 1)~ ker(un).
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From the commutative diagram

in which the vertical arrows are closed immersions, we see that the map u~+1 is affine,
so that ker(unoun+1) is affine and there exists a commutative diagram

c

in which V~+l is a closed immersion, and w~ +1 is an epimorphism of abelian k-groups. Since
ker(un) is unipotent, so is C [DG, p. 485 (2.3)], and by loc. cit. the exact sequence

o~ker(un+1)~ker(unoun+1)~C~o

shows then that ker(unoun+1) is unipotent.
Suppose that coker(un+1) and coker(un) are unipotent. From the natural exact

sequence
u"

coker(un+1)~ coker(unoun+1)~ coker(un)~ 0

we obtain an exact sequence

o~K~coker(unOun+1)~coker(un)~o

where K=coker(un+1)/ker(u~') is an affine algebraic k-group [DG, p. 342 , (5.6)].
By (2.3), coker(unoun+1) is affine. Since coker(un+1) is unipotent, so is its quotient K;
as above, it follows that coker(unoun+1) is unipotent.

Let us show now that the kernel and cokernel of Un are unipotent. We have
previously established an exact sequence

H 1~ p n~ p n-1~H 2

where Hi (i=I,2) is thefpqc sheaf associated to the functor Hi(/n(9n,A). As before,
Theorem (2.4) implies that Hi is an affine algebraic k-group; hence, clearly, Hi is a
Greenberg module (cf. remarks immediately preceding Appendix A), and so Hi is unipotent
and connected [DG, p. 601, (1.2)]. Ker(un) is a quotient of lP, so it is unipotent
(cf. preceding argument about K). We will show in a moment that coker(un) is quasi
compact (hence algebraic over k); thus [DG, p. 249, (5. I) (b)] coker(un) is a closed subgroup
of H 2

, and so is unipotent.
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We show now that coker(un) is quasi-compact. For convenience, we write" u "
instead of" Un ". For any locally algebraic k-group Q, let~ be the connected component
of the identity, and let 7to(Q) be the etale k-group QIQo (er. [DG, chap. 11, § 5, nO I],
from which we will take, tacitly, a number of facts).

Let

U
O

: P~ -~ P~-1' uo : 7to(Pn) ~ 7to(Pn-1)

be the maps induced by u. We have an exact (" serpent") sequence of fppf sheaves
ex r3 Y 8

(2. 6) o~ ker(uO)~ ker(u) ~ ker(uo) ~coker(uO) ~ coker(u)~ coker(uo) -? o.

Since u is quasi-compact (in fact affine) it follows easily that UO and uo are quasi-compact,
and hence all the sheaves in (2.6) are locally algebraic k-groups. Coker(uO) is, moreover,
connected and algebraic over k; hence ker(~)~coker(uO)/ker(y) is a connected subgroup
of coker(u). Since coker(uo) is an etale k-group, we have that (coker(u))O is a subgroup
of ker(~), and consequently (coker(u))o=ker(~). It follows that

7to(coker (u) )~ coker (uo).

So to prove that coker(u) is quasi-compact, it will suffice to show that the etale k-group

coker(uo) is quasi-compact, i.e. that coker(uo) (k) is ajinite group (k=algebraic closure ofk).
Note that coker(u) is annihilated by pt for some t>o, since, as above, coker(u)

is a subsheaf of H 2
, and H 2 has a composition series consisting of subgroups of the additive

group W1 [DG, p. 487, (2.5) (vii)]. So ptcoker(uo)=o, and we need only show

that coker(uo) (k) is a jinitely generated abelian group; since coker(uo) (k) is a homomorphic

image of 7to(Pn- 1) (k), the conclusion follows from the next proposition (with X=Xn - 1):

Proposition (2.7). -- 7to(P) (k) is a jinitely generated abelian group (k=algebraic
closure of k).

Proof. - For this proof only, take JV to be the Nilradical of (!Jx, and let us show

by induction on n that 7to(Pn) (k) is finitely generated for all n> I. (For large n, we
obtain the desired result.) When n = I, this is the theorem of Neron-Severi [SGA 6,
Expose XIII, Theoreme (5. I)]. For the inductive step from n - I to n, recall that
(with notation as in (2.6)) uo is a quasi-compact map, so that ker(uo) is quasi-compact;

but ker(uo) is etale over k, so ker(uo) (k) is a finite group, and the desired conclusion
follows from the exact sequence

o~ ker(uo) (k) ~ 7to(Pn) (k) ~ 1to(Pn-1) (k).

This completes the proof of (2.7) and of (2.5).

We can extract more information from the preceding arguments. We first observe
that (with the notation of (2.6)) :

(2.8)
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(Proof: For Uo this follows immediately from the fact that u is affine. We have just
remarked that Uo is quasi-compact and that ker(uo) is finite over k; from this it follows
easily that Uo=== voo wo, where Vo is a closed immersion and Uois a finite faithfully flat map;
thus Uo is even a finite map.)

Furthermore:

(2·9) ker (Uo) and coker (Uo) are unipotent.

(Proof: As above, ker(u), being a quotient of the connected group IF, is itself connected,
whence ker(u)===ker(uO), so that ker(uO) is unipotent. Furthermore we deduce that,
in (2. 6), ~ maps ker (uo) isomorphically onto ker (y), so ker (y) is finite over k, whence
y is a finite map; and since coker(u) is affine, so therefore is coker(uO). By [DG, p. 501,
(I. I)] coker(uO) is the direct product of a multiplicative group M and a unipotent
group U. The composed map

M 4 coker(uO) ~ coker(u) 4 H 2

must be trivial [DG, p. 486, (2.4)], so M is a subgroup of ker(y)~ ker(uo), and therefore
M is etale over k. But M is a quotient of the connected group coker(uO), so M is connected,
and hence M===o. Thus coker(uO) === U.)

(2. 10) ker (uo) and coker (uo) are unipotent.

(Proof: As above, ker(uo) is isomorphic to a closed subgroup of coker(uO), and coker(uO)
is unipotent; so ker(uo) is unipotent. As for coker(uo), 'we have already shown it to
be a finite etale k-group annihilated by pt for some t>o, so it is unipotent [DG, p. 485,
(2.2) (b), and p. 488, (2.6)].)

In view of (2 . 8), (2.9), (2. 10), the proof of (2 .5) can be copied, mutatis mutandis,
to give:

Corollary (2.11). - Let u: P~P1 be as in Proposition (2.5), and let uo : pO~P~,
Uo : 7to(P) ~ 7to(P1) be the induced maps. Then the conclusions of (2. 5) hold with either UO
or Uo in place of u. In particular, the kernel and cokernel of Uo are finite etale k-groups which are
annihilated by some power of p.

3. On the hOlllology of bounded cOlllplexes (1).

The key to the representability theorem (2.4) is the following elementary result
on complexes, inspired by [EGA, 0nI, (I I · 9 . 2) ] .

As usual, for a ring A, a bounded complex p. -~ (Pi' ~i)i E z of A-modules is a sequence
of A-modules and A-homomorphisms

P 6i+1 6i P
· · · ~ i + 1~ Pi~ i -1~ · • •

(1) The notation in this section is completely independent of notation in other sections.
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with 8i 08, +1= 0 for all i, and Pi = (0) for all but finitely many i. The kernel and
image of 8i are denoted respectively by Zi(P.) and B'_l(P.), and the homology
modules ~(P.) (iEZ) are defined by

~(P.)= Zi(P.) /Bi(P.).

Proposition (3. I). -- Let A be a ring of the form D /m n, where D is a discrete valuation
ring with maximal ideal m, and n>o is apositive integer. Let tEA be a generator of the maximal
ideal ofA, and let p. = (Pi' ~i)i E Z be a boundedcomplex ofA-modules. Fo'!' each r = 0, 1, 2, ... , n
we have then a subcomplex t'p. = (t'Pi, 8";)iEZ of p.; assume that for each i, r as above, the
homology module Hi(t'P.) is finitely generated over A. Then there exists a bounded complex of
finitely generated A-modules Q.=(Qi' di)iEz and an A-homomorphism u: Q.~p. of
complexes, such that for a'!y A-module M the following condition holds:

(*) The homology maps

Hi(Q.@A M) ~ ~(P.@AM) (iEZ)

induced by u@ 114 : Q. @A M ~ p. @A M are all isomorphisms.
(Here, of course, p. @A M is the complex

8i®lM... ~Pil(8)AM~ Pi-l@AM~... ,

and similarly for Q. @A M.)
Proof (1). - We begin by noting that: if Q. is any complex of A-modules and

u : Q.~p. i5 an A-homomorphism of complexes inducing isomorphisms of homology

(3. 2 )

then (*) holds for any A-module M. Indeed, from the commutative diagram (with
exact rows)

we obtain the commutative diagram with exact rows

... -+ H i + 1(t'Q.) -+ H i + 1(Q.) ~ ~+l(Q.@A(A/tr)) ~ Hi(t'Q.) ~ H,(Q.) ~ ...

! ! ! l!
... ~ H i+ 1(t'P.) ~ H'+l(P.) -+ H i+1(P.@A(A/tr)) -+ Hi(trP.) -+ ~(P.) -+ ...

from which we see, using the "five-lemma", that (*) holds for M=A/t' (o<r<n);
it follows that (*) holds whenever M is a finitely generated A-module, since such an M

(1) It is not necessary to read this proof to understand the rest of the paper.
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is a direct sum of A-modules of the form A/tr (0 < r<n); finally, since any A-module
is the inductive limit of its finitely generated submodules, and since " inductive limit"
commutes with both tensor product and homology, we see easily that (*) holds for all
A-modules M.

Accordingly, we shall proceed by induction to construct a bounded complex Q. of finitely
generated A-modules, and an A-homomorphism u: Q.~p. such that the resulting homology
maps (3.2) are all isomorphisms.

By assumption p. is bounded, so there exists an integer b such that Pi = (0) for
all i <b (1). Let j be an integer > b - I, and suppose that we have found a complex
Q. =Q~)=(Qi' t4)iEZ of finitely generated A-modules, and an A-homomorphism
U = u{j) : Qt) ~ p., such that Qi = (0) if i < b- I or if i >j, and such that the following
conditions hold:

(~) For i <j and 0 < r < n the homomorphism

~(trQ.) ~ Hi(trP.)

induced by u is an isomorphism.

(1Ij ) For 0 < r < n the composed homomorphisln

. ( rQ Uj . rp) canonical ( rp )
Vjr . Zj t .)~ Zj(t •~ Hj t •

IS surjective.

(1IIj ) Let Nj be the kernel of vjo • Then for o<r<n the kernel of Vjr is trNj •

(IVj ) (For 0 < r < n and any A-module E, set

rE=(o): tr£E

i.e. rE is the submodule of E consisting of all elements which are annihilated by tr
.)

Each member ofHj+1(trP.) is the homology class of an element trfLEZj+l(trp.) with

8j +1(fL) EUj(rNj).

Remarks. - (i) There is one and only one complex Q~-l) as above, namely take

~=(o) for all iEZ.
(ii) What we are going to do is to construct, under the above conditions, a finitely

generated A-module Q4+1 and A-homomorpllisms ~*+1: Q'j+l ~ Nj£Zj(Q.) and
uj+ 1 : Q'j + 1~ Pj + 1 such that the middle square in the following diagram commutes:

dj+l

~
d·

••• ~o ) Q4+1 ~ ---4 Qj-l

(3·3) ui+ s1 Uj+I1 u·1 Ui-Il.1

~

Pj +2
8j+2

Pj +1
8j+l Pj

8j
p. 1...~ ~ ~ ~ j-

~ ...

~ ...

(1) Actually, all we need in what follows is that A is a noetherian ring, that tEA satisfies tn = 0 and that
Hi(trp.)=(o) for all i~b and o:Sr:Sn.
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Since ~*+1 maps Qj+1 into Zj(Q.), we have ~Odj*+l=O. Thus we may replace
Qj+1 ==(0), ~+1' and uj +1by Qj+1' ~*+1' Uj+1 respectively, to get a new complex ~1+1)

and an A-homomorphisln u(j + 1) : ~t + 1)~p., as depicted in (3.3). The construction

will be such that for ~t + 1) and uU +1) the conditions (lj +1), (11j +1)' (II~ +1) and (IVj +1)
are satisfied.

(iii) Starting with J. = b-I (cf. remark (i)), and repeating the construction
described in remark (ii), we eventually obtain u(j): ~t)~p. where j is an integer
with the property that Pi=(o) for all i>j (such a j exists because p. is bounded).
Then Zj(P.)~Hj(P.) is an isomorphism; hence uj(Nj)=(o), and we have a
commutative diagram

Setting Qj+l = Nj , ~*+1 = inclusion map of Nj into ~, and uJ+1= zero-map, we
can form the complex ~t+1) and the A-homomorphism U(j+1) as in remark (ii). From (Ij ) ,

(Ilj ) and (lllj ) (for ~t), u(j)) we obtain (lj + 1) (for ~t+1), U(j+1)), and it follows at once
that for (Q., u)=(~t+1),U(j+1) all the homology maps (3. 2 ) are isomorphisms as
desired (1).

It remains then to carry out the construction described in remark (ii). ~j+1 will be given
as a submodule of the A-module

Rj +1 = Nj XPjPj +1 ={(x,y) ENj X Pj +11uj(x) = aj +1(y)}.

The mappings ~*+1' Uj+l are taken to be the projections, namely

~*+l(X,y)= x, Uj+1(X,y) =y,

and then obviously (3.3) will be commutative, as required.
To build up Qj+1' we begin by constructing three finite subsets of R j + 1 • First,

Nj , being an A-submodule of Qj' is finitely generated; let {A~,~, ... , A~} be a basis
of Nj . Nj is the kernel of vjO , so uj(Nj) ~Bj(P.); hence we can choose A1, A2 , ••• , Ap

in Pj + 1 such that

I.e.

Uj (A~) = a,j + 1(Ak )

(A~, Ak)ERj + 1 •

(k=I,2, .. . ,p)

(1) Of course we are interested ultimately in condition (Ij ) , the other conditions being necessary only to
carry out the inductive procedure. Since these conditions may appear rather involved, we should point out that
they are unavoidable in the sense that we have the (easily checked) implications

(Ij ) => (1IIj _1) and (Ij ) => (1Ij _1) => (IVj - 2).

This is not to say that there could not exist a less complicated proof of Proposition (3. I) !
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Second, for each r with 0 < r < n choose a finite set of elements

37

thus

I.e.

in Zj+l(trP.) whose homology classes generate Hj+1(trP.). By (IVj ) we may make
the choice so that

0j+l(t-Ltr)==uj(t-Ltr) with t-LtrErNj (1=1,2,. - -, qr);

(t-Llr, t-Ltr) E Rj + 1·

Third, for each r with 0 < r < n choose a finite set of elements

in Zj+2(trP.) whose homology classes generate Hj+2(trP.). We have

uj(0)=0==Oj+1(Oj+2(Vmr)) (m ==1, 2, .. -, Sr)

1.e. (0, 0j + 2( Vmr) ) E Rj + 1 •

Next, let Q;j+1 be the A-submodule of R j +1 generated by all the elements

(A~, Ak) (k = I, 2, - - _, p)

(t-Ltr, t-Ltr) (o<r<n, 1=1,2, - - -, qr)

(0,Oj+2(Vmr)) (o<r<n, m=l, 2, - - -, sr).

Define Q4 + 1 to be Q;j + 1 + E, where E is a finitely generated submodule of R j + 1 which
is chosen in accordance with Lemma (3 _5) below in such a way that the following is
true: let

B = (0) X Bj +l(P.) s; Nj XPjPj +1 == Rj + 1 ;

then for all r with 0< r< n,

(3- 4) Q4 +1 n(B +rRj+l) == (Q4 +1 n B) + rQ4 +1·

We can now easily verify (lj +1), (1Ij +1), (1Ilj +1) and (IVj +1) for Q;~+1), U(j+l)
(cf. remark (ii) above).

(lj + 1): A~, - - _, A~ generate Nj , and ~*+l(A~, Ak)==A~ (k==l, 2, - - -, p); thus ~*+1

maps Q4 + 1 surjectively onto Nj , and so for 0 < r< n

~*+l(trQ4 +1) == trNj•

Now (lj + 1) follows at once from (Ilj ) and (IIlj ).

(IIj + 1): We have t-Ltr ErNj' so

o == trt-Ltr == dj*+ 1 ( tr(t-Ltr' ~tr))

tr(' ) Z (tr n(j + 1))[ltr' [ltr E j +1~. •
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(Illj +1): Chasing through the definitions, we come down to showing:

if x == tr(y, z), with (y, z) EQ;;+l such that try == 0 and t' zEBj +1(t'p.), then x = t'(o, z'),
with (0, Z')EQ;;+l such that z'EBj+1(P.).

This can be rephrased as follows:

if (y, z) EQ;; +1, and t'(y, z) EtrB, then tr(y, z) Etr(Q;; +1 n B) .

But this last statement is just another form of (3.4).

(IVj +1): Since tr'JmrEZj+2(t'P.), we have

t'(o, ~j+2('Jm,))=(0, ~j+2(t''Jm,))==(0, 0).

It follows that (0, ~j+2'Jm,)E,Nj+1' and hence

~j +2 ('Jm,) Euj+1(rNj +1).

From this-and the definition of 'Jm,-(IVj +1) is immediate.
The following lemma will complete the proof:

Lemma (3.5). - Let R be an A-module and let Q and B be two submodules of R, with Q
finitely generated. Then there exists afinitely generated submodule E ofR such that, if Q'=Q+E,
then, for all r with 0 < rS n

Proof. - We proceed by descending induction. (3.6) is obvious for any Q' if
r>n, since then ,R == Rand rQ' == Q'. It evidently suffices therefore to show: for
fixed s, if

Qn(B +. rR) == (Qn B) + rQ

for all r> s, then there exists afinitely generated submodule E of R such that, if Q' == Q+E, then
(3. 6) holds for all r > s.

Now since Q is finitely generated, so also is its submodule Qn(B + BR), and
hence we can find a finitely generated submodule E of sR such that

(3.7) Qn(B+sR) £;B+E.

Let Q'==Q+E and let YEQ'n(B+rR) for some fixed r>s. Set y==q+e (qEQ,
eEE). Since eEsR£;rR, we have

(3.8) q-y-eEQn(B+rR).

If r> s, then we conclude that

qE(QnB)+rQ

and since eEsE £; sQ* £; rQ', therefore

Y == q+ eE(QnB) +,Q+ rQ' ~ (Q' nB) + ,Q'.

Hence (3.6) holds if r>s.
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and

If r=s, then we conclude from (S.7) and (S.8) that qEB+E, i.e. q=b+e'
(bEE, e'EE); hence

b = q- e' EQ:' n B

y = q+e = b +(e'+ e) E(Q:' nB) + sQ:'.

Hence (S. 6) holds when r = s. Q.E.D.

Remark (3. 9). - We can augment (S. I) as follows (this will be used only in
Theorem (8. I) in order to prove that a certain map is natural):

Let S. = (Si' O,)i E Z be a bounded complex offinitely generated A-modules, and let v : S.~ p.
be an A-homomorphism of complexes (A, p. as before). Then Q. and u can be chosen as in (S. I),
and with the additional properry that v = u 0 W for some A-homomorphism w: S.~Q..

Proof. - In the proof of (S. I), we introduce an additional inductive datum; let
S~j) be the complex obtained from S. by annihilating Si for all i>j, and let

W = w(j) : S~j) ~ ~~)

be an A-homomorphism such that ui j
) 0 w~j) = Vi for all i <j.

In passing from j to j + I, what we will then need is an A-homomorphism

wj + 1 : Sj+1~ ~+1

such that

and

uj+1 0 Wj + 1 = Vj + 1

dj*+ 10 Wj + 1 = wj 0 OJ + 1

given by

(cf. remark (ii) in the proof of (S. I)). But it is immediate that

Wj(Oj+1Sj+1) ~ Nj

so that we have the map

Wj+l : 8j + 1 ~ NjXpjPj+1 = Rj + 1

wj+1(s) = (wj ( OJ +1s), vj + 1(S ) ) •

Thus all we have to do is to modify the construction of~ + 1 so as to have

Wj+1(Sj+1) ~Q:'j+1·

This is accomplished simply by replacing Q;j + 1 by Q;;+l' where

Q;j+l =Qj+1 +Wj+1(Sj+1)·

4. Representing the coholDology of a coherent sheaf.

Let f: X ~ Spec(W(k)) be a proper morphism, as before, with

f(X) ~{closed point of Spec(W(k))},
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and let !F be a coherent {Ox-~Iodule- With the aid of Proposition (3. I), we will now
prove Theorem (2.4) concerning the functor of k-algebras

Hi(XA'~) (i>o, XA=X®W(k)W(A), ~=!F®(OX{OXA)-

This functor can be computed by Cech cohomology, as follows_ X is quasi-compact,
so there exists a finite affine open covering of X, say U=(Uj )1<j<m- Let C.=C.(U,:F)
be the corresponding Cech complex: - -

· - - --* 0 -* Co --* 0_1 --* C_ 2 --* · · · --* C-m --* 0 --* . · ·

(We put the Cech complex in this form to accord with § 3; for the usual form set Ci==C_ i _)

The argument on p_ 94 of [EGA Ill] gives an A-junctorial isomorphism of W(A)-modules

H_i(C.®W(klW(A)) ~ H'(XA'~) (1).

To get the functor H_i(C. Q9W(k) W(A)) into manageable form we use Prop
osition (3. I). Fix an integer N >0 such that pN (Ox = 0, so that X is proper over
Spec (WN(k)) (WN(k)=W(k)j(pN)). Then C. is a bounded complex of WN(k)-modules,
and for any integer r>o and any iEZ, the homology modules

H_i(prc.) = H_i(C.(U, pr !F)) = Hi(X, pr!F)

are finitely generated over WN(k), since X is proper over WN(k) and pr:F is a coherent
{Ox-Module. Hence (Proposition (3. I)) there exists a complex Q. of finitely generated
WN(k)-modules, and a homomorphism of complexes Q.---+C. which produces for each
WN(k)-module M and each iEZ an isomorphism

H_i(Q.®WN(kl M ) ~ H_i(C.®WN(kl M ).

Taking M==W(A)j(pN), A being a k-algebra, we get an isomorphism

H_i(Q.®W(klW(A)) ~ H_i(C.®W(k}W(A)),

and clearly this is an A-junctorial isomorphism of W(A)-modules.
Note that each Qi (iEZ) is a W(k)-module of finite length. Thus, to prove

Theorem (2.4), it suffices now to show:

Proposition (4. I ). - Let E, F, G be W (k) -modules of finite length. Let (X: E --* F,
~ : F --*G be W(k)-module homomorphisms such that ~ 0 (X == o. For any k-algebra A set

EA =E®W(k)W(A)
FA ==F®W(k)W(A)
GA== G®W(k) W(A)

(1) [EGA Ill, p. 94] contains a reference to [EGA 0u!' (12.1.4.2)] whose proof (as given) seems incomplete:
what is the map r(~·(u', ~*§)) --* r(~* .fR.)? Never mind; we can use instead the homotopy-commutative
diagram
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(XA: EA -+FA=rx(8)W(k)(I W(A)) (IW(A)=identiry map ofW(A)).
~A: FA -+ GA=~(8)W(k)(IW(A))

lA = image of (XA

KA = kernel of ~A (2 IA(since ~AorxA =0))
cc f3

HA=KA/IA (=homology of{(E-+F-+G)Q9w(k}W(A)}).

Let <I> be any one of the functors

A-+EA (resp. FA, GA, lA' KA, HA)

and let <1>'" be the associated fpqc sheaf, Then <Il'" is an affine algebraic k-scheme.

Proof. - For <1>= (A -+ EA' FA or GA), the result is given by Proposition (A. I) (i)
(Appendix A).

Since KA is the kernel of FA-+GA, therefore (KA)'" (the sheafassociated to (A-+KA))

is the kernel of (FA)'" -+(GA)"', so (KA)'" is a closed subscheme of (FA)"'.
VVe have an exact sequence

(4.2) o-+lA-+FA-+(F II)A = (F11) Q9W(k) W(A)

(I = rx (E) ), whence (lA) '" is the kernel of (FA) '" -+ ((F11)A) "'; as above, ((F11)A) '" is an
affine algebraic k-scheme, so (lA) '" is a closed subscheme of (FA) "'.

Similarly, from the exact sequence

(4.3) 0-+14-+FA/IA= (FII)A-+GA

we conclude that (HA) '" is a closed subscheme of ((F II)A) "'. Q .E.D.
This completes the proof of Theorem (2. 4), and of Theorem (I. 2) .

** *
Later on, we will make use of the following observation:

Corollary (4.4). - With the notation of (4. I), if AP=A, then the canonical map

<Il(A) -+ <Il'" (A)

is bijective.

Proof. - For <Il(A) = EA' FA or GA, this is contained in Proposition (A. I) (ii).
For <Il(A) =KA, use the commutative diagram (with exact rows)
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in which, as we have just remarked, the last two vertical arrows are bijective. The
proofs for <I>(A)=IA and <I>(A)=HA are similar (cf. (4.2) and (4.3)).

5. Definition of P as an fppf sheaf.

As in remark (1.7), we consider a local Artin ring R, with residue field k, and
a scheme X proper over R. Let R be the Greenberg algebra, over k, associated to R;
for each k-algebra A set xi = X®R(k)R(A); and let p# be the fppf sheaf associated to
the functor pic(Xi). Except for the changes indicated below, the proof ofTheorem (I .2)
given in §§ 2-4 applies more or less verbatim (with "fpqc" replaced by "fppf", and
W by R, so that XA becomes xi, etc.) to show that p# is a locally algebraic k-group.

The canonical map R~HO(X, (9x) gives rise to a homomorphism

t: k~HO(X, (9X)red.

As in remark (I. 7), we deduce an isomorphism of functors

P(X, k, L) ~p#.

** *
In order to apply to P#, the proofof Theorem (I .2) must be modified in two places.

First, to begin the inductive argument, we need to know (cf. middle of § 2): if
X=X1 , i.e. if X is reduced (so that X is actually a k-scheme) then there is an isomorphism

() P# ~ p.5. 1 ~ lCX /k •

To establish such an isomorphism, note that we have a ring homomorphism, functorial
in A

obtained by passage to associated fpqc sheaves from the functorial map

R(&w(k)W(A) ~ k('6)W(k)W(A) ,

cf. Proposition (A. I). From this we deduce a homomorphism of functors

(5.2) Pic(X®R(k)R(A)) ~ Pic(X®k A)

which is bijective if N=A, since then R(A)=R(k)®W(k)W(A) (Prop. (A. I) (ii)) and
A=W(A)/(p), so that

X®R(k)R(A) = XQ9W(k) W(A) = X(&k A .

Now the functor R, being isomorphic as a scheme to some affine space (Prop. (A. I) (i)),
commutes with filtered direct limits. [EGA IV, (8.5.2) and (8.5.5)] shows then
that the functor Pic(X®R(k)R(A)) commutes with such limits, as does Pic(X®kA).
From Corollary (0.2), it follows that (5.2) gives rise to an isomorphism of associated
fppf sheaves, and this is the desired isomorphism (5. I).
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Secondly, as in § 4, we want to show that the fppf sheaf associated to the functor
H_i(C.®R(k)R(A)) is an affine algebraic k-scheme. To apply the result of § 3, we
note that if N is an integer with pN R = (0), then R is a Wx-algebra, and there is a
functorial homomorphism

~A : H_i(C.®WX(k)Wx(A)) ~ H_i(C.®R(k)R(A))

which, as above, is bijective if AP=A; since both homology and tensor products commute
with direct limits, as do the functors W x and R, Corollary (0.2) shows that the homo
morphism of fppf sheaves associated to ~A is an isomorphism; in other words, we may
replace R by WN. We have, as in § 4, a functorial isomorphism

H_ i (Q.<8)w
X
(k)Wx(A)) ~ H_ i (C.(8)wN(k)Wx(A))

and we are then reduced to proving Proposition (4. I), with" W " replaced by "Wx "
and "fpqc" by "fppf". The proof is practically the same (use (A. 2) in addition
to (A. I) (i)).

Remark (5.3). - Corollary (4.4) holds ,vith fpqc replaced by fppj. The proof
is the same, with (A.2) in place of (A. I) (ii).

11. - RELATION OF P(A) TO Pic(XA) WHEN AP=A

In this part 11 we obtain some information about the kernel and cokernel of the
canonical map Pic(XA)~P(A), under the assumption that the k-algebra A satisfies
N = A (Corollaries (6. 7), (6. 8); the most general result along these lines is
Theorem (7.5), but we need some of the results of§ 6 to prove it). As in § 2 (cf. also
[SGA 6, Expose XII, Corollaire (3.3)]) the underlying idea is to use" devissage " to
reduce to the case of Picard func~ors of schemes over fields (Proposition (6. 2) ) . We
find that when AP = A, P(A) is related to Pic(XA)-in the classical way-by Galois
descent (Corollary (6. 10)) or via the etale topology (Corollary (6. I I)). We also elucidate
the dependence of P=P(X, k,~) on k and ~ (Corollary (6.13)).

Throughout f: X ~ Spec(W(k)) and P will be as in § I; we also set Xl = X red ' and
kl =HO(X1 , (!Jx)·

6. DeterlDination of P(A) (AP= A).

It is convenient to begin with a simple observation:

Lemma (6.1). - Let

S ~ T

u~v
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be a commutative diagram of homomorphisms of abelian groups, and let the resulting map

(1: S~TxvU={(t,u)ETxUlo(t)=y(u)}

be defined, as usual, by

(1(s)=(~(s), ~(s)) (SE S).

Then the following conditions are equivalent:

(i) (1 is an isomorphism.
(ii) The map ker(~) ~ker(y) induced by ~ is bijective, and the map coker(~) ~coker(y)

induced by 8 is injective.
(Here "ker"= kernel and "coker" = cokernel.)
(ii) , The map ker(~) ~ker(o) induced by ~ is bijective, and the map coker(~) ~coker(8)

induced by y is injective.

Prooj. - By symmetry it suffices to prove the equivalence of (i) and (ii). This
is straightforward; the necessary verifications are left to the reader.

Proposition (6. 2). - Let P1 be the fpqc sheaf associated to the functor

Pie (Xl, A) = Pie (X l ®W(k)W(A))

of k-algebras A. If AP = A, then the natural commutative diagram

P(A) -~

gives rise (cf. Lemma (6. I)) to an isomorphism_

Pic(XA) ~ PiC(Xl,A)XP1(A)P(A)

Prooj. - Let .Aix be the Nilradical of (!)x, and for n>2 let X n be the closed
subscheme of X defined by .Ai~. As in § 2 (cf. (2.2)) we have an exact A-functorial
sequence

where:

o~En(A)~ Pie (Xn,A) ~ Pic(Xn _ l,A)~ Fn(A)

En(A) = cokernel of HO((!):-l,A) ~W(Jn(!)n,A)

Fn(A) = H2(Jn(!)n,A)·

Denoting associated fpqc sheaves with " '" ", we shall show:

(6.3) Fn(A) -)- F;'(A) is injective (AP===A).

(6.4) There is an isomorphism offunctors

{kernel of (Hl((!)n,A) ~ Hl((!)n_l,A))} ~ En(A).
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Now we have a commutative diagram

o ~ En(A) ~ PiC(Xn,A) .~ PiC(Xn_ 1,A) ~ Fn(A)

45

"t'

-~) F,7'(A)

in which the top row is, as above, exact, and the bottom row, obtained from the top
row by passing to associatedfpqc sheaves and " evaluating" at A, is exact except perhaps
at P n-1 (A). Since anyway ~ 0 y = 0, we find from (6 -3) above that ~ induces an
injective map coker((X) ~ coker(y). Furthermore, since AP=A, (4-4) shows that if
~ is the fpqc sheaf associated to the functor H i

( (!)m, A) (i, m> I) then the canonical
map H1((!)m,A) ~ H~(A) is bijective (read through § 4 to see why (4-4) is applicable);
it follows then from (6-4) above (cf. proof of (4-4)) that En(A) ~E,7'(A) is bijective.
So Lemma (6 _I) gives us an isomorphism

Pic(Xn,A) ~ Pic(Xn-l,A)XPn_1(A)Pn(A)

Since X n = X for large n, Proposition (6 _2) follows by induction on n.

Proof of (6.3). - We have a commutative diagram

H 1((!)n,A) ~ H 1((!)n_l,A) ~ Fn(A) ~ JI2((!)n,A)

H~(A) __(J.~) F;(A)

in which the top row is exact and the bottom row is obtained from the top row by
evaluating associatedfpqc sheaves at A (so thatvofl=o and flOA=O). As above, the
vertical arrows other than q:> are bijective. So by diagram chasing, we can conclude
that q:> is injective, as desired, provided that the kernel of fl equals the image of A. But if In
is the image, in the category offpqc sheaves, of the canonical map A : H~ ~ H~_1' then
~ is the kernel of H~_1~F; (since passage to associated sheaves is an exact functor),
and so ~(A) is the kernel of (.L; thus we need to show that A (=A(A)) maps ~(A)

onto In(A). Since, by § 4, A is a homomorphism of Greenberg modules, therefore the
kernel of A is a Greenberg module and hence a connected unipotent algebraic k-group
[DG, p. 601, (1.2)]. So the conclusion results from the

1

following lemma:

Lemma (6.5). - Let

o~E~H~I~o

45



JOSEPH LIPMAN

he an exact sequence of ahelian sheaves on the category ofk-algehras with the fpqc topology. Suppose
that E is a connected unipotent algebraic k-group. Then for any k-algebra A such that AP == A,
the resulting sequence

o-+E(A) -+H(A) -+I(A)-+o

is exact.

Proof. - It suffices to show that Hl(A, E) ==(0) (the cohomology being taken
with respect to the fpqc topology). The long exact cohomology sequence associated
to the exact sequence

0-+ E red --+ E -+ E JEred~ 0

shows that we may assume that E is either smooth or infinitesimal.
In the smooth case, E has a composition series whose quotients are isomorphic

to the additive group W t [DG, p. 495, (3.9)]. In the infinitesimal case, since any
closed subgroup and any quotient group of an infinitesimal unipotent k-group is again
infinitesimal and unipotent, E has a composition series whose quotients are isomorphic
to pWt , the kernel of the Frobenius endomorphism ~ ofWt [DG, chap. IV, § 2, no. 2].
So we need only treat the cases E==Wt , E==pWt •

By descent theory

Hl(A, Wt)=(o)

(cf. [DG, p. 383, (6.6)] or [SGA 4, Expose VII, remarque (4.5)]). From the exact
sequence

(Y
o-+pWt -+ W t~Wt-+o

we deduce then that

Hl(A, pWt)~ AJN =(0).

This completes the proof of Lemma (6.5), and of (6.3).

Proof of (6.4). -We use an argument due essentially to Oort [0, § 6].
With notation as in the beginning of § 2, we can associate to each triple (Y, (!), /)

a diagram with exact rows

e=Hl(exp)

3*
--+ Hl(I +/) ~ IfI((9*)

which varies functorially with the triple (Y, (9, /). Suppose that /5;;JV, where JV is
some {O-Ideal with the properties:
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a) JV is a Nil-ideal (i.e. for each yEY the stalk~ consists entirely of nilpotent
elements of (f)y) •

b) JV)'=(o).
c) In the canonical diagram

HO«(O) ~ HO(£O)=HO«(OI),)
".u /
~ )/'1;

HO( (f) IJV)

the maps u and ii have the same image in HO( (f) IJV) . (c) holds, for instance, if u is
surjective. )

Since the kernel of ii is HO(JVI)') , c) is equivalent to:

c') HO( (f) I)') = y(HO( (f))) +HO(JVI),).

With these assumptions, we will show that:

(*) e(image of ~)=(image of ~.).

(*) implies that e induces an isomorphism of coker(~) (= ker(Hl((0) ~ Hl(£0))) onto
coker ~.. Thus, granting (*), to prove (6.4), we have only to check that a), b) and c)

hold for Y=XA, (0= (On, A' )'=J¥;r-t (On, A' JV=%x(On,A. Let us do this.
Since %x is the Nilradical of (Ox, and (On, A= (f)xA/J¥;r(!)XA' a) and b) are obvious.
As for C), it is enough to show that u is surjective, and this results from the next

lemma (with X=Xn).

Lemma (6.6). - For any k-algebra A, the canonical map

uA : HO(XA, (OXA) ~ HO(Xt,A' (f)Xl,A)

is surjective.

Proof. - We have a natural commutative diagram

Since X1,A=X1(8)kW(A)/(P), w is bijective [EGA Ill, (1-4.15)]. So it suffices to
show that

uk : HO(X, (Ox) ~ HO(X1, (OXl)

is surjective, i.e. that HO(X, (Ox) red = HO(X1, (f)Xt).

47



and hence

JOSEPH LIPMAN

Let k be an algebraic closure of k, and let X=X(8)w{k)W(k). k being perfect,
we have that

is reduced, and hence

X t =Xred ·

Since, clearly, W(k) is fiat over W(k), therefore [EGA Ill, (I -4- 15)]

HO(X, (f)x) = HO(X, (f)x) (8)W(k)W(k)

HO(X, (!)X)red =HO(X, (f)X)red®kk.

Consequently

[HO(X, (f)X)red : k] = [HO(X, (f)X)red : k] = number of connected components of X,

and similarly

[HO(Xt , (f)Xl) : k]=[HO(Xt , (J)Xl)red : k]=number of connected components of Xt.

Thus

and the conclusion follows. Q.E.D.
Finally, we prove (*).
Since we are dealing only with HO and HI we can use Cech cohomology. If

gEHO(&) =HO((!)/J) , then, bye') above, g=y(h)+n, with hEHO((f)) and nE HO(JV/J) ,
and so 8g=8n. Let {Vi} be an open cover ofY such that nlUi lifts to niEr(Ui,JV).
Then 8n is represented by the cocycle {nij }, with

nij =(nil Ui n Uj) -(nj IVi n Vj) E r(Ui nUj, J).

Also, l+nEHO(((f)/J)*) (since JV is a Nil-ideal, cf. a) above), and 8*(I+n) IS

represented by the cocycle {n~j}' with

l+n·IV.nU.
nij = I+ n~ IU~ () U~ = 1+ nij =exp(nij)'

j " :J

(The second equality holds because JVJ = 0 (er. b) above), so that (nj IU i n Uj)nij = 0).
Thus e(8n)=8*(I+n), and so we have

e(im(8)) C im(8*).

Conversely, suppose that gEHO(&*). As above, g=y(h) +n, and now y(h) =g-n
is a unit in HO(~) since g is a unit and ii is locally nilpotent. Since y has nilpotent
kernel HO(J) (J2=(0)), it follows that h is a unit in HO(&). Hence, if n'=njy(h),
we have

o*(g) = o*(y(h) (I +n')) = 0*(1+ n') = e(on')
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(cf. preceding paragraph), and so

im(~*) C e(im(~)).

This completes the proof of (6.4), and of Proposition (6.2).

49

Corollary (6.7). - Let B be a k-algebra such that X t Q9kB has a section over kj Q9kB
(kt ==HO(Xt , (()x)). Then for any B-algebra A such that N==A, the canonical map
Pic(XA) -+P(A) is surjective, its kernel being (functorially) isomorphic to Pic(Spec(k1Q9kA)).

Proof. - By (6.2) (and in view of (6. I)), we may assume that X==Xt • Then P
can be identified with the usual Picard functor PicX/k (cf. middle of § 2), so it will suffice
to show that the natural sequence

0-+ Pic (Spec (kt Q9kA)) -+ Pic(XQ9kA) -+ PicX/k(A) -+ 0

is exact whenever A is a B-algebra. But then XQ9kA has a section over k1Q9kA, and

HO(XQ9k A , (()X0k A ) == HO(X, (()x) Q9 kA ==k1 Q9kA

[EGA Ill, (1.4. IS)]; so from [FGA, p. 232-05, Cor. (2.4)] it follows that the sequence

0-+ Pic (Spec (k1Q9kA)) -+ PiC(X@k
1
(k1 Q9 k A)) -+ PiCX/k1(k1@kA) -+ 0

11

is exact; and the desired conclusion is given by [FGA, p. 232-15, Prop. (6. I)], which
tells us that PiCXlkl(klQ9kA) is functorially isomorphic to PicX/k(A).

(No proof of the cited Prop. (6. I) is given, but one can proceed (for example) as
in the proof of Corollary (6.13) below.)

Corollary (6.8). - Let k' be a kt-algebra such that k' is a free kt-module offinite rank r,
and such that Xt@k1k' has a section over k'. Thenfor any k-algebra A such that N==A, the
cokernel of Pic (XA) -+ P (A) is annihilated by r.

In particular, if X is connected, so that kt is a field, then this cokernel is annihilated by the
greatest common divisor of the degrees (over k1) of all the zero-cycles on X t •

Proof. - As in the proof of (6. 7), we may assume that X== X t and P == PicX/k;
and furthermore, since then Pic(XA) -+ PicX/k(A) can be identified with

Pic(XQ9k1 (k1Q9kA)) -+ PiCX/k
1
(ktQ9k A ),

we are reduced to a well-known statement about PiCX/k1 : with B == k1@kA, if
~ E PiCX/k1(B), then the image of ~ in PiCX/k1 (B') (B' == B Q9 k1 k') is given by an invertible
sheaf.If on X'==X<8>k1B' (since X' has a section over B'==HO(X', (()x')), and one checks
that r~ is given by the norm of fe, which is an invertible sheaf on X®k

1
B [EGA 11,

§ 6.5]. Q.E.D.

We see next (Corollary (6.10)) how P(A) can be described by "Galois descent".
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Lemma (6.9). - Let Y be a reduced scheme proper over a field F, and set Fl = HO(Y, my).
Let K be a Galois field extension of F such that each connected component Z of Y has a K-rational
point (i.e. there exists an F-morphism Spec(K)~Z). Then YQ9FK has a section over F1 Q9FK.

Proof. - We reduce at once to the case where Y is connected, so that Fl is a finite
field extension of F. Then we have, by assumption, an F-morphism Spec(K)~Y,

which, composed with the canonical map Y ~Spec(Fl)' gives rise to an F-homornorphisrn
Fl~K; so we may identify Fl with a field between F and K.

It will suffice to show the existence of an Fl -homomorphism K~F1Q9FK, i.e. an
Fl-morphism Spec(Fl Q9FK) --* Spec(K); for then, composing with Spec(K) --*Y, we will
haveanFl-morphism Spec(F1Q9FK)~Y, whence a section of YQ9F K (=YQ9F

1
(F1Q9F K ))

over F1Q9FK, as desired.
Since F1 is a subfield of finite degree of the Galois extension KIF, we have that

Fl = F[X] J(P(X)), where P(X) EF[X]

is a polynomial which splits into linear factors over K; hence Fl®FK is a direct product
of [F1 : F] Fl-algebras K i (i = 1, 2, ... , [F1 : F]), each of which is F-isomorphic to K.
But since K is Galois over F, each K i is actually Fl-isomorphic to K, and consequently
there exists an Fl-homomorphism K--*F1Q9FK. Q.E.D.

Corollary (6. 10 ). - Let K be a Galois field extension ofk such that each connected component
of Xl has a K-rational point. Let A be a k-algebra such that AP == A, and set AK == A®kK.
Then:

(i) The canonical map Pic(XAK) --* P(AK ) is surjective, with kernel isomorphic to
Pic(Spec(k1®kAK))·

(ii) The obvious map P(A) --* P(AK) takes P(A) isomorphically onto the subset qf P(AK)

consisting of those elements which are invariant under the natural action of the Galois group of Klk.

Proof. - (i) follows from (6.9) and (6.7).

(ii) is given, when [K: k]<oo, by a standard-and straightforward-interpreta
tion of the exactness of the diagram

P(A) --* P(AK) ~ P(AK Q9A A K).

(Exactness holds because P is a sheaf and AK is faithfully flat over A.) If K is not finite
over K, the conclusion follows easily from the facts that K == lim K oc as K oc runs through

~

all Galois subfields of Klk finite over k, and that P commutes with filtered direct limits
(for example because P is locally algebraic over k, by Theorem (1.2)).

Corollary (6.11). - Let pet be the etale sheaf associated to the functor Pic(XA)· If
N = A, then the canonical map

pet(A) --* P(A)

is bijective.
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Proof. - Let K be as in (6.10), with [K: k]<oo. For any k-algebra A, A(8)kK
is an etale A-algebra, Spec(A(8)kK) ~ Spec(A) is surjective, and (A(8)kK)P = A(8)k K .
It follows easily, since pet and P are both etale sheaves, that in proving (6. I I) we may
assume that A is a K-algebra. Then, by (6.9) and (6.7), PiC(XA)~P(A) is surjective,
so the same is true of pet(A)~ P(A). For injectivity we need:

Lemma (6. 12). - If AP = A and B is an etale A-algebra, then BP = B.
Granting this for the moment, we see, by (6.9) and (6.7), that there is a B-functorial

exact sequence
o~ Pic(Spec(k1®kB)) ~ Pic(XB) ~ P(B)

(B an etale A-algebra), and passing to associated etale sheaves, we see that the kernel
of pet(A) ~P(A) is P*(A), where P* is the etale sheaf associated to the functor

BM Pic(Spec(k1(8)kB)).

But any element of Pic(Spec(k1®kB)) is locally trivial on Spec(B), even for the Zariski
topology [EGA IV, (21.8. I)]. Thus P*=o, and so pet(A)~p(A) is injective.

Proof of (6.12). - Since A=AP, the structure map A~B factors through BP

A

/~
BP ~ B

and since B is etale (i.e. flat, unramified, and finitely presented) over A, it follows that
B is unramified over BP, and that B is a finitely generated BP-algebra, hence a finite
BP-module (since B is integral over BP). Localizing at the maximal ideals of BP and
using Nakayama's Lemma, we find then that BP =B. Q.E.D.

For the last result in this section, we consider, as in remark (I .5), a commutative
diagram

(#)

x x

f'

Spec(W(k)) (Spec(W(6)) Spec(W(k'))

where e:k~k' is a homomorphism of fields. The corresponding commutative diagram

k 6) k' = (W(k') /(pN) )red (pN (f)x = (0)) (1)

'" /L \l )/ L'

HO\X, (!JX) red

(1) For any k-algebra A let LA be the kernel of the truncation W(A)~A. Writing (as we may)

(0, a1' a2' •• •)=p(atIP , a~/P, ... ),

we find easily that Li=pLA, whence L~+1=pNLA for any N>o. Thus Ared=(W(A)/(pN))red·
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shows that k' is a finite algebraic extension of k (so that k' is perfect of characteristic p),
and that HO(X, (OX)red is a finite k'-module via L'. SO we can set

P'=P(X, k', L') fpqc sheaf associated to the functor
B M Pic (X <8>W(k') W (B)) of k'-algebras B.

Then for any k-algebra A, setting A' = k' ®k A, we have an A-functorial map (as described
in remark (1.6))

8A : P(A) ~ 6.P'(A)=P'(A').

As is easily seen, since 6.P' is anfpqc sheaf, 8: P-+6.P' is the unique map such that
the following diagram commutes for all A:

Pic(X<8>w(k) W(A)) ~ Pic(X<8>w(k') W(A'))

P(A) __aA_~) P'(A')

(Here YA is defined in the obvious way; and the vertical arrows are the canonical maps.)

Corollary (6.13). - The above map 8A is bijectivefor all k-algebras A. (In other words

P=6 P'=IT P'
• k'/k

where IT is Weil'& "restriction of scalars".)
k'lk

Proof. - Since P and 6.P' are fpqc sheaves, we may assume that AP = A (Cor
ollary (0. 2) ). As in the proof of (6. 1I), we may further assume that there exist exact
sequences

0--+ Pie (Spec (k1®k A )) --+ Pic(X®W(k) W(A)) ~P(A) --+ 0

0--+ Pic(Spec(k1 ®k' A') --+ Pic(X®W(k') W(A')) i P'(A') --+ o.

Since AP=A, we have XQ9W(k) W(A) = X®WN(k) WN(A) where N is such that pN (Ox =(0);

similarly XQ9W(k') W(A') = XQ9WN(k') WN(A'). Now Theorem (C.5) (Appendix C),

shows that WN(A') is canonically isomorphic to WN(k') Q9WN(k) WN(A), and so YA is an

isomorphism. One checks that YA maps the kernel of AA isomorphically onto the kernel
of A~ (since klQ9kA=klQ9k,k'®kA=klQ9k,A'). The conclusion follows.

7. An exact sequence.

The point of this section is to establish the exact sequence (7. 5), which carries
much information about the difference between Pic(XA) and P(A) when AP=A
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(cf. remark (7.7)). This exact sequence is deduced from the exact sequence (7.4),
which is essentially well-known (cf. Corollaire (5.3) in Grothendieck's expose" Groupe
de Brauer Ill" [G2]). For the convenience of the reader (and to satisfy the author)
we begin by reviewing the derivation of (7.4), elaborating on some details which are
taken for granted in loc. cit.

Let h: X ~ Spec(R) be a proper map, where R is a local Artin ring. The
category AffjR of affine R-schemes and the category SchjX of schemes over X can
both be given the etale topology, and then h defines a morphism of sites

Spec(T) ~ X T =X0R T

(T an R-algebra) (1). We have the left-exact functor h. from etale sheaves G on SchjX
to etale sheaves on AffjR, namely

h.G(Spec(T)) == G(XT).

The category of sheaves on AffjR is contained in the category of presheaves; let u be
the corresponding (left-exact) inclusion functor. Let:Yen (resp. flln) be the n-th right
derived functor ofu (resp. u oh.). For any abelian sheaf F on AffjR, £nF can be thought
of as a covariant functor of R-algebras T, namely

(where Hn denotes etale cohomology). Similarly for an abelian sheaf G on X we
can write

The etale sheaf associated to fllnG is just the higher direct image Rnh.G. In particular
(take X=Spec(R) and h=identity) thesheafassociatedto:YenFvanishesfor n>I. (For
more details cf. (for example) [A2 , chap. II, § 4].)

Let Gx be the multiplicative group on SchjX, i.e. the etale sheaf given by

Gx(Y~ X) = HO(Y, (O;r).

The spectral sequence for the composite functor uoh. gives rise to the exact sequence
of presheaves on AffjR (i.e. of covariant functors of R-algebras)

o~ :Ye1 (h* Gx) ~ flll(GX) .: R1h*(Gx)

Let us make more explicit the terms in this sequence.
According to the above remarks, fllnGx(T) == Hn(xT , Gx) and in particular

~lGx(T)= Hl(XT , Gx) = Pic(XT)

(1) On Aff/R, the etale topology can be described, as in § 0, in terms of covering algebras; and " locally"
the same is true for Sch/X.
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(the equality being functorial in T, cf. [A2 , chap. IV, p. 102, Prop. (1.2)]), and

~2Gx(T)=H2(XT'Gx)=Br(XT)

(where " Br" denotes " cohomological Brauer group ").
Furthermore the map '"t' : Bil(Gx) -+ RIh. (Gx) in (7 . I) can be identified with the canonical

map of the presheaf Bil(GX ) into its associated etale sheaf (which we will denote, as before, by
PiCX/R). (Proof: Denoting associated sheaves with "t'J", we obtain from (7. I) a
commutative diagram

£l(h.Gx) 8l1(GX)
't'

) R1h.(Gx) ) ~2(h.Gx)~

1 1 11 1
(Jt'l(h. Gx)) '" (Bil(GX)) '"

't'-

(R1h.(Gx))'" (~2(h*Gx)) '"~ ~ ~

11 11
0 0

where the vertical maps are canonical maps of presheaves into their associated sheaves.
The top row is exact in the category of presheaves, so the bottom row is exact in the
category of sheaves, i.e. '"t''" is an isomorphism of sheaves; our assertion follows.)

Next look at the functor

£n(h*Gx) (T) = Hn(T, h.Gx ).

For any R-algebra S, let So=HO(Xs, (!Jxs). Then h.Gx(S) is the group of units S~

in So. If T is an R-algebra and S is an etale T-algebra then So = S®T To [EGA Ill,
(I .4. 15)], and so we see that the restriction of h. Gx to the site Tat consisting of spectra
of etale T-algebras (with the etale topology) is equal to hO.GTo ' where GTo is the multi
plicative group on (To)at and ho : Spec(To) ~ Spec(T) is the canonical map. Hence
we have natural homomorphisms

Hn(T, h*Gx)=Hn(T, hO.GT) -+ Hn(To, GT).

These homomorphisms are biJective. (Indeed, by [SGA 4, VIII, Cor. (5.6)] it is enough
to check that To is integral over T; since

HO(XT, (!JXT) = lim HO(Xs, (!}xs)
~

as S runs through all finitely generated R-subalgebras of T [EGA IV, (8.5.4)], we
may assume that T is finitely generated over R; in this case T is noetherian, and since
X T is proper over T, To is actually afinite T-module.) Moreover, the edge homomorphisms

~(h.Gx)(T) -+ Bii(Gx)(T) (i=I,2)

in (7. I) can be identified with the usual cohomology maps

Hi(To, GTJ ~ Hi(XT , Gx)

(cf. [EGA 0 111 , (12. I. 7)]).
We have, finally:
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Lemma (7. 2). - For any ring S, let Gs be the multiplicative group on the site Set· If
~ is a nilideal in S, then the canonical maps

(n> I)

are biJective.

Proof. - By [SGA 4, VIII, Cor. (1.2), or Cor. (5.6)] we have isomorphisms

Hn(s, i~*(Gs/~)) ~ Hn(s/~, Gs/~)

where i~: Spec(S/~) ~ Spec(S) is the inclusion map. Since, clearly

i~*(Gs/~)= lim iJ*(Gs/J)
~

as J runs through all finitely generated ideals of S contained in ~, and since cohomology
on Set commutes with direct limits [SGA 4, VII, Prop. (3. 3)] it will suffice to show
that the natural map

(7.3) Hn(S,Gs)-+Hn(s,i~*(Gs/~)) (n>l)

is bijective whenever ~ is finitely generated; so we may assume that ~N= (0) for some
integer N. By an obvious induction, we need only consider the case ~2==(O).

For any etale S-algebra S' we have an exact sequence of multiplicative abelian
groups

1~ 1 + ~S' ~ (S')*~ (S' /~S')*~ 1

11 11

Gs(S') (i~*(Gs/~))(S')

Since ~2=(O), the truncated exponential map X-+I+X gives an isomorphism of the
additive group ~S' onto the multiplicative group 1 +~S'. Thus we have a surjective

homomorphism of sheaves Gs-+i~*(Gs/~) whose kernel is isomorphic to the sheaf .5
t'o.I

given as a functor by ~(S') =~S', S' as above. The bijectivity of (7.3) follows now
t'o.I

from the fact that Hn(s, ~)=(o) (n>l) [SGA 4, VII, Cor. (4.4)]. Q.E.D.

In summary: for a proper map h: X -+ Spec(R), with R a local Artin ring, we have an
exact sequence of functors of R-algebras T

o~ Pic(To, red) ~ Pic(XT) ~ PicX/R(T)

where

- X T =X<29R T
- To=HO(XT , (!JXT)

- To, red = To/(nilradical of To)
- Pic(To, red) = Pic(Spec(To, red))' and similarly for Br(To, red)
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- Br = cohomological Brauer group = H~t ( ., G.)
- (X and y are the natural maps arising from the map To--?To, red (which induces

isomorphisms of cohomology, cf. Lemma (7.3)), and from XT--?Spec(To).

~ is the natural map of the functor Pic(XT) into its associated etale sheaf.

** *
We shall apply (7.4) in the case R=Wx(k) (N)I), where k is, as usual, a

perfect field of characteristic p>o. We need two non-trivial observations. First of
all, Corollary (0.6) (ii) (Appendix C) shows that the functor of k-algebras

A-+Picx/R(Wx(A))

is the etale sheaf associated to the functor

A-+Pic(X®R Wx(A)).

Secondly, it follows, by Corollary (6.11), that if N===A, then the canonical map

PicX/R(Wx(A) )~ peA)

is biJective. (Let f: X -+ Spec (W(k) ) be obtained from h : X ~ Spec(R) === Spec (Wx(k) )
in the obvious way; and note that when AP=A, then X®WN(k} Wx(A) =X®W(k} W(A),

and furthermore if B is an etale A-algebra then BP=== B (Lemma (6. 12)); consequently,
with notation as in (6. I I)

PiCX/R(WN(A)) = pet(A).)

Now, as in § 6, we set

k1 = HO(X, (!)X)red = HO(Xred , (!)X d)
re

(cf. proof of Lemma (6. 6) ), and for any k-algebra A, we set

XA = X®W(k} W(A) (= X®R Wx(A) when AP=== A)

A === Ared === Af(nilradical of A).

Theorem (7. 5). - If AP === A, then we have an exact A-functorial sequence

0-+ Pic(k1®kA) ~ Pic(XA) ~ peA)

~ Br(k1®k A) ~ Br(XA)·

Proof. In view of the preceding remarks, (7. 5) follows from (7. 4) (with
R =Wx(k), T=Wx(A)) as soon as we can show that

HO(XA , (!)XA) red === k1 ®k A.
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But by Lemma (6.6) and its proof, we have a surjective homomorphism

HO(XA , (!)XA) ~kl®k(W(A)/(p))=kl®kA,
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with nilpotent kernel; hence we have a surjective map, with kernel consisting of nilpotent
elements:

HO(XA , ()XA) ~ k1®k A.

Since k1 and A are reduced, and k is perfect, therefore k1®kA is reduced, and the proof
is complete.

Corollary (7.6). - Let K be as in Corollary (6.10). Then,for AP=A, the cokernel
of Pic(XA) ~ P(A) is naturally contained in the kernel of Br(k1®k A)~ Br(k1®k K ®k A).

Remark (7. 7). - The main results of§ 6 are all easy consequences ofTheorem (7· 5).
(But note that (6. I I)-and hence, via (6.7), (6.2)-was used in the proof of (7.5)!)

Ill. - SOME LIE ALGEBRAS

8. The Lie algebra of H; conditions for H and P to be sDlooth.

The main result of § 8 is Theorem (8. I), which describes completely the Lie
algebra of the Greenberg module defined in Theorem (2.4). We deduce sufficient
conditions for the smoothness of P (Proposition (8.5)); in case X is a scheme over k
(i.e. P(!)x = (0)), these conditions reduce to the classical condition H2(X, (!)x) = (0).

Let i be a fixed integer, let g; be a coherent (!)x-Module, and let H=H(X, g;, i)
be the fpqc sheaf associated to the functor Hi(XA , g;®(!):x; (!)XA) of k-algebras A. As in § 4,
H is a Greenberg module, and (Corollary (4.4)) H(A) = Hi(XA , g;®(!)X(!)XA) whenever
AP=A. By Proposition (A.3) (Appendix A) the dimension ofH as a k-scheme is equal
to the length of the W(k)-module H(k) = Hi(X, g;). (But in general H is not a reduced
scheme, cf. Corollary (8.4).) As in Appendix B, we have a natural grading

Lie (H) = EB Liept(H).
t2:o

For any k-vector space V, and t>o, V(-t) will denote the k-vector space with

the same underlying abelian group as V, the V(-ttproduct of aEk and VEV being ap-tv

(the product, in the vector space V, of ap
-

t
and v). Any basis of V is also a basis ofV(-t),

so V and V(-t) are isomorphic (but not canonically!). V~V(-t) is clearly an exact

functor.
In the next theorem, we will refer to the following canonical commutative diagram

of W(k)-module homomorphisms (where Hi(g;) = Hi(X, g;), etc.):
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H i (pl+1:F) ====== H i (pl+1:F)

t
H i - 1(:F/pt:F) ~ Hi(pt:F/pt+1:F) ~ H'(:F/pt+1:F) ~ Hi(:F/pt:F)

8t (Lt Pt

Theorem (8.1) (1). - With the preceding notation, there exists a natural (functorial in X, :F)
isomorphism of k-vector spaces

(i) q> : Liept(H) ~ im(fLt)(-t)= ker(pt)(-t)

which induces

(ii)

and

(iii)

L · pt(H ) ~. ( )(-t) (. ( )/. ( ))(-t)le red ~ lm fLtOVt = lm At Im At+ 1

(Note that im(fLt) (= image of fLt) is a W(k)-module annihilated by p, hence a
k-vector space, so the notation makes sense. Note also that H red is a Greenberg sub
module of H, cf. proof of Proposition (A.3).)

Proof. - To begin with, the equality in (ii) holds because

im(At) 2 im(At+1) = ker( at +1)

and so im(fLt 0 V,) = im( (It +10 At) ~ im(At ) /im(At+1).

The equality in (iii) will come out explicitly from the proof of (ii) (2). For the
isomorphism in (iii) , once (i) and (ii) have been established we need only note that

ker(fLt) = im(~t) £ im(vt)

so that im(fLt)/im(fLtoVt)~coker(vt).

Let us now define the isomorphism <p in (i). Let U be a finite affine open covering
of X, and let C.=C.(U,:F) be the corresponding Cech complex. As in § 4, there

(1) A more comprehensive statement describing H itself is given in remark (8.8) below.
(2) More generally, with the notation and assumptions of Lemma (6.5), if E is also smooth, then

HI(k, E)=Hl(k[e], E) =(0) (e2 =0),

and it follows easily that Lie(I) = Lie(H)/Lie(E).
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exists a complex Q. of finite-length W(k)-modules, and a W(k)-homomorphism of
complexes u: Q.~C. which induces, for k-algebras A, an A-functorial isomorphism
of W(A)-modules

H_i(Q.®W(k)W(A)) ~ H_i(C.®W(k)W(A)) = Hi(XA , :F®~XmXA)'

Furthermore, the construction of Q. and u is such that the homology maps induced by u

H_i(pTQ.) ~ H_i(p'C.) (r> 0)

are isomorphisms (c£ first two paragraphs in the proof of Proposition (3. I)) . Using the
" five-lemma", we deduce isomorphisms, for s> r> 0

(8.2)

where the equality holds because

pT C.lps C. ~ C.(U, pT~ Ips ~).

For convenience, we denote the piece

Q-i+l ~Q-i~Q-i-l

of Q. by E~F~G so that, with I==cx(E), (8.2) becomes:

(8.3) (pTFn~-l(pSG))/(PsF+pTI)~Hi(x,pr:FJps:F) (s>r>o).

As in the proof of (4. I), we see that if F' == F 11, so that there is a natural map
~' : F'~G induced by ~, then our functor H is just the kernel of the corresponding
map of Greenberg modules ~': F'~G. In view of Proposition (B.2) (Appendix B),
we have therefore the isomorphisms

Liept(H)~ker((ptF'jpt+1 F,)(-t) ~ (ptGlpt+1G)(-t))

~ (ker( (ptF + I) J(pt+l F + I) ~ ptGlpt+l G) )(-t)

== ((ptF n ~-1(pt+1G)+ I) j(pt +1 F+ I) )(-t)

~ im(llt)(-t)

where the last isomorphism results easily from (8.3). This gives us the desired <:p

(depending, for the moment, on the choice of U, Q., and u).
To check (ii), we set J == ~(F) ==~' (F') and show that

H red == ker (F'~J) ·

(Replacing G by J in the preceding paragraph, we see then that

ep(Liept(Hred)) == ((ptF n(pt+1F + ~-1(0)) + I) J(pt+1 F +1) )(-t)

whence, using (8.3), we find that

ep(Liept(Hred)) == im(llt 0 vt)(-t)

as desired.) Setting K==ker(~/), we obtain, for any k-algebra A, an exact A-functorial
sequence

K®W(k)W(A) ~ F'®W(k)W(A) ~ J®w(k)W(A) ~ 0
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and then, upon passage to associated fpqc sheaves, an exact sequence

K~F'-+J-+o.

So the kernel H. of F' -+J, being a homomorphic image of the smooth Greenberg
module K, is itself smooth. Moreover, since H = ker(F' -+G), we have that

H/H. ~ ker(J -+G).

But since J(k) -+G(k) is just the inclusion map of J into G, we have that

(HjH.) (k) == (0)

so that H/H. is infinitesimal [DG, p. 601, (1.2)]. Thus H.==Hred , and (ii) is proved.
Finally, we have now, as above

Liept(H/Hred) == Liept (HjH.) = ker( (ptJ jpt + 1J)(- t) -+ (pt G Ipt + 1G)(-t))

=ker( (ptF' jpt+ 1F,)(-t) -+ (ptGIP'+1G)(-t)) Iker( (P'F' Ipt+1F,)(-t)

-+ (ptJ Ipt+1])(-t))

= Liept(H) ILiept(Hred),

and this completes the proof of (iii).
It remains to be shown that cp is natural. Let (Y, ~) be a pair satisfying the

same conditions as (X, :F), let r,JJ: Y-+X be a W(k)-morphism, and let 6: ~ -+ r,JJ. ~
be a homomorphism of (Ox-modules. Choose a finite affine open covering U' of Y,
and, as before, a map of complexes

u' : Q'. -+c; ==C.(U', ~),

and let cp' be the isomorphism defined as above, but relative to (U', Q'., u'). Next,
choose a finite affine open covering U" of Y which refines both U' and r,JJ-1(U). Then,
if C;' =C.(U", (9') we get a W(k)-homomorphism of complexes C; -+ C;', unique up
to homotopy. Similarly, via (r,JJ, 6), we get a map C.(==C.(U, ~))-+C~', unique up
to homotopy. Hence we have a composed map

V • Q EB()' C t;eC' C"• • '::<". -+ •w • -+ •.

Now according to remark (3.9), we can choose u" : Q': -+C:' satisfying the usual
conditions, and such that furthermore v == u" 0 w for a suitable w: Q. EB Q'. -+Q':. So
we have a diagram

Q. ~ c.

1 1
Q': ~ c:'

i i
Q'. ~ C;
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by means of which we can relate the isomorphisms cp, cp' to the isomorphism cp" (defined
as before, relative to (U", 0::, u")). In this way we can reach the desired conclusion;
details are left to the reader. Q .E.D.

Remark. - The following consequence of (8. I) seems worth noting. Is there a simple direct proof?
For each t ~ 0, let Ht = H(X, §"Ipt §", i), and let Kt be the kernel of the obv ious map H t +1~ Ht. Then the

canonical sequence

is exact, and has a natural splitting; furthermore we have natural isomorphisms

Lie(Ki) = LiePt (H) = (Ki(k))( -t).

Corollary (8.4). - H is smooth (as a scheme) if and only iffor all t>o the canonical map

(I, : Hi(X, /F) ~ Hi(X, ,FJP' ,F)

is surjective.

Proof. - Since HJHred is connected, therefore:

HJHred=(o) (Le. H is smooth)

<:> Lie (HJHred) =(0) [DG, p. 236, (1.4) (v)]

<:> v, is surjective for all t > 0 (cf. (8. I) (iii))

<:> Hi +1(pt+l,F) ~ Hi+l(pt~) is injective for all t> 0

<:> Hi+l(pt+l~) ~ Hi+l(~) is injective for all t > 0

<:> (It + 1 is surjective for all t > o. Q.E.D.

Proposition (8.5). - P is smooth if anyone of the following (equivalent) conditions hold:

(i) For all t > 0, H2(pt (gx) = IP((gxJpt (gx) = (0).
(ii) For all t>o, H2(pt(gxJpt+l(gX) =(0).
(iii) The scheme W=H(X, (gx, I) is smooth and the scheme W=H(X, (gx, 2) zs

trivial (i.e. isomorphic to Spec(k)).

Remark. - If the conditions of Proposition (8.5) hold, then:

dimension of P= dimension of the k-vector space Lie(P)

=A(JI1((gX)) (cf. Theorem (g. I)).

where" A" denotes the length of a W(k)-module.

Corollary (8.6). - a) If the dimension of X is I, then P is smooth, of dimension A(Hl((gX)).

b) If the dimension of X is 2, and if H2( (gx) = (0), then P is smooth, ofdimension A(Hl((!Jx)).

(Proof: If dim. X= I, then condition (ii) of (8.5) clearly holds. The same is
true if dim. X=2 and H2((!JX) =0, since pt (gxJpt+l(!JX is a homomorphic image of (gx.)
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Proof of (8.5). - We first show that (i), (ii), and (iii) are equivalent.

(i) => (ii): It suffices to show that for all s with 0< s < t

H2(p8(!}xlP' +1(!}x) ~W(p8-1 (!}xlP' +1(!}x)

is injective; or, equivalently,

(* *) H1(p8-1 (!)xlP' +1(!)x) ~ H1(p8 -1 (!Jxlp8(!Jx)

is surjective; since (*) holds by assumption when t is large enough (so that p' +1(!}x = (0) )
so then does (**), and it follows that (**) holds for all t.

(ii) => (i): For 0< s < t we have an exact sequence

H 2(p8 (!)xlP' (!)x) ~ W(P8 -1 (!}xlP' (!)x) ~ H 2(p8-1 (!}XIP8 (!}x).

Hence, by induction on t-s, we find that

H2(p8(!}xlp' (!)x) = (0).

(iii) <:>(i). Since dim. H 2=A(IP((!}X))' Corollary (8.4) shows that H 2 is trivial
if and only if H2

( (!}xlP' (!}x) = (0) for all t > o. We also deduce from (8.4) that IF
is smooth if and only ifH2(p' (!}x) ~ W( (!)x) is injective for all t > 0; the equivalence
of (i) and (iii) follows.

Now, assuming that (iii) holds, we show that P is smooth, i.e. for every k-algebra A
and every A-ideal ~ with ~2=(0), the canonical map P(A) ~P(A/~) is surjective
(cf. (for example) [DG, p. 238, (2. I) (vii)]).

Let us show, to begin with, that if N=A then the canonical map Pic(XA) ~ Pic(XA/~)

is surjective. Indeed, if / is the kernel of (!)XA ~(!}XA/~' then we have an exact sequence

H1((!}XA) ~ H1((!)XA/~) ~ H2(/) ~ H2((!)XA);

slnce N=A, this sequence can be written

(cf. remark (4. 4) ) ; since Ht is smooth, 'Tt is surjective, and since H 2 is trivial, 8 2(A) = (0) ;
thus H2(/) =0. But /2= (0) (Lemma (8. 7) below) and so via the truncated expo
nential map we have an exact sequence

Pic(XA) ~ PiC(XA/~) ~ H2(/),

whence the assertion.
Next, consider the fpqc sheaf PI defined on the category of A-algebras B by

PI(B) = P(B/~B).

There is a canonical homomorphism of sheaves cp: P~PI' and, I claim, this is
surjective. For, by (0. I) and (6. 10) (i), we can find, for any B, a faithfully flat B-algebra B
such that BP=]3, and such that there exists a commutative diagram, with exact rows
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-----+) P(B) ~ °

<X

But, as we have just seen, (X is surjective, whence so is ~, so that indeed cp is surjective.
We wish, finally, to show that

cp(A) : P(A) ~ P1(A)

is surjective. For this it will suffice to show that ~pqc(A, L) = 0, where L = ker(cp).
But for any A-algebra B, we have a canonical isomorphism

L(B) ~ ~B®kLie(P)

(cf. [DG, p. 208]). If, furthermore, B is flat over A, then clearly

L(B)~B®AL(A).

Since only flat A-algebras enter into the determination of ~pqc(A, L), descent theory
shows that H1pqc(A, L) = 0, as desired [SGA 4, Expose VII, remarque 4· 5]. Q.E.D.

In the preceding proof, and also in § 9, we need:

Lemma (8.7). - Let A he a k-algehra, let ~ he an A-ideal with ~2= (0), and let / be
the kernel of the natural map (!JXA ~ (!JXA(J. Then:

(i) Pf=(o).
(ii) /2= (0).

Proof. - / is generated, as an (!JxA-Ideal, by the kernel of W(A) ~W(A/~),

i.e. by the W(A)-ideal

W(~)={(xo,Xl' X2 , ••• )EW(A) IXiE~ for all i}.

So it suffices to show that pW(~)=W(~)2=(0).

That pW(~)=(o) follows at once (since ~2==(0)) from the identity

p(xo, Xl' X2 , ••• )==(0, XC, xi, xl, ).

Now if (Uo, U I , U 2 , ••• ), (Vo, VI' V2, ) are Witt vectors with indeterminate
entries, then their product can be expressed in the form

(Vo, VI' U 2 , • • .) (Vo, VI' V2 , • • .) == (Po(U, V), PI(U, V), P2(U, V), · · .)

where the Pv(U, V) are polynomials in

U ==Uo, UI, U2 , ••• and V=Vo, VI' V2 , •••

such that
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thus each term In Pv is divisible by at least one U i and at least one Vj ; specializing

Ui~xi' Vj~Yj (xi,YjEI)

we conclude, since ~2==(0), that

(xo, Xl' X2, • •. ) (YO,YI,Y2, •.. ) = (0, 0, 0, ... ).

Hence W(~)2=(0).

** *

Q.E.D.

(8.9)

Remark (8.8). - What follows will not be needed elsewhere; but it serves to put the results of § 8 in better
perspective.

There is a structure theorem for the category of Greenberg modules, due to C. Schoeller [Soh, § 5]. Schoeller's
theorem can be reformulated in terms of Dieudonne modules. First, some notation. Let W be the ring W(k). For
any w=(wo, w1 , W2' •.. )EW, and any integer t, we set

w(pt) = (wg t ,wft, wft, ... ).

The Dieudonne ring P) (over k) is the (non-commutative) ring generated by Wand by two indeterminates F and V
subject to the relations

Fw=w(p)F, wV=Vw(p) (WEW)

FV=VF=p.

For a left .@-module S, a direct product decomposition of W-modules

will be called a cograding on S if there exist maps

Vn +1 : Sn+1 -+ Sn, Fn : Sn -+ Sn+1 (n 2:: 0)

such that for (so, S1' s2' S3' ... ) E S, we have

V(so, s1' S2' S3' ••• ) = (V1s1, V 2 S2 , V 3S3' ... )

A morphism CI>: n Sn -+ IT T n ofsuch cograded ~-modulesis a family of maps CPn: Sn -+ T n (n 2:: 0) satisfying
n2::o n2::o

certain obvious conditions. We say that the cograding on S is of cofinite type if Sn is a W-module of finite length
for all n, and furthermore there is an no such that Vn+1 is bijective for n 2:: no.

To each Greenberg module M, we can associate a cograded F)-module S(M) of cofinite type, as follows. Let
K be the fraction field of W, and for any W-module M let M' be the W-module

M'=HomW(M, K/w).

Also, for any integer t, let M(t) be the W-module with the same underlying abelian group as M, and with scalar
multiplication * given by

w*m=w(pl)m (WEW, mEM).

S(M) is defined to be the W-module

S(M)= IT (Homw(M, W n+1)')(-n) = IT Sn(M)
n~O n~O

together with the maps Fn , V n +1 (n 2:: 0) given by

(Fnf) (cp) = f(Pn+1, n+ 2° cp)
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(fESn(M); ep :M~Wn+2; and Pn+l,n+2 :Wn+2~Wn+1 is the truncation map)

(Vn +1g) (~) = g('t'n+ 2, n+l O~)

(gESn+1(M); ~ :M~Wn+1; and 't'n+2,n+l :Wn+1~Wn+2 is the unique map such that 't'n+2,n+loPn+l,n+2
= multiplication by p in W n+2). Multiplication by F and V in S is defined by (8.g). S(M) varies functorially
withM.

Structure theorem. - The functor S is an equivalence from the category of Greenberg modules to the category of cograded
£5}-modules of cofinite type (l).

Complements. - It can be shown that:

a) The kernel of V: S(M)~ S(M) is a k[F] (= £5}/£5}V)-module, and (with (Vo : So~ (0)) = null-map)

ker(V) = IT ker(Vn) = Er> ker(Vn).
n.2.0 n2:.0

(Since S(M) is of cofinite type, ker(Vn)=(o) for large n.) There exist natural isomorphisms of k-vector spaces

ker(Vt) ~ Liept(M) (t ~ 0)

via which multiplication by F in ker(V) corresponds to the standard p-th-power operation in Lie(M) [DG, p. 273].
b) There is a natural map

ern :M(k)~ Sn(M)

where, for xEM(k) and epEHomw(M, W n+1)

(ern(x))(ep) = image of x under the composite map

M(k) ~ W n+1(k) ~ p-n-1W/W£ K/W.

For all n ~ 0, we have

Sn(Mred) = ernM(k) £; Sn(M).

Now let us determine S(H) for H as in Theorem (8. I). If M is a W-module of finite length, and M is the
associated Greenberg module, then (Proposition (A. I) (iii)), there are canonical isomorphisms

Homw(M, W n+1) ~ Homw(M, W n+1(k)) (n ~ 0).

The isomorphisms

give isomorphisms

Homw(M, Wn+t(k)) ~ (Mjpn+1M)'.

From this we find that

Sn(M) = (M/pn +1 M)( -n)

Vn +1 : M/pn + 2 M ~ M/pn + 1 M is the canonical map

Fn : M/pn+1M~ M/pn+2M is the map induced by multiplication by p in M.

Arguing as in the proof of Theorem (8. I) we deduce that

Sn(H) = (Hi(~/pn + 1~)( -n)

V being induced by the natural maps

~/pn+l~~ ~/pn~

and F by the composed maps

~/pn~~ p~/pn+l~ '-+ :F/pn+l~.

This, then, describes the "structure" of the Greenberg module H. Theorem (8. I) and Corollary (8.4) follow
easily now from a) and b) above.

(l) Cf. also remark (8. 10) at the end of this section.
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** *
(8.10) We end with an observation which may make the Structure Theorem seem more appealing. The

W-module SeM)' can be made into a 2}-module in a natural way [DG, p. 622, (5.2 b)], and one can construct a
natural isomorphism of 2}-modules from S(M)' to the 2}-module J( associated (as in [DG, chap. V, § I, no. 4]) with
theunipotentalgebraick-groupunderlyingM. Thus J(=S(M)' is a 2}-module of finite type; and there is further
more a grading of W -modules

J(=S(M)'= EB Sn(M)'= EB Jt~
n.2.0 n.2.0

such that multiplication by F (resp. V) in J( takes J(~ into J(~+ 1 (resp. Jt~ + 1 into J(~). So we have also an anti
equivalence from the category of Greenberg modules to the category of graded (as above) 2}-modules of finite type.

Informally speaking, putting a Greenberg module structure on a unipotent algebraic k-group U is equivalent to
putting a grading (as above) on the 2}-module associated with U.

9. The diD1ension of Lie(P).

This section is devoted entirely to the proof of:

Theorem (9. I). - For each t > 0, let V, be the canonical map

H 1(X, pt (!)x) -+ H 1(X, pt (!)xjpt + 1 (!)x).

Let" A " denote the length of a W(k)-module. With this notation, the dimension of the k-vector
space Lie(P) is

Proof. - For any k-vector space V, let dimk(V) be the dimension of V over k.
Note that di~(V)= dimk(V(-t)) (cf. paragraph preceding Theorem (8. I)). Taking
i=l, :F'=(!)x in Theorem (8.1), so that H=H(X, (!)x, I), we see that

dimk(Lie(H)) = dimk(Lie(Hred)) + dimk(Lie(HjHred))

= A(H1(X, (!)x)) + ~ A(coker(vt))·
t.2.0

(The fact that dimk(Lie(Hred)) = A(H1(X, (!)x)) can also be established by noting that
H red is smooth, of dimension A(H1(X, (!)x)), cf. beginning of § 8.) So Theorem (9. I)

asserts that Lie(P) and Lie(H) have the same dimension (where, again, H is the fpqc sheaf
associated to the functor H1(XA, (!)XA) of k-algebras A) (1).

Let X' be the closed subscheme of X defined by the (!)x-Ideal p(!)x. Let P'
(resp. H') be the fpqc sheaf associated to the functor Pic(X~) (resp. Hl(X~, (!)xA)) of
k-algebras A (X~ = X' Q9W(k) W(A)). X' is a scheme over k, and, as in the middle of § 2,

there is an isomorphism of functors

P' ~PicX'lk.

(1) A more satisfying result would be that there is a natural isomorphism between Lie(P) and Lie(H). I have
not been able to prove-or disprove-this. (Cf. however remark b) at the end of § 9.)
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It is well-known (and not hard to prove) that there is an isomorphism of k-vector spaces
Lie(Picx'/k)~Hl(X', (£Jx'). Similarly (or by Theorem (8_ I)) Lie(H')~Hl(X', (£Jx').
Thus

(g _2) dimk(Lie(H')) == di~(Lie(P')).

(Actually, a proof of (9-2) will fallout at the end of the proof of (9-5) and (9-6) below.)
From the exact sequences

O~P(£JXA ~(£JXA ~(£JXA ~o

I ~ I +P(£JXA~ (£JXA~ (£JXA -+ I

we deduce the exact sequences of fpqc sheaves

0-+ C -+D -+ H -+ H'

o-+C* -+D* -+P-+P'

where C, D, C*, D* arefpqc sheaves associated to certain functors of k-algebras A, viz:

C - to the cokernel of HO ((£JXA) -+ HO ((£JXA)

D - to Hl(p(£JXA)

C* - to the cokernel of HO( (£JXA) -+ HO( (£JXA)

D* - to HI(1+P(£JXA).

Arguing as in § 2, we find that C, D, C*, D* are all affine algebraic k-groups. We will
show below that:

(9-4) C and C* are smooth algebraic k-groups, and their dimensions are equal (whence

dimk(Lie(C)) == dimk(Lie(C*))).

(g _5) Lie(D) and Lie(D*) are naturally isomorphic.

(g -6) The following two sequences of k-vector spaces (derived from (9.3)) are exact:

0-+ Lie(C) -+ Lie (D) -+ Lie(H)~ Lie(H') -+ 0

o~ Lie(C*) -+ Lie(D*) -+ Lie(P) -+ Lie(P') -+ o.

In view of (9-2), (9-4) and (9-5), (9- 6) implies that

dimk(Lie(H)) == dimk(Lie(P))
as required.

Proof of (9-4). - Let % be the Nilradical of (£Jx, and let Xl == X red == X;ed. We
have a commutative A-functorial diagram

o ~ HO (%(£JXA) ~ HO ((£JXA) ~ HO((£JXl,A) ~ 0

(9-7)

t
~ HO ((£JXA) ~ HO ((£JXl,A) ~ 0
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with exact rows (cf. Lemma (6. 6) ), from which we see that C is also the fpqc sheaf
associated to the cokernel of HO(,A!(J}XA) ~ HO(,A!(J}XA). So" sheafification" of the
exact sequence

gives rise to an exact sequence of fpqc sheaves

(g.8) o~ F ---+ G -+ G' ---+ C ---+ o.

Each of F, G, G' is an affine algebraic k-group. (To see that G is affine algebraic, sheafify
the first row of (9.7) and use Theorem (2.4); for G' do the same with the second row
of (9.7); finally, note that F is the kernel of G---+G'.) Furthermore, G' is smooth:
indeed, since X~ = X'®k W(A) /(p), we have

HO(,A!(J}XA) = HO(,A!(J}x') ®k W(A) /(p)

= HO(,A!(J}x') QS)W(k} W(A);

so G' is isomorphic, as a scheme, to some affine space (Proposition (A. I) (i), Appendix A).
Since C is a quotient of G', C is smooth. From (9. 8), we have

dim(C) = dim(F) -dim(G) +dim(G').

Similarly, we have an exact sequence

o ---+ F* ---+ G* ---+ G'* ---+ C* ---+ 0

where F* (resp. G*, resp. G'*) is thefpqc sheaf associated to the (multiplicative) group
functor HO( I +P(J}XA) (resp. HO( I +,A!(J}XA) ' resp. HO( I +,A!(J}XA)). As set functors,
HO (P(J}XA) and HO( I +P(J}XA) are clearly isomorphic; hence, as k-schemes, F and F* are
isomorphic. Similarly, G~G*, and G' ~G'*. So G'* is smooth, and as above, we
deduce that C* is smooth; furthermore,

dim(C*) = dim(F*) - dim(G*) +dim(G'*)
= dim(F) - dim(G) + dim(G')
=dim(C),

and this proves (9.4). (Note: Since Lie(C) is isomorphic to the Zariski tangent space
at the origin of C (cf. Appendix B), and since C is smooth, we have

dimk(Lie(C)) = dim(C),

and similarly for C*.)

Proofs of (9·5), (9. 6), and (9. 2 ). - Let A be a k-algebra and let 3 be a non-zero
ideal in A such that 3 2 =(0). Assume that:

(i) AP=A (whence (A/3)P=A/3), and
(ii) the canonical maps Pic(XA) ---+ P(A), Pic(X~) ---+ P'(A),
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are surjective, with kernels isomorphic to

69

where k1 = HO(X, (!Jx d) = HO(X', (!Jx, d) ;re re

and similarly for Pic(XA/~) ~ P(A/:J), Pic(X~/~) ~ P'(A/:J).
(For example, if K is a normal algebraic field extension of k such that every

connected component of X has a K-rational point, if B is a k-algebra and 3 =F (0) (1) is
a B-ideal with 3 2=(0), then we can take A to be a faithfully flat BQ9kK-algebra with
AP=A (Lemma (0. I)), and :J to be 3A. Then (ii) follows from (6.9) and (6.7).)

For convenience, set

(!)A = (!)XA

(!J~ = (!)XA

(!JA/~ = (!JXA/~

(!)~/~ = (!JXA!~

and let (!)~, (!J~*, etc., be the corresponding sheaves of units. (These are all sheaves on
the topological space underlying XA.)

For any locally algebraic k-group Q, there exists a natural isomorphism

Lie(Q,) Q9k~ ~ ker(Q,(A) ~ Q,(A/~))

(cf. [DG, p. 208]). Our first chore, which will be rather dreary, is to show that with
(A,:J) as above we have natural isomorphisms:

a) Lie(D) Q9k :J ~ker(Hl(p(!)A) ~ Ifl(P(!)A/~))

b) Lie(H) Q9k :J ~ ker(Hl( (!)A) ~ Hl((!)A/~))
c) Lie (H') Q9k~ ~ ker(Hl( (!)~) ~ Hl( (!)~/~))

d) Lie(D*) Q9k :J ~ ker(ffl(1+P(!)A) ~ Ifl( I+P(!)A/~))
e) Lie(P)(8)k~~ker(Pic(XA) ~ PiC(XA/~))

f) Lie(P')Q9k:J~ker(Pic(X~)~ Pic(X~/~)).

b) holds because Hl((!)A)=H(A) and Hl((!)A/~)=H(A/~), cf. (4.4). c) holds
for a similar reason. As for a), we have (cf. proof of (9.4)) a commutative diagram

y

~

G(A) QC ) G'(A) --~~) D(A)
~

----+) H(A)
~

~ H'(A)

in which the vertical arrows arise from canonical maps of functors (of k-algebras A)
into their associated fpqc sheaves. All these vertical arrows, except possibly for y, are
bijective (cf. (4.4) and its proof, and note, for example, that HO(%(!)XA) is the kernel

of HO(lOXA) ~ HO( lOXred, A) ... ); what we need to show is that y is bijective too. (A similar

(1) Here-and below-distinguish between " ~" (gothic" I ") and" .3" (gothic" J ").
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argument will show that H1(p(9A/~) ~ D(A/~).) The top row is exact, and the composition
of any two successive maps in the bottom row is zero; if, furthermore, the bottom row
is exact at G'(A) and at D(A), then by simple diagram chasing y can be seen to be bijective.

For proving exactness at G'(A), let F be the kernel of G~G' and let 1 ~G' be
the image of this map (in the category of fpqc sheaves). Since G~G' is actually a
homomorphism of Greenberg modules (cf. proof of (9.4)), therefore F and 1 can themselves
be regarded as Greenberg modules, so they are connected and unipotent [DG, p. 601,
(1.2)]. Since F is connected and unipotent, Lemma (6.5) shows that G(A) ~I(A)
is surjective; but I(A) is the kernel of ~ (I being the kernel of G' ~D), so we have the
desired exactness at G'(A). Similarly since the kernel 1 of G' --+D is connected and
unipotent, exactness holds at D(A). This completes the proof of a).

e) andf) follow from condition (ii) above, because as in the second half of the proof
of Lemma (7. 2) (1), the canonical map Pic (XA) --+ Pic (XA/~) takes Pic (Spec (k1®k A) )
isomorphically onto Pic(Spec.(kl®kA/~)). As for d), we begin as in the preceding proof
of a): there is a commutative diagram

HO(I +JV"(9A) ~HO(I +JV"(9~) ~ H1(1 +P(9.A) ~ Pic(XA) ~ Pic(X~)

G*(A)

p'

----+) G'*(A)

y*

--~) D*(A)

a

---+-) P(A) -~) P'(A)

and we need to show that y* is bijective. (J and 't' are surJective, and Pic(XA) --+ Pic(X~)

maps the kernel of (J isomorphically onto the kernel of 't' (cf. (ii) above). p is biJective.

(For, if E (resp. E) is the fpqc sheaf associated to the functor HO(l!JA) (resp. HO(~),

@=(9Xred) then E is a k-ring scheme, the group of units E* is the fpqc sheaf associated
to HO((9~), and since HO((9A) --+ E(A) is bije'ctive (cf. (4.4)), so also is HO((9AJ ~ E*(A);

and similarly HO(19l) ~ E*(A) is bijective; but HO(I +JV"(9A) is the kernel of

HO((9~) ~ HO(19l),

and G*(A) is the kernel of E*(A) ~ E*(A) ... ) Similarly p' is bijective. So, as in the
proof of a), diagram chasing reduces us to showing exactness of the bottom row at G'* (A)
and at D*(A), and this can be done by showing that the kernel F* and the image 1* of
G*--+ G'* are connected unipotent k-groups.

Let us show that F* is connected and unipotent. (A similar proof shows that
G * is connected and unipotent, whence so is its quotient 1*.) As in the proof of (9.4),
F* is isomorphic, as a k-scheme, to F, and we have already noted that F, being a Greenberg
module, is connected. As for unipotence, we have a filtration

F* == Ft 2 F2 2 F3 2 ...

(1) Here we can even replace the etale topology by the Zariski topology.
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where F i (i>I) is thefpqc sheaf associated to the functor HO(I+pi(OA). The quo
tient F i jFi +1 is then the fpqc sheaf associated to the (multiplicative) group functor

HO( I + pi (OXA) jHO( I + pi + 1 (OXA).

But this functor is isomorphic (via the truncated logarithm (I +x) ~x) to the (additive)
group functor

HO (pi (OXA) JHO(pi+l (OXA) ,

whose associatedfpqc sheafis a Greenberg module, hence is a unipotent algebraic k-group.
Since all the quotients F i jFi +1 are unipotent, so therefore is F* [DG, p. 485, (2. 3)].

This completes the proof of d).

** *
Let J (resp. J') be the kernel of the natural surjective map (OA -+ (OA/~ (resp.

(f)~-+(O~/:J). Note that J'~Jj(p(OAraJ). In view of a), b), c), d), e), f) above, we
have the natural commutative diagrams, with exact rows:

HO(P(OA/~)
8

Hl(p(f)A raJ) Lie(D) ®k~~ ~ ~o

1 ! 1
(g.g) HO((OA/~) ~ Hl(J) ) Lie (H) ®k~ ~o

1 1 !
HO( (f)~/~)

<X
Hl(J') ) Lie(H') ®k~~ ~o

HO( I + P(!)A/~)
8*

Hl( 1+ (P(!)A raJ)) Lie(D*)®k~~ ~ ~o

1 ! 1
(g. 10) HO( (!)1/~) ) Hl(1 +f) ) Lie(P) ®k~ ~o

! 1 !
HO( (!)'* )

<X*
) Hl(1 +J') ) Lie(P') ®k~A/:J ~o

A closer look at these diagrams and some relations between them will yield the desired
proofs.

We begin with the proof of (9. 6). - Since C is the kernel of D -+ H, it is immediate
that Lie(C) is the kernel of Lie(D) -+ Lie(H). Similarly, Lie(C*) is the kernel of
Lie(D*) -+ Lie(P).

Next observe that the map (X in (9.9) is the zero map; in other words, the canonical

map ~: HO( (9~) -+ HO( (9~/~) is surjective. (This is because (X' being a scheme over k)
~ can be identified with the canonical map

HO(X', (!)x') ®k W(A) f(p) -+ HO(X', (f)x') ®kW(Aj:J) J(p)
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which is clearly surjective.) It follows easily that the third column of (9.9) is exact.
Similarly ~*: HO(t9~*) ~ HO(t9~i~) is surjective (since ~ is), i.e. the map rf..* in (9. 10)

is the zero-map, and so the third column in (9. 10) is exact. Consequently (since
I =t= (0)) the sequences

Lie(D) ~ Lie(H) ~ Lie(H')

Lie(D*) ~ Lie(P) ~ Lie(P')
are exact.

Finally, Theorem (8. I) shows that Lie(H) ~ Lie(H') is surjective; and this implies
that in (9.9) the map Hl(/) ~Hl(/') is surjective (recall that rf..=o). Since /2=(0)
(cf. Lemma (8.7)), therefore the truncated exponential X~I+X maps / (resp. /')
isomorphically onto 1+/ (resp. 1+/'); hence the map Hl(I +/) ~ Hl(1 +/')
in (9. 10) is also surjective, whence Lie(P) ®k~ ~ Lie(P') ®k~ is surjective, i.e.

Lie(P) ~ Lie(P')

is surjective. This completes the proof of (9. 6).
As for (9. 5) (1), the truncated exponential induces an isomorphism

W(pt9A ra/) ~ Hl(1 +(pt9A ra/)).

Imitating the proof of (*) following Lemma (6. 6) (keeping in mind that p/ == (0),
cf. Lemma (8.7)), we see that this isomorphism takes the image of D (cf. (9.9)) onto
the image of D* (cf. (9.10)). We obtain thereby an isomorphism of groups

Lie (D) ®k~~Lie(D*) ®k~'

and this isomorphism varies functorially-in the obvious sense-with the pair (A, ~).

We wish to deduce an isomorphism of k-vector spaces Lie(D) ~ Lie(D*). For this
purpose, consider the category of pairs (B, 3), with B a k-algebra and 3 a B-ideal such
that 3 =t= (0) and 32= (0) . (A morphism (Bl , 31)~ (B2, .32) of such pairs is a k-algebra
homomorphism q> : Bl~B2 such that q> C~l) ~ 32.) On this category define the group
valued functors ~, P)*, by

~(B, 3) == Lie(D) ®k3

~*(B, 3) = Lie(D*) ®k3.

I claim that the functors ~, ~* are isomorphic.

(From this it will follow that Lie(D) and Lie(D*) are isomorphic as k-vector spaces;
for, if aEk, then multiplication by a in Lie (D) = ~(k[e], ek[e]) (e 2 = 0) is induced by
the morphism of pairs

q>a: (k [e], ek [e]) ~ (k [e], ek [e] )

given by q>a(X +ye) == x +yae (x,yEk)

and similarly for multiplication by a in Lie(D*) (cf. [DG, p. 208, (3.6)]).)

(1) Cf. Remark a) at the end of this section.
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To see that 5$ and !?)* are isomorphic, note that if (B,~) is a pair as above and
if A is a faithfully flat B-algebra, then the following canonical diagrams are exact:

!?)(B, ~) ~ !?)(A, ~A) =t !?)(AQ9BA, ~(AQ9BA))

!?)*(B,~) ~ !?)*(A, ~A) =t !?)*(AQ9BA, ~(AQ9BA)).

But such an A can always be chosen so that, with ~ ===~A, the conditions (i) and (ii)
at the beginning of this proof are satisfied (cf. remark immediately following (i) and (ii)).
Simple considerations show then that for proving !?) and !?)* isomorphic we may restrict
our attention to pairs (B,~) === (A,~) where (A, ~) satisfies (i) and (ii). But for such pairs,
we have already given a functorial isomorphism !?)(A,~) ~ !?)*{A, ~). (9-5) is now
proved.

The proof of (9-2) is similar, and simpler, being based on the isomorphism

induced by the truncated exponential. (Recall that the maps (i, and (i,* are zero-maps,
so that Hl()")~Lie(H')Q9k~' and Hl(I +)") === Lie(P') Q9k~.)

This completes the proof of Theorem (9 _I).

Remarks. - a) For P>2, a much simpler proof of (9-5) is obtained by observing
that the ahelian sheaves P(!JXA' 1+P(!JXA are naturally isomorphic (so that the functors D, D*
themselves are isomorphic!).

Indeed, for n>o, we can write pnjn! ===pf(n)anjbn, where an' bn are integers not
divisible by p, and where f(n»o tends to infinity with n. Hence on the category of
Wx(k)-algebras S (N a fixed integer) we can define a natural group-isomorphism

E : pS~I+PS
00

by E(ps)=== ~ (pnjn!)sn (SES; pms===o if m>N).
.=0

(The inverse L of E is given by
00

b) We have canonical maps

~ : Lie(D) ~ Lie(H), (1-* : Lie(D*) ~ Lie(P)

and, by (9. 5), a canonical isomorphism

v : Lie(D) ~ Lie(D*).

If we could show that v(ker(fl))==ker(fl*), then we could deduce from (9.9) and (9- 10)

that there is a natural isomorphism Lie(H) ~ Lie(P) (induced by the truncated expo

nential )'~I +)').
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APPENDICES ON GREENBERG MODULES

We present in these appendices the facts on Greenberg modules needed in the
body of the paper. (The definition of "Greenberg modules" is given immediately
below.) The material in appendices A and B is either well-known or straightforward,
but convenient references seem to be lacking.

As always, let k be a perfect field of characteristic p>o. We say that a functor Q
of k-algebras has a module (resp. algebra) structure over a k-ring-scheme S, or simply that
Q zs an S-module (resp. algebra), if there is given for each k-algebra A an S(A)-module
(resp. algebra) structure on Q(A), the structure varying [unctorially with A. Homo
morphisms of S-modules or algebras are defined in the obvious way.

We define a Greenberg Dlodule (resp. algebra) over k to be an affine k-scheme
of finite type together with a module (resp. algebra) structure over the Witt vectors W.

The category of Greenberg modules and their homomorphisms is abelian. (Use
the corresponding fact for commutative affine k-groups.)

Appendix A. - The Greenberg :module associated to a W(k)-:module.

Proposition (A. I). - Let M be a W(k)-module (resp. algebra) of finite length, let M
be the fPqc sheaf associated to the functor of k-algebras

A~M®w(k)W(A)

and for any k-algebra A let

~A: M®W(k) W(A) -+ M(A)

be the canonical map. Then:

(i) M is isomorphic, as a set-valued functor of k-algebras, to the affine space

Spec(k[XI , X 2 , • • ., XJ),

("A=length of M; Xl' X 2 , ••• , XA-independent indeterminates). Thus, with its natural
W-module (resp. algebra) structure, M is a Greenberg module (resp. algebra).

(ii) ~A is surjective for every A, and even bijective if A? = A.
(iii) If N is an fpqc sheaf with a W-module (resp. algebra) structure, then for any

W(k)-homomorphism cp: M~N(k) there exists a unique W-homomorphism cp: M~N
such that

Proof. - There exists a W(k)-module isomorphism

r r

M~ ,n Wn (k)==(say).Il M, (n,>o).
1.=1 I t=l
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Then clearly M=TIi=lMj (as W-modules), so for proving (i) and (ii) we may assume
that M = Wn(k) for some n>o. In this case we have a canonical surjective
A-functorial map

M®W(k)W(A)=W(A)j(pn) -+ Wn(A)

which is bijective if N=A. Hence by Corollary (0.2), M~Wn, and (i) and (ii)
are proved.

(iii) follows at once from the obvious fact that there is a unique A-functorial
W(A)-homomorphism

CPA : M®W(k)W(A) -+ N(A)

such that CPk = cp. Q.E.D.

Corollary (A.2). - IfR is a W(k)-algebra offinite length, and M is a finitely generated
R-module, and R, M, ~ are as in (A. I), then M is naturally an R-module, andfor any k-algebra A,
the map

M®R(k)R(A) ~ M(A)

(obtained by extension of scalars from M ~M(k) -+M(A)) is surjective, and even bijective if
AP=A. Hence M is thefppf sheaf associated to the.functor A~M®R(k)R(A).

Proof. - From the natural R®W(k) W(A)-module structure of M®W(k) W(A), we
obtain, by passage to associated fpqc sheaves, an R-module structure on M. The next
assertion results, in view of (A. I) (ii), from the following commutative diagram:

M®R(k) (R®W(k)W(A)) ~ 1tl®w(k)W(A)

~l®R(k)R(A) --~> M(A)

The final assertion results from Corollary (0.2) if we show that the functors M®R(k)R(A)
and M(A) of k-algebras A commute with filtered direct limits. But this follows easily
from (A. I) (i). Q.E.D.

Proposition (A.3). - Let 9J1 be any Greenberg module, and let M be the W(k)-module 9J1(k).
Then M is offinite length (say) A, and as a k-scheme

9J1red = Spec(k[X1 , X 2 , ••• , XJ).

(Xl' X2 , • • ., X A independent indeterminates).

Proof. - For the fact that Ais finite cf. [DG, top ofp. 602]. Now, k being perfect,
we have that 9J1red xk9J1red and W xk9J1red are reduced schemes, so that the" addition"
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map 9J1 x k 9J1-+ 9J1 induces 9J1red xk 9J1red -+ 9J1red , and similarly" scalar multiplication"
W x k 9J1-+ 9J1 induces W x k 9Jlred -+ 9J1red ; in other words, 9J1red is a Greenberg submodule
of 9J1. Since clearly M = 9Jlred (k), we may assume that 9J1 = 9J1red •

By Lazard's theorem [DG, p. 536, (4. I)], it suffices to show that, as a k-group,
9J1 has a composition series of length A with quotients isomorphic to the additive group W1.
This can be done in many ways. We proceed by induction on A. If A=O there is
nothing to prove. If A=I, then there is a W(k)-isomorphism k~~f, which must
come from a W-homomorphism k = W1-+ 9J1 (cf. (A. I) (iii) ); the cokernel ~ of this
map is infinitesimal [DG, p. 601, (1.2) c) and d)]; but since 9J1 is reduced, this means
that ~=o, and hence 9J1~W1 as a k-group (cf. [DG, p. 483, (I. I)]). Finally, if
A> I, let N be a submodule of M such that MjN has length I; by (A. I) (iii), the inclusion
map N -+ M comes from a W-homomorphism N -+ 9J1, whose cokernel 0:' is reduced
and such that O:'(k) (~M/N) has length I [DG, p. 601, (1.2) c)]; the conclusion follows.

Appendix B. - Lie algebras of Greenberg !nodules.

We discuss next, for a Greenberg module M, the associated functor Lie(M) of
k-algebras A. First we recall the definition: let X be an indeterminate, set

A[e:] = A [X] !(X2),

and let 7tA: A[e:]-+A be the A-algebra homomorphism such that 7tA(e:) = 0; then

Lie(M)(A)=kernel of M(7tA) : M(A[e:]) -+ M(A).

To begin with, we think of Lie(M) as a functor into the category of abelian groups.
Next, for each aEA = W1(A) , the homomorphism ua : A [e:] -+ A [e:] defined by

ua(cx+~e:)=cx+~ae: (et, ~EA)

gives rise, via the commutative diagram

M(A[e:]) ~ M(A[e:])

M(A)

to an endomorphism of the abelian group Lie(M) (A); in this way, Lie(M) becomes
a W1-module, varying functorially with M. The W1(k) (=k)-vector space

Lie (M) = Lie(M) (k)

is canonically isomorphic to the Zariski tangent space Homk (m!m2, k) at the zero
point OM of M (m = maximal ideal of the local ring of OM on M). More generally, there
are isomorphisms of A-modules, functorial in both A and M,

Lie(M) (A) ~Homk(m/m2, A) ~Lie(M) (g)kA.

(cf. [DG, p. 208, (3.6)]).
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(B. I)

Furthermore, the canonical map A~A[e:] gives a map W(A) -)-W(A[e:]), VIa
which M(A[e:]) is a W(A)-module, and then M(7tA) and M(ua) are both W(A)-module
homomorphisms. Consequently Lie(M) (A) is a W(A)-submodule ofM(A[e:]), and the
action of W(A) on Lie(M) (A) commutes with the above action of A. Thus we obtain
a ring homomorphism, functorial in A

W(A) -)- EndA(Lie(M) (A)) = EndA(Lie(M) ®kA)

(EndA=== A-endomorphisms).

Since p(Lie(M) (A)) =(0), therefore the kernel of the truncation map W(A)-+Wt(A)
annihilates Lie(M) (A) (to verify this we may assume that AP===A (cf. Lemma (0. I)) ...) ;
in other words (B. I) factors uniquely as

W(A) -)- W1 (A)===A ~ EndA(Lie(M)®kA).

The maps PA constitute a linear representation of the ring-scheme W1 in Lie(M), varying
functorially with M (1).

By [DG, p. 176, Example I] (with r= monoid of non-negative integers) we have
then that

Lie(M) = EB Lien(M)
n2:0

where
Lien(M) ==={xELie(M) Ifor all k-algebras A and aEA, PA(a) (x® I) =x®an}.

Let A be the field k(a, b) where a and b are independent indeterminates over k. Since
PA(a +b) = PA(a) + PA(b) , we get for xELien(M)

x® (a +b)n === x®an+x®bn= x® (an +bn).

It follows, if X =F 0, that

(a + b)n === an + bn•

Writing n===qpt, (q,P)=I or q===o, we have

(apt + bP')q === (aP')q + (bP')q

which is possible only if q= I. The conclusion is that if n is not a power of p, then
Lien(M)=o.

In summary:

The W-module structure on M determines a grading, as above, on the k-vector space Lie(M) :

Lie (M) === EB Liept(M).
t2.0

This grading is natural, i.e. it varies functorially with M.

(1) Equivalently, we can interpret the PA: A~ EndA(Homk(m/m2, A)) as being a representation of W1
in m/m2• Actually, in the general case when M is not necessarily algebraic over k, one must use this last interpretation,
so that (cf. following paragraph) the natural grading appears on m/m2 rather than on its dual Lie(M).
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Now let M be the Greenberg module associated, as In Appendix A, to a
W(k)-module M of finite length (so that

r

M(k)~M= n Wn.(k)
i=l 1

r

and M~ II Wn.).
i=l 1

In this case we can give an explicit description of the graded k-vector space Lie(M)
in terms of M. For this purpose, we need some notation. For a k-vector space V,
and any integer i, we denote by V(i) the k-vector space obtained from V by pull-back

through the automorphism a f----) api of k. (So V(i) is the vector-space whose underlying
abelian group is the same as that of V, and whose multiplication [L(i): k X V~V is
given by

[L(i)(a, v) = a
pi v.)

Clearly any basis of V is also one of V(i), so that V and V(i) have the same dimension.

r

Proposition (B. 2) (1). - If M = n Wn' then for each t > 0, there zs a natural
i=1 I

isomorphism of k-vector spaces

Proof. - There are canonical isomorphisms

r r

.EB Liept(Wn.) ~ Liept(M) ~ .n Liept(Wn.)
~=1 1 ~=1 1

T r

,tf}'/WnJi+1Wn; ~ i(M(k))ji+1(M(k)) ~ ll/IWn;ji+1Wn;o

Using these isomorphisms (and the fact that n.i=lWn. = EB~=lWn.) we reduce the
1 1

problem to defining ([)~n (n > I) and to checking that for any W-homomorphism

t¥ : Wn~Wm' the resulting diagram

~ (ptW
n
!pt+1W

n
)(-t)

eptvn

commutes.

(1) For a stronger result (without proof) cf. remark (B. 3) below.
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(cEk).

For any k-algebra A, we have

Lie(Wn)(A)={(e:ao, e:al , ... , e:an_ 1) laiEA, e: as before}.

Now if X= (Xo, Xl' · · ., X n - 1), Y = (Yo, Y I , • · ., Yn - 1) are two families ofindependent
indeterminates, then, in Wn(k[X, V]) we have

(Xo, ... , Xn- 1)+(YO, ••• , Yn - 1) = (So(X, V), ... , Sn_1(X, V))

where So, ... , Sn-1 are polynomials such that

Si(X, 0) = Xi Si(O, Y) = Y i (0 < i< n)

I.e.
Si(X, Y) = Xi+Yi +(terms of degree> 2).

By specializing X,-+e:ai' Yj-+e:aj (ai' aj EA), and since e:2 = 0, we deduce that

(e:ao' •.. , e:an_1)+(e:a~, ... , e:a~_1)=(e:(ao+a~), ... , e:(an_ 1+a~-1)).

Furthermore, for aEA, the homomorphism Wn(ua) (see above) takes (e:ao, · · ., e:an_ 1)
to (e:aao, •.. , e:aan_ 1). Thus the A-module Lie(Wn)(A) is (functorially) isomorphic to
the direct product An.

If (bo, hI' ... ) EW(A), then, either directly, or because we know (as above) that
Lie(Wn)(A) is annihilated by the kernel of W(A)-+W1 (A), we see that

(ho, hI' · · .) (e:ao, e:al , . · ., e:an _ 1)= (bo, 0, 0, · · .) (e:ao, e:al , · · ., e:an _ 1)

= (e:boao, e:bCal , .•• , e:bCn
-

1an_1).

From these formulas it is immediate that

LieP'(Wn)={(e:xo, e:xl , ... , e:xn_ 1)EWn(k[e:]) Ixi=o for i=l=t}.

Since, for t<n, p'Wn (resp. pt+1Wn) is the kernel of the surjective truncation

map Wn-+W, (resp. Wn-+Wt + I ), therefore

ptwnlp'+1Wn~kernel of (Wt+1-+Wt) (t<n).

Hence ptwnlpt+1Wn~{(0,0, ... ,0, X)EWt+1}

with scalar multiplication given by

c(0, 0, ... , 0, x) = (0, 0, ... , cpt x)

We can then define <p~ : Liept(Wn) -+ (ptWnlpt+1Wn)(-t):
n

<Ptvn ( e:xo, · · ., e:Xn -1) = (0, 0, · · ., 0, X,) (t< n)

=0 (t>n).

It is easily verified now that the diagram (B. 3) commutes. Q.E.D.

Remark (B.3). - Let M be a W(k)-module offinite length. We say that a filtration of M byW(k)-submodules

M=Mo2Ml;2M2 2 ...
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is a p-filtration if

(i) pMt £ Mt+l for all t ~ 0, and
(ii) Mt =(0) for some t (so that Mn =(0) for n ~ t).

Homomorphisms of p-filtered W(k)-modules are defined in the obvious way (compatible with filtrations).

From the structure theorem of remark (8.8), one can deduce the following structure theorem for smooth Greenberg
modules:

For each smooth Greenberg module M, let MO =M(k) be filtered by its submodules

Mt = {x EM(k) Ifor all W-module homomorphisms cp : M ~W t , x Eker(cp(k) : M(k)~Wt(k))} (t> 0).

In this way, we obtain an equivalence from the category of smooth Greenberg modules to the category ofp-filteredW(k)-modules
offinite length.

Furthermore:

There are natural isomorphisms of k-vector spaces

LieP'(M) ~ (Mt/Mt+l)(-t) (t ~ 0).

Via these isomorphisms, the p-th-power map [DG, p. 273] in Lie(M) = EB Liept(M) corresponds to the additive endomorphism
t>o

of EB (Mt/Mt+l)(-t) induced by multiplication by p in M(k). -
t~o

Appendix C. - Greenberg Dlodules and etale algebras.

The main result in this appendix is Theorem (C. 5), which follows quite directly from
its special case Lemma (C.2). In the paper, (C.5) is used mainly via Corollary (C.6).

Let p be, as usual, a positive prime number. Let A be a ring such that pA=(o),
and let B be an A-algebra, with structural homomorphism g : A~B. For any positive
integer rn, the truncation map P= Plm : Wm~W1 gives the commutative diagram

p(A}
~ W1(A)=A

g

p(B}
~ W1(B)=B

whence a homomorphism

(C. I ) Wm(B) ®Wm(A}A ~B.

Lemma (C.2). - With the preceding notation, if B 1,5 an etale A-algebra then Wm(B)
is an etale Wm(A)-algebra (via Wm(g)), and the map (C. I) is hijective.

Proof. - We proceed by induction on m. There being nothing to prove when
m = I, let us prove the Lemma for m = n+ I assuming that it holds for m = n (n > I).
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Let ~A (resp. 5lA) be the kernel of the truncation map W n+1(A) ~Wn(A) (resp.
Wn+1 (A) -+ A) :

~A ={(o, 0, ... ,0, a) IaEA} (n zeros)

5lA={(0,a1,a2, ... ,an)laiEA for I<i<n}.

Let ~B' 5lB be similarly defined (with respect to B). Then Wn+1(g) (~A) ~ ~B;

Wn+1(g)(5lA)~5lB; and (G.I) is bijective (for m=n+I) ~5lB=5lAWn+1(B).

We have

(To prove this, we may assume that AP=A (by Lemma (0. I), for example), and then

~A ~pnWn+1(A), 5lA~pWn+1 (A), so ~A5lA ~pn+l Wn+1(A) === (0).) Consequently the
Wn+1(A)-module structure on ~A is the pull-back of an A (===Wn+1(A)/5lA)-module
structure, the multiplication A X ~A -+ ~A being

(ao, (0,0, ... ,0, a)) ~ (0,0, ... ,0, aCna).

Thus, if A(n) is the ring A together with its structure of A-algebra for which the structural
map A-+A(n) is the n-th iterate (JA of the Frobenius endomorphism (JA of A ((JA(X) = xP

for x in A), then the map <:PA: A(n)-+~A given by

<FA(a) ===(0, 0, ... ,o,a) (aEA)

is an isomorphism of A-modules. (To check that <FA preserves addition, we may assume

again that N=A and write (0,0, ... ,0,a)=pn(a1
/
pn,0, ... ,0), etc.) There is a

similarly defined isomorphism of B-modules <:PB: B(n) -+ ~B' and a commutative diagram
of A-module homomorphisms (where B-modules are made into A-modules by means of g)

A(n)
g

) B(n)

~Aill II CPB

~

~A ) ~B
Wn+1(g)

Hence, by extension of scalars, we have a commutative diagram of B-module homomorphisms

A(n)Q9A B ~ B(n)

(C·3) ~AI8>ABill lli~B
~AQ9AB ~ ~B

fj

in which the vertical arrOWf; are isomorphisms.
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The key point is that (J. is biJective (whence, so is ~). A proofis given by C. Houzel
in [SGA 5, Expose xv, p. 5, Prop. 2 c)]. The idea of the proof is as follows: In the
first place, (J. is actually the unique ring-homomorphism for which the following diagram
commutes:

y(h)=I®b

h(a)=a®r

It follows easily that Spec((J.): Spec B(n) ~ Spec (A(n) (8)AB) is a radicial morphism;
furthermore since A(n) is radicial over A, therefore A(n)®AB is radicial over B, so that

Spec(y) is injective, and since Spec(y) 0 Spec((J.) = Spec(~~) is surjective, also Spec((J.)
is surjective; finally (J. is an A(nthomomorphism of etale A(ntalgebras, and so Spec((J.)

is an etale morphism [EGA IV, (17.3.5)]; thus Spec((J.) is etale, radicial, and surjective,
t.e. [EGA IV, (17.9.1)] Spec((J.)-and hence (J.-is an isomorphism.

Now since ~ in (C. 3) is surjective, we see that

~B = ~AWn+1 (B) £ ~AWn+1 (B) ;

since the kernel of the truncation map Wn(A)~A is clearly ~AWn(A) , the bijectivity
of (C.I) for m=n implies that the truncation map Wn(B)~B has kernel ~AWn(B);

hence (since Wn(B)===Wn+1(B)/~B)

~B =.RAWn+1(B) +~B ===~AWn+1(B);

thus (0. I) is bijective for m = n + I.
Furthermore, since ~A~A === (0), we have that

~A®Wn+1(A) W n+1(B) ~ ~A®A(Wn+1(B) /~AWn+1(B))

~ ~AQ9A B.

Since ~ in (C.3) is bijective, we conclude that the natural map

~AQ9Wn+1(A) Wn+1(B) ~ ~AWn+1(B)

is bijective. Since ~ === (0), and since

is, by assumption, etale-and hence flat-over Wn+t(A)/:JA (==Wn(A)), therefore

[H, p. 98, Th. I] shows that Wn+1(B) is flat over Wn+t(A).
The proof is completed by the following lemma (with R =Wn+1(A), S =Wn+1(B),

~=~A):
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Lemma (C.4). - Let R he a ring, and let ~ he a nilpotent ideal in R (i.e. ~q==(o) for
some integer q>0). For an R-algebra S, the following conditions are equivalent:

(i) S is an etale R-algebra.
(ii) S is flat over Rand S/~S is an etale R/~-algebra.

Proof. - (i) => (ii) is left to the reader. Assume that (ii) holds. Then [EGA IV,
(18. I .2)] there exists an etale R-algebra T together with an R/~-isomorphism

e : T /:JT -+ S/~S.

elifts to a homomorphism of R-algebras e: T -+ S [EGA IV, (17. I . I)]. To show
that e is an isomorphism-whence (i) holds-it suffices to show that the induced map
gr~e : gr~T -+ gr~S is bijective. (Here gr~T is the graded ring

(T/~T) EB (:JT/~2T) EB ••• EB (~q-1T /~qT),

and similarly for gr~S.) We have a natural commutative diagram

gr~R@R/~T /~T ~ gr~T

t
gr~R@R/~S/~S ~ gr~S

(where" id " is the identity map of gr~R, so that id@e is bijective); since T and S
are flat over R, the horizontal arrows are bijective [B, p. g8, Th. I], and so gr~e is
bijective. Q.E.D.

From Lemma (0.2) we now deduce a more general statement (Theorem (0.5)
below). Let k be a perfect field of characteristic p, and let M be a finitely generated
Wm(k)-module (m > I), with corresponding Greenberg module M (Appendix A).
Let A be a k-algebra and let B, C be two A-algebras. From the canonical map a -+ B@Aa
we obtain, by functoriality, a homomorphism ((): M(a) -+ M(B@A a). We have a
commutative diagram

A ~ B

! !
c ~ B@Aa

whence, by functoriality, a commutative diagram
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M(a) is a Wm(A)-module via (03' M(B®A C) is a Wm(B)-module via (02 and a
Wm(A)-module via (020(01===(040(03. The map ep is a homomorphism ofWm(A)-modules,
and hence by extension of scalars we obtain a Wm(B)-homomorphism

~ : Wm(B)0wm(A)M(C) ~ M(B®A C).

Theorem (C.s). - With the preceding notation, if B is an etale A-algebra, then:

(i) ~ is bijective.
(ii) If M is a Wm (k) -algebra (so that M is naturally a Wm-algebra (Corollary (A. 2) ),

then M(B®A C) is an etale M(a) algebra (1).

Proof. - The second assertion follows from the first because Wm(B) is etale

over Wm(A) (Lemma (C.2)) and because ~ is a homomorphism of M(C)-algebras if

M is a Wm(k)-algebra.
For the first assertion we may assume that M === ni=lWmi , (mi <m). This reduces

us immediately to the case M==Wn (n<m). Since Bisetale over A, BQ9AC isetale
over C, and Lemma (C.2) shows then that ~ (with M===Wn) is a homomorphism of

etale Wn(C)-algebras. Now the kernel K of the truncation Wn(C)~C satisfies Kn==(o)
(to see this, we may assume that ap===c (Lemma (0.1)), in which case K===pWn(C)),

so by [EGA IV, (18.1.2)], ~ is bijective if and only if ~®Wn(C)C is bijective. But,
in view of (C. 2)

Wm(B)0Wm(A) Wn(C)®Wn(C)C~Wm(B)®Wm(A)A®A C

~B®AC

~Wn(B®AC) Q9wn(c) a,

and modulo these isomorphisms, we find that ~0wn(c)C is the identity map of B®A C.
Q.E.D.

Corollary (C. 6). - Let R be a local Artin Wm(k)-algebra such that the natural map of k
into the residue field of R is bijective, and let R be the corresponding Wm-algebra. Then for any
k-algebra A:

(i) The functor B ~R(B) is an equivalence from the category EtA of etale A-algebras
to the category EtR(A) of etale R(A)-algebras.

(ii) If F is any functor of R(A) -algebras, with associated etale sheaf F"', then FO'" oR
(together with the map FoR~F"'oR induced by the canonical map F~F"') is
the etale sheaf associated to the functor FoR of A-algebras, i.e.

(F °R) '" === F'" oR.

(1) Theorem (C.s) remains valid for any Greenberg module M annihilated by pm: this follows from (C.s)
as stated and the fact that (Wn)n> 0 is a cogeneratingfamily for the category ofGreenberg modules (cf. [Sch, § 5.3,
proof of Theoreme]).
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Proof. - Let (J: R~k be the natural map, and let PA: Wm(A) ~A be the
truncation map. We have a commutative diagram

O(8)PA

~
---~) A

in which the right side is obtained from the left by passing to associated fppf sheaves
(Corollary (A.2)). Since (J®PA is surjective, so is (JA. Furthermore, the kernel of
(J® PA is nilpotent, and by Corollary (A. 2), "t' is surjective; hence the kernel of the surJective
map (JA is nilpotent.

Now by [EGA IV, (18. I .2)], the functor E~E®R(A)A from EtR(A) to EtA is fully
faithful. Moreover, for any etale A-algebra B, (C. 5) (with M = Rand C = A) shows
that R(B) is etale over R(A), and that

R(B)®R(A)A~Wm(B)®wm(A)R(A)®R(A)A~B (cf. (C.2)).

This proves (i).
(ii) follows in a straightforward way from (i) in view of the following observations:

a) Since an equivalence of categories takes (categorical) direct sums into direct
sums, therefore for any two etale A-algebras B, C we have

R(B®A C)~R(B) ®R(A)R(C).

(This also follows directly from (C. 5) ) .
b) Since for any etale A-algebra B, (JB: R(B) ~ B has nilpotent kernel, therefore

a family (Bi)i E I of etale A-algebras covers A (cf. § 0) if and only if the family (R(Bi))i El

covers R(A). Q.E.D.
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